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Noncollinear XY spin system: First-order transition and evidence of a reentrance

E. H. Boubcheur, R. Quartu, and H. T. Diep
Laboratoire de Physique The´orique et Mode´lisation, Universite´ de Cergy-Pontoise, 2, Avenue Adolphe Chauvin,

95302 Cergy-Pontoise Cedex, France

O. Nagai*
Department of Physics, Faculty of Science, Kobe University, Kobe 657, Japan

~Received 9 January 1998!

We study the frustratedXY model on stacked three-dimensional checkerboard lattices by means of extensive
Monte Carlo~MC! calculations. When the system is fully frustrated, the histogram MC results show that the
transition is clearly of first order. In a range of parameter of frustrationh we find evidence of the reentrance
phenomenon. The phase diagram in the~h, temperature! plane is presented and discussed. The quantum
version of the model is also studied by a self-consistent Green-function technique. Some results are shown and
compared with MC simulations.@S0163-1829~98!02425-4#
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I. INTRODUCTION

In recent years, much effort has been devoted to frustra
spin systems. There are several reasons for this increa
interest. On the one hand, many real systems which s
competing interactions cannot be explained by simple mo
Hamiltonians. An example is planar arrays of coupled
sephson junctions which can be studied by mapping it int
frustratedXY two-dimensional~2D! model. On the other
hand, from a fundamental point of view in statistical physi
in particular in the domain of phase transitions and criti
phenomena, frustrated systems are of great interest bec
they serve as a testing ground for more sophisticated theo
and approximations. Among the most controversial subje
we can mention the nature of the phase transition in non
linear magnets such as helimagnets and inXY and Heisen-
berg stacked antiferromagnetic triangular lattices~SATL!.
Ten years ago, Kawamura suggested from a renormaliza
group ~RG! calculation and Monte Carlo~MC! simulations
that the transition inXY and Heisenberg models belong ea
to a new universality class.1 Soon after, Azariaet al.2 sug-
gested from a nonlinears model that if the transition is no
of first order or mean-field tricritical then it should beO(4)
universality. Numerical simulations3–5 did not confirm these
conjectures. Antonenko and Sokoloff6 went further with RG
calculations and concluded that the transition is of first ord
At the present time, the question remains unsettled.

Another spectacular effect of the frustration is the re
trance phenomenon. In some frustrated 2D Ising exa
solved models, it has been shown that the frustration
give rise to a partial disorder which favors the occurence o
reentrance, i.e., a disordered phase between two ord
phases on the temperature scale.7,8 For reviews on various
other aspects of frustrated spin systems, the reader is refe
to Ref. 9. We note that while partial disorder has been d
covered very recently inXY and Heisenberg systems,10–12

reentrance has never been found in any non-Ising mode
This paper has been motivated by the above unse

questions, i.e., the nature of the phase transition and the
istence of reentrance in periodically noncollinearXY spin
PRB 580163-1829/98/58~1!/400~9!/$15.00
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systems. Of course, depending on the ground-state~GS!
symmetry and the GS degeneracy, noncollinear spin syst
may behave differently. The above-mentioned SATL w
XY spins, for example, has twofold degeneracy~Ising-like!
while the system studied here has an infinite GS degene
as we will see later. Our purpose is not to settle the con
versial question of the SATL case, but to show the richn
of physical behaviors of noncollinear spin systems to stim
late further theoretical investigations.

The system studied here is a frustrated 3DXY spin sys-
tem consisting of planes stacking in theZ direction. Each
plane is a square lattice with one frustrated plaquette ev
two in two directions~see Fig. 1!. We call this modelfrus-
trated checkerboard model. We use both MC simulations
and a Green-function technique, for comparison.

Section II is devoted to the description of the model a
its classical GS. In Sec. III, we show the MC results in d
tails. In particular, evidence of first-order transition is fou
in a region of the phase diagram where the spin configura
of the ordered phase is noncollinear. We recall that previ
works also found a first-order transition in frustrate
systems,3,4 but these transitions, except in aXY helical
magnet,13 occur from a collinear state to the paramagne
state. Section IV is devoted to a Green-function calculat

FIG. 1. Checkerboard lattice. Heavy~thin! lines are antiferro-
magnetic ~ferromagnetic! bonds. Frustrated ~nonfrustrated!
plaquettes are gray~white!. The four sublattices are denoted bya,
b, c, andd.
400 © 1998 The American Physical Society
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PRB 58 401NONCOLLINEAR XY SPIN SYSTEM: FIRST-ORDER . . .
performed for quantumXY spins on the same lattice. Som
results are shown and compared with the classical spin
sults. Concluding remarks are given in the last section.

II. MODEL AND GROUND STATE

Let us present here the general classical GS of the sys
We consider the model shown in Fig. 1 with the followin
Hamiltomian:

H52(̂
i j &

Ji j Si•Sj , ~1!

where(^ i j & indicates the sum over the nearest-neighbor~NN!
spin pairs.Ji j denotes the NN exchange coupling. In theXY
planes,Ji j takes two values:J.0 for ferromagnetic bonds
andJ852hJ (h.0) for antiferromagnetic bonds. For sim
plicity, the interaction in the stacking directionZ is set equal
to J. We shall useJ as a unit of temperature and ener
below. TheJ bonds are represented by single lines in Fig
and theJ8 bonds are represented by heavy lines. Let us
a spins the spins connected to neighbors only byJ bonds,
and b, c, and d spins the remaining spins~i.e., spins con-
nected to neighbors by bothJ8 andJ bonds!. h can take an
arbitrary positive value. Whenh51 the system is fully frus-
trated. To determine the classical GS, it suffices to cons
four plaquettes: two frustrated plaquettes~the gray ones in
Fig. 1! and two nonfrustrated plaquettes. Once the spin c
figuration of the frustrated plaquette is determined, one
construct the whole spin configuration of aXY plane by
matching the spin configurations of neighboring plaquet
Care must be taken to count all the matching possibilit
i.e., the degeneracy. Since the interaction in the stacking
rection is ferromagnetic, the same GS configuration is for
XY planes.

Following Bergeet al.,14 we calculate the GS spin con
figuration of a frustrated plaquette by a variational meth
~the interaction in theZ direction does not affect the spi
configuration!. We find that the cosines of the anglesu i j of
the spinsSi and Sj linked by the positive bondsJ are all
equal and given by

cos~u!5
1

2Fh11

h G1/2

, ~2!

while u i j8 of the spinsSi andSj linked by the bondJ8 are all
equal and given by

u853u. ~3!

The critical value ofh is h5 1
3 above which the GS spin

configuration is noncollinear. Note that for each plaque
the GS configuration is twice degenerate with6u, i.e., left
chirality ~LC! and right chirality~RC!.16 As said earlier, the
GS spin configuration of aXY plane is constructed startin
from a configuration of a plaquette. For matching purpos
we show in Fig. 2~a! all left and right chirality configura-
tions. One can distinguish the following GS types:~i! states
with the same chirality such as all frustrated plaquettes be
of LC or all of RC, for example, a state with sequen
L1L2L3L4•••, ~ii ! states with LC and RC alternately such
L1R1L1R1••• @see Fig. 2~b!#, ~iii ! states with periodically
e-
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mixed chiralities such as the sequenceL1L2L3L4R4L4•••,
~iv! states with randomly mixed chiralities~matching is,
however, necessary!. One can easily check that the dege
eracy is larger than 2AN/2, i.e., infinite in the thermodynamic
limit. We note that the GS energy per plaquette of the fer
magnetic phase is given byU05(h23)/221 for h< 1

3,
while that of the noncollinear~frustrated! phase (h> 1

3 ) is
given by

U052
1

2

~11h!3/2

h1/2
21.

III. MONTE CARLO SIMULATIONS

Our model has been obtained by stacking the 2D confi
rations shown in Fig. 2. We have performed both stand
and histogram MC simulations using the sample sizes oN
5L3 spins whereL512 up to 44 for various values ofh.
The largest size has been used to calculate the energy h
gramP(E) (E is the system energy! as well as other physi-
cal quantities as functions of temperatureT.

Since the GS configuration is either commensurate or
commensurate~random mixing of chiralities!, we can use
periodic boundary conditions only for system sizes comm
surate with GS configurations shown in Fig. 2~b!. Note that
for h51 the linear size should be a multiple of 4. In the ca
where the angleu is not commensurate with the lattice siz
within a reasonable value ofL, we use the so-called ‘‘fluc-
tuating boundary conditions.’’15 In each run, we have dis
carded about 20 000 MC steps per spin before averag
physical quantities over the next 80 000 MC steps per s
~MCS! in standard MC calculations. Histogram MC calcul
tions have been carried over 23106 MCS.

FIG. 2. ~a! four left and four right chirality configurations,~b! an
example of a GS with alternate chiralities.
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A. The case ofh51

When h51, we have found a single transition with
first-order character as shown by the curveU ~energy per
spin! versusT in Fig. 3. Note that the jump ofU is observed
only with a very large lattice size. We show in Fig. 4 th
magnetization defined byM5^( i uSi u/N&, whereSi is thei th
sublattice total spin and the angular brackets indicating
thermal average. One defines the chirality order paramete

K5
1

N(
p

~21!p(̂
i j &

~Si3Sj !p , ~4!

where p indicates the frustrated plaquette. The par
(21)p is chosen according to the GS symmetry. If a GS w
the same chirality is chosen, then the parity is 1. The chi
ity order parameter is also shown in Fig. 4. The first-ord
character of the transition is confirmed by the histogram M
simulation shown below.

In order to confirm the nature of the transition whenh
51, we use the histogram MC technique which was dev

FIG. 3. Internal energy per spinU versusT in the caseh51 for
two extreme lattice sizes studied 123 ~diamonds! and 443 ~triangles!
are shown. The jump at the transition is seen only with the la
size.

FIG. 4. MagnetizationM ~black circles! and chirality order pa-
rameterK ~white squares! versusT are shown near the transition
for h51 with lattice size 443. See text for the definition ofM and
K. They are normalized by their values atT50.
e
as

l-
r

l-

oped by Ferrenberg and Swendsen.17,18 We use systems o
N5443 spins with periodic boundary conditions. We fir
estimate as precisely as possible the ‘‘transition’’ tempe
ture T0 at L544 and then performed atT0 the energy histo-
gramP(E) (E being the total energy! over 23106 MC steps
per spin after discarding 106 MC steps per spin for equili-
brating the system. The result is shown in Fig. 5 where t
peaks are observed atT051.06378. This bimodal distribu
tion of energy at the transition is a clear evidence of
first-order character of the transition suggested above.

At this stage, it is worth mentioning that a first-order tra
sition has been suggested by MC simulation in a numbe
frustrated vector spin systems such as stacked triang
antiferromagnets,3,4 hcp ~Ref. 19! and fcc~Ref. 20! antifer-
romagnets, and bctXY helimagnets.13 However, except for
the last case, the first-order transition was suggested in
phase region where a collinear spin configuration is the
dered phase~in the mentionedXY bct case,13 a first-order
transition was suggested from a standard MC simulatio!.
Therefore, we emphasize that a first-order transition is firm
found for the transition from a noncollinear configuration
the paramagnetic state. This has some fundamental im
tance since this shows that the question of the nature of
phase transition in helimagnets mentioned in the Introduc
cannot be solved as long as one cannot identify the ingr
ent which governs the transition. The infinite GS degener
of the present system may play an important role in the v
clear first-order character of the transition, unlike in t
stacked triangular antiferromagnet.

Let us note that though the GS is infinitely degenerate,
system prefers to choose states withthe same chirality~all
left or all right! at finite T. It is noted that if one heats th
system from a random or a mixed-chirality GS, it is on
near the phase transition that the system will be ordered w
the same chirality. It means that at lowT, there may be some
finite barriers between different kinds of ordering symme
in the phase space. These barriers disappear near the tr
tion. We show in Fig. 6~a! a chirality snapshot below the
transition. Only one kind of chirality is seen though the sy
tem is heated from the GS with mixed LC and RC. Cooli
the system from highT, we also get a state with the sam
chirality below the transition~note, however, that cooling to

e FIG. 5. Bimodal distribution of the total internal energyP(E)
for h51 at the transition indicating a first-order transition.
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PRB 58 403NONCOLLINEAR XY SPIN SYSTEM: FIRST-ORDER . . .
very low T results in metastable states as expected since
relaxation time is very long!. As a last remark, let us empha
size that the internal energy versusT shown in Figs. 6~b! and
6~c! for h51.7 andh51 does not change significantly wit
different intitial conditions, so the preference of the syst
for a symmetry of the same chirality at finiteT results cer-
tainly from an entropy effect.

FIG. 6. ~a! Chirality snapshot atT51 for h51: one observes
the same chirality ordering, although the system is heated fro
GS with mixed left and right chiralities.~b! Internal energy per spin
U versusT for h51.7 with mixedLR chiralities~black circles! and
all L chirality ~squares! (L524). See text for comments.~c! Inter-
nal energy per spinU versusT for h51 with mixedLR chiralities
~black circles! and allL chirality ~void circles! (L524).
he

B. hÞ1

WhenhÞ1, there may be several transitions for a giv
set of parameters. Figure 7 shows an example wh
h50.618 ~u536°!. The local magnetization vanishes in
very narrow range of temperatureT50.9521.07 and goes
up again before vanishing at a higher temperatureT51.35.
This remarkable behavior provides evidence that the sys
is disordered in a low-T interval and becomes ordered aga
up to some higherT. The low-T disordered phase is calle
the reentrant phase~a reentrant phase can be defined a
phase with no long-range order, or no order at all, occurr
in a region between two ordered phases on the temper
scale!. This is a very important finding since the reentran
phase has recently been found for some 2D frustrated I
spin systems,7–9 but has never been observed in a vector s
system.

The low-T ordered phase is the noncollinear state and
high-T ordered phase is ferromagnetic. This is shown in F

a

FIG. 7. Local magnetizationML versusT whereh50.618 (u
536°). ML is defined asML5( i^uSi u&/N, whereSi is the total spin
of the sublattice containing parallel spins in the GS. There are
ordered phases with a reentrant phase in between. See text for
ment.

FIG. 8. Chirality order parameterK ~black circles! characterized
the low-T noncollinear ordering and total uniform magnetizatio
Mu characterized the high-T ferromagnetic phase~squares! versus
T for h50.618,L540. Mu is defined asMu5^u( iSi u& whereSi is
the i th spin.Mu , zero in the low-T phase because of the helima
netic structure, shows a jump while entering the high-T ferromag-
netic phase.K is normalized by its value atT50.
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8, whereh50.618: the chirality order parameter is well d
fined at lowT while the uniform~total! magnetization~zero
at low T due to the noncollinear structure! shows a jump at
high T, indicating that the ordering is a ferromagnetic sta

We show in Fig. 9 the specific heat versusT calculated by
energy fluctuations. In spite of the narrowness of the re
trant region, it is possible to see the two low-T peaks. Thus,
the existence of the reentrant region, clearly seen by the l
magnetization~Fig. 7!, can also be seen in the specific he

Now, whenh is rather large, one also observes a simi
behavior, namely, a reentrant region between two orde
phases. The sublattice magnetizations are shown in Fig
for h51.7. One sees that the center-spin sublattice (a) be-
comes disordered at lowT while the other three sublattice
(b, c, andd) remain ordered up to a higherT. The high-T
ordered phase, called thepartially ordered phase, is due to
the fact that the antiferromagnetic bonds are much stron
than the ferromagnetic bonds in this region (h is much larger
than 1!. Note that the partial order in other frustrated vec
spin systems has been recently observed.10–12 This phenom-
enon seems now to be a general effect in frustrated ve
spin systems whenever anisotropic interactions are pres
The specific heat is shown in Fig. 11 forh51.7 where we
observe a well separation of the two peaks at lowT which
limits the reentrant region.

FIG. 9. Specific heat versusT for h50.618 (L540). Two low-
T peaks are highlighted by vertical lines. See text for comment

FIG. 10. ChiralityK ~black circles! and sublattice magnetiza
tions Ms versusT for h51.7. Ms is defined asMs5^u( iSi u/N/4&
whereSi is the i th spin belonging to one sublattice. Squares cor
spond to sublatticesb, c, andd ~indistinguishable! while triangles
show thea sublattice magnetization. Note that all sublattice ma
netizations are zero at lowT due to the noncollinear structure o
each sublattice~not disordering!. At high T the sublatticea be-
comes disordered while others remain ordered~partially disordered
phase! up to paramagnetic phase.
.
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Calculations have been performed for the whole range
h. Whenever the angleu is not compatible with the lattice
size we use the fluctuating boundary conditions15 as said
earlier. We display in Fig. 12 the phase diagram in the pla
(T,h). In this diagram we can see four regions: the fer
magnetic phase~I!, the noncollinear phase~II !, the partially
ordered~PO! phase~III !, and the paramagnetic phase~P!.

Let us discuss now the nature of ordering at lowT in
different regions of the phase diagram~Fig. 12!. As in the
case whereh51 shown above, we find, by starting wit
different kinds of initial GS’s, that the system alway
chooses an ordered state with the same chirality at finitT
everywhere in the noncollinear phase~II !. This is very simi-
lar to the so-called order by disorder introduced by Villa
et al.21 for frustrated Ising spin systems.

IV. QUANTUM RESULTS

Let us show the results for the quantum spin case. Us
the Green-function method presented below, we have ca
lated self-consistently various physical quantities as funct
of temperatureT. A size of 203 points in the first Brillouin
zone has been used.

-

-

FIG. 11. Specific heatCv ~black circles, left scale! and internal
energy per spinU ~squares, right scale! versusT for h51.7 (L
524). Two low-T peaks are highlighted by vertical lines.

FIG. 12. Phase diagram in the plane (h,Tc). There are four
regions: the ferromagnetic phase~I!, the noncollinear phase~II !, the
partially ordered~PO! phase~III !, and the paramagnetic phase~P!.
See text for comments.
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A. Method

Let us present here the general formalism that can
applied to the general case where the spins are either He
berg orXY type with general spin magnitude. Application
the XY case is given in the next section. We conside
model system described by the Hamiltonian~1!. The classi-
cal GS is planar and its energy per spin is given by

Uc5
J

4
Sc~Sb1Sd!@cos~u2!1hcos~u3!12ecos~u1!#

1
Jv

4
~Sa

21Sb
21Sc

21Sd
2!cos~uv!, ~5!

wheree5Sa /Sc andu2 is the angle between ab spin and a
c spin or ac spin and ad spin. Whileu3 is the angle be-
tween a spinb and a spinc of the neighboring plaquette o
between a spinc and a spind of the neighboring plaquette
u1 is the angle between the spinsa andb or betweena and
d. Note thatuv , the angle between spins belonging to ad
cent basal planes, is always equal to 0. The relation betw
the angles is given by

cos~u1!5
1

2F e2~h11!2

~h1e2!h
G 1/2

,

sin~u2!52esin~u1!,

u35u222u1 . ~6!

We shall use the Green-function method to calculate the
ergy, magnetization, angles, and other thermodynamic qu
tities as functions of temperature. The details of the met
have been given in Ref. 10. We briefly recall it here a
show the application to the present model.
e
en-

a

-
en

n-
n-
d

For numerical calculations we have used a small stab
ing field d pointing in the local quantization axis at each s
~see Ref. 10 for a discussion on its effect!. We note that the
local z-axis direction can change with the temperature up
iteration.10

We can rewrite the Hamiltonian in the local framework22

as

H52(̂
kl&

1

4
Jkl

2~Sk
1Sl

11Sk
2Sl

2!1
1

4
Jkl

1~Sk
1Sl

21Sk
2Sl

1!

1Jkl
z cos~bkl!Sk

zSl
z12(

i
diSi

z , ~7!

wherebkl is the angle between the two spins at the latt
sitesk and l and

Jkl
6~bkl!56Jkl

x 1Jkl
y cos~bkl!, ~8!

where we have decomposed the interactionJkl into Jkl
x , Jkl

y ,
Jkl

z . For the spins linked by aJ bond, Jkl
s 5Js (s5x,y,z)

and for the spins linked by aJ8 bond,Jkl
s 5J8s (s5x,y,z).

For the planar spin model, one puts one of these compon
equal to zero, and the other two are taken to be the sa
Since we define the local quantization axis as thez axis of
the spins, the case of planar spins will correspond toJkl

x 50.
Following Tahir-Kheli and ter Haar,23 we define two

double-time Green functions for each pair of spins. For o
lattice, we need eight such Green functions. Then, we w
the equations of motion for them, neglecting higher-ord
correlations by using the Tyablikov decoupling scheme. T
Fourier transforms of the Green functionsg1 andg2 satisfy
a set of equations which can be rewritten under the ma
form D(E)g5u, where
D~E!51
E1Qa 2lab

1 2lad
1 0 2Za

2 2lab
2 2lad

2 0

2lba
1 E1Qb 0 2lbc

1 2lba
2 2Zb

2 0 2lbc
2

2lda
1 0 E1Qd 2ldc

1 2lda
2 0 2Zd

2 2ldc
2

0 2lcb
1 2lcd

1 E1Qc 0 2lcb
2 2lcd

2 2Zc
2

Za
2 lab

2 lad
2 0 E2Qa lab

1 lad
1 0

lba
2 Zb

2 0 lbc
2 lba

1 E2Qb 0 lbc
1

lda
2 0 Zd

2 ldc
2 lda

1 0 E2Qd ldc
1

0 lcb
2 lcd

2 Zc
2 0 lcb

1 lcd
1 E2Qc

2 ,

g51
gad

1

gbd
1

gdd
1

gcd
1

gad
2

gbd
2

gdd
2

gcd
2

2 , u51
ua~n!da,d

ub~n!da,d

ud~n!da,d

uc~n!da,d

0

0

0

0

2 , ~9!
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Zi
652Jv

6m icos~Kz!, i 5~a,b,c,d!, ~10!

lab
6 52J6~u1!macos~Kx!,

lad
6 52J6~u1!macos~Ky!,

lba
6 52J6~u1!mbcos~Kx!,

lda
6 52J6~u1!mdcos~Ky!,

lcd
6 5mc@J6~u2!e2 iK x1J86~u3!eiK x#,

lcb
6 5mc@J6~u2!eiK y1J86~u3!e2 iK y#,

ldc
6 5md@J6~u2!eiK x1J86~u3!e2 iK x#,

lbc
6 5mb@J6~u2!e2 iK y1J86~u3!eiK y#,

Qa52@2Jzcos~u1!mb12Jzcos~u1!md12Jvzcos~uv!ma1da#2Za
1 ,

Qb52@2Jzcos~u1!ma1Jzcos~u2!mc1J8zcos~u3!mc12Jvzcos~uv!mb1db#2Zb
1 ,

Qd52@2Jzcos~u1!ma1Jzcos~u2!mc1Jz8cos~u3!mc12Jvzcos~uv!md1dd#2Zd
1 ,

Qc52@Jzcos~u2!mb1Jzcos~u2!md1Jz8cos~u3!mb1Jz8cos~u3!md12Jvzcos~uv!mc1dc#2Zc
1 , ~11!
-

in
pe

e

w
les
-
io

iv

ts

l to
y
iti-
y

n
ange

pec-

m-
wherem i5^Si
z& ( i 5a,b,c,d), ^•••& being the thermal aver

age.
Solving numerically these equations, we obtain the sp

wave spectrum of the present system. Next, using the s
tral theorem which relates the correlation function^Si

2nSj
1n&

to the Green functions.24 For the details on how to determin

^Si
a2n

Sj
a1n

&, the reader is referred to Ref. 10.
The internal energy per atomU is given by taking the

thermal average value of the Hamiltonian. As in Ref. 10,
use a mean-field-like approximation to obtain the ang
they are calculated by minimizingU, instead of the free en
ergy. The relations obtained, in the first-order approximat
in ^S6S6&, is the same as that of Eq.~5! but with

e5
^Sa

1Sb
21Sa

1Sd
21Sa

2Sb
21Sa

2Sd
2&1^Sa

z&^Sb
z&1^Sa

z&^Sd
z&

^Sc
1Sb

21Sc
1Sd

21Sc
2Sb

21Sc
2Sd

2&1^Sc
z&^Sb

z&1^Sc
z&^Sd

z&
.

~12!

The specific heat is obtained by taking numerical derivat
of U with respect toT.

B. Quantum effect on the angles

The three anglesu2, u3, andu1 are modified by quantum
fluctuations in the noncollinear phase. Quantum effect se
for h> 1

3. The classical relationsu25u15u3/35uc and
cos(uc)5

1
2@(h11)/h#1/2 are true only forh51. For other val-

ues we have the following.
-
c-

e
:

n

e

in

~i! For 1
3 ,h,0.39, the three angles obtained are equa

zero at anyT showing that the collinear state is favored b
quantum fluctuations causing a shift from the classical cr
cal valueh51/3 to 0.39. This is the so-called ‘‘order b
disorder’’ due to quantum fluctuations.25

~ii ! For 0.4<h<0.5, the three angles have, atT50, val-
ues smaller that the corresponding classical ones. WheT
increases the values of the angles decrease and ch
abruptly to zero at the transition.

FIG. 13. Quantum case: Local order parametersML versusT for
h50.618. Triangles, crosses, and black circles correspond, res
tively, to sublatticesc, b, anda. Sublatticed coincides with sub-
latticeb. Arrows indicate transition temperatures. See text for co
ments.
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~iii ! For 0.6<h,1 we haveu2.u2c , u1,u1c , and u3
,u3c . WhenT increasesu1 andu3 decrease whileu2 first
increases and then decreases. At the transition the angle
ues change abruptly to zero.

~iv! For h51 the three angles are equal to the class
values at anyT.

~v! for larger values ofh, we haveu2,u2c , u1.u1c ,
andu3.u3c . WhenT increasesu2 tends to 0,u1 to p/2, and
u3 to p.

~vi! For infinite values ofh, we haveu250, u15p/2, and
u35p.

Quantum fluctuations together with thermal fluctuations
fect thus the values of the angles of the classical GS.

C. Phase transition in the quantum case

We show now the results for the caseSa5Sb5Sc5Sd
51, J51, andd520.05 with varyingh. Let us show first
an example whereh50.618. In the classical spin case show
above, there are two ordered phases. This is also found in
quantum case. Figure 13 shows the local sublattice mag
zations versusT. Note, however, that our method does n
give the reentrant phase at low temperatures as found in
simulations shown above. The narrowness of the reent
phase together with approximations used in the Gre
function technique are believed to be one possible caus
the absence of the reentrant phase. Another cause tha
cannot exclude is the fact that quantum fluctuations m
close the reentrant region observed in the classical case.
question for the quantum case thus remains open.

Whenh is large, one also observes a partially disorde
phase as in the classical case. Figure 14 shows the
magnetizations versusT for h54. The partial disorder is
seen by the vanishing magnetization of the center spins m
netization at lowT.

We show in Fig. 15 the specific heat versusT for h
50.618 and 4. One sees two peaks for each case. Fh
50.618, the low-T one corresponds to the sharp transiti
from the noncollinear state to the collinear state, while
high-T one corresponds to the transition from the latter to
paramagnetic state. Forh54, the first peak corresponds t

FIG. 14. Quantum case: Local order parametersML versusT for
h54. Triangles, crosses, and black circles correspond, respecti
to sublatticesc, b, anda. Sublatticed coincides with sublatticeb.
Arrows indicate transition temperatures. See text for comments
al-

l
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d
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g-

e
e

the transition from the frustrated to partially disorder
phase, and the second from the latter to the paramagn
state.

The whole general quantum phase diagram needs m
more calculations which are outside the scope of this wo
We leave these for the future.

V. CONCLUSION

We studied in this paper a frustratedXY spin system in
three dimensions. Monte Carlo simulations performed for
case of classicalXY spins show three striking results.

~i! The first-order transition in the fully frustrated cas
was clearly demonstrated; this result means that there is
rule yet for the nature of the phase transition in periodica
noncollinear spin systems~including helimagnets!, some of
them exhibit first-order transition,19,20,13 others show a
second-order transition unknown universality class.1,3,4

There is a need to identify the ingredient which governs
nature of the transition.

~ii ! Evidence of the existence of a reentrant phase w
found in a vector spin system. This is an important findi
since it was believed for a long time that such a phase can
exist in non-Ising spin systems. Therefore, one must be v
careful while interpreting experimental data because of
narrowness of the reentrant phase on the temperature s

~iii ! A partial disorder in vector spin systems recently o
served was again confirmed here.

Finally, we emphasize that the quantum version of
model confirms the existence of two ordered phases for sm
h and a partially ordered phase above the noncollinear ph
for largeh. The fact that the quantum version studied by o
method does not yield the reentrant phase may be eithe
effect of the shortcoming of the method or a real physi
effect due to quantum fluctuations. This open problem is
subject of future investigation.
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FIG. 15. Quantum case: Specific heat versusT for h50.618

~black circles! andh54 ~triangles!. Scale for the black circles~tri-
angles! is on the right~left!.
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