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Noncollinear XY spin system: First-order transition and evidence of a reentrance
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We study the frustrated Y model on stacked three-dimensional checkerboard lattices by means of extensive
Monte Carlo(MC) calculations. When the system is fully frustrated, the histogram MC results show that the
transition is clearly of first order. In a range of parameter of frustratjome find evidence of the reentrance
phenomenon. The phase diagram in thg temperature plane is presented and discussed. The quantum
version of the model is also studied by a self-consistent Green-function technique. Some results are shown and
compared with MC simulation$S0163-182608)02425-4

[. INTRODUCTION systems. Of course, depending on the ground-st&®
symmetry and the GS degeneracy, noncollinear spin systems
In recent years, much effort has been devoted to frustrateghay behave differently. The above-mentioned SATL with
spin systems. There are several reasons for this increasingY spins, for example, has twofold degenerdtsing-like)
interest. On the one hand, many real systems which showhile the system studied here has an infinite GS degeneracy
competing interactions cannot be explained by simple modets we will see later. Our purpose is not to settle the contro-
Hamiltonians. An example is planar arrays of coupled Joversial question of the SATL case, but to show the richness
sephson junctions which can be studied by mapping it into ®f physical behaviors of noncollinear spin systems to stimu-
frustrated XY two-dimensional(2D) model. On the other late further theoretical investigations.
hand, from a fundamental point of view in statistical physics, The system studied here is a frustrated 8 spin sys-
in particular in the domain of phase transitions and criticaltem consisting of planes stacking in tEedirection. Each
phenomena, frustrated systems are of great interest becaugéne is a square lattice with one frustrated plaquette every
they serve as a testing ground for more sophisticated theoriéwo in two directions(see Fig. 1L We call this modefrus-
and approximations. Among the most controversial subjectdrated checkerboard modeWe use both MC simulations
we can mention the nature of the phase transition in noncoland a Green-function technique, for comparison.
linear magnets such as helimagnets anck W and Heisen- Section Il is devoted to the description of the model and
berg stacked antiferromagnetic triangular latti¢gATL).  its classical GS. In Sec. lll, we show the MC results in de-
Ten years ago, Kawamura suggested from a renormalizatioiils. In particular, evidence of first-order transition is found
group (RG) calculation and Monte CarlMC) simulations  in a region of the phase diagram where the spin configuration
that the transition irXY and Heisenberg models belong eachof the ordered phase is noncollinear. We recall that previous
to a new universality classSoon after, Azarizet al? sug- Wworks also found a first-order transition in frustrated
gested from a nonlinear model that if the transition is not Systems;* but these transitions, except in XY helical
of first order or mean-field tricritical then it should kB(4) magnet;® occur from a collinear state to the paramagnetic
universality. Numerical simulatiofis® did not confirm these state. Section IV is devoted to a Green-function calculation
conjectures. Antonenko and Sokofbifent further with RG
calculations and concluded that the transition is of first order.
At the present time, the question remains unsettled.
Another spectacular effect of the frustration is the reen-
trance phenomenon. In some frustrated 2D Ising exactly
solved models, it has been shown that the frustration can
give rise to a partial disorder which favors the occurence of a
reentrance, i.e., a disordered phase between two ordered
phases on the temperature scale-or reviews on various
other aspects of frustrated spin systems, the reader is referrec
to Ref. 9. We note that while partial disorder has been dis-
covered very recently ixXY and Heisenberg systerts;!2
reentrance has never been found in any non-Ising models.  FIG. 1. Checkerboard lattice. Heavthin) lines are antiferro-
This paper has been motivated by the above unsettleghagnetic (ferromagnetit bonds. Frustrated (nonfrustratey
questions, i.e., the nature of the phase transition and the extaquettes are gragwhite). The four sublattices are denoted ay
istence of reentrance in periodically noncolline@Y spin b, c, andd.
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performed for quantunXY spins on the same lattice. Some

results are shown and compared with the classical spin re
sults. Concluding remarks are given in the last section. Fj

II. MODEL AND GROUND STATE

Let us present here the general classical GS of the systen
We consider the model shown in Fig. 1 with the following
Hamiltomian: ./
(@)

H=-2> S-S, (1)

(P
whereX ;;, indicates the sum over the nearest-neighby)
spin pairs.J;; denotes the NN exchange coupling. In ¥ T
planes,J;; takes two valuesJ>0 for ferromagnetic bonds
andJ’ = —»nJ (>0) for antiferromagnetic bonds. For sim-
plicity, the interaction in the stacking directi@his set equal
to J. We shall use] as a unit of temperature and energy
below. TheJ bonds are represented by single lines in Fig. 1,
and theJ’ bonds are represented by heavy lines. Let us call
a spins the spins connected to neighbors onlyJblgonds,
andb, c, andd spins the remaining spin@.e., spins con-
nected to neighbors by botH andJ bonds. % can take an
arbitrary positive value. Whenp=1 the system is fully frus-
trated. To determine the classical GS, it suffices to consider FIG. 2. (a) four left and four right chirality configurationgp) an
four plaquettes: two frustrated plaquettse gray ones in  example of a GS with alternate chiralities.
Fig. 1) and two nonfrustrated plaquettes. Once the spin con-
figuration of the frustrated plaquette is determined, one camixed chiralities such as the sequercd ;L 3L R4l - - -,
construct the whole spin configuration of)XaY plane by (iv) states with randomly mixed chiralitieénatching is,
matching the spin configurations of neighboring plaguetteshowever, necessaryOne can easily check that the degen-
Care must be taken to count all the matching possibilitieseracy is larger than B2 j e.. infinite in the thermodynamic
i.e., the degeneracy. Since the interaction in the stacking diimit. We note that the GS energy per plaquette of the ferro-
rection is ferromagnetic, the same GS configuration is for almagnetic phase is given by,=(7—3)/2—1 for n<3,
XY planes. while that of the noncollineaffrustrated phase =3) is

Following Bergeet al,'* we calculate the GS spin con- given by

figuration of a frustrated plaquette by a variational method
(the interaction in theZ direction does not affect the spin 1 (1+7)%?
configuration. We find that the cosines of the anglés of 0T % T -1
the spins§ and S linked by the positive bonds are all
equal and given by

(b)

[ll. MONTE CARLO SIMULATIONS
1/2

, 2) Our model has been obtained by stacking the 2D configu-
rations shown in Fig. 2. We have performed both standard
while 9i'j of the spinsS and; linked by the bond)” are all elndshist_ogram MC_simuIations using theT sample sizehl of
equal and given by =L~ spins wherel_—lz up to 44 for various values af. _
The largest size has been used to calculate the energy histo-
0'=30. (3 gram P(E) (E is the system energys well as other physi-
cal quantities as functions of temperatdre
The critical value ofy is »=3 above which the GS spin Since the GS configuration is either commensurate or in-
configuration is noncollinear. Note that for each plaguettecommensuratdrandom mixing of chiralities we can use
the GS configuration is twice degenerate wittd, i.e., left  periodic boundary conditions only for system sizes commen-
chirality (LC) and right chirality(RC).1® As said earlier, the surate with GS configurations shown in FigbR Note that
GS spin configuration of XY plane is constructed starting for =1 the linear size should be a multiple of 4. In the case
from a configuration of a plaquette. For matching purposeswhere the angl® is not commensurate with the lattice size
we show in Fig. 2a) all left and right chirality configura- within a reasonable value df, we use the so-called “fluc-
tions. One can distinguish the following GS typés:states  tuating boundary conditions®® In each run, we have dis-
with the same chirality such as all frustrated plaguettes beingarded about 20 000 MC steps per spin before averaging
of LC or all of RC, for example, a state with sequencephysical quantities over the next 80 000 MC steps per spin
LiLoLgly- - -, (ii) states with LC and RC alternately such as(MCS) in standard MC calculations. Histogram MC calcula-
L;R;L;R;--- [see Fig. M)], (iii) states with periodically tions have been carried ovex2.0° MCS.

1
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FIG. 3. Internal energy per spl versusT in the casep=1 for
two extreme lattice sizes studied®1@iamond$ and 44 (triangles

PRB 58

70
P(E)

60}
501
40}
301
20

101

0 W/ \

-300000 -290000 -280000 -270000

-260000 -250000

E

are shown. The jump at the transition is seen only with the large FIG. 5. Bimodal distribution of the total internal ener§(E)

size.

A. The case ofp=1

for =1 at the transition indicating a first-order transition.

oped by Ferrenberg and Swends$érf We use systems of

When »=1, we have found a single transition with a N=443 spins with periodic boundary conditions. We first

first-order character as shown by the cutJe(energy per
spin versusT in Fig. 3. Note that the jump df is observed
only with a very large lattice size. We show in Fig. 4 the
magnetization defined byl =(=;|S|/N), whereS is theith
sublattice total spin and the angular brackets indicating th

estimate as precisely as possible the “transition” tempera-
ture Ty at L=44 and then performed &y, the energy histo-
gramP(E) (E being the total energyover 2x 10° MC steps

Eer spin after discarding £0MC steps per spin for equili-

rating the system. The result is shown in Fig. 5 where two

thermal average. One defines the chirality order parameter %aks are observed @,=1.06378. This bimodal distribu-

1
K=S2 (=12 (SXS)p,
P ()

(4)

tion of energy at the transition is a clear evidence of the
first-order character of the transition suggested above.
At this stage, it is worth mentioning that a first-order tran-

where p indicates the frustrated plaquette. The paritySition has been suggested by MC simulation in a number of
(—1)P is chosen according to the GS symmetry. If a GS Withfrus_trated vector45p|n systems such as stacked 'gnangular
the same chirality is chosen, then the parity is 1. The chirai@ntiferromagnetd;* hep (Ref. 19 ang fcc(Ref. 20 antifer-

ity order parameter is also shown in Fig. 4. The first-ordefomagnets, and bety hel|magnet§_._ However, except for
character of the transition is confirmed by the histogram Mcthe last case, the first-order transition was suggested in the

simulation shown below.

In order to confirm the nature of the transition when

phase region where a collinear spin configuration is the or-
dered phasdin the mentionedXY bct casée? a first-order

=1, we use the histogram MC technique which was develiransition was suggested from a standard MC simulation
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Therefore, we emphasize that a first-order transition is firmly
found for the transition from a noncollinear configuration to
the paramagnetic state. This has some fundamental impor-
tance since this shows that the question of the nature of the
phase transition in helimagnets mentioned in the Introduction
cannot be solved as long as one cannot identify the ingredi-
ent which governs the transition. The infinite GS degeneracy
of the present system may play an important role in the very
clear first-order character of the transition, unlike in the
stacked triangular antiferromagnet.

Let us note that though the GS is infinitely degenerate, the
system prefers to choose states wiitle same chirality(all
left or all right) at finite T. It is noted that if one heats the
system from a random or a mixed-chirality GS, it is only
near the phase transition that the system will be ordered with
the same chirality. It means that at IGwthere may be some
finite barriers between different kinds of ordering symmetry
in the phase space. These barriers disappear near the transi-
tion. We show in Fig. ) a chirality snapshot below the

FIG. 4. MagnetizatiorM (black circle$ and chirality order pa- ~transition. Only one kind of chirality is seen though the sys-
rameterkK (white squaresversusT are shown near the transition, tem is heated from the GS with mixed LC and RC. Cooling

for »=1 with lattice size 43 See text for the definition dfl and  the system from higiT, we also get a state with the same
K. They are normalized by their values 0. chirality below the transitiorinote, however, that cooling to
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FIG. 6. (a) Chirality snapshot aT=1 for »=1: one observes

the same chirality ordering, although the system is heated from a

GS with mixed left and right chiralitiegb) Internal energy per spin
U versusT for »= 1.7 with mixedLR chiralities(black circleg and
all L chirality (squares (L=24). See text for comment&) Inter-
nal energy per spit) versusT for »=1 with mixedLR chiralities
(black circles and allL chirality (void circleg (L =24).
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FIG. 7. Local magnetizatioM versusT where »=0.618 (@
=36°).M, is defined aM_ ==;(|S|)/N, whereS§ is the total spin
of the sublattice containing parallel spins in the GS. There are two
ordered phases with a reentrant phase in between. See text for com-
ment.

B. p#1

When 5+ 1, there may be several transitions for a given
set of parameters. Figure 7 shows an example where
7=0.618 (#=36°). The local magnetization vanishes in a
very narrow range of temperatuiie=0.95-1.07 and goes
up again before vanishing at a higher temperaiisel.35.
This remarkable behavior provides evidence that the system
is disordered in a low interval and becomes ordered again
up to some higherl. The low-T disordered phase is called
the reentrant phasdga reentrant phase can be defined as a
phase with no long-range order, or no order at all, occurring
in a region between two ordered phases on the temperatue
scalg. This is a very important finding since the reentrance
phase has recently been found for some 2D frustrated Ising
spin systems;° but has never been observed in a vector spin
system.

The low-T ordered phase is the noncollinear state and the
high-T ordered phase is ferromagnetic. This is shown in Fig.
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very low T results in metastable states as expected since the g g, chirality order parametét (black circles characterized
relaxation time is very long As a last remark, let us empha- the |owT noncollinear ordering and total uniform magnetization

size that the internal energy verstishown in Figs. &) and

M, characterized the high-ferromagnetic phasésquares versus

6(c) for =1.7 andn=1 does not change significantly with T for =0.618,L=40.M, is defined as,=(|=;S|) wheres is
different intitial conditions, so the preference of the systemheith spin.M,, zero in the lowT phase because of the helimag-

for a symmetry of the same chirality at finife results cer-
tainly from an entropy effect.

netic structure, shows a jump while entering the higferromag-
netic phaseK is normalized by its value af=0.
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8, wherey=0.618: the chirality order parameter is well de-  FIG. 11. Specific heat, (bl_ack circles, left scaleand internal
fined at lowT while the uniform(total) magnetizationzero ~ €nergy per spirJ (squares, right scaleversusT for 7=1.7 (L
at low T due to the noncollinear structyrehows a jump at ~ 24)- Two low-T peaks are highlighted by vertical lines.

high T, indicating that the ordering is a ferromagnetic state.

We show in Fig. 9 the specific heat versusalculated by Calculations have been performed for the whole range of
energy fluctuations. In spite of the narrowness of the reens;. Whenever the anglé is not compatible with the lattice
trant region, it is possible to see the two IGwpeaks. Thus, size we use the fluctuating boundary conditidnas said
the existence of the reentrant region, clearly seen by the loc@larlier. We display in Fig. 12 the phase diagram in the plane
magnetizatior(Fig. 7), can also be seen in the specific heat.(T, ). In this diagram we can see four regions: the ferro-

Now, when is rather large, one also observes a similarmagnetic phasé), the noncollinear phasgl), the partially
behavior, namely, a reentrant region between two orderedrdered(PO) phase(lll), and the paramagnetic phad®.
phases. The sublattice magnetizations are shown in Fig. 10 Let us discuss now the nature of ordering at IGwin
for »=1.7. One sees that the center-spin sublatt@elie-  different regions of the phase diagraifig. 12. As in the
comes disordered at loWw while the other three sublattices case wherep=1 shown above, we find, by starting with
(b, ¢, andd) remain ordered up to a highar. The highT different kinds of initial GS's, that the system always
ordered phase, called tipartially ordered phasgis due to  chooses an ordered state with the same chirality at fihite
the fact that the antiferromagnetic bonds are much strongeasverywhere in the noncollinear pha@g). This is very simi-
than the ferromagnetic bonds in this regiopié much larger lar to the so-called order by disorder introduced by Villain
than 1. Note that the partial order in other frustrated vectoret al?! for frustrated Ising spin systems.
spin systems has been recently obse®&tf This phenom-
enon seems now to be a general effect in frustrated vector

spin systems whenever anisotropic interactions are present. IV. QUANTUM RESULTS

The specific heat is shown in Fig. 11 fgr=1.7 where we _ _
observe a well separation of the two peaks at bwhich Let us show the results for the quantum spin case. Using
limits the reentrant region. the Green-function method presented below, we have calcu-

lated self-consistently various physical quantities as function
L ] of temperaturel. A size of 2§ points in the first Brillouin

Ms, K ] zone has been used.
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FIG. 10. ChiralityK (black circle$ and sublattice magnetiza- g5l
tions M versusT for »=1.7. My is defined aM=(|=;S|/N/4)
whereS§ is theith spin belonging to one sublattice. Squares corre-
spond to sublatticeb, ¢, andd (indistinguishable while triangles 01 " 0 — ] 5 3 4
show thea sublattice magnetization. Note that all sublattice mag- i n
netizations are zero at low due to the noncollinear structure of FIG. 12. Phase diagram in the plane,T;). There are four
each sublatticdnot disorderingg At high T the sublatticea be- regions: the ferromagnetic pha@g the noncollinear phasd#l ), the
comes disordered while others remain orde(attially disordered partially orderedPO) phase(lll), and the paramagnetic phad®.
phase up to paramagnetic phase. See text for comments.
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A. Method For numerical calculations we have used a small stabiliz-
Let us present here the general formalism that can ping fieldd pointing in the local quantization axis at each site

applied to the general case where the spins are either Heise$¢€ Ref. 10 for a discussion on its effed/e note that the
berg orXY type with general spin magnitude. Application to local z-axis direction can change with the temperature upon

; .10
the XY case is given in the next section. We consider gtération: , o
model system described by the Hamiltonidh. The classi- We can rewrite the Hamiltonian in the local framew@rk
cal GS is planar and its energy per spin is given by as

J 1 + ot - o— 1 +/oto— - ot

Uc:ZSc(Sb"' Sy)[cog 0) + ncog 03) +2ecog 61) ] HZZ% Z‘]kl(sk S +&S§ )+Z‘]k|(sk S +59)
Ju
+ 4 (Si+Sh+SE+ Sfcog ), (5) +Jkico Biy) S+ 22i ds, @)

wheree=S,/S; and 6, is the angle betweenla spin and a
¢ spin or ac spin and ad spin. While 65 is the angle be-
tween a spirb and a spinc of the neighboring plaquette or
between a spirc and a spird of the neighboring plaquette,
0, is the angle between the spiasandb or betweera and
d. Note that6, , the angle between spins belonging to adja-
cent basal planes, is always equal to 0. The relation betwe
the angles is given by

where By, is the angle between the two spins at the lattice
sitesk andl and

Jia(Br) = =I5+ I,co Bu), (8

where we have decomposed the interactigninto Jj, , J};,
% . For the spins linked by d bond, J,=J% (¢=X,y,2)
and for the spins linked by & bond,J;,=J'7 (0=X,Y,2).

1] (5+1)2 172 For the planar spin model, one puts one of these components
cog6,)= ol T 2 equal to zero, and the other two are taken to be the same.
(n+e)n Since we define the local quantization axis as zhexis of

) ) the spins, the case of planar spins will correspondite-0.
sin( ) = — esin(6,), Following Tahir-Kheli and ter Ha&® we define two
oz 00— 20 ©) double-time Green functions for each pair of spins. For our
82 1 lattice, we need eight such Green functions. Then, we write
We shall use the Green-function method to calculate the erthe equations of motion for them, neglecting higher-order
ergy, magnetization, angles, and other thermodynamic quarcorrelations by using the Tyablikov decoupling scheme. The
tities as functions of temperature. The details of the methodFourier transforms of the Green functiog$ andg™~ satisfy
have been given in Ref. 10. We briefly recall it here anda set of equations which can be rewritten under the matrix

show the application to the present model. form A(E)g=u, where
|
E+Qa —Xap  —Aag 0 —Zy  “Nap Ay 0
“Ma ETQ 0 —hjo N —Z 0 g
“Xa 0 E+Qy “Age “haa 0 —Zg A
A(E)= 0_ _)\_;rb _)i;d E+Qc 0 _):Eb _)fd —Ze |
Z, Nap Nag 0 E-Qa Ay Nad 0
Noa  Zy 0 N Apa E-Qp 0 Mg
Nga 0 Zq Ndc Nda 0 E-Qq Mg
0 Acb Neg Z 0 Néb Nea E-Qc
Gas Ua() Sy s
b5 Up(N) a5
Jds Ug(N) 8z, 6
o= des U= Uc(N) 8a, s ©
a5 | 0 ’
Obs 0
Jds 0
0

Ocs
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Z7=2J3; uicogK,), i=(a,b,c,d), (10)
Nab= 21" (61) aC0gKy),
Nag=237(601) acodKy),
Nba= 23" (61) upC0gKy),
Nga= 2" (61) ugcodKy),
Nea= Mol 7 (02)e™x+3""(63)e™x],
Nep= e[ I (02)e™y+3"=(05)e™Kv],
Nae= I 7 (62)€x+ 0" (03)e™ ],
Noe=m[ I (02)€ Ky +3"7(63)€™y],
Qa=2[23,c08 0;) pu, +23,€04 01) g+ 23,2C0 6, ) pro+ da] — Z31
Qb=2[23,05 0;) o+ 3,08 0) pu+ ' 2COK 03) pu o+ 2J,,€08 0,) puy+ Ay ] — Zy

Qq=2[23,€08 01) pa+ 3,08 02) pro+ ;€08 03) puc + 23,608 6,) pa+ dul = Zg

Qc=2[J,€08 0,) o+ 3,08 02) g+ J,CO8 05) pp+ J,€08 O) g+ 23,08 6,) o+ dc] - Z 11
|
whereu;=(S) (i=a,b,c,d), (- - -) being the thermal aver- (i) For < 7<0.39, the three angles obtained are equal to
age. zero at anyT showing that the collinear state is favored by

Solving numerically these equations, we obtain the spinguantum fluctuations causing a shift from the classical criti-
wave spectrum of the present system. Next, using the specal value »=1/3 to 0.39. This is the so-called “order by
tral theorem which relates the correlation functi@ "S") ~ disorder” due to quantum fluctuatiofi.
to the Green function&' For the details on how to determine (i) For 0.4< =<0.5, the three angles have, &t 0, val-
<S|a’”5}a*”>, the reader is referred to Ref. 10. ues smaller that the corresponding classical ones. When

The internal energy per atord is given by taking the increases the values of the angles decrease and change
abruptly to zero at the transition.

thermal average value of the Hamiltonian. As in Ref. 10, we'
use a mean-field-like approximation to obtain the angles:

they are calculated by minimizing, instead of the free en- bmméﬁ% ‘
ergy. The relations obtained, in the first-order approximation ML zﬁiﬁ N
in (S*S*), is the same as that of E¢(p) but with 0.8 A\
o (S2Sy +S,Sy +S, S, +S, Sy ) +H(SD(S) +(S5)(Sa) 0.6 .
(SIS, +S0Sq S, Sy + 5. Sq) H(SH(SH +(SN(SH) o4
s + o
(12) i
++:.
The specific heat is obtained by taking numerical derivative 02¢ % +l;.. ]
of U with respect tdT. G2
P b Vo el
0 05 1 15 2 25 3 35 4
B. Quantum effect on the angles T
The three angles,, 63, and ¢, are modified by quantum FIG. 13. Quantum case: Local order paramekérsversusT for

fluctuations in the noncollinear phase. Quantum effect sets if,=0.618. Triangles, crosses, and black circles correspond, respec-
for »=3. The classical relationg),=6;=0/3=6, and tively, to sublattice, b, anda. Sublatticed coincides with sub-
cos@)=3[(n+1)/7]"? are true only forp=1. For other val- Iatticeb. Arrows indicate transition temperatures. See text for com-
ues we have the following. ments.
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FIG. 14. Quantum case: Local order paramekéysversusT for 0 1 5 3 4 5 T 6
n=4. Triangles, crosses, and black circles correspond, respectively,
to sublattices, b, anda. Sublatticed coincides with sublatticé. FIG. 15. Quantum case: Specific heat ver3ugor »=0.618
Arrows indicate transition temperatures. See text for comments. (black circles and =4 (triangles. Scale for the black circlegri-

angles is on the right(left).

(iii) For 0.6< <1 we havef,>6,., 0;<6,., and 05
< 6s.. WhenT increasesd; and 6; decrease whil@, first ~ the transition from the frustrated to partially disordered
increases and then decreases. At the transition the angle v@base, and the second from the latter to the paramagnetic

ues change abruptly to zero. state. .
(iv) For 7=1 the three angles are equal to the classical The whole general quantum phase diagram needs much
values at anyT. more calculations which are outside the scope of this work.
(v) for larger values ofy, we have6,<6,., 6,>6,;, e leave these for the future.
andf;> 0;.. WhenT increased, tends to 0 9, to /2, and
03 to . V. CONCLUSION
(vi) For infinite values ofy, we have#,=0, 6,= /2, and o ) )
63=. We studied in this paper a frustratéd¥ spin system in

) ) . three dimensions. Monte Carlo simulations performed for the

fect thus the values of the angles of the classical GS. (i) The first-order transition in the fully frustrated case
was clearly demonstrated; this result means that there is no
rule yet for the nature of the phase transition in periodically
noncollinear spin system@ncluding helimagnejs some of

We show now the results for the caSg=S,=S,=Sy  them exhibit first-order transitiol?;?°'3 others show a
=1,J=1, andd= —0.05 with varyingz. Let us show first second-order transition unknown universality cla3$.
an example whereg=0.618. In the classical spin case shown There is a need to identify the ingredient which governs the
above, there are two ordered phases. This is also found in theature of the transition.
guantum case. Figure 13 shows the local sublattice magneti- (ii) Evidence of the existence of a reentrant phase was
zations versud. Note, however, that our method does notfound in a vector spin system. This is an important finding
give the reentrant phase at low temperatures as found in M&ince it was believed for a long time that such a phase cannot
simulations shown above. The narrowness of the reentramxist in non-Ising spin systems. Therefore, one must be very
phase together with approximations used in the Greeneareful while interpreting experimental data because of the
function technique are believed to be one possible cause ofarrowness of the reentrant phase on the temperature scale.
the absence of the reentrant phase. Another cause that one(iii) A partial disorder in vector spin systems recently ob-
cannot exclude is the fact that quantum fluctuations mayperved was again confirmed here.
close the reentrant region observed in the classical case. This Finally, we emphasize that the quantum version of the
guestion for the quantum case thus remains open. model confirms the existence of two ordered phases for small

When 5 is large, one also observes a partially disorderedy and a partially ordered phase above the noncollinear phase
phase as in the classical case. Figure 14 shows the locfdr large . The fact that the quantum version studied by our
magnetizations versu$ for »=4. The partial disorder is method does not yield the reentrant phase may be either an
seen by the vanishing magnetization of the center spins magffect of the shortcoming of the method or a real physical
netization at lowT. effect due to quantum fluctuations. This open problem is the

We show in Fig. 15 the specific heat verstlsfor »  subject of future investigation.
=0.618 and 4. One sees two peaks for each case.yFor
=0.618, the low¥ one corresponds to the sharp transition
from the noncollinear state to the collinear state, while the
high-T one corresponds to the transition from the latter to the “Laboratoire de Physique Thgique et Modésation” is
paramagnetic state. Foy=4, the first peak corresponds to an “equipe postulante’(EP 0127 of CNRS.

C. Phase transition in the quantum case
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