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A complete Bethe ansatz solution of the K SU(f ) Cogblin-Schrieffer model and a detailed analysis
of some physical applications of the model are given. As in the usual multichannel Kondo model, a variety of
Fermi-liquid and non-Fermi-liquidNFL) fixed points is found, whose nature depends on the impurity repre-
sentationu. For u=f, we find a Fermi-liquid fixed point, with the impurity spin completely screened. For
f>u, the impurity is overscreened and the model has NFL properties. The form the NFL behavior takes
depends on th&l andf: for N=<f, the specific heat and the susceptibility are dominated by the NFL contri-
butions; forN>f the leading contributions are Fermi-liquid-like, and the NFL behavior can be seen only to
subleading order; and fod=f the behavior is marginal. We also analyze the possibility of physical realiza-
tions. We show by a detailed renormalization-group ardabalysis that the tunneling-state problem can be
mapped into the SW{) X SU(f ) exchange model, and discuss the subtle differences between the two models.
As another physical realization we suggest a double quantum dot structure that can be described by means of
an SU3)xSU(2) model if the parameters of the dots are tuned appropridis§163-18208)01528-§

I. INTRODUCTION be denoted spin and flavgor channel numbgr interacting
) . ) ] with an impurity carrying only spin. The impurity is local-

The multichannel Kondo models the simplest impurity jzed at a point chosen to be the origin. The Hamiltonian
model with non-Fermi-liquid behavior. Originally introduced o545
to describe “real metals” with magnetic impurities, its ap-
plications go beyond the study of dilute magnetic alloys. For N
instance, it has been known for some time that systems cony=—i > > J Pl (X) Oy m(Xx)dX
sisting of heavy atoms tunneling between two neighboring a m J-w 7 '
sites and interacting with conduction electrons are a realiza-
tion of the two-channel Kondo mod&Rnother realization is + )
the quadrupolar Kondo effect in the context of heavy +22 I 2 Eb Pam(0)(Tyab¥b,m(0)
fermions® A detailed account of various aspects and appli- " .o

f N2-1 N

cations of the multichannel Kondo model is given in Ref. 4. dim(p)
For materials such as PbGeTe or K;_,Li,Cl alloys, X D X (T i - (2.
tunneling may occur between an arbitrary number of levels. a’,b’

Such systems could be modeled using a multichannel versi + + S ]
of the Cogblin-Schrieffer model, a SNjx SU(f ) Kondo %Both e m(X) and x, are fermionic fields; the former creates

model® Here N is the number of spin degrees of freedom, 2" electron ak with spin i”d?xa and flavor ir_1de>m, while_
andf is the number of channels, 6favor degrees of free- e |atte[r creates the impurity at 0. Imposing the condi-
dom. tion S,xixa=1, we have thay, (T%)), » xp represents

In this paper we present an exact solution of the ISJJ( the impurity spin operator in a representation of SI)(
X SU(f ) Kondo model, and study the thermodynamic prop-specified by a particular choice of the matridél?”) , Where
erties of the system. We obtain the leading exponents for thghe indexa runs from 1 toN2—1, the number of generators
impurity contribution to the magnetic susceptibility and spe-of SU(N). We will restrict ourselves to the case in which the
cific heat for arbitraryN andf. We also_ discuss the effects of glectrons are in the fundamental representafiiemoted by
channel anisotropy, which might drive the system from &)} and the impurity is in the totally symmetric represen-
f')é?fd point with y=f/N>1 to a new fixed point where tation obtained from the direct product @f fundamental
y<lL representations.

The physical realizations discussed in the present paper
correspond to the simplest cages=1; the investigation of

The multichannel Cogblin-Schrieffer model describesthe u>1 cases gives us important insight into the general
electrons carrying two sets of internal degrees of freedom, tetructure of the model, and allows, in particular, for a com-

Il. THE MODEL
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parison with the results obtained for the multichannel Kondan terms of the following counterterms without which the
model with impurity spinS> 3. model is not integrable for finitd.

In most of this paper we will study the isotropic model,  (ii) An electron-electron interaction term of the form
Jo,=J, with the symmetry U(1)°"2"98x SU(N)sP"
X SU(f )f'aver we will also assume that the different flavor ~
levels are equall [ €= ADIEDY

qually populatetll®=fNj. ,

In what follows shall solve the complete model and, ™" *° 2.3
among other things, study its low-energy physics. As is well
known, the low-energy behavior of a system can often bayhen no impurity is present] can be chosen arbitrarily,
described in terms of effective Hamiltonians, that are simplekjnce the term has no effect on the linear spectrum. The
than the starting Hamiltonian; these are usually referred to agnearized spectrum has a large degeneracy, and the inclusion
fixed points. We shall determine their properties from theof Egs.(2.2) and(2.3) will provide a way to find the eigen-
exact solution. We shall find that the model possesses a vatates.
riety of fixed points(or low-energy regimes whose nature (i) A countertermH . of the form
depends on the symmetry structure in the flavor sector and
on the spin representatidi), generalizing the familiaN 1 N
=2 case(the multichannel Kondo modgl As previously, Hee=— N > > f
we shall identify the mechanism underlying the appearance m a
of these fixed points adynamical fusiorby which electrons .
form spin complexes whose interaction with the impurityW'th
leads to an interesting behavior in the infraPellach com-
plex consists off electrons fused into a local objects that V(x)= i[ér(x+0)+5r(xfo)], (2.5
transforms according to one-row Young tableaux of lerfgth x|

Within the Bethe ansatz approach, a precise description of S
the formation of these composites can be given. The lineaf?€€ds 10 be added to the Hamiltonian in order to preserve

ized Hamiltonian separately propagates the charge-spiﬁnteg,rability at the origin; this term vanishe:_s once the curva-
flavor degrees of freedom that make up the electron. TherdUre is removed, and plays no further role in the problem.
fore, the effect of flavor on the spin degrees of freedom is

recovered only in the physical space. To follow the dynamic A. First quantized Hamiltonian

coupling of spin and flavor, we add some curvature, which
maintains the identity of the electron while allowing its com- be
ponents to interact. It has the form H,
=(112A) So3 0 f “ ol (X) 2ha m(X)dX, where A is the

| 0L 00 ) 05

OV e n()dx, (2

A general Fock state dfi° electrons and one impurity can
written in the following form:

curvature scale which is sent to infinity at the end of the |F)= 2 E f ( ' dxj) ng}}b({xj})
calculation. Adding this term allows for the formation of {mj} {ajhb J == ] "
bound states in the flavor singlet channel, which interact Ne

strongly with the impurity, and de.termme the low-energy XXE(O)H ,ﬂ; T (X))[0).
dynamics even after the curvature is removed. A close anal- j=1 17

ogy is a small magnetic field introduced to probe for magne- . ) )

tization, which may survive after the field is removed. Im- In order for it to be an eigenstate, the amplitudesnust
posing a cutofD on the momentum variables guarantees thesatisfy the equationF=EF, where the differential operator
finiteness of the energy. Other terms need to be added to the known as thefirst quantized form of the Hamiltonian
Hamiltonian to maintain integrability, terms which we shall takes the form

see below are irrelevant.

For free fields, the resulting theory is already quite in- N® 1 NZ-1
volved, and even the counting of states is not triVialev- h=2> | —ig+ ﬁﬁszr 235(x;) 2 (TE)(TE)
ertheless, the charge-spin-flavor separated basis is the natural =1 “
one for the noninteracting problem, as we shall see later: it is Ne 1
the form to which the eigenstates tend when the interaction is +> 238(x—x) (P =P — 20 <VI(Xy),
turned off. We thus introduce the following elements. i< ! POYE A !

(i) A second derivative term with a curvature scale, ] )
with P;; (P;) the spin(flavor) exchange operator;

1 @ _
Hi=2x 2 2 f W m()am()dx, (22 Pab.ca™ daddbe:

Pmlmz ,mgm, — 5m1m45m2m3-
which breaks charge-spin-flavor separation of the linear
spectrum. Once the electron composites are formed, and tighe fundamental representati@n) is carried by the electron
low-energy spectrum of the theory is identified, the scale i and the(x) representation by the impurity. When the latter
taken to infinity. Adding the terni2.2) also imposes restric- is also in the fundamental representation i,es+1, the
tions on the form of the eigenstates which can be expressadamiltonian can be rewritten as
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N® 1+J2
h=2, {~id;+ (A Yo +2350x)Pjo}+ >, 238(x—x;) g(k/A)”l—(—zl_J ) I
j=1 1<j
R we have
N1
X(P=Pi)+ 2, +V(x). 4 N~ 1+icP,
=1 A i arctanc/1+ ][ io
i Sjo~€ i x—1tic |’ (2.9
B. S matrices where
We will assume for now that both the electrons and the 1432\ k.
impurity are in the fundamental representation of E)( \j= 17 K]

The eigenstate amplitudes are combinations of plane waves
with pseudomomenta;k (j=1,... N°), and have coeffi- |n the scaling limitJ andc have the same scaling behavior.
cients that depend on the ordering of the electrons, and on We now consider the case of two electrons. We generalize
the spin and the flavor indices. These coefficients are relateghe procedure followed in the case on one electron: divide
through products of electron-impurity and electron-electronthe configuration space into regions inside each of which
S matrices that we will derive now. Consider first the wavethere is no interaction, and the wave function is a superposi-
function describing one electraienote it byj) interacting  tions of plane waves. There are six such regions in this case,
with the impurity (denote it by 0, corresponding to the ordering of three objects, two electrons
_ . _ _ and an impurity, and we label them by permutatid@s
FZ}‘,aO(Xj):e'kJXJ[Azj',%@(—Xj)+ B;}J,aoa(xj)]- (2.6 cs,. For example, the elemef@=(1,0,2) labels the region
where electron 1 is to the left of the impurity and electron 2

Applying h to it, we have(we drop the indices in the ampli- g 1 it right. We also introduce the notatié(xo) to denote

tudes a function that takes the value 1 in the regiQn and zero
2 elsewhere.
hF(x;)=| kj— _J) F(x;) The two-electron wave function is then of the fo(Bethe
2A ansatz,
N _
X| =1 1_K (B_A)+JP]0(B+A) 5()(]) F?(X):Ael(kllerkzXz)% 0(XQ)Agm1
1 ) 1 . .
——(B—A) 5/(Xj)e|ijj+ V(X)) F (). Wherem_=(m1,m2) and_a=(a1_,a2,ao) a_ndA is _the anti-
2A A symmetrizer. The amplitudes in the various regions are con-

(2.7)  nected byS matrices, e.g.SMAM2= A102 \where %, the
electron-impurityS matrix has been already determined in

F is an eigenstate ofh, with eigenvalue E;=kj[1  the one-electron problem. For this ansatz to be consistent, it
— (kj/2A)], if the terms in the second and third lines in Ed. myst satisfy the Yang-Baxter relations

(2.7) vanish. The last two terms cancel each other due to the o -
form of Eq.(2.5. The terms in the second line of E@.7) Sig0g0=g0g0g1 (2.10

cancel if the amplitudeé andB are related by the electron- guaranteeing that the two paths frai2,0 to (0,2,1 yield

impurity S matrix B= S;A, WhereSj0=(Sjo):; :;’ is given  the same answer.

by What is the electron-electro® matrix, S'? There is no
direct electron-electron interaction term in the Hamiltonian
(1=K /A)+IPjo (2.1, and one may be tempted to adopt the naive choice
io_i(l—kj ITA)=JPjo S=1 for the scattering matrix of electronsandj. Never-

theless, electron correlations are induced through the impu-

_ (1=K /A)+3)[I(1-kj/A)+IPj 2 8 rity. These show up immediately, since the naive choice does
(A=K /)= i(1—k/A)+I 28 hot satisfy the Yang-Baxter relation§° and S° do not

o commute. This nhoncommutativity captures some important

Defining aspects of the model: after electrorcrosses the impurity,
5 2 the latter is left in a different state than before. Hence the

E_‘] = 1-x _ J state in which electrorj finds the impurity depends on

c 2 g(x) 2 1 2| . . . .
1-3J 1-J (1-x) whether it crosses the impurity before or after election

Herein lies the difference between a system of electrons in-

teracting with a fixed potentigla one-body problem, since
g(kj/A)—icPjo all electron_s “set_a” the same potentiamd a Kondo system,
W) where the impurity correlates the motion of all electrons.

1 Are we allowed to introduce a scattering mat@& to
(notice that arctan=2 arctanJ). Eventually we will send the satisfy the Yang-Baxter relations? We now proceed to show
cutoff to infinity. Therefore, expanding(k/A) to first order  that this is indeed the case, namely, the introduction of an
in /A, electron-electron scattering matrix would not modify the

we can write

Sio

0= efi arctar[c/g(kj /A)](
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original problem we set out to solve. Consider first the space ~ J
of free electrons with a linearized Hamiltonian. The space is J= 1132 (2.13

highly degenerate: for example the enefgy k; +k, in the
two-electron space corresponds to a wave function
=qu'(k1+q)xl+'(k2_q)X2Aq for any choice of coefficients gallows us to express th® matrix as
A,. Equivalently, we can pick a basis of the forf
= elkX1tk2Xe[ g(x, — x,) + SH20(x,—%;)]JA. The choice of
S'2is arbitrary in the two-electron space, but if we wish to Nj— N +HicPj Aj— N —icP;
proceed to construct thre@nd more electron wave func- 5= N—Ntic N—h—ic (2.19
tions then the scattering matrices must satisfy the Yang- A A
Baxter relations for electronsS’! Skgk=gkskgl when
the Kondo interaction is turned on, the mat8X is fixed by ~ The S matrices(2.9) and(2.14) satisfy the Yang-Baxter con-
the interaction, which in turn picks the electron basis throughyitions (2.10), and also
the Yang-Baxter relation€.10).
When the cutoff is present, part of the degeneracy is al-
ready removed at the free-electron level, but the procedure Sigkgk=gkgkgi
still goes through. Consider the model for two electrons
away from the impurity.

assuring that we were able to generate a cutoff version of the
Hamiltonian while maintaining integrability.

The cutoff scheme we introduced generates a flavor

(2.11 component in the electron-electro® matrix. Clearly it

This cutoff Hamiltonian is in the same universality class asCaPtures the interaction among electrons induced by the
the free linearized Hamiltonian, and possesses the sami@Ppurity. Already for the free HamiltonianHo=
spectrum when the cutoff is sent to infinity; its particular —iZ5=ff” Xy} o(X) dxtham(X) @ nontrivial S matrix
form was chosen so that ti®matrix it defines does indeed mustbe introduced if we choose an SWX SU(f ) invari-
satisfy Eq.(2.10. Again, we divide configuration space into ant basigwhich is appropriate for a subsequent inclusion of

. . 1 2 1 2 1
h:_lﬁj_léﬂ‘f‘ﬁ&j +ﬁ(9| +2J5(X|_Xj)(P|j_P|j).

two regions: an impurity interactionrather than the simpler SU). A
Emym) itk k) admyomi) careful counting of states can be carried’datshow that all
{aj.a} (%)) =€ [A{aj Ay 01—X;) expected states then appear with the correct degeneracies. It
(me m is instructive that this would not be the case for the naive
+Ba oy 006G X0, choiceSfijayon=1-

The energy eigenvalues of &if-electron state are a gen-

and study the eigenvalue equatibf =EF. We have eralization of the first line of Eq2.12. They are of the form

k
k= ﬁ)

i
~i(B=A)=i(A=B)+i| £ —F|(B-A)

2

k.

_
12A+ F

hF=[
N€ kj
+ E:jgl k](l—ﬁ) (215)

X 8(x;—x)) €' kitkx

~ (ki k C. Eigenvalue equations
+J(Pj—Pj) (A+B) 8(x;—x) e KTk . . -
In order to determine the spectrum, we impose periodic

boundary conditions, and solve the corresponding eigenvalue
problem. The procedure is stand&rdnd here we skip the
details. The result is contained in the Bethe ansatz equations
(212 (BAE’s) which we proceed to write down. Each of the de-
The last line is identically zero; counterterms of fotth4)  grees of freedom—charge, spin, and flavor—is described by
are only necessary when the particles involved have differert set of variables whose number depends on the symmetry of
velocities. The rest of the terms proportional &x;—X;)  the particular state. The charge degrees of freedom are given

1 _
+ H[(B—A)+(A—B)]5'(xj—xl)e'<ijj'+‘<|x'>.

cancel if the amplitudes in Fhe different regions are related byy the setfk;, j=1,... N°. The spin degrees of freedom
the electron-electro matrix are parameterized by the sefy, y=1,...M" T
i ~ =1,... N; MN=0}. Finally, the flavor degrees of freedom
S _la +3(Pj' — P , are represented by the sethw!,, y=1,...M" r
iy —=JI(P;=Py) =1,...f; M'=0}. The set of integeraM"; r=1,... N

wherea; =(k —k;)/A. Such anS matrix can be written as 1 Specify the symmetry of the spin component of the wave
function given by an SUY) Young tableau with the length

a;—2i3P; a;+2i3P, I” of the rth row given byl'=M"—M"**, MN=0, and
o~ ~ MP=Ne®+1. Similarly, the quantum numbef$'} specify
aj =210 a;+21d the symmetry of the flavor component.
Choosing The equations are
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2

c c N?-1
elkjL: H c H c a
vt ij-_(l_)\j)_i 5 7=t wi—)\j—i 5 where the sefT¢, a=1,... N2—1}is an arbitrary represen-
tation of SUN), and{T,, a=1,... N2—1} is the particular
_ _ . representation of the impurity, in our case it will typically be
MY T — whtic w,~ 0Tl 5 (w). In this paper we will consider impurities with spin in a
- H ry—fg_ = —_— totally symmetric representatidifor more general represen-
B=1 @, @p—IC t=ri1p=1 o'~ wfg—ig tatlions, see Ref. )9 Each set is normalized: TF{T)
=320ab-
The largest number of electrons allowed at the origin by
r=2,...f-1, the exclusion principle i X f. This is obtained by placing
- N electrons in each of the channels. However, such a state is
ME ol e a singlet, both in spin and in flavor, and gives a zero contri-
- 7 f bution to Eq.(2.16. Therefore, the number of electrons that
p=1 @, wpg—IC form the compositeM, is such thatM<(N—-1)xf. We
c c will show here that if the impurity is in a totally symmetric
Ne wi—)\ﬁiz M2 @l a)%‘FiE representation, the electron composite that minimizes Eq.
_ H , (2.16 is made out oM =(N—1)Xf electrons.
=1 4 .Cpz2 4 5, . C We will characterize the different representations of
y Nt wyT w13 SU(N) by their Young tableaux. The fundamental represen-
tation is denoted by a bokl, and the singlet by a point ..
C The totally (ant)symmetric representation resulting from the
M’ o xtic Mt Xry—x}ﬁi 5 direct product ofu representations is denoted by a single
2y 2h o E— (columnrow made out ofx boxes, where in the antisymmet-
CEER O R E Y S S ric case we assume<N.
Xy X[S‘ 2
Antisymmetric Symmetric
r=2,...N—-1,
t (1 -T]
1 Lhio e 1—(1—)\-)+i2 . g
M - xhtic XTI NOX T }
p=1 X}Y_X/lf'c Yi—i Ci=1 Yi—(1-\)—i ¢ An arbitrary representation resulting from a producivbf
Y 2 Y ] 2

fundamentals is associated with a Young tableau made up of
c M boxes, distributed ilk<N rows. Letm; be the number of

M2 X;_Xfffii boxes in thejth row. Then,mj=m;, 4, E}‘:lmsz. The
« H corresponding Young tableau will be of the form

B=1 1, .C
Xy~ Xg~! 2 | my
ma
The next step is to solve the equations for all possible .
states, and identify the ground state and the low-energy ex-
citations. Subsequently, by summing over all excitation en- r'nk

ergies, we obtain the partition function.
The BAE's contain the cutoffA which eVentUa"y is sent WhenN:Z, the interactior‘Z_lG) can be written in terms

to |nf|n|ty We Sha” f|nd that in th|S I|m|t the equations re- Of Conserved quantities

duce to a smaller set once the correct ground state has been

identified. It is composed dftring solutions(see below cor- 2ve S 9 ctots tot Me, <Me .

responding to electron composites which interact most effi- Js¥e.s :E[S (§'+1)—SY%(S"*+1)-S(S'+1)].

ciently with the impurity. To sharpen our intuition, we begin (2.17

by some strong-coupling considerations. _ . -
y g Ping The operatorS(S+1) is a particular case of the Casimir

operator,C(I'), of SU(N), which commutes with all the

1. Casimirology .
]generators of the group. For arbitraxy

As mentioned, the mechanism underlying the physics o
the multichannel Kondo model is the dynamic formation of Mei Y T y i
electron composites. We expect that configurations are fa- Jza: TaTa=5[CT)-CI™)—-Cd]. (218
vored which allow minimization of the local interaction at
the impurity site. Consider, then, the general problem ofGiven a representatidi of SU(N) with M boxes distributed
finding the ground state of the Hamiltonian according to the sefm;}, we have®
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M(N2=M) 1 k configuration is unstable to the kinetic term, and the fixed
c(IH)= TJr > E m;(m;+1-2j). (2.19 point in this case is characterized by non-Fermi-liquid be-
=1 havior, as we will see later.
We can use Young tableaux as an easy way of decomposing
the direct product of representations into a direct sum. The 2. Fusion

procedure is standgt(dee, for inst_am_:e, Ref. 11 We turn now to the dynamics of the full model captured
The electrons will be evenly distributed among the chan-by the BAE. We shall argue that the ground state and low-

nels, forming a flavor singlet. Hence th? spin IOf thiv,e"TCtror]ying excitations lie in a sector of the theory given by solu-
composites is described by a rectangular tableau withl-  yjons of 4 particular form— strings Solutions of this type

umns andgsN—l rows. Multiplying the elgctron tableau_by are SUf ) flavor singlets—allowing them to have maxi-
the impurity tableau, we havén the graphic representation 4y jarge SUN) spin. We shall find that this class of ex-
we drop from the tableaux the singlet part consisting of CO"citations is characterized by a scalg=De~ 2”N°. When

umns of lengttN), strings are broken to form flavored excitations, we expect
them to be characterized by other scales which will tend to

H - infinity as the cutoff is removed, and thus not contribute to
E+1 foesp>f the impurity dynamicg.
’ The formation of composites in flavor corresponds to so-
7 lutions of the BAE where the charge parametdis,, are
f ,u 7 complex numbers centered arouf@d’}, according to the
- 12131 o 2
k XD 1 _ string hypothesi$?*3 Likewise, rankr flavor parameters are
+ +osp=f themselves centered around rank1 solutions’ The form
of the charge parameters is
f
]
k+1gH +-5u< f+1
anmp u<f A?s:&sﬂc ——q), g=12,...f, ps real
7 A 2

for kK<N—1. If k=N—1, we have .
while the flavor parameters,

p—f
oo +--spu>f {0, y=12,...M}={pa/A+iJ[(f-r+1)/2—q],
f p
N -1 ® o o +5p=f q=12,...f—-r,A=1,... N},
f—n

wherer=0,1,...f— 1. These configurations satisfy the BAE
N -1 +eoau<f in a trivial manner, and inductisionin the BAE equations
as well as in the form of the wave functions. A string built on
Notice that we have drawn only the terms in the decom-momentump as its real part induces in the wave function a
positions that give the lowest energy. The energy for all sucltomposite of the form e>{pr%AJ2jy,|xj—x,|+ip(x1+---xf)}

configurations is given by X[--+], which becomes local a§ — .
Inserting the string configurations into the full BAE, we
, min(u,f ) obtain the effective equations governing the impurity spin
M —
JEa: TaTa=—k——— [N+tmaxu,f)l. 220 gynamics. After removing the cutoff, they become

Therefore, the energy is minimized when compositesMf (

—1)Xf electrons are formed. wi oyl 1tif <
There are three different situations depending on the value fp L Y 2
of u/f, as in the multichannel Kondo problemihen u ero= Hl o
>f, there is underscreening: the electrons cannot screen the 7 X;_ 1-if >
impurity completely, and the spin configuration is character-
ized by a Young tableau with one row apd- f columns. As
in the N=2 case, we will see later that such object behaves
as a free spin in the Kondo problem. The second gase MC Mt X;—Xtﬁﬂ—
=f corresponds to complete screening: the electrons and the _ M - H —2
impurity form a singlet. This is a stable fixed point of the full B=1 Xry—x;;—ic t=r+1 =1 , , .C’
Hamiltonian with Fermi-liquid behavior. Finally,>f cor- Xy~ XT3y

responds to overscreening: there are more electrons than nec-
essary to screen the impurity. The resulting object corre-
sponds to a tableau with— 1 columns and — u rows. This r=2,...N—1,
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c c = MM
1 1,.:- e 1_ if—
M d-xgric AT N T 2, 2 [0n0G" X+ im0 =X
- I_ T . o
= —xz—ic C &=
B=1 Xy~ Xp X])',_iz 6=1 X]y__l_ifz . ) . Ne L "
=2m13"+ dp (3 + i 1)
c
M2 X}/—Xfﬁ—ii w M2
][] ———. +2 2 b x5
B=1 1 o .C =1 =1
Xy~ Xp~15
The expression for the energy of the spin and charge sec-
and the energy is given by tor is given by
Ne/f ML
e 2 D
N E=2 Tm5+TE > [onixa"=1)
E= fps. =1 A=1 f=1
6=1
—a min(n,f)],

We now proceed to discuss the solutions of the fusedvhereD = N®/L is the electron density. It will turn out also
equations. The solutions for the rankspin variables{ x'} to play the role of the cutoff. In the presence of a magnetic

again fall into strings of arbitrary length, field H, there is a contribution to the energy of the form
N—1
N—-1
c k k+1

Xyh =X iz (n+1-2)), j=1,...n, n=1,.. . —2H X (M-M¥ )( 2 —k>

N—1 N
and a state is characterized by the quantum numbEr$ = —ZH(T(N6+ 1)- Z M’).

r=1

specifying the number of lengtm strings of rankr
(SZ_ mM"M=M"). o
The equations coupling the real part of the strings, after W€ now take the thermodynamic limN®—c and L
summing over the complex variables, can be conveniently~ > holding D finite. In the limits we may replace sums
written down in a logarithmic form. Let us first introduce the With integrals after introducing densities of solution(x),
following definitions: and densities of holes in the distribution of solutions,

o"(x). The energy is now written as

O (X)=—2 arctarénicx>, E=E.—~H(N-1)(N°+1)

o N-1

) +E 2 dx UL(X)gr,n(X)a
min(n,m) n=1r=1 J-w
k - .
bnm(X)= ,2::1 Om s nti-2i(%), where we introduced the energy function,
L1 D .
min(n—1m-1) gr,n(X):T[d’n,f(X_l)_W min(n, f )]5r,1+2an

PnX)= X Onin-g(X).

and E. denotes the contribution of the charge sector to the

Then, after some manipulations the Bethe ansatz equatior?snergy’

take the form R
N/
2
Ec=2 Tm{s.
o=1

0 Mr,m
2 2 LA XS = XM+ bpm(X5" = X5™)] —_ ,
m=1 =1 In the thermodynamic limit the BAE’'s are replaced by

integral equations for the densitie§g’,,o""}. Standard

o M-l manipulation lead to

=27T|;’n+|21 21 ¢ﬁ,|(Xry'n_X;a_l’|) w N

=1 = r,h 2_2 2 dv'AS (v— v ) oSy
oy (X) X n,m(X Xom(x'),
© MLl m=1s=0 J -

|
+|§1 ﬁzl b G x5,

where we introduced the following operators:
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mirn, m) gr,n(x) “
r ' rpAl,S !
Kim0= 2 Knsnra 200 (14 7001==F=+ 2 | dx'AvR(x—x")
min(n—1m—1) X In[1+(7;ﬁq()(’))‘1], (3-1)
Kam0= 2 kmen-2i(X), where
oy "(x)
1 M(y)= — 27 Ny-1_(,0)-1=q
ke X)= = 520,000, kol X)=500); = ) )
We transform this set of equations with the help of the iden-
and tities (we will now drop the functional dependence
Anm(X)=KE () + KD 1(x), ALS — G(ALS  nt AL, )
Bn,m(X)EKﬁ,m(X)y = 5“vm5r’S_G5n,m(5r’s+l+ P

A:{ﬁnEAn,mar’S_ Bn,m( 5r,s+1+ 5!’,5* l)' r= 1, 5_"Sm_ G rZY’rSn: 51'm5|‘,3_ G‘Sl,m( 5F,S+l+ 5“571),

and, by convention with the integral operato®& defined as

e [1] ” f(x")
N _fyo 1 ,
A0=0008+ + o+ Doy, 20 ST W g | o r(f ) )
cosH ~ (x—x")
() =0. (222 and[n]f(x)=17..dx kn(x—x")f(x'). We find

We shall not analyze the ground state and individual excita-

! : 2D
tions here. Instead, we shall proceed to derive the thermody- | /=~ =
namic properties of the model. fT

—G[In@+ (77 H ™ H+In@+(7,"H™H], (3.2

arctane™* "Y1, (+G In(1+ 7))

IIl. THERMODYNAMICS

A. Thermodynamic Bethe ansatz equations In 77[1: _Zﬁ arctane!™® <X_1)5"15nyf+ G[In(1+ 7];71)
We now calculate the impurity contribution to the free

energy, using the well-known formalism of Refs. 12 and 13. +In(1+ 7" —G[In(1+ (" ~H-1

We seek to find the configuratidw!,(x) + o"(x)}, which (170,01~ GLINC+ (7057

would extremize the free energy. The entropy of such a con- +In(1+ (7" H=1, (3.3
figuration is

with boundary conditions,

_ r r,h r r.h
=3 | axitonco+ o 000 + 0500 i+ 00y~ =2

n—oo

—an(0)In on(x) = o, "Coln o "0} (3.4
and its contribution to the spin free energy which follow directly from Eq.(3.1). Another form of these
equation can be obtained after invertifigee Ref. 1P
F=E-TS=—H(N-1)(N°*+1)+ > f dx{oh(X)9rn(X) AE[und N1
—IN(L+ (7)== =8+ 2 GYIN(L+ 7, p)
q=1

— Tl () + o O)I[oh(x) + ok ()]
—ah0In ah(x) — o "o o (N T}

(3.9
The free energy is varied with respect to the densities, sub-

. .
ject to constraints imposed by the Bethe ansatz equations Where In(t 7)=0, and the Fourier transform of the kernel
of the integral operato&9 is given by

FIn(1+ 78 =G In(1+ 4],

5r,h - _ OOd/Ar,s _/55 r,
on(x) mzs ﬁx X Anm(X=X") 90m(X") sinl-(min(r,q)%)sinl-([N—mw(r,q)]%

c
sin){ N 7p
We obtain the following infinite set of integral equations for
the equilibrium densities: The driving term in these equations,

—_

Gi(p)=
dai(x) = day(x) =0. " Smr( cp
2
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o2 2 £ f fl where Fo=E.—H(N—1)(N€+1) is the ground-state en-
OT—0O—  O—0O—@—0O— ergy. After a few further manipulations, the free energy can
E E : ! be written as
QT O O—0—0—

F=Fo-TX f dx In(L+ (7)™

e min(n,f)

x|kn<x>+ T 2 Kieneg(x—D)

N-2 O——()— ----- —<‘> O @ (‘>— ----- We are only interested in the impurity contribution to the
; ; ; | ; | free energyF', which contains all the effects of the interac-
. : . | . | ton. It i

w OfFO— - -O—O0—0—0— fon. Itis

FIG. 1. Diagrammatic representation of the integral equations. pi— _T ” dvéo NNl 1+ ( »H 1
The circles correspond to the function§. The filled circle indi- 21 X CoLndinfL+ ()
cates that the equation for the correspondingas a driving term.

The circles with stripes indicate that the correspondifighave * «

driving terms in the other set of TBA equations. The solid line :q; f_deGl{l’q(X)gg(X)_qul f_wd)( Gy'(x)
indicates a link between twa,, through the convolutiorG In(1

+7). The dashed line indicates a link throu@hIn(1+1/7). Fi- XIn(1+ 7).

nally, the box encirclesy; , which is the function used to evaluate

the impurity contribution to the free energy. The first term corresponds to the impurity contribution to the

ground state. At finite temperatures we are only interested in
D the second term, which after further manipulations becomes
AEQ= Gh’lGl( 2+ arctane(™® (Xl)) :

N_
. L N-1 sin w—q
is the energy of the fundamental excitation. It can be calcu- - 2 o 1 N
lated explicitly: F= _Tq:l _deN_c 27y N—q
cosh——+cosm ——
Nc N
AEfund_ D N—r ) T N—r
NS TN arctanta TN XIn[1+ 73(x)].
T When the impurity is in the fundamental representation, only
Xtan N—C(X— 1) the 7} functions contribute té='. In Fig. 1, this feature cor-

responds to a box drawn around the first column.

A pictorial description of Eq(3.5) is shown in Fig. 1. The
circles correspond to the functiong,(x), and are arranged B. Scaling limit
according to their indices. The lines join functions that ap- e will now take the scaling limitD —, ¢—0, T, con-
pear in the same equatlon The full and dotted lines indicatgtant, where
that the functionsy]," ! and 7+, appear differently in Egs.
(3.2 and (3.3). The driving terms in Eqs(3.2 and (3.3 To=De 27/Nc,
correspond to filled dark circles in Fig. 1. The diagonally
lined circles correspond to functions associated to a drivinghis is the correct limit as discussed in Ref. 12. We also
term in Eq.(3.5). Clearly there are two regions: one<f,  introduce the variable
contains a finite number of functiong,; while the other,
n>f, is unbounded. The regions are separated by the col- 2m To
umn with the driving termsn=f. When studying the lowF E=Nextin+.
properties of the system, we will only need to consider one
region at a time. SO
We will now write the free energy in terms of the set
{#}}. Using the integral equations for the densities we can

(sin W%)lﬂ[l-ﬁ- 73(6)]

write |
== 2w q=1 f d¢ N—q°
F=Fo+2> dX(gr,nUL—TaL In(1+ 75) COS"(% In T +cos T — =
N (3.6
+TY, dx'ALsoh In[1+(75) 1], The only modification in the thermodynamic equations is in

AE{M. Thus
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R 2 e T
—In(1+(n,) )=—?e sin On

N—-1
+ 2 GRIIN(L+ 78, )
q=1

+In(1+753_1) =G~ In(1+ 7],

(3.7)
76=0, I[1+ () 1=0, In1+(y) 11=0,
(3.9
with boundary conditions
lim{[n+21]In(1+ 5;)—[n]In(1+ 7., )}= —2?.
nHw (3.9

C. Asymptotic solutions—low-temperature properties
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we must havep) "= 7 . The solution is easily obtained, as

it is independent of the flavor symmetry,

.. _sink[(n+ r)Xglsinf (n+N—r)Xo]
T T Sin(rxg) sinfl (N—T)Xo] B

| (3.10

n=12,..., r=1,... N—-1, XO:T-S

As for 7", we should consider separately the casesf
and n<f (77"=0). In the first case, we have equations
similar to those fof n, "}, except that all the indices are
shiftedby f, in analogy with the multichannel Kondo model.
Hence

H_sinf[(n—f+r)x0]sinr[(n—f+N—r)x0]
= sinh(rxq)sin (N—r)xo] o

n=ff+1,..., r=1,... N—1. (3.1

Finally, for n<f there are a finite number afj;* involved,

Here we will study several asymptotic limits of the ther- since 7}'* =0, andG In(1+ 7{)=0. As in the multichannel

modynamic integral equations. Some technical points will beKondo modef the sinh functions are replaced bsin func-
considered in detail. It is not easy to study analytically thetions, and the coefficients are independent of the magnetic
integral equation$3.7)—(3.9) due to the complexity of the field. Thus

operatoriG“. Instead, we will study the equivalent set equa-

tions (3.2—(3.4). We will discuss the appropriate procedure : ™ . ™ _
to obtain the asymptotic solutions of the equations order by sin (f+N) (n+r) Jsin (f+N) (n+N-r)
order. The zeroth-order approximation yields a description of 7n = - pn -1,
the fixed point itself, and the correctioffgst ordey describe sin r)sin (N— r))
its neighborhood. (f+N) (f+N)
1. Zeroth order—the fixed point n=1,...f=1, r=1,...N-L 312

The functionsz/, tend either to 0 or to constant values as 1 Nese results coincide with those obtained in Ref. 14 for a

the magnitudes of their arguments tend to infinity. The onlyModel of interacting fermions with the same symmetry. This

information needed about the driving term is that it tends tdS NOt SUrprising, since these results depend only on the sym-
0 asé— —o, and to— = as¢é— . Therefore, the parameter metry of the problem. Notice that the multichannel Kondo

x does not appear explicitly in EqE.2)—(3.4), and the ker-

nel of G can be replaced byS(é—¢').

results correspond to Eq63.10—(3.12 with N=2. Some
features of Egs(3.10—(3.12 can be appreciated in Fig. 1.

Thus the zeroth-order problem consists in evaluating th&Vhen é— —<, the driving term does not contribute to the

set of constants

7= (6 =00).

equations, and the situation is the same as in the Cogblin-
Schrieffer model. FoE—«, andn=f, we can disregard the
n<f sector, and the leftover diagram is effectively the same
as for the Coqgblin-Schrieffer model with the substitution

When é— —oo, all the driving terms vanish, and the alge- —n—f. Finally, for n<f, we have a finite number o],

braic equations for the séty,; } are
210 7" =In(1+ 750) +In(1+ 777

+IN[1+ (75" "+ In[ 1+ (7, ) 7Y,

In[1+(7%7) " =In[1+ (5N ")~ 11=0,

H
=25 = lim{[n+1]In(1+ ;") —[n]in(1+ 75:0)},
n—o
Since the kernel o6G{9(x) satisfies

GRI=GJ', Gi=Gy "N,

involved. Hence the replacement of the sinh by sin.

2. Residual entropy—the fixed point

Here we will calculate the residual entropy in the over-
screened casé>1. AsT—0, the dominant term in the free

energy will be linear, and it will depend only on the values of
r,+

i

N—-1
) T N—
F'~— E q§=:1 Sin( ’7T_N a (3.13
» In(1+ 73~
Xf de (147
0 cos g—lnE +co B
T TN

(3.19
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N-1 N—q
~-T> (T>In(1+ 7). (3.19 2
a=1 ,
Substituting the values ofY ", and taking advantage of the *
symmetry thaty)~ %"= 73", we find 18
14
. N 12
. SNEEN .
F'=—TIn ———
i L 08
SNEEN
06
Hence the residual entropy is - o4
N f FIG. 2. Overscreening residual entroByfor an impurity in the
i sin —— sin —— fundamental representation of SV, and for different values afl
i :_(9_F' i f+N:In f+N andf.
=0 aT |1 ow T
NN N
(3.16 N=17,f=3
O O
Once again, we recover the multichannel results if we set
N=2. Itis quite clear that it is not the logarithm of an integer O O
number.
The expression for the entropy can be written as the sum O O
of two terms: one that depends only bh+f and a second OO
one that depends only din y|, (y=f/N)
O O
S O O (3.19
S=In Slnmm In Sln—N+f. (317)
N=f=5
In the limits f>N andf<N, we have
O OO0
77_2 N2_1 O O O O
INnN—— , >N,
. 6 T 1 0000
= 2 £2_ :
ni- T ONCNONG) (3.20
6 N2’
N=3f=1
Furthermore, it is clear from Eq3.17) that two systems
characterized byy; and y,, such thaty,=1/y,, have the OO0O0O00O0
same residual entropy. When=1, the first term is zero. O O OO OO0 (3.21)

Figure 2 corresponds t8.16) for different values ofN
andf. It is quite apparent that the value 8fincreases with i i i
N-+f. Itis also clear that the figure is symmetric with respect! "€ largest entropy corresponds to the configuration with the
to theN=f axis, which means tha is the same fory and largest nu_mber of cwcl_es, for a flxed.valuemﬂf. That is,
for 1/y. Finally, if we fix N+f, the largest value of the N=f. Noﬂcg that the flr_st and the third cases have the same
residual entropy corresponds ko= f. number of circles and, indeed, the same value of of the im-

In terms of the diagrammatic construction, FigSimea- ~ PUrity entropyS'.
sures the size of the overscreened region and how asymmet-
ric the region is. For fixed + f, the largest residual entropy
corresponds tey=1, in the same way as the square is the Now we turn to the calculation of the thermodynamic
rectangle with the largest area for a fixed perimeter. This caproperties of the SW)XSU(f ) model well below the
be seen in the following diagrams, were we have omitted th&ondo scaleT,. As is obvious from Eq(3.14) for T<T,,
lines and drawn only the circles correspondingitof. the nontrivial temperature dependence of the impurity free

3. First order—the neighborhood of the fixed point
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energy is determined by the asymptotic behavior of the funcwill see below. Therefore, we have to determine whether
tions 7J(&) in the regioné>1. Therefore, we want to find there are contributions more singular still. In other words, we
the dominant dependence gf on ¢ for n<f and¢ large and have to find out if there are solutions of the integral equa-
positive. To this purpose we will only need the equationstions for large of the form

with n<f, which do not have a driving term, and the
asymptotic value ofy; .

N

r T r r ry2\a—7é€ . -
i : Tn<i(§)~ s+ Cp(a’+ B'xg)e with  7<—.
Consider the action of the operat6r n<f n<f="n 0 2

; 1 (= dv' f(x") Introducing the eigenvalue=2 cosw#/N, so that
GX - z f‘“’ X 7T ’ , e ¢
cosh ~(x—x") Ge ™=
A
¥ 2wy’ InE we proceed to convert the thermodynamic Bethe ansatz
1 (= ., Nc T (TBA) equations into algebraic recursion relations. Noting
=% medX r(N ( ,)>- that
cosh = —(x—x
2 Ne In(1+ ) ~In(1+ 7y ")+ (bp+axg)e” ™,
o , ’f(g’) (br+arx2)
“ar )98 TN TG In 7h=Iny o — e
cosh) = (6~ &) “n
where we have dropped the tilde in the last expression. This where
establishes the correspondence between functions and vari- c(a'+ BTx2)
ables of the two systems of equations. (bl +alx3)= ”—HO
From the set of equation8.2—(3.4), and the asymptotic 1+,
values(3.7)—(3.9) we learn that for large and positive values -
of ¢ we have(if xo=H/T is very small T

w=—F
n 1+77:1,+

2 r
17§(§)oc(a’+/3rx§)exp[ -7 Si”( W) eg]_ (322 then substituting in the integral equatiof®2) and (3.3 for
n<f and using the zeroth-order results, we obtain the fol-
We now evaluate the dominant contribution ®;In(1  |owing set of algebraic equations for the coefficientgoft
+7), (we only write the equations fdo], since they are identical to
those foray):

N (= In(1+ 7%)
G, In(1+n§)=EJl dg — o o
coshz (£-¢') b= wh(bf, 1+ bf_y) + =1 b+ == bl Y,
n Mn
&1 N - e—Aef’ with
~ —(ar+BrXS)f dé¢' ————,
4 N r— =
coshly ¢ bl =h!=0. (3.23

More explicitly, upon inserting zero-order values, the equa-
wherew is some lower cutoff of the integral of the order of tions become,

unity, and
. siM(n+N)a]sin(na)
%Sm(rr_r)eé. )\b”_sir{(n+r)a]sir{(n+N—r)a]

N
sif(r+1)alsif(N-r—1)a]
sif(n+r)alsif(n+N—-r)a] "

A (bp1tbn_q)

For large ¢, the only relevant contribution to the integral
occurs aroungt ~1/A. Therefore, we approximate the pre-

vious integral by sin(r—L)a]sif(N—-r+1)a] br-1 32
N/2 sif(n+r)alsif(n+N—-r)a] " ’ (3.29
(a'+ B'x5) 17 AN ~(a"+B'xg)e” VA&, where
Notice that this is correct up to terms of the fogte~ (N2 ¢ -
which cannot be accounted for using this crude approxima- a= *N
tion.

The previous calculation indicates thaf_; will have a  We solve Eq(3.24) by inspection. Since|, has to satisfy the
contribution of ordere™ V2 ¢ sinceG.e”*xe”*, as we  boundary conditionsEq. (3.23], we have that
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bl =sin (n+N)a]sin(na)d, We shall see in Sec. Ill D 4 thatis the main critical expo-

nent in the model.
is the maximal solution whed,=d=const, and the eigen-

value is 4. Specific heat and finite-temperature susceptibility
TT 2
A=2 COSW=2 COST (3.25 The expression for the impurity contribution to the free
energy,F', at low temperatures always has a term which is
Hence, finally, proportional toT2. This contribution comes from the term
proportional toe~ (V2 ¢ present iy}, , as we discussed in
2N (326  Sec. lD3.
N+ ' Here, we will study contributions of the form
N-— N-—
N sin(w—q (a9+ BIx3)e ™ i N sin(w—q (a9+ BIx3)e ™
27 J_w T4=1 To N—q 27w\ Ty) J-o» “4=1 N—q '
cosh é—In —|+cosm—— coshé)+cosm——
T N N
(3.27
which might become dominant depending on the valuer.ofWe will consider the three casds>N, f=N, and f<N
separately.
Case £=N: In this cases<1, and
li e " =0
g_lTw coshé

That means that we can make the same the approximation for the free energy that we made when we &jalogted
+ 7). Therefore, we have
H\2]( T\~ -
BEAE (3.28

with A andB being constants O the order of unity, and we obtain

Fi~—TS-T/A+B

T )2N/(N+f ) . 1

i _ i
C“(To

T)(N—f)/(N+f)

T, (3.29

X * T_o
Needless to say, whdd= 2, we recover the multichannel results. As a matter of fact, the exponents depend only on the ratio
y= f/N.S' 15-17

Case =N: Sincer=1 in this case, we cannot extend the integral in BR7) to {— —<0, and we have to restrict it to the

interval [ 8,%), whered is a finite number of the order of one. Making usefdfdz/(1+e??)] =z—3 In(1+€%) we have, for
very low temperatures,

sin WB (a%4 B9%2)e ¢
AF' T (T)fe dé, N i TS’+T2 nT A+B(Hﬂ
o€ — —| — o — R — — .
2w\ To) Jo-mn1yimr “4=1 N—qg To To T
cosh(é)+cosw N
Hence
c! T| ! i 1| ! 33
o — — e oL — — R
To Ty XX T Ty (330

Case KN: In this region ¥k 7<2. Consider the integral

fw e—(T—l)de_ 1 J~oo dy o
o—log To /T 1+ e2X B —1 B(T/TO)T—]_ y2(1+y2/(7'— 1)) . i

It is possible to find a primitive for 24— 1) integer; we have
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[1 0 m2n-L(2k-1) (o w2kl
%k:l COS on n - yCOS—2n +y
(2k—1)
1  m(2k—1)(2n-1) Y= o0 2 _,
&, Sin on arcta D | —=2n
SIN——
dy B 1+ 2n
YAy H oy na+y) 1 é men)(2k=1) [ m(2k-1)
2n+1 2n+1 &4 2n+1 nj L7y cos 2n+1 ty
(2k—1)
y— —_—
2 - m(2k—1)(2n) 2n+1 2
Tonri R SN ey el —— g | -1 2Nt
\ SN ont1

As T—0, the leading terms are of the form

|

A+B

T
To

H 2 T T

T To )
Sincer>1, the dominant term iAF' is of orderT2. As for
the specific heat and susceptibility, we have

A W

These results are valid for anylr<<2, as can be verified by
numerical integration of Eq.3.31), or by the numerical so-
lution of the thermodynamic equations.

To summarize, there are three different kinds of behavio

7—1
) + const.

-

Hence

AFioc— — —conts.T

To

2N/(N+)
. ¢

T (N=f )/(N+F)

o — —
COC_I_O

.
To

i 1 B
o — —
To

T

To

in the overscreened sector, depending on the value of the

ratio y="f/N. (i) Wheny>1, bothC'/T andy' have power-
law divergences a$— 0. The behavior is similar to that of
the multichannel Kondo model with>2. Indeed, the expo-
nents are the same, since they dependyamly. (ii) For y
=1, there are logarithmic divergences as in the two-chann
Kondo modelJiii) Wheny<1, the values o€'/T andy' at
T=0 are finite. Actually, it can be deduced from the numeri-

cal analysis that these constants are the same as in the cor

responding completely screened cages f; as we will see
later). However, the fixed point has non-Fermi-liquid behav-
ior, as can be seen from the value of the residual entropy al
from the subleading power-law terms.

One can relate the different kinds of behavior to the shap
of the n<f sector in Fig. 1, as can be seen in diagram
(3.19—-(3.21). The square diagram corresponds &1,
whereas the horizontdlertica) one corresponds

D. Channel anisotropy

r

gous problem in the multichannel Kondo mod&lyve con-
clude that up tof different energy scales will appear in the
problem depending on the pattern of symmetry breaking.
The novelty here is that there might be a situation where
>1 for an intermediate regime of temperatures, whereas for
very low temperatures the behavior is characterized by an
effective y smaller than 1.

Consider a system where the flavor symmetry is such that
p energy scale3;<T,<---<T, are generated. Each scale
T; is related to a driving term at the level=m; in the TBA
equations(3.7). We will assume for simplicity, tham;
<m,<---<my=f. If the largest flavor symmetry possible is
SU(f ), there will always be a driving term at the level

Then, when the temperature is below any the thermo-
dynamic properties are given by Eqg8.16 and (3.29,
wherey=f/N is replaced byy.;=m;/N. As the tempera-
ture is increased, the behavior of the system when <T
<T; corresponds toy.=m;/N. Indeed, the value to the
impurity contribution to the entropy will be close to
Flavor anisotropy is a relevant perturbation of the isotro-
pic Hamiltonian. In general, the system will flow away from
the fixed point characterized by andN to a new fixed point
characterized byn; <f, andN. From Eq.(3.16, we see that

"is reduced in such flojS'(f,N) is monotonous in botfi

S i

eind N]. It is worth noticing that, oncen;<N, x' andC'/T

become constant as—0.

The system of TBA equations are represented diagram-
atically in Fig. 3. Depending on the pattern of symmetry
breaking, driving terms appear at different values oThere

eratures between two different scales are related to the cor-
responding overscreened part of the diagram. Notice that

r@re always driving terms fon=f. The properties at tem-

S%hannel anisotropy may have the effect of changing the

shape in the overscreened area from something similar to Eq.
(3.2)) to diagrams like Eqgs(3.20, and(3.21), but not the
other way around.

E. Impurity in a higher-dimensional representation

In this section we briefly consider the case when some of Finally, we study a generalization of the model in which
the couplings],, are different. From the study of the analo- the impurity behavior is that of an object in a rapkrepre-
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FIG. 3. Same as Fig. 1, but now the interaction with the impu-
rity breaks the flavor symmetry from S8 down to Nt O_O_ _____ __O O @ O_ .....
IP_;SU(m; —m;_;), with mP=f andmy,=0 )

FIG. 4. Same as Fig. 1, but now the impurity contribution to the
sentation of SUK). In the SU2) case it corresponds to an free energy involves the sef!, wherex is the rank.
impurity with spinS. Following Ref. 19 and the same for-
mulation that we followed for the fundamental representawhere the first term corresponds to the impurity contribution
tion, we find the following set of effective Bethe ansatz to the ground state. At finite temperatures we are only inter-

equations ested in the second term, which in the scaling limit can be
written as
Lo 14ife
mtooxo— = —q
A — 2 (sm w )In[1+ (6]
=1 3 . C = f dé¢
Xy—l—lfi 27rq 1 To N—-q’
cosh é—In — +COSGTT
(3.33

The evaluation of' involves the functionsﬁt, (see Fig. 4.

; The different scenarios possible are very similar to those of
the multichannel Kondo model. As long as<f, the impu-
rity remains overscreened and the temperature exponents are
the same as for thee=1 case. In this case, the residual

r=2,...N—1, entropy is
) c Mﬁ_l ar
1 . + Ne, —1+if > Sin———
v - xbtic Xy wz 1tx, T IS i 1 f+N
- T 1 St_o=In— N—T (3.39
B=1 Xy~ Xp—IC 1_, Cs=1 1 ifC 1 s ar oo
—ius —-1-if > in— in—
X"l Xy 5 RN
c
2 . | N=22-
MZ X]‘;_Xﬁ_i_lz s, N=22-f .
XH - _ . {45
B=1 1 o, .C '
X'y Xﬂ Iz 14

The impurity contribution to the free energy is

Fi=—TY, f B, IN[1+ (7)1
n — o0
As in the u=1, a series of transformations allow us to re-
write the free energy as

N—1
=2, | @xGH0gio0 T

N-1 . FIG. 5. Overscreening residual entro;Si;Kf, for an impurity
% E dXGl’q( )In(L+ 5%) in a totally symmetric representatiqm of SU(N), for N+ f=22.
- N X M) . A . ;
q=1 J - The lower triangular regiofin black is unphysical.



PRB 58 SOLUTION OF THE MULTICHANNEL COQBLIN-. .. 3829

f=1 =4 =8 t=1 f=3 f=4 t=5
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. o ) FIG. 7.8 ' vs T for N=4, f=1, 3, 4, and 5, ange=1,...,6.
FIG. 6. Impurity contribution to the entropy as a functionTof

for different values ofN, f, and impurity spinu. Notice that dif-

ferent scales are used for the differént ; n n
h'(§)=GIn(1+ 7¢, 1) +In(1+ n_y)],

[Notice that whenN=2 this reduces to the multichannel (&)= e 0O E = h'

result Ir(sir'[w(28+1)/(f+2)]/sir[77/(f+2)])]. Furthermore, it QO=CLQ )+ QT (&) (&,

can be easily shown that,=S}_,. so that
We have plottedS' in Flg 5, for fixedN+f=22, and

several values ofy=f/N and u. Only the regionu<f is

physical in the figure, since these are results for the over- In nf=— Eeé sinl — +In(1+ 7 +Q".

screened case. We can see that for fif@mden f, the largest f N

value of the entropy corresponds io=f/2. Also, for fixed

w, the entropy is the largest aroune- 1, and decreases s We have introduced a cutof in the integrals involved,
moves away from 1. ~ taken In(&+77) to be constant fof¢|>A, and evaluated the

If u=f the impurity becomes completely screengd: integrals in those intervals analytically. Fi@i<A we have
andC'/T become constant, and there is no residual entropyteplaced the integral with a sum using a Gaussian quadrature
Finally, if w>f, the impurity is underscreened. The domi- ryle2!
nant contribution to the free energy from the spin sector is of The results that we present in this work correspond to
the form zero magnetic field, which means that=H/T=0, and the
functions »;, depend on¢ only. Thus the task of obtaining

polENT . thermodynamic properties is greatly simplified. First of all,
_ rﬂl sinhr — the impurity contribution is given by Ed3.6)
FIZ_TIn ¥ N—1 H
rl;[l sinhr — r];[l sinhr — (sinw Nq)ln[1+nﬂ(§)]
= d
WhenH =0, the residual entropy is 2nm & f ¢ To N—q’
cosh é—1In T +c057rT
Sic| (u—Ff+N-=1)! . ,u,—f+N—1)

-n (u—FH)I(N=1)! : N—1 with 7;, independent off. The entropy and specific heat are

_ _ . obtained by taking derivatives &' with respect to the tem-
[For N=2, the residual entropy is I(;"")=In(u—f+1).] perature, which can be done analytically whey=0, and
then performing the integration numerically.

IV. NUMERICAL ANALYSIS _ In order to cglculate the susceptibility at zero magnetic
field, x', we derived a second set of TBA equations for the
A. Procedure functions
We have solved the TBA equations by iteration, using a
procedure inspired by the work of Raj&hFor the levelsn P (&)
#f, which do not have a driving teritsee Fig. 4, we have n(§)= v ,

used Eqgs(3.2) and(3.3) as the starting point, since it is more
convenient to use the kern€(¢). We have dealt with the
equations that have a driving term by introducing two sets ofollowing Degrange$? This system is solved as the previous
auxiliary functions:? one, and the magnetic susceptibility is given by

Xo=0
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N—q
0')2FI f | (sm TN EN()
X lxg=0= e 27Tq 1 ¢ . To . N—q°
n — —
cos 7| teosm—
|
B. Results overscreened fixed point has an anomalous residual entropy
1. Entropy irrespective of the value oN, indicating its non-Fermi-
' liquid nature.

We start by discussing the impurity contribution to the A more detailed picture of the behavior f for N=4 is
entropy,S'. In Fig. 6, we have plotted' as a function off,  displayed in Fig. 7. It is worth noticing that in the under-
for different values o, f, and impurity spinu. The hori-  screened cases, the effective spiis f. Also, there might
zontal axis is on a Iogarithmic scale. The vertical axes havge sjtuations where the residual entropy of the overscreened
different scales for the differemt. The first thing to notice is  case is larger than that of the underscreened case. Such is the
the crossover arounti~T,. ForT>T,, S' is that of a free  case forf=5, u=3 and 4, as compared j0==6.
spin characterized by andN. WhenH =0,

2. Specific heat

Si=In Next, we compute the contribution to the specific heat.

Results for different values of the parameters are shown in

Below the crossover region one can see the quenching of tHed- 8- The largest maximum dfy corresponds tqu=f.
degrees of freedom due to the |nteract|on in the decrease é¥iso, the size of the curve grows witd.

ptN—-1
N—-1

the regionT<T, depends only on the relation betwegn linear coefficient of the specific heat; = Cy/T _for f_— 2
and f. When f=p, there is complete screening, as =2,N>f, and have plotted it in Fig. 9. The points fit power-

=0, as can be seen in the curyes-f=1 andu=f=4. For  law curves with exponentsN(—f )/(N+f ), derived previ-
w>f, the impurity is not completely screened, and there isously [see Eqs(3.29, (3.30, and (3.32]. This is another
effectively a leftover free spip— f, as can be seen in Fig. 6 clear indication that foN>f, the overscreened cases are not
for f=1. There, theT<T, entropy foru<f corresponds to Fermi-liquid fixed points.

the T>T, entropy for w—1. Finally, when u<f, over- ) o

screening takes place: even though there are enough elec- 3. Magnetic susceptibility

trons to form a singlet with the impurity, the low-  Next, we have studiedy' for different values of the pa-
temperature behavior is characterized by an object withameters, and plotted the results in Fig. 10. As with the en-
complex internal structure, and an anomaldlis Such be-  tropy, the qualitative behavior depends only on the values of
havior can be seen in the curvps=2 andu=3 for f=4,  , andf. The difference in behavior between underscreened
and in all the curves fof =8. Notice that foru=1 andx  and overscreened cases becomes more clear here: whereas
=f—1, the curves converge to the same value, as we haghe magnetic moment is partially quenched in the former
already seen in the asymptotic analysis. Furthermore, the

f=2

ol M
10"
=
z ® N=3
= B N=4
10" A N=5
0.1 & N=6
¥V N=8§
10 | — A TcN-zy(Nm
10_310_5 1 0'.4 1 0'—3 0%
T,
10 - FIG. 9. Subleading contribution tg(T)=C\/T, for f=2, u
_ =1, andN>f vsT on a log-log graph. The symbols correspond to
FIG. 8. Impurity contribution to the specific hed,,, for dif- the numerical calculation. The lines correspond to power-law fits

ferent values oN, f, and . with exponents —2)/(N+2).
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FIG. 12. ¥' vs T for N=4, u=1, andf=1, 2, 4, 6, and 8.
FIG. 10. Tx' vs T, for different values of, N, and .

overscreened case is quite different from that of the com-
case, the overscreened case is characterized by a totajyetely screened case, and that the subleading terms have an
quenched moment, even though there is a nonzero residumhportant contribution below the crossover temperature.
entropy. This can be seen in Fig. 10 for the curves viith We can also see the power-law behavior of the subleading
=1 and 4. term of x¥' in Fig. 15. The values for the exponents agree

The magnetic susceptibility is plotted in Fig. 11. The with the values obtained analytically, i.e.N{f )/(N

curves withf = u have a constang' at low T, and forN>2 +f).
they have a maxima nedr~T,. This is a special feature of
the completely screened case. We see that in the over- 4. Wilson ratio
screened case withN>f, the susceptibility tends to a finite
value asT—0, while it diverges whemN<f. WhenN=f,
the divergence is logarithmic, whereas it is a power law for

We have calculated the Wilson ratio, defined as

N<f, with an exponenB> — 1. The largest divergence cor- B 772sz Ty
responds to the underscreened case with Hghavior. All R= N2 T, 4.9

these results coincide with those of the previous analytic
study[Egs.(3.29, (3.30, and(3.32]. (Also see Fig. 12

In Fig. 13 we showy' for different values ofN for the
casesu=f=1 andu="f=4. We have rescaled the curves
dividing by x'(0). It is quite apparent that the behavior is the
same in both cases.

In Fig. 14 we consideN=8, f=7 andu=1,...,7.Even
though x'(0) is finite, it is clear that the behavior of the

The quantityR has a well-defined meaning only fdr=0.
However, in Fig. 16 we have plotted the quantRyT), to
show the difference between the<f and theN>f sectors.

In the former case(N=2, f>1), the value for the over-
screened case is much larger than the value of the completely
screened casénotice the difference in vertical scajes
whereas in the latter casbl & 8), the curves converge to the
completely screened value. Notice that fér=4 there is a
change in behavior as we go frofe<N to f>N.

—_

YD)

X (D0

FIG. 11. Impurity contribution to the magnetic susceptibilig, FIG. 13. ¥'(T)/x'(0) vs T for different values ofN, in two
vs T, for different values off, N, and u. completely screened casps=f=1 andu=f=4.
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FIG. 16. R(T) as a function of temperature f&i=2,4,8, u
FIG. 14. ' vs T for N=8, f=7, andu=1, .. ., 7. =1,...f, andf=1, 3, and 5.

Next we plot the values oR for completely screened anisotropy,T,/T¢=10 . In Fig. 20, we have plotted the
casesu=f (Fig. 17). We see that the values obtained fit the entropy for different values ofc. There are three different
function regions: Whenr>Tg, the impurity behaves like a free mo-
ment. AroundT ~Tg there is a crossover to an overscreened
region (when u<6), characterized by an S8) flavor sym-
metry. The pairs of curvesu(,6— u) merge. Notice also that

. u="6 is completely screened. There is a second crossover
We have also obtained valuesRffor the overscreened case aroundT ~T,, to a region characterized by $4) flavor sym-
(u<<f) in Fig. 18. There are clear differences between themetry for u<4 and by SW2) flavor symmetry for & u
f<N and thef>N cases, as we have already pointed out._ g Only the curves fop=1 andu=(4—1)=3 coincide
For f<N, the value ofR coincides with the value fop. o Also, the value of the residual entropy for-1, is that
=f, and agree with Eq4.2). The dom_lnant contribution to ;¢ 4 effectivex =1 in an SU3)x SU(2) model. The entropy
R comes from the constant terms ji and C\/T. For f ¢, w=4 goes to 0 withT, since the system becomes
>N, R contains mainly the coefficients of the divergent gcreened fom<T,.
parts, and have a different functional behavior. Finally, we have plotted:iv/T for severaly in Fig. 21.
WhenT,<T<Tg, the behavior of the system is character-
ized by f=6: increasing value o€\/T for ©<6, constant

We end the discussion of the numerical results by showbehavior for the screened cages=6. NearT, the curves for
ing an example of channel anisotropy. We have taken thg,<6 have a similar behavior as those for free moments
case N=3, with original flavor symmetry S(6), broken (however, such behavior is not found in the curves for the
down to SU4)xXSU(2) (Fig. 19 Two scales appear in this magnetic susceptibilily We can see three different behav-
problem:Tg, andT,. Accordingly, the TBA equations have jors in the regionT<T,. For u=1 the curve diverges with
driving terms ath=4 and 6. We have chosen very small
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5. Channel anisotropy
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_ FIG. 17. Wilson ratioR for w=f. The points have been ob-
FIG. 15. SubleadingT dependence ofy' for N=8, f tained from the numerical solution. The lines correspond to fits with
=2,...,7, andu=1. The lines correspond to power-law fits. the functionN(N+ f )/(N2—1).
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FIG. 20. Entropy vsT, for u=1,...,6.

FIG. 18. Wilson ratioR for u<f. See the caption in Fig. 17.
A. N-level system model and its low-energy fixed point
The NLS model has been constructed as a generalization
of the two-level system modet*to describe the tunneling of
a heavy particle amondyl not necessarily equivalent posi-
tions labeled bya={1,..N}, and strongly coupled to the
conduction electrons. At low temperatures the motion of the

a power law, as one would expect fbg;;=4>N=3. The
curve foru=4 is flat, since the impurity is screened. Finally,
for =5, the curve increases slowly, converging to a con
stant value, as one would expect from an effectiyg=2

<N=3.
heavy particle can be described by the effective Hamiltonian
V. PHYSICAL REALIZATIONS N
OF THE SU(N) x SU(F) MODEL Hpp= > xiA®y, (5.1)
a,b=1

In the present section we shall concentrate on the possible
where x. creates a pseudofermincorresponding to the

realizations and applications of the SQ(

physical
X SU(f ) Cogblin-Schrieffer model. In Secs. V A, VB, and heavy particle sitea, and A?® is the tunneling amplitude
between positiong andb. If no external stress is present

V C, we analyze the so called-level system(NLS) model,
then the diagonal part ofA2° vanishes: A%=0 (a

a generalization of the two-level system motibly means of
a systematic I/expansion. In this context the flavor degen- =1,...N), when theN positions are equivalent due to the

eracy is associated with the physical spin of the electronsymmetry of the NLS. The electronic part of the Hamiltonian

First we establish a mapping of the NLS model to the mul-and the coupling of the heavy particle to the conduction elec-
tichannel Coqblin-Schrieffer mod¢éMCCS mode) by ana-  trons take the general form

lyzing the low-energy fixed point of its scaling equations.
While our procedure gives a systematic expansion only for +
the caseéf >N, we shall argue that the same mapping should Hei= Enzm €CenmCenm:
apply for the case$<N.
In the limit f>N we are able to determine the full opera-
tor content of the fixed point. This enables us to calculate the Hehp= z C:nmX;rvingbCe’n’m: (5.2
scaling of the different physical quantities at low tempera- a,b,n,n’
tures in Sec. V C. As we shall see, there are some subtle ee’m
differences between the two models, and while most of the
physical quantities show the same dependence, the scaling of
the specific heat may be different. The origin of these differ- U .
ences will be discussed in detail. Finally, based on the results
of Secs. VA-V C, in Sec. VD we discuss some physical
systems providing possible candidates for the realization of —
c,T .

the MCCS model.
0! |

10° ‘ - ‘
107 10° 10
T,

FIG. 19. Diagrammatic representation of the TBA equations for
a system withN=3, and flavor symmetry S@8) broken down to _
FIG. 21.C\/T vs T, for u=1, 4, 5, and 6.

SU(4)xXSU(2). Two driving terms appear at=4 and 6.
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where the operators_,, create conduction electrons with \//
energye, orbital quantum numb&r~ angular momentuin W X

n=1,2,...50, and spinm. For the sake of simplicity the elec- BT o e e
tronic density of stateg(e) is assumed to be constagp,

between the high- and low-energy cutoffsand—D, inde- a.

pendently of the flavor and orbital quantum numbers. While

in the physical case onljn= = is possible corresponding to Lo
the two different spin directions, in the following for techni- -- @ - T
cal reasons we assume that the electron spiocan takef o=
different valuesm=1,...f. b c.

This model has a structure similar to Eg.1) but there
are some important differences. The “spin index’ FIG. 22. The leading logarithmic vertex and self-energy dia-
=1,...N of the impurity in Eq.(2.1) is now replaced by the 9rams generating the next-to-leading logarithmic scaling equations.
“site index” a=1,...N of the heavy particle. Moreover, in Continuous and dashed lines represent the conduction electron and

the NLS case the orbital index [replacing the spin index Pseudofermion Green's functions.

a=1,..N of the conduction electrons in the SN . I . .

X SU(f ) model now ranges from 1 to infinity, since the ;ahraterg tefIﬁCt'Vtet Hgmlrlr'ionﬁln?muslu?![(%n naﬂ:enor:n:ﬁlllzalglle

conduction electrons may have any orbital momentum. Fur- eory turn out to be much simpler than Iné original one.
To make use of the invariance property E6.3) one first

thermore, the couplings axeery anisotropicin orbital indi- has to construct the lowest-order vertex and pseudofermion
ces and no SW) symmetry is present at this level. Finally, . o ; pseudote
self-energy correctioisarising from the diagrams in Figs.

in the NLS model the scattering is diagonal in the real spi
indexm, which plays now the same role as the flavor in Eqr.122(a) and 22b),
(2.2).

The diagonal couplingsy’, describe simple potential 33b=—f |n % (62w tr{yC%y ¢} —tr{yp3cACdydby),
scattering of the conduction electrons by the heavy particle (5.9
sitting in positiona. On the other hand, the off-diagonal D
matrix elementsvﬁﬁ,, with a#b, correspond to the so- 0oI'%P=7p2"—In Z([l_)aC,QCb]—f tr{p3 9}y °d),

called “assisted tunneling” processes. Here the heavy par-
ticle is tunneling from one site to another while a conductionwhere o, is the density of states at the Fermi level, and a
electron is scattered by it. The combination of these twamatrix notation has been introduced for the dimensionless
processes leads ultimately to the generation of an orbitaéoup“ngs 20 Vig,_n_)ab. The symbol[,] stands for the
Kondo effect and a strongly correlated ground sfé"te_. commutator, the trace operatof-tr} is acting in the elec-
In the following we shall carry out a large analysis 10 ronjc indices, and a summation must be carried out over
determine the low-energy fixed point of the NLS mOde|-repeated indices. Then, substituting E8.4) into Eq. (5.3,
While our procedure is strictly valid only in the caég'N,  gng reducing the bandwidth by an infinitesimal amount,

in the end of the subsection we shall argue that our result§ne can deduce the infinitesimal renormalization-group
are very general, and that they should apply even for thg snsformations for the couplings:
casesf<N.
To carry out a 1ff analysis of the NLS model, as a next daab ac. o ndb . xacer cd db
step, we construct the next to leading logarithmic scaling ax = o e et AT A% r{y * ™)
equations using a generalized multiplicative renormalization
group techniqué As discussed in Refs. 1, 16, 17, and 25, the —2tr{paAcdy P}, (5.5
leading logarithmic equations give the leading term in a sys-
tematic 1f expansion and become exact in the-o limit. dp?@® ac b ac. dbr_cd ac. cdrdb
In the multiplicative renormalization-group method, one ex- gy — —L2" 2" 1+ 5 f(2tHu* P~ tr{u*u* v
ploits the existence of a nontrivial transformation in the
space of the Hamiltonian®—D’, V3, —V/2" and A2 —v?r{p®ip®}, (5.6
—A'2P that leaves the pseudofermion Green’s functiéfi

; . . where the dimensionless scaling variakile In(Dy/D) has
and the pseudofermion-conduction electron vertex functio

heen introduced) being the initial(rea) bandwidth cutoff

T () invariant: of the model.
These scaling equations have to be solved with the bound-
G(w,V',A",D")=AG(w,V,A,D)A", g AV condition that the couplings are equal to their bare values
(5.3 atx=0, and they lose their validity if the reduced bandwidth
I'(w,V',A",D")=[A"] T'(w,V,A,D)A™L. D becomes smaller than any small-energy scale pre3ent:

w, or A. Note that, up to the next to leading logarithmic
In these equationa denotes am X N matrix independent of order, the splittingsA” do not occur in Eq(5.6) explicitly,
the energy variable® andT, and acting in the site indices: and they provide only a low-energy cutoff for the scaling. To
A=AV’ A’ ,D'ID). By means of the transformation Eq. be explicit, there is an energy scdl =T* that we call the
(5.3), one can generate effective Hamiltonians that describ&eezing temperatutewhere the renormalized splitting be-
the system’s behavior below the energy sdale The gen- comes of the same order of magnitude as the reduced band-
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coefficient” a=3, ¢ dll v 0°% — f 82% P+ f 50, 29|

is shown, measuring how well the fixed-point algetFa) is
satisfied. As one can see in Fig. 23 BTy the algebra
coefficienta vanishes and, therefore, in an appropriate basis,

the v2's really simplify to the form in Eq(5.7).

Equation(5.7) means thast the fixed poinb2° is given
by Eq. (5.7), and apart from some potential scattering term
the fixed-point effective interaction can be written as

He=Vo 2 Xa ClonCeramks, (5.9
15.00 20.00 €.€’\m
x = In ( Do/D) which is the same as the interaction term in Ej1). Note

that while the initial model was very asymmetrical in the
'orbital space, at the fixed poiwinly N conduction electron
angular momentum channedse coupled to the NLS, and the
fixed-point effective Hamiltonian already shows an addi-
tional SUN) symmetry in the orbital sector as well. These
statements are not true away from the fixed point, where
various kinds of irrelevant operators couple the NLS to the
electrons, and coupling to the other orbital channels is also
relevant. The effective Hamiltonian is completely symmetri-
cal in the NLS site index, which means that, e.g., the ampli-
de of assisted tunneling from site 1 to 6 in Fig. 23 is the

cannot ble Sr?"’?fd hgenerglly,dbut or:g can cpnv;nce@g{gesa ame as the nearest-neighbor-assisted tunneling amplitude
very easily that It the assisted tunneling matrix eleme from site 1 to 2, despite their different geometrical positions.

(a#b) do not ga}nis(?, then th% elefcfgg?-ﬂLS c<)I_LJpIingfgshstart As will become obvious in Sec. V B, the analysis above is
to increase and lead to a Kondo efféct.The scaling of the 5504 o1 the possibility of a systemafiéf expansion.

. b . . .
norm of the couplingsZ, pl[u®”| is shown in Fig. 23 for a Therefore, it is strictly valid in thé>N case. However, one

symmetrical six-state system, where the coupling constanig,q several arguments that the effective Hamiltonian equa-
have been estimated using similar methods as in Ref. 2. ?‘r

on (5.9 is also adequate for the<f cases. First of all, in
one can see, a Kondo effect occurs around the Kondo scaj, .,cen=2 corresponding to the simpler case of multi-

~ —Xeo = .
Tk=Do e 10K, wherex.=In(Do/Tx) denotes the value channel Kondo model, it is well known that fée=1 andf

of the scallng_ parameter at which the crossover f_“’"? weak g, 2 the spin anisotropy of the couplingsiiselevantaround
strong coupling occurs. Our numerical investigations for,

; . the fixed point?® which has the same $P) structure as Eq.
various model parameters and different valuesNoShow 5 ﬂleur?helrmoer florle but arbitrar?l?\l or?e (I:Jan easig/
that the structure of the stable low-temperature fixed poinérbv;e following sir,nilar lines as NoZies and Blandihthat
thedcoulpllggs s%ale totlﬁdeplendrg??f the initial coupllntg§, the isotropic fixed poin{Eqg. (5.9)] is stable against spin
and only depends on the value lvtit no Some very restric- (orbital) anisotropy. These observations together with our re-

. . by
tive symmetry is assumed for the”s. : sults for thef>N case make it highly improbable that for
In what follows we shall show that this stable Iow-energyzgng the NLS model would have a stable fixed point

fixed point of Eq.(5.6) has in principle the structure of the iff £ h :
defining representation of the SN Lie algebra. To be pre- different from the one discussed above.

cise we first observe that the operatd@$~ 52" v ¢ are
invariant under scaling. Therefore th@s can be divided
into two parts,u® and M3 where 3, p22=0 and M?® is
built up from the previously mentioned constants of motions, The statement that®® is a fixed point of Eq.(5.6) is

O?. Then as we shall see, at the stable fixed points of Eqtrivial. However, we also want to prove the stability of this

FIG. 23. Scaling of the norm of the dimensionless couplings
u=2||v?"| (dashed ling and of the algebra coefficient (continu-
ous ling for a six-state system with=2.

width: A®?(D*)~D*. Below this energy scale the orbital
motion of the NLS is usually frozen ousee the discussion
in the end of this sectignand the couplings may be replaced
by their values aff*.

For the moment let us forget about H{.5) and concen-
trate on the scaling of the2"s, Eq. (5.6). This equation

B. Stability analysis of the SUN) x SU(f ) fixed point
of the NLS model in the largef limit

(5.6) the s can be written as fixed point analytically, and find the irrelevant operatis-
termining the low-energy behavior of the modalound it.
~ 1/L3 0 To this end we write the deviations from the fixed point in
@®)p=7 1 O)’ (5.7 the form
where theL2"'s satisfy the standard SBK) Lie algebra, , [ et
5Ua = (tab)+ Mab ’ (51@

[l__ab,LCd]: 5ad|__cb_ 5cb|__ad, (58)
where the couplinge?®, t2°, andu2® areNx N, NX %, and
and are unitary equivalent to the defining representationso x « matrices, respectively. Substituting this expression
L3P ~ &2, 88— (1/f ) 6*°5,, . This statement is also into Eq.(5.6), one obtains the following linearized decoupled
demonstrated in Fig. 23, where the scaling of the “algebrascaling equations:
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d/._Lab 1 0 C_:ab
“dx :?(5abMdd_ N,g,ab), (5.11 5_U|ab: (Cba)+ 0 )- (5.18
do® 1 where theC2's satisfy 3,C32=0 and=,(C3?—C)=0
il A (1 d 097+ L") + f{25ab dd with a,b,c=1,...N andn=N+1, N+2,... . These opera-
X tors have a dimension
+2LCdtr aCLdb+ Lac db —2N ab
. {Qd c_jb _d ib } : N-1 N*
—Lactr{ped db | cdpdby )\|=T+1‘} ik (5.19
—tr{@L M+ L L, (5.12 o
We remark at this point that the operatdgs18 do not
dtab 1 1 existin the two-level-system model, which is therefore com-
=T (L2d%dP— I__dbtad)+? (52Pt99— N3Py, pletely equivalent to the corresponding SUIU(f )
X (5.13 modell’ As we shall see, these operators do not give a con-

tribution to physical quantities like the resistivity or the im-
The solution of Eq(5.11) is trivial, since the operator®®  purity susceptibility, but they influence the thermodynamic
can be decomposed asu?’=[u®— 5P (1/N)u’]  behavior of the model. We stress at this point, that their
+[52°(1/N) u°¢], where the first operator scales like  existence is strictly proved in thie—c limit. They are very
~e ** with a dimension\ =\ 4=N/f, while the second is probably present even in thie<f case but it is an open
marginal withA=0. The detailed analysis of the other two question if they survive in th&l<f limit.
equations is much more complicated, but still one can find The impurity resistivity will be shown to be dominated by
their exact solutions due to the simple structure ofltiBs  the subleading operators
Here we only briefly discuss the results of this analysis.

It turns out that Eqs(5.12 and (5.13 have an infinite

number of zero modes that can be divided into two distinct ab Qab 0
classes. The first type corresponds to potential scattering off v 0 S (5.20
the NLS, and can be written as
5vp0 5b 50, (5.14) Where the matrice?” and $*° satisfy Q**=$3=0 and
Q Qﬁ? These operators have a dimension
where dv denotes an arbitrary X« Hermitian matrix. The
rest of the zero modes can be identified with the generators
ov S‘gn of the unitary transformations of the SNJ Lie alge- N N2
bra, Eq.(5.8), )\5|=?+1? ) (5.21)

b
ab Qgen Iggn . .
SV gen™ 0 (.19  and operator5.9) considered in the SUW) X SU(f ) model
= oreen is also one of them. Furthermore, one has other even more
More precisely, the generatoggs, andtiy, can be shown to  irrelevant operators in the sector of dv with a dimension

Satisfy in first order the equations )\SS|:(N+ 1)/f which give a Subleadiﬁg contribution to the
physical quantities calculated.
Labgcd Lcdtab ydt;gn ybtggn, In the previous considerations we did not take into ac-
(5.16  count the presence of the splittifk?? of the NLS. As we
ab cd d b discussed already, this splitting results in the appearance of
L ’Q rJ+[L ’Q rJ d Qgen d Qgen' another low-energy scal&*. Below this the NLS cannot
from which it follows that the operators?® :=L 3P+ 51)32” jump freely between it different positions. Since usually
satisfy the same Lie algebra as the origihaP's: - the ground state of thRLSis nondegenerate in most cases,
a Fermi-liquid state develops. In other words, the non-Fermi-
[L2b,[cd)= sd[ cb— seb[ ad, (5.17  liquid SUN)XSU(f ) fixed point is unstable with respect to

the splitting that usually drives the system toward a Fermi-

The Qab 'S turn out to be the generators of the unitary trans-liquid ground state.
formatlons in theN dimensional electronic subspace where It has been argued very recerflythat in special cases,
the Lie-algebra Eq(5.9) is realized, while tha®”s corre-  due to some dynamical Jahn-Teller effect, e.g., the hopping
spond to the rotations of thid-dimensional subspace. amplitude A% might pick up and additional Berry phase,

All the other eigenoperators around the fixed point can bevhich could then result in a degenerate ground state with
shown to be irrelevant. Very surprisingly, at least in thedegenerac\N’. Then the effective Hamiltonian at very low
large limit, the leading irrelevant operators are quite differ- temperatures would be, of course, an SIU(X SU(f ) ex-
ent from the leading irrelevant operator of the SI( change model, and in the region<T* all our previous
X SU(f ) model (5.9), both in their structure and in their considerations hold with the replacementMfby N’. Un-
scaling dimension. They are living in the sect®f, and they  fortunately, this Berry phase scenario will very probably not
can be written occur and therefore the non-Fermi-liquid behavior can most
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FIG. 25. Diagrams generating thefd/corrections to the free
energy. The crosses denote the counterterm.
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FIG. 24. Scaling of the dimensionless hopping amplitude,
A*ID,, for the same six-state system as in Fig. 23. Inset: numbering

of the sites of the six-state system. For the sake of simplicity let us assume first that the high-

est low-energy scale is given by the temperature. To calcu-
late a physical quantity at a temperatufewe apply a

probably be observed only in the restricted temperatene renormalization-group transformati@h.3) with D=D, and

ergy) rangeT* <maxT,w}<T, i.e., when the freezing tem- D'=T. Then in the new Hamiltonian al! the Iogarithmic
perature is small enough. terms vanish since IB('/T)=0, and the different physical
Therefore, it is very important to determine the realisticquantities are exclusively given by tmenlogarithmic con-
values of the freezing temperature. We estimated the freestibutions of the corresponding diagrams. For a scale-
ing temperature by solving the scaling equati¢fs$) and  invariant quantity like the free energy, e.g., this implies that
(5.6) numerically for the same symmetrical six-level system
as in Fig. 23. In this case the diagonal matrix elemeyitd
vanish by symmetry. As one can see from Fig. 24, for a
realistic NLS the renormalization of the hoppings® is
huge, and the situatio* <maXT,w}<Tyx can be reached
quite easily. We note at this point that in our Hamiltonian we
also neglected the contribution of two-electron scattering
around the fixed point, which might be also relevant in the
immediate neighborhood of the fixed pofitdiowever, these where on the right-hand side no logarithmic corrections ap-
have a very small amplitude and they are scaled downwardgear, but renormalized couplings have to be used.
in the first part of the scalind) > Ty . Therefore, most prob- Therefore, in order to calculate the scaling behavior of the
ably their effect can be neglected compared to that of théhermodynamic quantities, our task is to determine the non-
splitting A2°, which provides the dominant mechanism to logarithmic parts of the different free energy diagrams. Since
drive the system finally to a Fermi-liquid stefe. the fixed point couplingﬁ_;ﬁ)b are proportional to ¥/ up to
1/£2 order only the diagrams in Figs. @§—25(d) contribute.
However, these diagrams contain divergent contributions
originating from the finite part of the self-energy diagram in
Fig. 22b). These spurious divergences can be handled by a
standard renormalization proceddreyy adding the follow-

Fimp(Do,T,03°,A3")

:Fimp[T,T,Qab<ln %) Aab(m %H (5.22

C. Scaling of the physical quantities of the NLS model
in the large-f limit

Now we turn to the calculation of the physical quantities.
In this subsg_ction we shall detgrmine different ther.mody~Ing counterterm to the Hamiltonian:
namic quantities and the conduction electrons’ scattering rate
1/7, which is directly proportional to the impurity contribu-
tion to the electrical resistivitRim(T).

To calculate a general physical quantity, one should also
calculate the renormalization coefficiedt in Eq. (5.3,
which is quite a nontrivial task away from the fixed point.
However, one can easily convince himself that in the free-This counterterm can also be interpreted as a renormalization
energy corrections in Fig. 25 and the electronic self-energyf the bare parameters of the model, which should be used in

Heoun=f 2D In ZX;Xctr{Qabec}- (5.23

corrections in Fig. 2@) the factorsA and A~ ! cancel ex-
actly, and therefore that these @aale invariantand can be
calculated by solving solely the scaling equatidfs) and
(5.6).

2 2

2N

2

2m°f
—TlIn N+ (tr{yabgbcgca_l_)cal_)bcl_)ab})_

Fimp= 3N

(tr{v Py *Htr{y*% 9} — tr{u % " tr{y I 48} + -+ |

Eq. (5.9 as the initial conditions. Then the counterterm con-
tributions in Fig. 2%) cancel all the spurious divergences,
and after a tedious calculation one obtains, for the nonloga-
rithmic part of the free energy,

(5.29
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Note that diagranta) in Fig. 25 is proportional td%/D, and

it does not give a contribution in the scaling limit.
Substituting the fixed point couplings E¢5.7) into Eq.

(5.29 the fixed-point entropy can be calculated as

formation by the factorZ,. Therefore, applying the
renormalization-group transformation to E§.28 with D’
=A*=T*, we obtain.

Do 4 ab
&Fimp~ MA_ZA<A_*|I_} Xm(lvl_)fp)! (53@

aT

N2—1 72
2 6"

In N

Simp: (5.29

where we assumed tha&t* <T¢ and thus the scaled cou-

which is just the expanded version of E.18. Note that  Plingsu®*(D’) can be replaced by their fixed-point values.

Eq. (5.25 gives the NLS contribution to the entropy only in Sincem(1p{) is just a constant, the scaling f, is the
the regionT* <T<Ty . Below T* the motion of the NLS is Same as that of the factdi,(Do/A* ,u?"). For very small
usually frozen out and the impurity entropy tends to zeroA’s, the scaling ofZ, can easily be determined from the
corresponding to a Fermi-liquid state. fixed-point form of the scaling equatid®.5)

The scaling of the free energy in the regidhi<T<Ty

ab
can be determined by expanding #f&’s around their fixed- dA - N ab (5.31)
point values like Eq(5.10, and substituting them into Eq. dx f
(5.29. It turns out that similarly to the multichannel Kondo and one obtains, in leading order irf 1/
and the two-level system cdS$é’ only the second order '
terms in 5v®° contribute, and therefore in the temperature Do| (A*\NT [ AN
rangeT* <T<T in leading order the free energy and the MANZA(A_* N(T_K) “(T—K) : (5.32

specific heat scale as
in agreement with Eq3.29 and the conformal field theory

N N1+ results¥ In higher order in 1, one also has to take into
Fimp~T To ~T : (5.2 account the renormalization of the splitting in E.32),
A*~AYA=Xs) and one obtains withhg=[N/(N+f )]
T\ 2(N=1)/f ~ (N/f ) — (N?/f?)
Cimp™ (T_K) (5.27 M~ ANsif(1=Ae)  ANIT (5.33

Below T* the free energy generally shows a Fermi-liquid Which is the exact resutf:*

behavior. This scaling behavior does not agree with the one Finally, we discuss the scaling of the electronic scattering
obtained in the Bethe ansafBA) solution of the exchange rate, which we determine from the imaginary part of the
model. However, we have to remark at this point that, acelectronic self-energy in Fig. 20. By assuming a finite
cording to our estimations, the amplitude of the subleadingmpurity concentratiom; and averaging over the position of
operators indv®° is larger than that of the leading irrelevant the impurities and the orientation of the incoming electrons,
operators. Therefore, one expects that there is a substantf@r the average scattering rate we obtain

energy region where the subleading operators dominate, and
eventually it is also possible that they dominate the scaling
of the free energy in the whole regidif <T<Ty. Then the

exponent, in Eq. (5.26 should be replaced by, and one  Ngte that the factoD, arises from the inverse density of

1 i ~~ 2N/f 1 i i - p— - . . - - - -
olbtta||ns _g Sf_a“?fimrzh TB thWh'Ch '? In l(f ordfr co:nf_ Stateseo ! and is invariant under scaling. Substituting into
pletely identical to the Bethe ansatz and conformal fie 204 535, we see immediately that the

this equatiorny
theory results for the_ SLN)XSL.J(f ) modeI.. ... _leading irrelevant operators do not give a contribution to the
One can also easily determine the scaling of the splittin

susceptibilityy , = 9*Fiy,/dAZ at T=0 for smallA’s, where %Lesrt;?grlg zﬁgtfcr;;gsrﬁi’ which is dominated by subleading
now A denotes the characteristic value of the splittidgs.

1 = 1 ab, ba
7 —ZWni(ZDo)NU{Q v°3}. (5.34

Investigation of the free-energy diagrar(isig. 25 shows 1
that the “splitting magnetizationM = dFy,,/ JA should ;~T*8'~TN’f (w=0),
be of the form
A = NIf _
_ |2 ab ) (T=0). (5.395
M, m(D,z_) ) (5.28 T

. L . . . In higher orders this result should be replaced by 1/
The important point is thak is not scale invariant, but rather

behaves as

Do

D (5.29

A= ZA( ab) A,
where the factoZ, should be determined by integrating Eq.
(5.5. As a consequencéJl , is not scale invarianteither,

~TNN) and 1~ VTN

D. Discussion of the possible physical realizations
of the NLS model

The simplest possible realization of the YK SU(f )
model is given by substitutional impurities in metals. These
impurities may form tunneling centéfs’? which then inter-

and has to be rescaled under the renormalization-group tranget with the conduction electrons’ band. An example of such
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where a=11,2 refers to the two leads, angd= * is the

\Y, 1 electron spin.

1 The Hamiltonian of the dots can be writter*as

—V,C,)?

dotl H.= ch ¢ + —(Ql 1~

lead 1 lead 2 dots a=§1,d2 ;,“ Feagteas 2Cs
dloiz N (Q2—V,Cy)? N Q1Q> (5.37
ZCE,Z C12 , .

V2 wherea=d1,d2 is the index of the two dot$); andQ, are

L the charges of themy/; andV, denote the applied gate volt-
ages in the figure, and th@’s denote different capacitances
Bf the systen?® With a suitable choice of the gate voltages
one can achieve that the ground state of the dots becomes
three times degenerate corresponding to the states
a system is given by Rb,GeTe®” The alloy PbTe is a g: =(Q,,Q,)=(0,0), (Og), and ,0). Then the tunneling
narrow-gap semiconductor, but usually because of some irprocesses among the leads and dots result in simultaneous
trinsic impurities it becomes metallic at low temperaturesflips in the electrons orbital quantum numbesw
Since the G&' ions are smaller than the Pbions, and they  —{]1]2,d1,d2} and the charge variablggwhich now take
are also attracted by their nearest neighbof Tiens, they  over the role of the orbital index of the NLS. Since the tun-
form eight-state systems, and according to the our discusmeling is diagonal in the electrons’ spin, we have an addi-
sions in Sec. V A they would be good candidates for thesional SU2) degeneracy in the spin of the electrons. There-
SU(8)xSU(2) model. fore this system is a good candidate for the realization of the
However, while an unambiguous logarithmic anomaly hassy(3)x SU(2) model, where the S@3) fixed point symmetry

been observed in the resistivity of these materfaiso non-  corresponds to the three times degenerate ground states of
Fermi-liquid behavior has been detected. There may be se¥he dots.

eral reasons for that. According to the results of the BA

c_alculations in th_e casBl>f the no_n-Fermi-qul_Jid correc- VI. CONCLUSIONS

tions aresubleading and the physical quantities have in

leading order a Fermi-liquid-like behavior. The subleading We have studied the multichannel Coqblin-Schrieffer

low-temperature behavior of these alloys has never been anerodel (MCCS) and its relation to théN-level system(NLS)

lyzed, and the original measurements do not seem to be agiodel. The properties of the MCCS model depend on both

curate enough to extract such a subleading behavior frorthe spin and flavor symmetries, SN and SUf ), as well

them. We are not aware of any measurement of other physis on thespin of the impurity.

cal quantities like the specific heat in the interesting concen- We have performed both analytical and numerical studies

tration domain. Furthermore, PbTe has very complicate®f the model. As with the multichannel Kondo model, there

properties: it has a soft-phonon mode that drives the syster@re three different classes of fixed points depending on the

through a ferroelectric phase transition as a function of thepin of the impurity,.. The underscreened and completely

Ge concentration, and there is a strong spin-orbit scatteringcreened fixed pointsu>f and u=f, respectively have

in it, which probably spoils the S@) symmetry of the elec- qualitatively similar behaviors to the analogous multichannel

tron spins as well. Moreover, the measurements have beaounterparts \=2).

carried out at relatively large Ge concentrations, where the There are overscreened fixed points. They display non-

interaction of the NLS’s can no lonber be neglected. Fermi-liquid behavior. They have associated anomalous re-
It seems to be that in order to observe non-Fermi-liquidsidual entropy and anomalous exponents in the low-

scaling, much more accurate measurements should be carritgmperature expansion of quantities like the specific heat and

out at even lower temperatures &®veralphysical quantities the magnetic susceptibility.

and lower Ge concentrations. One could also try to find a For an impurity with spin in the fundamental representa-

better candidate. Since in the case of PbTe the formation dfon of SU(N), the residual entropys', is only a function of

the NLS's is induced by the ionic attractions, we think thatN+f and |In(N/f )|. Hence there are different fixed points

experimentalists should search among multicomponent metvith the same value of'. The exception corresponds kb

als, where some interstitials can be solved in the material. =f, which yields the largest value of the residual entropy for
Similarly to the case of the two-channel Kondo motfel, fixed N+ f.

another possible realization of the WX SU(f ) model The low-temperature thermodynamics are determined by

could be possible by means of nanotechnologies. In Fig. 26he value of the ratioy=f/N alone, for anyu<f. Whenf

we show a double-dot geometry which is a candidate for the# N, we have

realization of the S(B)xXSU(2) model. In the leads the elec-

FIG. 26. A mesoscopic double-dot system, a candidate for th
SU(3)xXSU(2) model.

trons can be described as free particles: Cy , T \@= /iy
e 'cconst+ | — , (6.1
T X Te
H e Z 2 €Ch Conos (5.36 which diverge fory>1, but remain finite fory<<1. When

a=T1)2 ‘e N=f, the power is replaced by a logarithm, as in the two-
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channel Kondo model. The constant terms in EB|1) are  Ph,_,Ge,Te compounds. We pointed out that the low con-
always present and when they are they are the dominaentration of interstitials is essential to avoid strong interim-
contributions in the completely screened cagesf, and  purity interactions and keep the diagonal elements of the
whenf<N. The Wilson ratio in such cases is given by self-energy A®® small. Secondly, we suggested a double
quantum-dot structure that could give an ideal realization for

_ N$+; ) the SU3)XSU(2) model.

Channel anisotropy is a relevant perturbation. As the
channel symmetry is reduced from SUY to SU(f’), the
entropy is quenched sind¢+ f decreases andn(N/f )| in- During the course of this investigation we learned of par-
creases. Likewise, a system with channel anisotropy mighdllel work by A. Georges, O. Parcollet, G. Kotliar, and A.
behave like & >N system at intermediate temperatures andSengupta, using conformal field theory and a lagep-
flow at low-T to af<N system. proach to study the same model. There was perfect agree-

Then we turned to the comparison of the MCCS model tonent whenever comparison could be made. We are most
the N-level system model describing a heavy particle tunnel-grateful to the above authors for many useful and enlighten-
ing betweenN different positions and interacting with the ing discussions and for sharing their results prior to publica-
conduction electrons. We have shown that the low-energyion. Part of the work was carried out while N. A. was vis-
fixed point of the NLS model is just the SNJXSU(f ) iting the Physique Theorique group at the ENS. It is a
MCCS model. Performing a large flstudy of the NLS pleasure to thank the members of the group for their warm
model, we have analyzed the operator content of this lowhospitality. G. Z. would like to acknowledge useful discus-
energy fixed point, and the scaling properties of differentsions with D. L. Cox, K. Vladg A. Zawadowski, and A.
physical quantities in thdl<f limit. We have shown in this Moustakas. He would like to thank the Magyary Zalta
limit that while the operator content of the NLS model is Foundation and the Institut Laue-Lange¥renoble for its
different from that of the MCCS model, apart from some hospitality, where part of the present work was done. A. J.
subtle differences, the low-energy properties of the two modwould like to acknowledge useful discussions with R. Bulla,
els are the same. In particular, comparison with the exadP. Coleman, F. H. L. Essler, A. Hewson, A. F. Ho, A. Lopez,
results obtained in the first part of the paper and with theP. Noziges, R. Ramazashvili, and A. Tsvelik. The numerical
NCA calculation$® show that the susceptibility, the residual calculations were carried out using the computing facilities
entropy, and the resistivity of the two models behave in theof Theoretical Physics, University of Oxford. N. A. is grate-
same way, and for reasonable physical parameters even thd to C. Destri and D. Braak for sharing their insights during
scaling of the specific heat is properly described by thehe course of many illuminating discussions, and to A. Ruck-
MCCS model. enstein for a careful reading of the manuscript. This research

Finally, we discussed some possible physical realizationsvas supported by EPSRC Grant No. GR/K97783, Hungarian
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