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Solution of the multichannel Coqblin-Schrieffer impurity model
and application to multilevel systems
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A complete Bethe ansatz solution of the SU(N)3SU(f ) Coqblin-Schrieffer model and a detailed analysis
of some physical applications of the model are given. As in the usual multichannel Kondo model, a variety of
Fermi-liquid and non-Fermi-liquid~NFL! fixed points is found, whose nature depends on the impurity repre-
sentationm. For m5 f , we find a Fermi-liquid fixed point, with the impurity spin completely screened. For
f .m, the impurity is overscreened and the model has NFL properties. The form the NFL behavior takes
depends on theN and f : for N< f , the specific heat and the susceptibility are dominated by the NFL contri-
butions; forN. f the leading contributions are Fermi-liquid-like, and the NFL behavior can be seen only to
subleading order; and forN5 f the behavior is marginal. We also analyze the possibility of physical realiza-
tions. We show by a detailed renormalization-group and 1/f analysis that the tunnelingN-state problem can be
mapped into the SU(N)3SU(f ) exchange model, and discuss the subtle differences between the two models.
As another physical realization we suggest a double quantum dot structure that can be described by means of
an SU~3!3SU~2! model if the parameters of the dots are tuned appropriately.@S0163-1829~98!01528-8#
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I. INTRODUCTION

The multichannel Kondo model1 is the simplest impurity
model with non-Fermi-liquid behavior. Originally introduce
to describe ‘‘real metals’’ with magnetic impurities, its a
plications go beyond the study of dilute magnetic alloys. F
instance, it has been known for some time that systems
sisting of heavy atoms tunneling between two neighbor
sites and interacting with conduction electrons are a real
tion of the two-channel Kondo model.2 Another realization is
the quadrupolar Kondo effect in the context of hea
fermions.3 A detailed account of various aspects and ap
cations of the multichannel Kondo model is given in Ref.

For materials such as Pb12xGexTe or K12xLi xCl alloys,
tunneling may occur between an arbitrary number of lev
Such systems could be modeled using a multichannel ver
of the Coqblin-Schrieffer model, a SU(N)3SU(f ) Kondo
model.5 Here N is the number of spin degrees of freedo
and f is the number of channels, orf lavor degrees of free-
dom.

In this paper we present an exact solution of the SU(N)
3SU(f ) Kondo model, and study the thermodynamic pro
erties of the system. We obtain the leading exponents for
impurity contribution to the magnetic susceptibility and sp
cific heat for arbitraryN and f . We also discuss the effects o
channel anisotropy, which might drive the system from
fixed point with g[ f /N.1 to a new fixed point where
ge f f,1.

II. THE MODEL

The multichannel Coqblin-Schrieffer model describ
electrons carrying two sets of internal degrees of freedom
PRB 580163-1829/98/58~7!/3814~28!/$15.00
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be denoted spin and flavor~or channel number!, interacting
with an impurity carrying only spin. The impurity is local
ized at a point chosen to be the origin. The Hamiltoni
reads

H52 i(
a

N

(
m

f E
2`

`

ca,m
† ~x!]xca,m~x!dx

12(
m

f

Jm (
a

N221

(
a,b

N

ca,m
† ~0!~Ta

~h !!a,bcb,m~0!

3 (
a8,b8

dim~m!

xa8
†

~Ta
~m!!a8,b8xb8 . ~2.1!

Both ca,m
† (x) andxa

† are fermionic fields; the former create
an electron atx with spin indexa and flavor indexm, while
the latter creates the impurity atx50. Imposing the condi-
tion (axa

†xa51, we have thatxa8
† (Ta

(m))a8,b8xb8 represents
the impurity spin operator in a representation of SU(N)
specified by a particular choice of the matricesTa

(rep) , where
the indexa runs from 1 toN221, the number of generator
of SU(N). We will restrict ourselves to the case in which th
electrons are in the fundamental representation@denoted by
~h!#, and the impurity is in the totally symmetric represe
tation obtained from the direct product ofm fundamental
representations.

The physical realizations discussed in the present pa
correspond to the simplest case,m51; the investigation of
the m.1 cases gives us important insight into the gene
structure of the model, and allows, in particular, for a co
3814 © 1998 The American Physical Society
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parison with the results obtained for the multichannel Kon
model with impurity spinS. 1

2.
In most of this paper we will study the isotropic mode

Jm5J, with the symmetry U(1)charge3SU(N)spin

3SU(f ) f lavor. We will also assume that the different flavo
levels are equally populated,Ne5 f N0 .

In what follows shall solve the complete model an
among other things, study its low-energy physics. As is w
known, the low-energy behavior of a system can often
described in terms of effective Hamiltonians, that are simp
than the starting Hamiltonian; these are usually referred t
fixed points. We shall determine their properties from t
exact solution. We shall find that the model possesses a
riety of fixed points~or low-energy regimes!, whose nature
depends on the symmetry structure in the flavor sector
on the spin representation~m!, generalizing the familiarN
52 case~the multichannel Kondo model1!. As previously,
we shall identify the mechanism underlying the appeara
of these fixed points asdynamical fusionby which electrons
form spin complexes whose interaction with the impur
leads to an interesting behavior in the infrared.6 Each com-
plex consists off electrons fused into a local objects th
transforms according to one-row Young tableaux of lengthf .

Within the Bethe ansatz approach, a precise descriptio
the formation of these composites can be given. The line
ized Hamiltonian separately propagates the charge-s
flavor degrees of freedom that make up the electron. Th
fore, the effect of flavor on the spin degrees of freedom
recovered only in the physical space. To follow the dynam
coupling of spin and flavor, we add some curvature, wh
maintains the identity of the electron while allowing its com
ponents to interact. It has the form HL

5(1/2L) (a(m*2`
` ca,m

† (x)]x
2ca,m(x)dx, where L is the

curvature scale which is sent to infinity at the end of t
calculation. Adding this term allows for the formation o
bound states in the flavor singlet channel, which inter
strongly with the impurity, and determine the low-ener
dynamics even after the curvature is removed. A close a
ogy is a small magnetic field introduced to probe for mag
tization, which may survive after the field is removed. Im
posing a cutoffD on the momentum variables guarantees
finiteness of the energy. Other terms need to be added to
Hamiltonian to maintain integrability, terms which we sha
see below are irrelevant.

For free fields, the resulting theory is already quite
volved, and even the counting of states is not trivial.7 Nev-
ertheless, the charge-spin-flavor separated basis is the na
one for the noninteracting problem, as we shall see later:
the form to which the eigenstates tend when the interactio
turned off. We thus introduce the following elements.

~i! A second derivative term with a curvature scale,L,

HL5
1

2L (
a

(
m

E
2`

`

ca,m
† ~x!]x

2ca,m~x!dx, ~2.2!

which breaks charge-spin-flavor separation of the lin
spectrum. Once the electron composites are formed, and
low-energy spectrum of the theory is identified, the scale
taken to infinity. Adding the term~2.2! also imposes restric
tions on the form of the eigenstates which can be expres
o
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in terms of the following counterterms without which th
model is not integrable for finiteL.

~ii ! An electron-electron interaction term of the form

2J̃ (
m,m8

(
a,a8

E
2`

`

ca,m
† ~x!ca8,m8

†
~x!ca,m8~x!ca8,m~x!dx.

~2.3!

When no impurity is present,J̃ can be chosen arbitrarily
since the term has no effect on the linear spectrum. T
linearized spectrum has a large degeneracy, and the inclu
of Eqs.~2.2! and ~2.3! will provide a way to find the eigen-
states.

~iii ! A countertermHcc of the form

Hcc52
1

L (
m

f

(
a

N E
2`

`

ca,m
† ~x!V~x!ca,m~x!dx, ~2.4!

with

V~x!5
x

uxu @d8~x10!1d8~x20!#, ~2.5!

needs to be added to the Hamiltonian in order to prese
integrability at the origin; this term vanishes once the cur
ture is removed, and plays no further role in the problem

A. First quantized Hamiltonian

A general Fock state ofNe electrons and one impurity ca
be written in the following form:

uF&5(
$mj %

(
$aj %,b

E
2`

` S)
j

dxj DF
$aj %,b
$mj % ~$xj%!

3xb
†~0!)

j 51

Ne

caj ,mj

† ~xj !u0&.

In order for it to be an eigenstate, the amplitudesF must
satisfy the equationhF5EF, where the differential operato
h, known as thefirst quantized form of the Hamiltonian,
takes the form

h5(
j 51

Ne H 2 i ] j1
1

2L
] j

212Jd~xj ! (
a

N221

~Ta, j
~h !!~Ta

~m!!J
1(

l , j
2J̃d~xl2xj !~Pl j 2Pj l !2(

j 51

Ne

1

L
V~xj !,

with Pjl (Pj l ) the spin~flavor! exchange operator;

Pab,cd5daddbc ,

Pm1m2 ,m3m4
5dm1m4

dm2m3
.

The fundamental representation~h! is carried by the electron
j and the~m! representation by the impurity. When the latt
is also in the fundamental representation i.e.,m51, the
Hamiltonian can be rewritten as
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h5(
j 51

Ne

$2 i ] j1~L21!] j
212Jd~xj !Pj 0%1(

l , j
2J̃d~xl2xj !

3~Pl j 2Pj l !1(
j 51

Ne

1

L
V~xj !.

B. S matrices

We will assume for now that both the electrons and
impurity are in the fundamental representation of SU(N).
The eigenstate amplitudes are combinations of plane wa
with pseudomomenta kj , ( j 51, . . . ,Ne), and have coeffi-
cients that depend on the ordering of the electrons, and
the spin and the flavor indices. These coefficients are rel
through products of electron-impurity and electron-elect
S matrices that we will derive now. Consider first the wa
function describing one electron~denote it byj ! interacting
with the impurity ~denote it by 0!,

Faj ,a0

mj ~xj !5eik jxj@Aaj ,a0

mj u~2xj !1Baj ,a0

mj u~xj !#. ~2.6!

Applying h to it, we have~we drop the indices in the ampli
tudes!

hF~xj !5S kj2
kj

2

2L DF~xj !

3F2 i S 12
kj

L D ~B2A!1JPj 0~B1A!Gd~xj !

2
1

2L
~B2A!d8~xj !e

ik jxj1
1

L
V~xj !F~xj !.

~2.7!

F is an eigenstate ofh, with eigenvalue Ej5kj@1
2 (kj /2L)#, if the terms in the second and third lines in E
~2.7! vanish. The last two terms cancel each other due to
form of Eq. ~2.5!. The terms in the second line of Eq.~2.7!
cancel if the amplitudesA andB are related by the electron

impurity S matrix B5Sj 0A, whereSj 05(Sj 0)
aj ,a0

aj8 ,a08 is given

by

Sj 05
i ~12kj /L!1JPj 0

i ~12kj /L!2JPj 0

5S i ~12kj /L!1J

i ~12kj /L!2JD S i ~12kj /L!1JPj 0

i ~12kj /L!1J D 2

. ~2.8!

Defining

c[
2J

12J2 , g~x![
12x

12J2 S 12
J2

~12x!2D ,

we can write

Sj 05e2 i arctan@c/g~kj /L!#S g~kj /L!2 icPj 0

g~kj /L!2 ic D ,

~notice that arctanc52 arctanJ!. Eventually we will send the
cutoff to infinity. Therefore, expandingg(k/L) to first order
in 1/L,
e

es

on
ed
n

e

g~k/L!;12S 11J2

12J2D k

L
,

we have

Sj 0;ei arctan@c/11l j #S l j211 icPj 0

l j211 ic D , ~2.9!

where

l j5S 11J2

12J2D kj

L
.

In the scaling limit,J andc have the same scaling behavio
We now consider the case of two electrons. We genera

the procedure followed in the case on one electron: div
the configuration space into regions inside each of wh
there is no interaction, and the wave function is a superp
tions of plane waves. There are six such regions in this c
corresponding to the ordering of three objects, two electr
and an impurity, and we label them by permutationsQ
PS3 . For example, the elementQ5(1,0,2) labels the region
where electron 1 is to the left of the impurity and electron
is to its right. We also introduce the notationu(xQ) to denote
a function that takes the value 1 in the regionQ, and zero
elsewhere.

The two-electron wave function is then of the form~Bethe
ansatz!,

Fa
m~x!5Aei ~k1x11k2x2!(

Q
u~xQ!Aa,m

Q ,

wherem5(m1 ,m2) and a5(a1 ,a2 ,a0) andA is the anti-
symmetrizer. The amplitudes in the various regions are c
nected byS matrices, e.g.,S01A0125A102, where S01, the
electron-impurityS matrix has been already determined
the one-electron problem. For this ansatz to be consisten
must satisfy the Yang-Baxter relations

Si j Si0Sj 05Sj 0Si0Si j , ~2.10!

guaranteeing that the two paths from~1,2,0! to ~0,2,1! yield
the same answer.

What is the electron-electronS matrix, Si j ? There is no
direct electron-electron interaction term in the Hamiltoni
~2.1!, and one may be tempted to adopt the naive cho
Si j 5I for the scattering matrix of electronsi and j . Never-
theless, electron correlations are induced through the im
rity. These show up immediately, since the naive choice d
not satisfy the Yang-Baxter relations:Sj 0 and Si0 do not
commute. This noncommutativity captures some import
aspects of the model: after electroni crosses the impurity,
the latter is left in a different state than before. Hence
state in which electronj finds the impurity depends on
whether it crosses the impurity before or after electroni .
Herein lies the difference between a system of electrons
teracting with a fixed potential~a one-body problem, since
all electrons ‘‘see’’ the same potential! and a Kondo system
where the impurity correlates the motion of all electrons.

Are we allowed to introduce a scattering matrixSi j to
satisfy the Yang-Baxter relations? We now proceed to sh
that this is indeed the case, namely, the introduction of
electron-electron scattering matrix would not modify t
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original problem we set out to solve. Consider first the sp
of free electrons with a linearized Hamiltonian. The space
highly degenerate: for example the energyE5k11k2 in the
two-electron space corresponds to a wave functionF
5(qei (k11q)x11 i (k22q)x2Aq for any choice of coefficients
Aq . Equivalently, we can pick a basis of the formF
5eik1x11 ik2x2@u(x12x2)1S12u(x22x1)#A. The choice of
S12 is arbitrary in the two-electron space, but if we wish
proceed to construct three~and more! electron wave func-
tions then the scattering matrices must satisfy the Ya
Baxter relations for electrons,Si j SikSjk5SjkSikSi j . When
the Kondo interaction is turned on, the matrixSj 0 is fixed by
the interaction, which in turn picks the electron basis throu
the Yang-Baxter relations~2.10!.

When the cutoff is present, part of the degeneracy is
ready removed at the free-electron level, but the proced
still goes through. Consider the model for two electro
away from the impurity.

h52 i ] j2 i ] l1
1

2L
] j

21
1

2L
] l

212J̃d~xl2xj !~Pl j 2Pl j !.

~2.11!

This cutoff Hamiltonian is in the same universality class
the free linearized Hamiltonian, and possesses the s
spectrum when the cutoff is sent to infinity; its particul
form was chosen so that theS matrix it defines does indee
satisfy Eq.~2.10!. Again, we divide configuration space int
two regions:

F
$aj ,al %
$mj ,ml %~xj ,xl !5ei ~kjxj 1klxl !@A

$aj ,al %
$mj ,ml %u~xl2xj !

1B
$aj ,al %
$mj ,ml %u~xj2xl !#,

and study the eigenvalue equationhF5EF. We have

hF5F S kj2
kj

2

2L D 1S kl2
kl

2

2L D GF
1F2 i ~B2A!2 i ~A2B!1 i S kj

L
2

kl

L D ~B2A!G
3d~xj2xl !e

i ~kj 1kl !xj

1 J̃~Pjl 2Pj l !~A1B!d~xj2xl !e
i ~kj 1kl !xj

1
1

2L
@~B2A!1~A2B!#d8~xj2xl !e

i ~kjxj 1klxl !.

~2.12!

The last line is identically zero; counterterms of form~2.4!
are only necessary when the particles involved have diffe
velocities. The rest of the terms proportional tod(xj2xl)
cancel if the amplitudes in the different regions are related
the electron-electronS matrix

Sjl 5
ia j l 1 J̃~Pjl 2Pj l !

ia j l 2 J̃~Pjl 2Pj l !
,

wherea j l [(kl2kj )/L. Such anS matrix can be written as

Sjl 5
a j l 22i J̃Pjl

a j l 22i J̃

a j l 12i J̃Pj l

a j l 12i J̃
.

Choosing
e
is

-

h

l-
re
s

s
e

nt

y

J̃5
J

11J2 , ~2.13!

allows us to express theS matrix as

Sjl 5
l j2l l1 icPjl

l j2l l1 ic

l j2l l2 icPj l

l j2l l2 ic
. ~2.14!

TheS matrices~2.9! and~2.14! satisfy the Yang-Baxter con
ditions ~2.10!, and also

Si j SikSjk5SjkSikSi j ,

assuring that we were able to generate a cutoff version of
Hamiltonian while maintaining integrability.

The cutoff scheme we introduced generates a fla
component in the electron-electronS matrix. Clearly it
captures the interaction among electrons induced by
impurity. Already for the free HamiltonianH05
2 i (a

N(m
f *2`

` dxca,m
† (x)]xca,m(x) a nontrivial S matrix

mustbe introduced if we choose an SU(N)3SU(f ) invari-
ant basis~which is appropriate for a subsequent inclusion
an impurity interaction! rather than the simpler SU(f N). A
careful counting of states can be carried out7 to show that all
expected states then appear with the correct degeneraci
is instructive that this would not be the case for the na
choiceS( f lavor)

i j 5I .
The energy eigenvalues of anNe-electron state are a gen

eralization of the first line of Eq.~2.12!. They are of the form

E5(
j 51

Ne

kj S 12
kj

2L D . ~2.15!

C. Eigenvalue equations

In order to determine the spectrum, we impose perio
boundary conditions, and solve the corresponding eigenv
problem. The procedure is standard,8 and here we skip the
details. The result is contained in the Bethe ansatz equat
~BAE’s! which we proceed to write down. Each of the d
grees of freedom—charge, spin, and flavor—is described
a set of variables whose number depends on the symmet
the particular state. The charge degrees of freedom are g
by the set$kj , j 51, . . . ,Ne%. The spin degrees of freedom
are parameterized by the sets$xg

r , g51, . . . ,Mr ; r
51, . . . ,N; MN50%. Finally, the flavor degrees of freedom
are represented by the sets$vg

r , g51, . . . ,M̄ r ; r

51, . . . ,f ; M̄ f50%. The set of integersMr ; r 51, . . . ,N
21 specify the symmetry of the spin component of the wa
function given by an SU(N) Young tableau with the length
l r of the r th row given by l r5Mr2Mr 11, MN50, and
M05Ne11. Similarly, the quantum numbers$M̄ r% specify
the symmetry of the flavor component.

The equations are
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eik jL5 )
g51

M1 xg
12~12l j !1 i

c

2

xg
12~12l j !2 i

c

2

)
g51

M̄1 vg
12l j1 i

c

2

vg
12l j2 i

c

2

2 )
b51

M̄ r

vg
r 2vb

r 1 ic

vg
r 2vb

r 2 ic
5 )

t5r 61
)
b51

M̄ t vg
r 2vb

t 1 i
c

2

vg
r 2vb

t 2 i
c

2

;

r 52, . . . ,f 21,

2 )
b51

M̄1
vg

12vb
11 ic

vg
12vb

12 ic

5)
j 51

Ne vg
12l j1 i

c

2

vg
12l j2 i

c

2

)
b51

M̄2 vg
12vb

21 i
c

2

vg
12vb

22 i
c

2

,

2 )
b51

Mr

xg
r 2xb

r 1 ic

xg
r 2xb

r 2 ic
5 )

t5r 61
)
b51

Mt xg
r 2xb

t 1 i
c

2

xg
r 2xb

t 2 i
c

2

;

r 52, . . . ,N21,

2 )
b51

M1
xg

12xb
11 ic

xg
12xb

12 ic
5

xg
11 i

c

2

xg
12 i

c

2

)
j 51

Ne xg
12~12l j !1 i

c

2

xg
12~12l j !2 i

c

2

3 )
b51

M2 xg
12xb

21 i
c

2

xg
12xb

22 i
c

2

.

The next step is to solve the equations for all possi
states, and identify the ground state and the low-energy
citations. Subsequently, by summing over all excitation
ergies, we obtain the partition function.

The BAE’s contain the cutoffL which eventually is sen
to infinity. We shall find that in this limit the equations re
duce to a smaller set once the correct ground state has
identified. It is composed ofstring solutions~see below! cor-
responding to electron composites which interact most e
ciently with the impurity. To sharpen our intuition, we beg
by some strong-coupling considerations.

1. Casimirology

As mentioned, the mechanism underlying the physics
the multichannel Kondo model is the dynamic formation
electron composites. We expect that configurations are
vored which allow minimization of the local interaction
the impurity site. Consider, then, the general problem
finding the ground state of the Hamiltonian
e
x-
-

en

-

f
f
a-

f

J (
a

N221

Ta
~e!Ta

~ i ! , ~2.16!

where the set$Ta
e , a51, . . . ,N221% is an arbitrary represen

tation of SU(N), and$Ta
i , a51, . . . ,N221% is the particular

representation of the impurity, in our case it will typically b
~m!. In this paper we will consider impurities with spin in
totally symmetric representation~for more general represen
tations, see Ref. 9!. Each set is normalized: Tr(TaTb)
5 1

2 da,b .
The largest number of electrons allowed at the origin

the exclusion principle isN3 f . This is obtained by placing
N electrons in each of the channels. However, such a sta
a singlet, both in spin and in flavor, and gives a zero con
bution to Eq.~2.16!. Therefore, the number of electrons th
form the composite,M , is such thatM<(N21)3 f . We
will show here that if the impurity is in a totally symmetri
representation, the electron composite that minimizes
~2.16! is made out ofM5(N21)3 f electrons.

We will characterize the different representations
SU(N) by their Young tableaux. The fundamental represe
tation is denoted by a boxh, and the singlet by a point •
The totally~anti!symmetric representation resulting from th
direct product ofm representations is denoted by a sing
~column!row made out ofm boxes, where in the antisymme
ric case we assumem<N.

An arbitrary representation resulting from a product ofM
fundamentals is associated with a Young tableau made u
M boxes, distributed ink<N rows. Letmj be the number of
boxes in thej th row. Then,mj>mj 11 , ( j 51

k mj5M . The
corresponding Young tableau will be of the form

WhenN52, the interaction~2.16! can be written in terms
of conserved quantities

JSW Me
•SW i5

J

2
@Stot~Stot11!2SMe~SMe11!2Si~Si11!#.

~2.17!

The operatorS(S11) is a particular case of the Casim
operator,C(G), of SU(N), which commutes with all the
generators of the group. For arbitraryN,

J(
a

Ta
MTa

i 5
J

2
@C~GT!2C~GM !2C~G i !#. ~2.18!

Given a representationG of SU(N) with M boxes distributed
according to the set$mj%, we have10
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C~G!5
M ~N22M !

2N
1

1

2 (
j 51

k

mj~mj1122 j !. ~2.19!

We can use Young tableaux as an easy way of decompo
the direct product of representations into a direct sum. T
procedure is standard~see, for instance, Ref. 11!.

The electrons will be evenly distributed among the ch
nels, forming a flavor singlet. Hence the spin of the elect
composites is described by a rectangular tableau withf col-
umns andk<N21 rows. Multiplying the electron tableau b
the impurity tableau, we have~in the graphic representatio
we drop from the tableaux the singlet part consisting of c
umns of lengthN!,

for k,N21. If k5N21, we have

Notice that we have drawn only the terms in the deco
positions that give the lowest energy. The energy for all s
configurations is given by

J(
a

Ta
MTa

i 52k
min~m, f !

2N
@N1max~m, f !#. ~2.20!

Therefore, the energy is minimized when composites ofN
21)3 f electrons are formed.

There are three different situations depending on the va
of m/ f , as in the multichannel Kondo problem.1 When m
. f , there is underscreening: the electrons cannot screen
impurity completely, and the spin configuration is charact
ized by a Young tableau with one row andm2 f columns. As
in the N52 case, we will see later that such object beha
as a free spin in the Kondo problem. The second casm
5 f corresponds to complete screening: the electrons and
impurity form a singlet. This is a stable fixed point of the fu
Hamiltonian with Fermi-liquid behavior. Finally,m. f cor-
responds to overscreening: there are more electrons than
essary to screen the impurity. The resulting object co
sponds to a tableau withN21 columns andf 2m rows. This
ng
e

-
n

l-

-
h

e

the
-

s

he

ec-
-

configuration is unstable to the kinetic term, and the fix
point in this case is characterized by non-Fermi-liquid b
havior, as we will see later.

2. Fusion

We turn now to the dynamics of the full model captur
by the BAE. We shall argue that the ground state and lo
lying excitations lie in a sector of the theory given by sol
tions of a particular form—f strings. Solutions of this type
are SU(f ) flavor singlets—allowing them to have max
mally large SU(N) spin. We shall find that this class of ex
citations is characterized by a scaleT05De2 2p/Nc. When
strings are broken to form flavored excitations, we exp
them to be characterized by other scales which will tend
infinity as the cutoff is removed, and thus not contribute
the impurity dynamics.7

The formation of composites in flavor corresponds to
lutions of the BAE where the charge parameters,$l j%, are
complex numbers centered around$vg

1%, according to the
string hypothesis.12,13 Likewise, rankr flavor parameters are
themselves centered around rankr 11 solutions.6 The form
of the charge parameters is

ld
q5

pd

L
1 icS f 11

2
2qD , q51,2, . . . ,f , pd real.

while the flavor parameters,

$vg
r ,g51,2, . . . ,Mr%5$pA /L1 iJ@~ f 2r 11!/22q#,

q51,2, . . . ,f 2r ,A51, . . . ,N%,

wherer 50,1, . . . ,f 21. These configurations satisfy the BA
in a trivial manner, and inducefusion in the BAE equations
as well as in the form of the wave functions. A string built o
momentump as its real part induces in the wave function
composite of the form exp$21

2LJ(j,luxj2xlu1ip(x11¯xf)%
3@¯#, which becomes local asL→`.

Inserting the string configurations into the full BAE, w
obtain the effective equations governing the impurity sp
dynamics. After removing the cutoff, they become

ei f pdL5 )
g51

M1 xg
1211 i f

c

2

xg
1212 i f

c

2

,

2 )
b51

Mr

xg
r 2xb

r 1 ic

xg
r 2xb

r 2 ic
5 )

t5r 61
)
b51

Mt xg
r 2xb

t 1 i
c

2

xg
r 2xb

t 2 i
c

2

,

r 52, . . . ,N21,
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3820 PRB 58ANDRÉS JEREZ, NATAN ANDREI, AND GERGELY ZARA´ ND
2 )
b51

M1
xg

12xb
11 ic

xg
12xb

12 ic
5

xg
11 i

c

2

xg
12 i

c

2

)
d51

Ne/ f xg
1211 i f

c

2

xg
1212 i f

c

2

3 )
b51

M2 xg
12xb

21 i
c

2

xg
12xb

22 i
c

2

,

and the energy is given by

E5 (
d51

Ne/ f

f pd .

We now proceed to discuss the solutions of the fu
equations. The solutions for the rankr spin variables$x r%
again fall into strings of arbitrary lengthn,

xg, j
r ,n5xg

r ,n1 i
c

2
~n1122 j !, j 51, . . . ,n, n51, . . . ,̀ .

and a state is characterized by the quantum numbersMr ,m

specifying the number of length-m strings of rank r
((m51

` mMr ,m5Mr).
The equations coupling the real part of the strings, a

summing over the complex variables, can be convenie
written down in a logarithmic form. Let us first introduce th
following definitions:

un~x![22 arctanS 2

nc
xD ,

fn,m
k ~x![ (

j 51

min~n,m!

um1n1k22 j~x!,

fn,m
0 ~x![ (

j 51

min~n21,m21!

um1n22 j~x!.

Then, after some manipulations the Bethe ansatz equa
take the form

(
m51

`

(
b51

Mr ,m

@fn,m
2 ~xg

r ,n2xb
r ,m!1fn,m

0 ~xg
r ,n2xb

r ,m!#

52pI g
r ,n1(

l 51

`

(
b51

Mr 21,l

fn,l
1 ~xg

r ,n2xb
r 21,l !

1(
l 51

`

(
b51

Mr 11,l

fn,l
1 ~xg

r ,n2xb
r 11,l !,
d

r
ly

ns

(
m51

`

(
b51

M1,m

@fn,m
2 ~xg

1,n2xb
1,m!1fn,m

0 ~xg
1,n2xb

1,m!#

52pI g
1,n1fn,1

1 ~xg
1,n!1

Ne

f
fn, f

1 ~xg
1,n21!

1(
l 51

`

(
b51

M2,l

fn,l
1 ~xg

1,n2xb
2,l !.

The expression for the energy of the spin and charge
tor is given by

E5 (
d51

Ne/ f
2p

L
md1

D

f (
n51

`

(
b51

M1,n

@fn, f
1 ~xg

1,n21!

2p min~n, f !#,

whereD5 Ne/L is the electron density. It will turn out also
to play the role of the cutoff. In the presence of a magne
field H, there is a contribution to the energy of the form

22H (
k50

N21

~Mk2Mk11!S N21

2
2kD

522HS N21

2
~Ne11!2(

r 51

N

Mr D .

We now take the thermodynamic limitNe→` and L
→`, holding D finite. In the limits we may replace sum
with integrals after introducing densities of solutions,sn

r (x),
and densities of holes in the distribution of solution
sn

r ,h(x). The energy is now written as

E5Ec2H~N21!~Ne11!

1 (
n51

`

(
r 51

N21 E
2`

`

dx sn
r ~x!gr ,n~x!,

where we introduced the energy function,

gr ,n~x!5
D

f
@fn, f

1 ~x21!2p min~n, f !#d r ,112Hn,

and Ec denotes the contribution of the charge sector to
energy,

Ec5 (
d51

Ne/ f
2p

L
md .

In the thermodynamic limit the BAE’s are replaced b
integral equations for the densities,$sn

r ,sn
r ,h%. Standard

manipulations8 lead to

sn
r ,h~x!52 (

m51

`

(
s50

N E
2`

`

dx8An,m
r ,s ~x2x8!sm

s ~x8!,

where we introduced the following operators:
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Kn,m
a ~x![ (

j 51

min~n,m!

km1n1a22 j~x!,

K̃n,m
0 ~x![ (

j 51

min~n21,m21!

km1n22 j~x!,

ka~x![2
1

2p
ua~x!, k0~x![d~x!;

and

An,m~x![Kn,m
2 ~x!1Kn,m

0 ~x!,

Bn,m~x![Kn,m
1 ~x!,

An,m
r ,s [An,md r ,s2Bn,m~d r ,s111d r ,s21!, r>1;

and, by convention,

s l
0~x![d~x!d l ,11

Ne

f
d~x11!d l , f , ~2.21!

sn
N~x![0. ~2.22!

We shall not analyze the ground state and individual exc
tions here. Instead, we shall proceed to derive the thermo
namic properties of the model.

III. THERMODYNAMICS

A. Thermodynamic Bethe ansatz equations

We now calculate the impurity contribution to the fre
energy, using the well-known formalism of Refs. 12 and 1
We seek to find the configuration$sn

r (x)1sn
r ,h(x)%, which

would extremize the free energy. The entropy of such a c
figuration is

S5(
n,r

E dx$@sn
r ~x!1sn

r ,h~x!# ln@sn
r ~x!1sn

r ,h~x!#

2sn
r ~x!ln sn

r ~x!2sn
r ,h~x!ln sn

r ,h~x!%,

and its contribution to the spin free energy

F5E2TS52H~N21!~Ne11!1(
n,r

E dx$sn
r ~x!gr ,n~x!

2T†„sn
r ~x!1sn

r ,h~x!…ln@sn
r ~x!1sn

r ,h~x!#

2sn
r ~x!ln sn

r ~x!2sn
r ,h~x!ln sn

r ,h~x!‡%.

The free energy is varied with respect to the densities, s
ject to constraints imposed by the Bethe ansatz equation

dsn
r ,h~x!52(

m,s
E

2`

`

dx8An,m
r ,s ~x2x8!dsm

s ~x8!,

dsn
0~x!5dsn

N~x!50.

We obtain the following infinite set of integral equations f
the equilibrium densities:
-
y-

.

n-

b-

ln@11hn
r ~x!#5

gr ,n~x!

T
1(

m,s
E

2`

`

dx8An,m
r ,s ~x2x8!

3 ln@11„hm
s ~x8!…21#, ~3.1!

where

hn
r ~x![

sn
r ,h~x!

sn
r ~x!

, ~hn
N!21[~hn

0!21[0.

We transform this set of equations with the help of the ide
tities ~we will now drop the functional dependence!

An,m
r ,s 2G~An21,m

r ,s 1An11,m
r ,s !

5dn,md r ,s2Gdn,m~d r ,s111d r ,s21!

A1,m
r ,s 2GA2,m

r ,s 5d1,md r ,s2Gd1,m~d r ,s111d r ,s21!,

with the integral operatorG defined as

G f~x![
@1#

@0#1@2#
f ~x![

1

2c E
2`

`

dx8
f ~x8!

coshS p

c
~x2x8! D ,

and @n# f (x)[*2`
` dx8kn(x2x8) f (x8). We find

ln h1
r 52

2

f

D

T
arctanep/c ~x21!d r ,1dn, f1G ln~11h1

r !

2G@ ln„11~h1
r 21!21

…1 ln„11„h1
r 11

…

21
…#, ~3.2!

ln hn
r 522

D

T f
arctane~p/c! ~x21!d r ,1dn, f1G@ ln~11hn21

r !

1 ln~11hn11
r !#2G@ ln„11~hn

r 21!21
…

1 ln„11~hn
r 11!21

…#, ~3.3!

with boundary conditions,

lim
n→`

$@n11# ln~11hn
r !2@n# ln~11hn11

r !%522
H

T
,

~3.4!

which follow directly from Eq.~3.1!. Another form of these
equation can be obtained after inverting,~see Ref. 12!,

2 ln~11~hn
r !21!52

DEN,r
f und

T
dn, f1 (

q51

N21

GN
r ,q@ ln~11hn11

q !

1 ln~11hn21
q !2G21 ln~11hn

q!#,

~3.5!

where ln(11h0
r )[0, and the Fourier transform of the kern

of the integral operatorGN
r ,q is given by

G̃N
r ,q~p![

sinhS min~r ,q!
cp

2 D sinhS @N2max~r ,q!#
cp

2 D
sinhS cp

2 D sinhS N
cp

2 D .

The driving term in these equations,
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DEN,r
f und5GN

r ,1G21S 2
D

f
arctane~p/c! ~x21!D ,

is the energy of the fundamental excitation. It can be cal
lated explicitly:

DEN,r
f und5

D

f H p
N2r

N
22 arctanF tanS p

2

N2r

N D
3tanhS p

Nc
~x21! D G J .

A pictorial description of Eq.~3.5! is shown in Fig. 1. The
circles correspond to the functionshn

r (x), and are arranged
according to their indices. The lines join functions that a
pear in the same equation. The full and dotted lines indic
that the functionshn

r 61 andhn61
r appear differently in Eqs

~3.2! and ~3.3!. The driving terms in Eqs.~3.2! and ~3.3!
correspond to filled dark circles in Fig. 1. The diagona
lined circles correspond to functions associated to a driv
term in Eq.~3.5!. Clearly there are two regions: one,n, f ,
contains a finite number of functionshn

r ; while the other,
n. f , is unbounded. The regions are separated by the
umn with the driving terms,n5 f . When studying the low-T
properties of the system, we will only need to consider o
region at a time.

We will now write the free energy in terms of the s
$hn

r %. Using the integral equations for the densities we c
write

F5F01(
n,r

E dxS gr ,nsn
r 2Tsn

r ln~11hn
r !

1T(
m,s

E dx8An,m
r ,s sn

r ln@11~hm
s !21# D ,

FIG. 1. Diagrammatic representation of the integral equatio
The circles correspond to the functionshn

r . The filled circle indi-
cates that the equation for the correspondinghn

r has a driving term.
The circles with stripes indicate that the correspondinghn

r have
driving terms in the other set of TBA equations. The solid li
indicates a link between twohn

r through the convolutionG ln(1
1h). The dashed line indicates a link throughG ln(111/h). Fi-
nally, the box encirclesh1

r , which is the function used to evaluat
the impurity contribution to the free energy.
-

-
te

g

l-

e

n

where F05Ec2H(N21)(Ne11) is the ground-state en
ergy. After a few further manipulations, the free energy c
be written as

F5F02T(
n
E

2`

`

dx ln~11~hn
1!21!

3H kn~x!1
Ne

f (
j 51

min~n, f !

kf 1n1122 j~x21!J .

We are only interested in the impurity contribution to th
free energy,Fi , which contains all the effects of the intera
tion. It is

Fi52T(
n51

` E
2`

`

dxd~x!@n# ln@11~hn
1!21#

5 (
q51

N21 E
2`

`

dxGN
1,q~x!g1

q~x!2T (
q51

N21 E
2`

`

dx GN
1,q~x!

3 ln~11h1
q!.

The first term corresponds to the impurity contribution to t
ground state. At finite temperatures we are only intereste
the second term, which after further manipulations becom

Fi52T (
q51

N21 E
2`

`

dx
1

Nc

sin p
N2q

N

cosh
2px

Nc
1cosp

N2q

N

3 ln@11h1
q~x!#.

When the impurity is in the fundamental representation, o
the h1

r functions contribute toFi . In Fig. 1, this feature cor-
responds to a box drawn around the first column.

B. Scaling limit

We will now take the scaling limit,D→`, c→0, T0 con-
stant, where

T05De2 2p/Nc.

This is the correct limit as discussed in Ref. 12. We a
introduce the variable

j5
2p

Nc
x1 ln

T0

T
,

so

Fi52
T

2p (
q51

N21 E
2`

`

dj
S sin p

N2q

N D ln@11h1
q~j!#

coshS j2 ln
T0

T D1cosp
N2q

N

.

~3.6!

The only modification in the thermodynamic equations is
DEN,r

f und . Thus

s.
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2 ln~11~hn
r !21!52

2

f
ej sinS pr

N D dn, f

1 (
q51

N21

GN
r ,q@ ln~11hn11

q !

1 ln~11hn21
q !2G21 ln~11hn

q!#,

~3.7!

h0
r [0, ln@11~hn

0!21#[0, ln@11~hn
f !21#[0,

~3.8!

with boundary conditions

lim
n→`

$@n11# ln~11hn
r !2@n# ln~11hn11

r !%522
H

T
.

~3.9!

C. Asymptotic solutions—low-temperature properties

Here we will study several asymptotic limits of the the
modynamic integral equations. Some technical points will
considered in detail. It is not easy to study analytically t
integral equations~3.7!–~3.9! due to the complexity of the
operatorGN

r ,q . Instead, we will study the equivalent set equ
tions ~3.2!–~3.4!. We will discuss the appropriate procedu
to obtain the asymptotic solutions of the equations order
order. The zeroth-order approximation yields a description
the fixed point itself, and the corrections~first order! describe
its neighborhood.

1. Zeroth order—the fixed point

The functionshn
r tend either to 0 or to constant values

the magnitudes of their arguments tend to infinity. The o
information needed about the driving term is that it tends
0 asj→2`, and to2` asj→`. Therefore, the paramete
x does not appear explicitly in Eqs.~3.2!–~3.4!, and the ker-
nel of G can be replaced by12 d(j2j8).

Thus the zeroth-order problem consists in evaluating
set of constants

hn
r ,6[hn

r ~j→6`!.

When j→2`, all the driving terms vanish, and the alg
braic equations for the set$hn

r ,2% are

2 ln hn
r ,25 ln~11hn11

r ,2 !1 ln~11hn21
r ,2 !

1 ln@11~hn
r 11,2!21#1 ln@11~hn

r 21,2!21#,

h0
r ,250,

ln@11~hn
0,2!21#5 ln@11~hn

N,2!21#50,

22
H

T
5 lim

n→`
$@n11# ln~11hn

r ,2!2@n# ln~11hn11
r ,2 !%,

Since the kernel ofGN
r ,q(x) satisfies

GN
r ,q5GN

q,r , GN
r ,q5GN

N2r ,N2q ,
e
e

-

y
f

y
o

e

we must havehn
N2r5hn

r . The solution is easily obtained, a
it is independent of the flavor symmetry,

hn
r ,25

sinh@~n1r !x0#sinh@~n1N2r !x0#

sinh~rx0!sinh@~N2r !x0#
21,

~3.10!

n51,2, . . . , r 51, . . . ,N21, x05
H

T
.s

As for hn
n,1 , we should consider separately the casesn. f

and n, f (h f
r ,150). In the first case, we have equatio

similar to those for$hn
r ,2%, except that all the indicesn are

shiftedby f , in analogy with the multichannel Kondo mode
Hence

hn
r ,15

sinh@~n2 f 1r !x0#sinh@~n2 f 1N2r !x0#

sinh~rx0!sinh@~N2r !x0#
21,

n5 f , f 11, . . . , r 51, . . . ,N21. ~3.11!

Finally, for n, f there are a finite number ofhn
r ,1 involved,

sinceh f
r ,150, andG ln(11hf

r)50. As in the multichannel
Kondo model,6 the sinh functions are replaced bysin func-
tions, and the coefficients are independent of the magn
field. Thus

hn
r ,15

sinS p

~ f 1N!
~n1r ! D sinS p

~ f 1N!
~n1N2r ! D

sinS p

~ f 1N!
r D sinS p

~ f 1N!
~N2r ! D 21,

n51, . . . ,f 21, r 51, . . . ,N21. ~3.12!

These results coincide with those obtained in Ref. 14 fo
model of interacting fermions with the same symmetry. T
is not surprising, since these results depend only on the s
metry of the problem. Notice that the multichannel Kon
results correspond to Eqs.~3.10!–~3.12! with N52. Some
features of Eqs.~3.10!–~3.12! can be appreciated in Fig. 1
When j→2`, the driving term does not contribute to th
equations, and the situation is the same as in the Coqb
Schrieffer model. Forj→`, andn> f , we can disregard the
n, f sector, and the leftover diagram is effectively the sa
as for the Coqblin-Schrieffer model with the substitutionn
→n2 f . Finally, for n, f , we have a finite number ofhn

r ,1

involved. Hence the replacement of the sinh by sin.

2. Residual entropy—the fixed point

Here we will calculate the residual entropy in the ove
screened case,f .1. As T→0, the dominant term in the free
energy will be linear, and it will depend only on the values
h1

r ,1 .

Fi;2
T

2p (
q51

N21

sinS p
N2q

N D ~3.13!

3E
0

`

dj
ln~11h1

q,1!

coshS j2 ln
T0

T D1cosS p
N2q

N D
~3.14!
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;2T (
q51

N21 S N2q

N D ln~11h1
q,1!. ~3.15!

Substituting the values ofh1
q,1 , and taking advantage of th

symmetry thath1
N2q,15h1

q,1 , we find

Fi52T ln

sin
pN

f 1N

sin
p

f 1N

.

Hence the residual entropy is

ST50
i 52

]Fi

]T U
T50

5 ln

sin
pN

f 1N

sin
p

f 1N

5 ln

sin
p f

f 1N

sin
p

f 1N

.

~3.16!

Once again, we recover the multichannel results if we
N52. It is quite clear that it is not the logarithm of an integ
number.

The expression for the entropy can be written as the s
of two terms: one that depends only onN1 f and a second
one that depends only onu ln gu, (g5 f /N)

Si5 ln sin
p

11eu log gu 2 ln sin
p

N1 f
. ~3.17!

In the limits f @N and f !N, we have

Si5H ln N2
p2

6

N221

f 2 , f @N,

ln f 2
p2

6

f 221

N2 , f !N.

~3.18!

Furthermore, it is clear from Eq.~3.17! that two systems
characterized byg1 and g2 , such thatg151/g2 , have the
same residual entropy. Wheng51, the first term is zero.

Figure 2 corresponds to~3.16! for different values ofN
and f . It is quite apparent that the value ofSi increases with
N1 f . It is also clear that the figure is symmetric with respe
to theN5 f axis, which means thatSi is the same forg and
for 1/g. Finally, if we fix N1 f , the largest value of the
residual entropy corresponds toN5 f .

In terms of the diagrammatic construction, Fig. 1,Si mea-
sures the size of the overscreened region and how asym
ric the region is. For fixedN1 f , the largest residual entrop
corresponds tog51, in the same way as the square is t
rectangle with the largest area for a fixed perimeter. This
be seen in the following diagrams, were we have omitted
lines and drawn only the circles corresponding ton, f .
et

m

t

et-

n
e

~3.19!

~3.20!

~3.21!

The largest entropy corresponds to the configuration with
largest number of circles, for a fixed value ofN1 f . That is,
N5 f . Notice that the first and the third cases have the sa
number of circles and, indeed, the same value of of the
purity entropySi .

3. First order–the neighborhood of the fixed point

Now we turn to the calculation of the thermodynam
properties of the SU(N)3SU(f ) model well below the
Kondo scaleT0 . As is obvious from Eq.~3.14! for T!T0 ,
the nontrivial temperature dependence of the impurity f

FIG. 2. Overscreening residual entropySi for an impurity in the
fundamental representation of SU(N), and for different values ofN
and f .
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energy is determined by the asymptotic behavior of the fu
tions h1

q(j) in the regionj@1. Therefore, we want to find
the dominant dependence ofhn

r on j for n, f andj large and
positive. To this purpose we will only need the equatio
with n, f , which do not have a driving term, and th
asymptotic value ofh f

r .
Consider the action of the operatorG

Gx f 5
1

2c E
2`

`

dx8
f ~x8!

coshS p

c
~x2x8! D ,

5
1

2c E
2`

`

dx8

f̃ S 2px8

Nc
1 ln

T0

T D
coshS N

2

2p

Nc
~x2x8! D ,

5
N

4p E
2`

`

dj8
f̃ ~j8!

coshS N

2
~j2j8! D [Gj f ,

where we have dropped the tilde in the last expression. T
establishes the correspondence between functions and
ables of the two systems of equations.

From the set of equations~3.2!–~3.4!, and the asymptotic
values~3.7!–~3.9! we learn that for large and positive value
of j we have~if x05H/T is very small!

h f
r~j!}~a r1b rx0

2!expH 2
2

f
sinS pr

N DejJ . ~3.22!

We now evaluate the dominant contribution toGj ln(1
1hf

r),

Gj ln~11h f
r !5

N

4p E
2`

`

dj8
ln~11h f

r !

cosh
N

2
~j2j8!

,

;
j@1 N

4p
~a r1b rx0

2!E
v

`

dj8
e2Dej8

cosh
N

2
j8

,

wherev is some lower cutoff of the integral of the order
unity, and

D[
2

f
sinS pr

N Dej.

For large j, the only relevant contribution to the integr
occurs aroundej8;1/D. Therefore, we approximate the pr
vious integral by

~a r1b rx0
2!

DN/2

11DN ;~a r1b rx0
2!e2 ~N/2! j.

Notice that this is correct up to terms of the formjme2 (N/2) j

which cannot be accounted for using this crude approxim
tion.

The previous calculation indicates thathn, f
r will have a

contribution of ordere2 (N/2) j, sinceGje
2aj}e2aj, as we
-

s

is
ari-

a-

will see below. Therefore, we have to determine whet
there are contributions more singular still. In other words,
have to find out if there are solutions of the integral equ
tions for largej of the form

hn, f
r ~j!;hn, f

r ,1 1cn
r ~a r1b rx0

2!e2tj with t,
N

2
.

Introducing the eigenvaluel[2 cospt/N, so that

Ge2tj5
e2tj

l

we proceed to convert the thermodynamic Bethe ans
~TBA! equations into algebraic recursion relations. Noti
that

ln~11hn
r !; ln~11hn

r ,1!1~bn
r 1an

r x0
2!e2tj,

ln hn
r ; lnn

r ,11
~bn

r 1an
r x0

2!

vn
r e2tj

where

~bn
r 1an

r x0
2![

cn
r ~a r1b rx0

2!

11hn
r ,1

vn
r [

hn
r ,1

11hn
r ,1

then substituting in the integral equations~3.2! and~3.3! for
n, f and using the zeroth-order results, we obtain the f
lowing set of algebraic equations for the coefficients ofe2tj

~we only write the equations forbn
r since they are identical to

those foran
r !:

lbn
r 5vn

r ~bn11
r 1bn21

r !1
vn

r

hn
r 11,1 bn

r 111
vn

r

hn
r 21,1 bn

r 21 ,

with

b0
r 5bf

r50. ~3.23!

More explicitly, upon inserting zero-order values, the equ
tions become,

lbn
r 5

sin@~n1N!a#sin~na!

sin@~n1r !a#sin@~n1N2r !a#
~bn11

r 1bn21
r !

1
sin@~r 11!a#sin@~N2r 21!a#

sin@~n1r !a#sin@~n1N2r !a#
bn

r 11

1
sin@~r 21!a#sin@~N2r 11!a#

sin@~n1r !a#sin@~n1N2r !a#
bn

r 21 , ~3.24!

where

a[
p

f 1N
.

We solve Eq.~3.24! by inspection. Sincebn
r has to satisfy the

boundary conditions, @Eq. ~3.23!#, we have that
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bn
r 5sin@~n1N!a#sin~na!dn

r

is the maximal solution whendn
r 5d5const, and the eigen

value is

l52 cos
pt

N
52 cos

2p

f 1N
. ~3.25!

Hence, finally,

t5
2N

N1 f
. ~3.26!
We shall see in Sec. III D 4 thatt is the main critical expo-
nent in the model.

4. Specific heat and finite-temperature susceptibility

The expression for the impurity contribution to the fre
energy,Fi , at low temperatures always has a term which
proportional toT2. This contribution comes from the term
proportional toe2 (N/2) j present inhn, f

r , as we discussed in
Sec. III D3.

Here, we will study contributions of the form
d

e ratio
DFi}2
T

2p E
2`

`

dj (
q51

N sinS p
N2q

N D ~aq1bqx0
2!e2tj

coshS j2 ln
T0

T D1cosp
N2q

N

52
T

2p S T

T0
D tE

2`

`

dj (
q51

N sinS p
N2q

N D ~aq1bqx0
2!e2tj

cosh~j!1cosp
N2q

N

,

~3.27!

which might become dominant depending on the value oft. We will consider the three casesf .N, f 5N, and f ,N
separately.

Case f.N: In this case,t,1, and

lim
j→2`

e2tj

coshj
50.

That means that we can make the same the approximation for the free energy that we made when we evaluateGj ln(1
1hn

r ). Therefore, we have

Fi;2TSi2TFA1BS H

T D 2G S T

T0
D t

, ~3.28!

with A andB being constants O the order of unity, and we obtain

Ci}S T

T0
D 2N/~N1 f !

, x i}
1

T0
S T

T0
D ~N2 f !/~N1 f !

. ~3.29!

Needless to say, whenN52, we recover the multichannel results. As a matter of fact, the exponents depend only on th
g5 f /N.5, 15–17

Case f5N: Sincet51 in this case, we cannot extend the integral in Eq.~3.27! to j→2`, and we have to restrict it to the
interval @d,`!, whered is a finite number of the order of one. Making use of* @dz/(11e2z)# 5z2 1

2 ln(11e2z) we have, for
very low temperatures,

DFi}2
T

2p S T

T0
D E

d2 ln T0 /T

`

dj (
q51

N S sin p
N2q

N D ~aq1bqx0
2!e2j

cosh~j!1cosp
N2q

N

}2TSi1
T2

T0

ln T

T0
FA1BS H

T D 2G .
Hence

Ci}2
T

T0
ln

T

T0
, x i}2

1

T0
ln

T

T0
. ~3.30!

Case f,N: In this region 1,t,2. Consider the integral

E
d2 log T0 /T

` e2~t21!xdx

11e2x 5
1

t21 E
b~T/T0!t21

` dy

y2~11y2/~t21!!
. ~3.31!

It is possible to find a primitive for 2/(t21) integer; we have
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E dy

y2~11y2/t21!
52

1

y
1

¦

1

2n (
k51

n

cos
p~2n21!~2k21!

2n
lnS 122y cos

p~2k21!

2n
1y2D

2
1

n (
k51

sin
p~2k21!~2n21!

2n
arctanS y2cos

p~2k21!

2n

sin
p~2k21!

2n

D ,
2

t21
52n

ln~11y!

2n11
1

1

2n11 (
k51

n

cos
p~2n!~2k21!

2n11
lnS 122y cos

p~2k21!

2n11
1y2D

2
2

2n11 (
k51

sin
p~2k21!~2n!

2n11
arctanS y2cos

p~2k21!

2n11

sin
p~2k21!

2n11

D ,
2

t21
52n11.
io
t
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As T→0, the leading terms are of the form

S T

T0
D t21

1const.

Hence

DFi}2FA1BS H

T D 2GFT2

T0
2conts.TS T

T0
D tG .

Sincet.1, the dominant term inDFi is of orderT2. As for
the specific heat and susceptibility, we have

Ci}
T

T0
2AS T

T0
D 2N/~N1 f !

, x i}
1

T0
2BS T

T0
D ~N2 f !/~N1 f !

.

~3.32!

These results are valid for any 1,t,2, as can be verified by
numerical integration of Eq.~3.31!, or by the numerical so-
lution of the thermodynamic equations.

To summarize, there are three different kinds of behav
in the overscreened sector, depending on the value of
ratio g5 f /N. ~i! Wheng.1, bothCi /T andx i have power-
law divergences asT→0. The behavior is similar to that o
the multichannel Kondo model withf .2. Indeed, the expo
nents are the same, since they depend ong only. ~ii ! For g
51, there are logarithmic divergences as in the two-chan
Kondo model.~iii ! Wheng,1, the values ofCi /T andx i at
T50 are finite. Actually, it can be deduced from the nume
cal analysis that these constants are the same as in the
responding completely screened cases~m5 f ; as we will see
later!. However, the fixed point has non-Fermi-liquid beha
ior, as can be seen from the value of the residual entropy
from the subleading power-law terms.

One can relate the different kinds of behavior to the sh
of the n, f sector in Fig. 1, as can be seen in diagra
~3.19!–~3.21!. The square diagram corresponds tog51,
whereas the horizontal~vertical! one corresponds

D. Channel anisotropy

In this section we briefly consider the case when some
the couplingsJm are different. From the study of the anal
r
he

el

-
or-

-
nd

e
s

f

gous problem in the multichannel Kondo model,18 we con-
clude that up tof different energy scales will appear in th
problem depending on the pattern of symmetry breaki
The novelty here is that there might be a situation whereg
.1 for an intermediate regime of temperatures, whereas
very low temperatures the behavior is characterized by
effectiveg smaller than 1.

Consider a system where the flavor symmetry is such
p energy scalesT1,T2,¯ ,Tp are generated. Each sca
Tj is related to a driving term at the leveln5mj in the TBA
equations~3.7!. We will assume for simplicity, thatm1
,m2,¯,mp5 f . If the largest flavor symmetry possible
SU(f ), there will always be a driving term at the leveln
5 f .

Then, when the temperature is below anyTj , the thermo-
dynamic properties are given by Eqs.~3.16! and ~3.29!,
whereg5 f /N is replaced byge f f5m1 /N. As the tempera-
ture is increased, the behavior of the system whenTj 21,T
,Tj corresponds toge f f5mj /N. Indeed, the value to the
impurity contribution to the entropy will be close t
S i(mj ,N).

Flavor anisotropy is a relevant perturbation of the isot
pic Hamiltonian. In general, the system will flow away fro
the fixed point characterized byf , andN to a new fixed point
characterized bym1, f , andN. From Eq.~3.16!, we see that
S i is reduced in such flow@S i( f ,N) is monotonous in bothf
andN#. It is worth noticing that, oncem1,N, x i andCi /T
become constant asT→0.

The system of TBA equations are represented diagr
matically in Fig. 3. Depending on the pattern of symme
breaking, driving terms appear at different values ofn. There
are always driving terms forn5 f . The properties at tem
peratures between two different scales are related to the
responding overscreened part of the diagram. Notice
channel anisotropy may have the effect of changing
shape in the overscreened area from something similar to
~3.21! to diagrams like Eqs.~3.20!, and ~3.21!, but not the
other way around.

E. Impurity in a higher-dimensional representation

Finally, we study a generalization of the model in whic
the impurity behavior is that of an object in a rankm repre-
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sentation of SU(N). In the SU~2! case it corresponds to a
impurity with spin S. Following Ref. 19 and the same fo
mulation that we followed for the fundamental represen
tion, we find the following set of effective Bethe ansa
equations

ei f pdL5 )
g51

M1 xg
1211 i f

c

2

xg
1212 i f

c

2

,

2 )
b51

Mr

xg
r 2xb

r 1 ic

xg
r 2xb

r 2 ic
5 )

t5r 61
)
b51

Mt xg
r 2xb

t 1 i
c

2

xg
r 2xb

t 2 i
c

2

;

r 52, . . . ,N21,

2 )
b51

M1
xg

12xb
11 ic

xg
12xb

12 ic
5

xg
11 im

c

2

xg
12 im

c

2

)
d51

Ne/ f xg
1211 i f

c

2

xg
1212 i f

c

2

3 )
b51

M2 xg
12xb

21 i
c

2

xg
12xb

22 i
c

2

.

The impurity contribution to the free energy is

Fi52T(
n
E

2`

`

Bn,m ln@11~hn
1!21#.

As in the m51, a series of transformations allow us to r
write the free energy as

Fi5 (
q51

N21 E
2`

`

dxGN
1,q~x!gm

q ~x!2T

3 (
q51

N21 E
2`

`

dxGN
1,q~x!ln~11hm

q !,

FIG. 3. Same as Fig. 1, but now the interaction with the imp
rity breaks the flavor symmetry from SU(f ) down to
P j 51

p SU(mj2mj 21), with mj
p5 f andm050.
-where the first term corresponds to the impurity contribut
to the ground state. At finite temperatures we are only in
ested in the second term, which in the scaling limit can
written as

Fi52
T

2p (
q51

N E
2`

`

dj
S sin p

N2q

N D ln@11hm
q ~j!#

coshS j2 ln
T0

T D1cosp
N2q

N

.

~3.33!

The evaluation ofFi involves the functionshm
r , ~see Fig. 4!.

The different scenarios possible are very similar to those
the multichannel Kondo model. As long asm, f , the impu-
rity remains overscreened and the temperature exponent
the same as for them51 case. In this case, the residu
entropy is

S T50
i 5 ln

)
r 51

m1N21

sin
pr

f 1N

)
r 51

m

sin
pr

f 1N )
r 51

N21

sin
pr

f 1N

~3.34!

-

FIG. 4. Same as Fig. 1, but now the impurity contribution to t
free energy involves the sethm

q , wherem is the rank.

FIG. 5. Overscreening residual entropy,Sm, f
i , for an impurity

in a totally symmetric representationm of SU(N), for N1 f 522.
The lower triangular region~in black! is unphysical.
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†Notice that whenN52 this reduces to the multichann
result ln„sin@p(2S11)/(f12)#/sin@p/(f12)#…‡. Furthermore, it
can be easily shown thatS m

i 5S f 2m
i .

We have plottedS i in Fig. 5, for fixed N1 f 522, and
several values ofg5 f /N and m. Only the regionm, f is
physical in the figure, since these are results for the ov
screened case. We can see that for fixed~even! f , the largest
value of the entropy corresponds tom5 f /2. Also, for fixed
m, the entropy is the largest aroundg;1, and decreases asg
moves away from 1.

If m5 f the impurity becomes completely screened:x i

andCi /T become constant, and there is no residual entro
Finally, if m. f , the impurity is underscreened. The dom
nant contribution to the free energy from the spin sector is
the form

Fi52T ln
)
r 51

m2 f 1N21

sinh r
H

T

)
r 51

n2 f

sinh r
H

T )
r 51

N21

sinh r
H

T

.

WhenH50, the residual entropy is

S i5 ln
~m2 f 1N21!!

~m2 f !! ~N21!!
5 lnS m2 f 1N21

N21 D .

@For N52, the residual entropy is ln(m2
1
f 11)5ln(m2f11).]

IV. NUMERICAL ANALYSIS

A. Procedure

We have solved the TBA equations by iteration, using
procedure inspired by the work of Rajan.20 For the levelsn
Þ f , which do not have a driving term~see Fig. 4!, we have
used Eqs.~3.2! and~3.3! as the starting point, since it is mor
convenient to use the kernelG(j). We have dealt with the
equations that have a driving term by introducing two sets
auxiliary functions,12

FIG. 6. Impurity contribution to the entropy as a function ofT,
for different values ofN, f , and impurity spinm. Notice that dif-
ferent scales are used for the differentN.
r-

y.

f

a

f

hr~j!5Gj@ ln~11h f 11
n !1 ln~11h f 21

n !#,

Qr~j!5Gj@Qr 11~j8!1Qr 21~j8!#2hr~j!,

so that

ln h f
r52

2

f
ej sinS pr

N D1 ln~11h f
r !1Qr .

We have introduced a cutoffA in the integrals involved,
taken ln(11hn

r ) to be constant foruju.A, and evaluated the
integrals in those intervals analytically. Foruju,A we have
replaced the integral with a sum using a Gaussian quadra
rule.21

The results that we present in this work correspond
zero magnetic field, which means thatx05H/T50, and the
functionshn

r depend onj only. Thus the task of obtaining
thermodynamic properties is greatly simplified. First of a
the impurity contribution is given by Eq.~3.6!

Fi52
T

2p (
q51

N E
2`

`

dj
S sin p

N2q

N D ln@11hm
q ~j!#

coshS j2 ln
T0

T D1cosp
N2q

N

,

with hn
r independent ofT. The entropy and specific heat a

obtained by taking derivatives ofFi with respect to the tem-
perature, which can be done analytically whenx050, and
then performing the integration numerically.

In order to calculate the susceptibility at zero magne
field, x i , we derived a second set of TBA equations for t
functions

En
r ~j![

]2hn
r ~j!

]x0
2 U

x050

,

following Degranges.22 This system is solved as the previou
one, and the magnetic susceptibility is given by

FIG. 7. S i vs T for N54, f 51, 3, 4, and 5, andm51, . . . ,6.
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x i ux0505
]2Fi

]x0
2 52

T

2p (
q51

N E
2`

`

dj
S sin p

N2q

N DEm
q ~j!

coshS j2 ln
T0

T D1cosp
N2q

N
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B. Results

1. Entropy

We start by discussing the impurity contribution to t
entropy,S i . In Fig. 6, we have plottedS i as a function ofT,
for different values ofN, f , and impurity spinm. The hori-
zontal axis is on a logarithmic scale. The vertical axes h
different scales for the differentN. The first thing to notice is
the crossover aroundT;T0 . For T@T0 , S i is that of a free
spin characterized bym andN. WhenH50,

S i5 lnS m1N21
N21 D .

Below the crossover region one can see the quenching o
degrees of freedom due to the interaction in the decreas
the value of the entropy. The qualitative behavior ofS i in
the regionT!T0 depends only on the relation betweenm
and f . When f 5m, there is complete screening, andS i

50, as can be seen in the curvesm5 f 51 andm5 f 54. For
m. f , the impurity is not completely screened, and there
effectively a leftover free spinm2 f , as can be seen in Fig.
for f 51. There, theT!T0 entropy form, f corresponds to
the T@T0 entropy for m21. Finally, when m, f , over-
screening takes place: even though there are enough
trons to form a singlet with the impurity, the low
temperature behavior is characterized by an object w
complex internal structure, and an anomalousS i . Such be-
havior can be seen in the curvesm52 andm53 for f 54,
and in all the curves forf 58. Notice that form51 andm
5 f 21, the curves converge to the same value, as we
already seen in the asymptotic analysis. Furthermore,

FIG. 8. Impurity contribution to the specific heat,CV
i , for dif-

ferent values ofN, f , andm.
e

he
of

s

ec-

h

ad
e

overscreened fixed point has an anomalous residual ent
irrespective of the value ofN, indicating its non-Fermi-
liquid nature.

A more detailed picture of the behavior ofS i for N54 is
displayed in Fig. 7. It is worth noticing that in the unde
screened cases, the effective spin ism2 f . Also, there might
be situations where the residual entropy of the overscree
case is larger than that of the underscreened case. Such
case forf 55, m53 and 4, as compared tom56.

2. Specific heat

Next, we compute the contribution to the specific he
Results for different values of the parameters are shown
Fig. 8. The largest maximum ofCV

i corresponds tom5 f .
Also, the size of the curve grows withN.

We have also evaluated the subleading contribution to
linear coefficient of the specific heat,g i5CV

i /T for f 52m
52, N. f , and have plotted it in Fig. 9. The points fit powe
law curves with exponents (N2 f )/(N1 f ), derived previ-
ously @see Eqs.~3.29!, ~3.30!, and ~3.32!#. This is another
clear indication that forN. f , the overscreened cases are n
Fermi-liquid fixed points.

3. Magnetic susceptibility

Next, we have studiedTx i for different values of the pa-
rameters, and plotted the results in Fig. 10. As with the
tropy, the qualitative behavior depends only on the values
m and f . The difference in behavior between underscreen
and overscreened cases becomes more clear here: wh
the magnetic moment is partially quenched in the form

FIG. 9. Subleading contribution tog(T)5CV
i /T, for f 52, m

51, andN. f vs T on a log-log graph. The symbols correspond
the numerical calculation. The lines correspond to power-law
with exponents (N22)/(N12).
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case, the overscreened case is characterized by a to
quenched moment, even though there is a nonzero res
entropy. This can be seen in Fig. 10 for the curves withf
51 and 4.

The magnetic susceptibility is plotted in Fig. 11. Th
curves withf 5m have a constantx i at low T, and forN.2
they have a maxima nearT;T0 . This is a special feature o
the completely screened case. We see that in the o
screened case withN. f , the susceptibility tends to a finit
value asT→0, while it diverges whenN< f . WhenN5 f ,
the divergence is logarithmic, whereas it is a power law
N, f , with an exponentb.21. The largest divergence co
responds to the underscreened case with 1/T behavior. All
these results coincide with those of the previous anal
study @Eqs.~3.29!, ~3.30!, and~3.32!#. ~Also see Fig. 12!.

In Fig. 13 we showx i for different values ofN for the
casesm5 f 51 andm5 f 54. We have rescaled the curve
dividing by x i(0). It is quite apparent that the behavior is th
same in both cases.

In Fig. 14 we considerN58, f 57 andm51, . . . ,7.Even
though x i(0) is finite, it is clear that the behavior of th

FIG. 10. Tx i vs T, for different values off, N, andm.

FIG. 11. Impurity contribution to the magnetic susceptibility,x i

vs T, for different values off , N, andm.
lly
ual

r-

r

ic

overscreened case is quite different from that of the co
pletely screened case, and that the subleading terms hav
important contribution below the crossover temperature.

We can also see the power-law behavior of the sublead
term of x i in Fig. 15. The values for the exponents agr
with the values obtained analytically, i.e., (N2 f )/(N
1 f ).

4. Wilson ratio

We have calculated the Wilson ratio, defined as

R[
p2kB

2

~N221!mB
2

Tx i

CV
i . ~4.1!

The quantityR has a well-defined meaning only forT50.
However, in Fig. 16 we have plotted the quantityR(T), to
show the difference between theN, f and theN. f sectors.
In the former case,~N52, f .1!, the value for the over-
screened case is much larger than the value of the comple
screened case~notice the difference in vertical scales!,
whereas in the latter case (N58), the curves converge to th
completely screened value. Notice that forN54 there is a
change in behavior as we go fromf ,N to f .N.

FIG. 12. x i vs T for N54, m51, and f 51, 2, 4, 6, and 8.

FIG. 13. x i(T)/x i(0) vs T for different values ofN, in two
completely screened casesm5 f 51 andm5 f 54.
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Next we plot the values ofR for completely screened
cases,m5 f ~Fig. 17!. We see that the values obtained fit t
function

R5
N~N1 f !

N221
. ~4.2!

We have also obtained values ofR for the overscreened cas
(m, f ) in Fig. 18. There are clear differences between
f ,N and thef .N cases, as we have already pointed o
For f ,N, the value ofR coincides with the value form
5 f , and agree with Eq.~4.2!. The dominant contribution to
R comes from the constant terms inx i and CV

i /T. For f
.N, R contains mainly the coefficients of the diverge
parts, and have a different functional behavior.

5. Channel anisotropy

We end the discussion of the numerical results by sh
ing an example of channel anisotropy. We have taken
case N53, with original flavor symmetry SU~6!, broken
down to SU~4!3SU~2! ~Fig. 19! Two scales appear in thi
problem:T6 , andT4 . Accordingly, the TBA equations hav
driving terms atn54 and 6. We have chosen very sma

FIG. 14. x i vs T for N58, f 57, andm51, . . . ,7.

FIG. 15. SubleadingT dependence ofx i for N58, f
52, . . . ,7, andm51. The lines correspond to power-law fits.
e
t.

-
e

anisotropy,T4 /T651026. In Fig. 20, we have plotted the
entropy for different values ofm. There are three differen
regions: WhenT@T6 , the impurity behaves like a free mo
ment. AroundT;T6 there is a crossover to an overscreen
region ~whenm,6!, characterized by an SU~6! flavor sym-
metry. The pairs of curves (m,62m) merge. Notice also tha
m56 is completely screened. There is a second crosso
aroundT;T4 to a region characterized by SU~4! flavor sym-
metry for m,4 and by SU~2! flavor symmetry for 4,m
,6. Only the curves form51 andm5(421)53 coincide
now. Also, the value of the residual entropy form51, is that
of an effectivem51 in an SU~3!3SU~2! model. The entropy
for m54 goes to 0 withT, since the system become
screened forT!T4 .

Finally, we have plottedCV
i /T for severalm in Fig. 21.

When T4!T!T6 , the behavior of the system is characte
ized by f 56: increasing value ofCV

i /T for m,6, constant
behavior for the screened case,m56. NearT4 the curves for
m,6 have a similar behavior as those for free mome
~however, such behavior is not found in the curves for
magnetic susceptibility!. We can see three different beha
iors in the regionT!T4 . For m51 the curve diverges with

FIG. 16. R(T) as a function of temperature forN52,4,8, m
51, . . . ,f , and f 51, 3, and 5.

FIG. 17. Wilson ratioR for m5 f . The points have been ob
tained from the numerical solution. The lines correspond to fits w
the functionN(N1 f )/(N221).
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a power law, as one would expect forf e f f54.N53. The
curve form54 is flat, since the impurity is screened. Finall
for m55, the curve increases slowly, converging to a co
stant value, as one would expect from an effectivef e f f52
,N53.

V. PHYSICAL REALIZATIONS
OF THE SU„N…3SU„F … MODEL

In the present section we shall concentrate on the poss
physical realizations and applications of the SU(N)
3SU(f ) Coqblin-Schrieffer model. In Secs. V A, V B, an
V C, we analyze the so calledN-level system~NLS! model,
a generalization of the two-level system model,2 by means of
a systematic 1/f expansion. In this context the flavor dege
eracy is associated with the physical spin of the electr
First we establish a mapping of the NLS model to the m
tichannel Coqblin-Schrieffer model~MCCS model! by ana-
lyzing the low-energy fixed point of its scaling equation
While our procedure gives a systematic expansion only
the casef .N, we shall argue that the same mapping sho
apply for the casesf <N.

In the limit f .N we are able to determine the full oper
tor content of the fixed point. This enables us to calculate
scaling of the different physical quantities at low tempe
tures in Sec. V C. As we shall see, there are some su
differences between the two models, and while most of
physical quantities show the same dependence, the scali
the specific heat may be different. The origin of these diff
ences will be discussed in detail. Finally, based on the res
of Secs. V A–V C, in Sec. V D we discuss some physi
systems providing possible candidates for the realization
the MCCS model.

FIG. 18. Wilson ratioR for m, f . See the caption in Fig. 17.

FIG. 19. Diagrammatic representation of the TBA equations
a system withN53, and flavor symmetry SU~6! broken down to
SU~4!3SU~2!. Two driving terms appear atn54 and 6.
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A. N-level system model and its low-energy fixed point

The NLS model has been constructed as a generaliza
of the two-level system model2,23 to describe the tunneling o
a heavy particle amongN not necessarily equivalent pos
tions labeled bya5$1,..,N%, and strongly coupled to the
conduction electrons. At low temperatures the motion of
heavy particle can be described by the effective Hamilton

Hhp5 (
a,b51

N

xa
1Dabxb , ~5.1!

where xa
1 creates a pseudofermion24 corresponding to the

heavy particle sitea, and Dab is the tunneling amplitude
between positionsa and b. If no external stress is presen
then the diagonal part ofDab vanishes: Daa50 (a
51,...,N), when theN positions are equivalent due to th
symmetry of the NLS. The electronic part of the Hamiltoni
and the coupling of the heavy particle to the conduction el
trons take the general form

Hel5(
enm

ecenm
1 cenm ,

He-hp5 (
a,b,n,n8
e,e8,m

cenm
1 xa

1Vnn8
ab xbce8n8m , ~5.2!

r

FIG. 20. Entropy vsT, for m51, . . . ,6.

FIG. 21. CV
i /T vs T, for m51, 4, 5, and 6.
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3834 PRB 58ANDRÉS JEREZ, NATAN ANDREI, AND GERGELY ZARA´ ND
where the operatorscenm
1 create conduction electrons wit

energye, orbital quantum number2 ~; angular momentum!
n51,2,...,̀ , and spinm. For the sake of simplicity the elec
tronic density of states%~e! is assumed to be constant%0 ,
between the high- and low-energy cutoffs,D and2D, inde-
pendently of the flavor and orbital quantum numbers. Wh
in the physical case onlym56 is possible corresponding t
the two different spin directions, in the following for techn
cal reasons we assume that the electron spinm can takef
different values:m51,...,f .

This model has a structure similar to Eq.~2.1! but there
are some important differences. The ‘‘spin index’’a8
51,...,N of the impurity in Eq.~2.1! is now replaced by the
‘‘site index’’ a51,...,N of the heavy particle. Moreover, in
the NLS case the orbital indexn @replacing the spin index
a51,...,N of the conduction electrons in the SU(N)
3SU(f ) model# now ranges from 1 to infinity, since th
conduction electrons may have any orbital momentum. F
thermore, the couplings arevery anisotropicin orbital indi-
ces and no SU(N) symmetry is present at this level. Finall
in the NLS model the scattering is diagonal in the real s
indexm, which plays now the same role as the flavor in E
~2.1!.

The diagonal couplings,Vnn8
aa describe simple potentia

scattering of the conduction electrons by the heavy part
sitting in position a. On the other hand, the off-diagon
matrix elementsVnn8

ab , with aÞb, correspond to the so
called ‘‘assisted tunneling’’ processes. Here the heavy p
ticle is tunneling from one site to another while a conduct
electron is scattered by it. The combination of these t
processes leads ultimately to the generation of an orb
Kondo effect and a strongly correlated ground state.2,5

In the following we shall carry out a largef analysis to
determine the low-energy fixed point of the NLS mod
While our procedure is strictly valid only in the casef .N,
in the end of the subsection we shall argue that our res
are very general, and that they should apply even for
casesf <N.

To carry out a 1/f analysis of the NLS model, as a ne
step, we construct the next to leading logarithmic scal
equations using a generalized multiplicative renormalizat
group technique.5 As discussed in Refs. 1, 16, 17, and 25, t
leading logarithmic equations give the leading term in a s
tematic 1/f expansion and become exact in thef→` limit.
In the multiplicative renormalization-group method, one e
ploits the existence of a nontrivial transformation in t
space of the Hamiltonians,D→D8, Vnn8

ab →Vnn8
8ab and Dab

→D8ab, that leaves the pseudofermion Green’s functionG ab

and the pseudofermion-conduction electron vertex func
Gnn8

ab (v) invariant:

G~v,V8,D8,D8!5AG~v,V,D,D !A1,
~5.3!

G~v,V8,D8,D8!5@A1#21G~v,V,D,D !A21.

In these equationsA denotes anN3N matrix independent of
the energy variablesv andT, and acting in the site indices
A5Aab(V8,D8,D8/D). By means of the transformation Eq
~5.3!, one can generate effective Hamiltonians that desc
the system’s behavior below the energy scaleD8. The gen-
e
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erated effective Hamiltonians usually~in a renormalizable
theory! turn out to be much simpler than the original one

To make use of the invariance property Eq.~5.3! one first
has to construct the lowest-order vertex and pseudoferm
self-energy corrections2 arising from the diagrams in Figs
22~a! and 22~b!,

Sab52 f ln
D

v
~dabv tr$vI cdvI dc%2tr$vI acDcdvI db%!,

~5.4!

%0GI ab5vI ab2 ln
D

v
~@vI ac,vI cb#2 f tr$vI acvI db%vI cd!,

where%0 is the density of states at the Fermi level, and
matrix notation has been introduced for the dimensionl
couplings %0 Vnn8

ab →vI ab. The symbol @ , # stands for the
commutator, the trace operator tr$¯% is acting in the elec-
tronic indices, and a summation must be carried out o
repeated indices. Then, substituting Eq.~5.4! into Eq. ~5.3!,
and reducing the bandwidthD by an infinitesimal amount,
one can deduce the infinitesimal renormalization-gro
transformations for the couplings:

dDab

dx
52

1

2
f @ tr$vI acvI cd%Ddb1Dactr$vI cdvI db%

22tr$vI acDcdvI db%#, ~5.5!

dvI ab

dx
52@vI ac,vI cb#1

1

2
f ~2tr$vI acvI db%vI cd2tr$vI acvI cd%vI db

2vI actr$vI cdvI db%!, ~5.6!

where the dimensionless scaling variablex5 ln(D0 /D) has
been introduced,D0 being the initial~real! bandwidth cutoff
of the model.

These scaling equations have to be solved with the bou
ary condition that the couplings are equal to their bare val
at x50, and they lose their validity if the reduced bandwid
D becomes smaller than any small-energy scale presenT,
v, or D. Note that, up to the next to leading logarithm
order, the splittingsDab do not occur in Eq.~5.6! explicitly,
and they provide only a low-energy cutoff for the scaling. T
be explicit, there is an energy scaleD* 5T* that we call the
freezing temperature, where the renormalized splitting be
comes of the same order of magnitude as the reduced b

FIG. 22. The leading logarithmic vertex and self-energy d
grams generating the next-to-leading logarithmic scaling equati
Continuous and dashed lines represent the conduction electron
pseudofermion Green’s functions.
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width: Dab(D* );D* . Below this energy scale the orbita
motion of the NLS is usually frozen out~see the discussion
in the end of this section!, and the couplings may be replace
by their values atT* .

For the moment let us forget about Eq.~5.5! and concen-
trate on the scaling of thevI ab’s, Eq. ~5.6!. This equation
cannot be solved generally, but one can convince one
very easily that if the assisted tunneling matrix elementsvI ab

(aÞb) do not vanish, then the electron-NLS couplings st
to increase and lead to a Kondo effect.2,17 The scaling of the
norm of the couplings,(a,bzuvI abuz is shown in Fig. 23 for a
symmetrical six-state system, where the coupling const
have been estimated using similar methods as in Ref. 2
one can see, a Kondo effect occurs around the Kondo s
TK;D0 e2xc;10K, wherexc5 ln(D0 /TK) denotes the value
of the scaling parameter at which the crossover from wea
strong coupling occurs. Our numerical investigations
various model parameters and different values ofN show
that the structure of the stable low-temperature fixed po
the couplings scale to isindependentof the initial couplings,
and only depends on the value ofN if no some very restric-
tive symmetry is assumed for thevI ab’s.

In what follows we shall show that this stable low-ener
fixed point of Eq.~5.6! has in principle the structure of th
defining representation of the SU(N) Lie algebra. To be pre-
cise we first observe that the operatorsO a;dab(cvI

cc are
invariant under scaling. Therefore thevI ab’s can be divided
into two parts,vĨ ab and MI ab where (avĨ aa50 and MI ab is
built up from the previously mentioned constants of motio
O a. Then as we shall see, at the stable fixed points of
~5.6! the vĨ ab’s can be written as

~vĨ ab! fp5
1

f S LI ab

0
0
0D , ~5.7!

where theLI ab’s satisfy the standard SU(N) Lie algebra,

@LI ab,LI cd#5dadLI cb2dcbLI ad, ~5.8!

and are unitary equivalent to the defining representat
Lnn8

ab ;dn8
a dn

b2(1/f ) dabdnn8 . This statement is also
demonstrated in Fig. 23, where the scaling of the ‘‘alge

FIG. 23. Scaling of the norm of the dimensionless couplin
u5( zuvabuz ~dashed line!, and of the algebra coefficienta ~continu-
ous line! for a six-state system withf 52.
elf
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coefficient’’ a5(a,b,c,dzu f 2@vĨ ab,vĨ cd#2 f dadvĨ cb1 f dcbvĨ aduz
is shown, measuring how well the fixed-point algebra~5.8! is
satisfied. As one can see in Fig. 23 forD!TK the algebra
coefficienta vanishes and, therefore, in an appropriate ba
the vĨ ab’s really simplify to the form in Eq.~5.7!.

Equation~5.7! means thatat the fixed pointvĨ ab is given
by Eq. ~5.7!, and apart from some potential scattering te
the fixed-point effective interaction can be written as

Heff5V0 (
a,b

e,e8,m

xa
1cebm

1 ce8amxb , ~5.9!

which is the same as the interaction term in Eq.~2.1!. Note
that while the initial model was very asymmetrical in th
orbital space, at the fixed pointonly N conduction electron
angular momentum channelsare coupled to the NLS, and th
fixed-point effective Hamiltonian already shows an ad
tional SU(N) symmetry in the orbital sector as well. Thes
statements are not true away from the fixed point, wh
various kinds of irrelevant operators couple the NLS to
electrons, and coupling to the other orbital channels is a
relevant. The effective Hamiltonian is completely symmet
cal in the NLS site index, which means that, e.g., the am
tude of assisted tunneling from site 1 to 6 in Fig. 23 is t
same as the nearest-neighbor-assisted tunneling ampl
from site 1 to 2, despite their different geometrical positio

As will become obvious in Sec. V B, the analysis above
based on the possibility of a systematicN/ f expansion.
Therefore, it is strictly valid in thef .N case. However, one
has several arguments that the effective Hamiltonian eq
tion ~5.9! is also adequate for theN< f cases. First of all, in
the caseN52 corresponding to the simpler case of mul
channel Kondo model, it is well known that forf 51 and f
52 the spin anisotropy of the couplings isirrelevantaround
the fixed point,1,26 which has the same SU~2! structure as Eq.
~5.7!. Furthermore, forf 51 but arbitrary N one can easily
prove following similar lines as Nozie`res and Blandin1 that
the isotropic fixed point@Eq. ~5.9!# is stable against spin
~orbital! anisotropy. These observations together with our
sults for thef .N case make it highly improbable that fo
2< f <N the NLS model would have a stable fixed poi
different from the one discussed above.

B. Stability analysis of the SU„N…3SU„f … fixed point
of the NLS model in the large f limit

The statement thatvĨ ab is a fixed point of Eq.~5.6! is
trivial. However, we also want to prove the stability of th
fixed point analytically, and find the irrelevant operators~de-
termining the low-energy behavior of the model! around it.
To this end we write the deviations from the fixed point
the form

dvab5S %I ab

~ tIab!1

tIba

mI abD , ~5.10!

where the couplings%I ab, tIab, andmI ab areN3N, N3`, and
`3` matrices, respectively. Substituting this express
into Eq.~5.6!, one obtains the following linearized decouple
scaling equations:

,
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dmI ab

dx
5

1

f
~dabmI dd2NmI ab!, ~5.11!

d%I ab

dx
52

1

f
~@LI ad,%I db#1@%I ad,LI db# !1

1

2 f
$2dab%I dd

12LI cdtr$%I acLI db1LI ac%I db%22N%I ab

2LI actr$%I cdLI db1LI cd%I db%

2tr$%I acLI cd1LI ac%I cd%LI db%, ~5.12!

dtab

dx
52

1

f
~LI adtdb2LI dbtad!1

1

f
~dabtdd2Ntab!.

~5.13!

The solution of Eq.~5.11! is trivial, since the operatormI ab

can be decomposed asmI ab5@mI ab2dab (1/N)mI cc#
1@dab (1/N)mI cc#, where the first operator scales likeTl

;e2xl with a dimensionl5lsl5N/ f , while the second is
marginal withl50. The detailed analysis of the other tw
equations is much more complicated, but still one can fi
their exact solutions due to the simple structure of theLI ab’s
Here we only briefly discuss the results of this analysis.

It turns out that Eqs.~5.12! and ~5.13! have an infinite
number of zero modes that can be divided into two disti
classes. The first type corresponds to potential scattering
the NLS, and can be written as

dvpot
ab5dabdv, ~5.14!

wheredv denotes an arbitrarỳ 3` Hermitian matrix. The
rest of the zero modes can be identified with the genera
dvgen

ab of the unitary transformations of the SU(N) Lie alge-
bra, Eq.~5.8!,

dvgen
ab 5S %I gen

ab

~ tIba!gen
1

tIgen
ab

0 D . ~5.15!

More precisely, the generators%I gen
ab andtIgen

ab can be shown to
satisfy in first order the equations

LI abtIgen
cd 2LI cdtIgen

ab 5dadtIgen
cb 2dcbtIgen

ad ,
~5.16!

@LI ab,%I gen
cd #1@LI cd,%I gen

ab #5dad%I gen
cb 2dcb%I gen

ad ,

from which it follows that the operatorsLĨ ab
ªLI ab1dvgen

ab

satisfy the same Lie algebra as the originalLI ab’s:

@LĨ ab,LĨ cd#5dadLĨ cb2dcbLĨ ad. ~5.17!

The %I gen
ab ’s turn out to be the generators of the unitary tran

formations in theN dimensional electronic subspace whe
the Lie-algebra Eq.~5.8! is realized, while thetIab’s corre-
spond to the rotations of thisN-dimensional subspace.

All the other eigenoperators around the fixed point can
shown to be irrelevant. Very surprisingly, at least in t
large-f limit, the leading irrelevant operators are quite diffe
ent from the leading irrelevant operator of the SU(N)
3SU(f ) model ~5.9!, both in their structure and in thei
scaling dimension. They are living in the sectortIab, and they
can be written
d

t
ff

rs

-

e

dv l
ab5S 0

~CI ba!1

CI ab

0 D , ~5.18!

where theCcm
ab ’s satisfy (aCcm

aa50 and (b(Ccm
ab2Cam

cb )50
with a,b,c51,...,N andn5N11, N12,... ,̀ . These opera-
tors have a dimension

l l5
N21

f
1qS N2

f 2 D . ~5.19!

We remark at this point that the operators~5.18! do not
exist in the two-level-system model, which is therefore com
pletely equivalent to the corresponding SU(2)3SU(f )
model.17 As we shall see, these operators do not give a c
tribution to physical quantities like the resistivity or the im
purity susceptibility, but they influence the thermodynam
behavior of the model. We stress at this point, that th
existence is strictly proved in thef→` limit. They are very
probably present even in theN, f case but it is an open
question if they survive in theN< f limit.

The impurity resistivity will be shown to be dominated b
the subleading operators

dvsl
ab;S QI

ab

0
0

SI abD , ~5.20!

where the matricesQI
ab and SI ab satisfy QI

aa5SI aa50 and
Qdc

ab5Qdc
ab . These operators have a dimension

lsl5
N

f
1qS N2

f 2 D , ~5.21!

and operator~5.9! considered in the SU(N)3SU(f ) model
is also one of them. Furthermore, one has other even m
irrelevant operators in thetI sector ofdv with a dimension
lssl5(N11)/ f which give a subleading contribution to th
physical quantities calculated.

In the previous considerations we did not take into a
count the presence of the splittingDab of the NLS. As we
discussed already, this splitting results in the appearanc
another low-energy scaleT* . Below this the NLS cannot
jump freely between itsN different positions. Since usually
the ground state of theNLS is nondegenerate in most case
a Fermi-liquid state develops. In other words, the non-Fer
liquid SU(N)3SU(f ) fixed point is unstable with respect t
the splitting that usually drives the system toward a Fer
liquid ground state.

It has been argued very recently27 that in special cases
due to some dynamical Jahn-Teller effect, e.g., the hopp
amplitudeDab might pick up and additional Berry phase
which could then result in a degenerate ground state w
degeneracyN8. Then the effective Hamiltonian at very low
temperatures would be, of course, an SU(N8)3SU(f ) ex-
change model, and in the regionT!T* all our previous
considerations hold with the replacement ofN by N8. Un-
fortunately, this Berry phase scenario will very probably n
occur and therefore the non-Fermi-liquid behavior can m
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probably be observed only in the restricted temperature~en-
ergy! rangeT* ,max$T,v%,TK , i.e., when the freezing tem
perature is small enough.

Therefore, it is very important to determine the realis
values of the freezing temperature. We estimated the fre
ing temperature by solving the scaling equations~5.5! and
~5.6! numerically for the same symmetrical six-level syste
as in Fig. 23. In this case the diagonal matrix elementsDaa

vanish by symmetry. As one can see from Fig. 24, fo
realistic NLS the renormalization of the hoppingsDab is
huge, and the situationT* ,max$T,v%,TK can be reached
quite easily. We note at this point that in our Hamiltonian w
also neglected the contribution of two-electron scatter
around the fixed point, which might be also relevant in t
immediate neighborhood of the fixed point.27 However, these
have a very small amplitude and they are scaled downw
in the first part of the scaling,D.TK . Therefore, most prob
ably their effect can be neglected compared to that of
splitting Dab, which provides the dominant mechanism
drive the system finally to a Fermi-liquid state.28

C. Scaling of the physical quantities of the NLS model
in the large-f limit

Now we turn to the calculation of the physical quantitie
In this subsection we shall determine different thermo
namic quantities and the conduction electrons’ scattering
1/t, which is directly proportional to the impurity contribu
tion to the electrical resistivityRimp(T).

To calculate a general physical quantity, one should a
calculate the renormalization coefficientA in Eq. ~5.3!,
which is quite a nontrivial task away from the fixed poin
However, one can easily convince himself that in the fr
energy corrections in Fig. 25 and the electronic self-ene
corrections in Fig. 22~c! the factorsA and A21 cancel ex-
actly, and therefore that these arescale invariant, and can be
calculated by solving solely the scaling equations~5.5! and
~5.6!.

FIG. 24. Scaling of the dimensionless hopping amplitu
D12/D0 for the same six-state system as in Fig. 23. Inset: numbe
of the sites of the six-state system.
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For the sake of simplicity let us assume first that the hig
est low-energy scale is given by the temperature. To ca
late a physical quantity at a temperatureT we apply a
renormalization-group transformation~5.3! with D5D0 and
D85T. Then in the new Hamiltonian all the logarithmi
terms vanish since ln(D8/T)50, and the different physica
quantities are exclusively given by thenonlogarithmic con-
tributions of the corresponding diagrams. For a sca
invariant quantity like the free energy, e.g., this implies th

F imp~D0 ,T,vI 0
ab,D0

ab!

5F impFT,T,vI abS ln
D0

T D , DabS ln
D0

T D G , ~5.22!

where on the right-hand side no logarithmic corrections
pear, but renormalized couplings have to be used.

Therefore, in order to calculate the scaling behavior of
thermodynamic quantities, our task is to determine the n
logarithmic parts of the different free energy diagrams. Sin
the fixed point couplingsvI fp

ab are proportional to 1/f up to
1/f 2 order only the diagrams in Figs. 25~a!–25~d! contribute.
However, these diagrams contain divergent contributio
originating from the finite part of the self-energy diagram
Fig. 22~b!. These spurious divergences can be handled b
standard renormalization procedure,29 by adding the follow-
ing counterterm to the Hamiltonian:

Hcount5 f 2D ln 2xa
1xctr$vI abvI bc%. ~5.23!

This counterterm can also be interpreted as a renormaliza
of the bare parameters of the model, which should be use
Eq. ~5.3! as the initial conditions. Then the counterterm co
tributions in Fig. 25~e! cancel all the spurious divergence
and after a tedious calculation one obtains, for the nonlo
rithmic part of the free energy,

,
g

FIG. 25. Diagrams generating the 1/f 2 corrections to the free
energy. The crosses denote the counterterm.
F imp52TF ln N1
2p2f

3N
~ tr$vI abvI bcvI ca2vI cavI bcvI ab%!2

f 2p2

2N
~ tr$vI abvI cd%tr$vI bcvI da%2tr$vI abvI bc%tr$vI cdvI da%!1¯ G . ~5.24!
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Note that diagram~a! in Fig. 25 is proportional toT2/D, and
it does not give a contribution in the scaling limit.

Substituting the fixed point couplings Eq.~5.7! into Eq.
~5.24! the fixed-point entropy can be calculated as

Simp5
]F imp

]T
' ln N2

N221

f 2

p2

6
, ~5.25!

which is just the expanded version of Eq.~3.18!. Note that
Eq. ~5.25! gives the NLS contribution to the entropy only
the regionT* !T!TK . Below T* the motion of the NLS is
usually frozen out and the impurity entropy tends to ze
corresponding to a Fermi-liquid state.

The scaling of the free energy in the regionT* !T!TK
can be determined by expanding thevI ab’s around their fixed-
point values like Eq.~5.10!, and substituting them into Eq
~5.24!. It turns out that similarly to the multichannel Kond
and the two-level system case16,17 only the second orde
terms in dvab contribute, and therefore in the temperatu
rangeT* !T!TK in leading order the free energy and th
specific heat scale as

F imp;TS T

TK
D 2l l

;T@2~N21!/ f # 11, ~5.26!

cimp;S T

TK
D 2~N21!/ f

. ~5.27!

Below T* the free energy generally shows a Fermi-liqu
behavior. This scaling behavior does not agree with the
obtained in the Bethe ansatz~BA! solution of the exchange
model. However, we have to remark at this point that,
cording to our estimations, the amplitude of the sublead
operators indvab is larger than that of the leading irrelevan
operators. Therefore, one expects that there is a substa
energy region where the subleading operators dominate,
eventually it is also possible that they dominate the sca
of the free energy in the whole regionT* !T!TK . Then the
exponentl l in Eq. ~5.26! should be replaced bylsl , and one
obtains a scalingcimp;T2N/ f which is in 1/f order com-
pletely identical to the Bethe ansatz and conformal fi
theory results for the SU(N)3SU(f ) model.

One can also easily determine the scaling of the splitt
susceptibilityxD5]2F imp /]D2 at T50 for smallD’s, where
now D denotes the characteristic value of the splittingsDab.
Investigation of the free-energy diagrams~Fig. 25! shows
that the ‘‘splitting magnetization’’MD5]F imp / ]D should
be of the form

MD5mS D

D
,vI abD . ~5.28!

The important point is thatD is not scale invariant, but rathe
behaves as

D85ZDS D0

D
,vI abDD, ~5.29!

where the factorZD should be determined by integrating E
~5.5!. As a consequence,MD is not scale invarianteither,
and has to be rescaled under the renormalization-group tr
,

e

-
g

tial
nd
g

d

g

ns-

formation by the factor ZD . Therefore, applying the
renormalization-group transformation to Eq.~5.28! with D8
5D* 5T* , we obtain.

MD5ZDS D0

D*
,vI abD3m~1,vI fp

ab!, ~5.30!

where we assumed thatD* !TK and thus the scaled cou
plings vI ab(D8) can be replaced by their fixed-point value
Sincem(1,vI fp

ab) is just a constant, the scaling ofMD is the
same as that of the factorZD(D0 /D* ,vI ab). For very small
D’s, the scaling ofZD can easily be determined from th
fixed-point form of the scaling equation~5.5!

dDab

dx
52

N

f
Dab, ~5.31!

and one obtains, in leading order in 1/f ,

MD;ZDS D0

D* D;S D*

TK
D N/ f

'S D

TK
D N/ f

, ~5.32!

in agreement with Eq.~3.29! and the conformal field theory
results.30 In higher order in 1/f , one also has to take into
account the renormalization of the splitting in Eq.~5.32!,
D* ;D1/(12lsl), and one obtains withlsl5@N/(N1 f )#
' (N/ f ) 2 (N2/ f 2)

MD;Dlsl /~12lsl!;DN/ f , ~5.33!

which is the exact result.15,30

Finally, we discuss the scaling of the electronic scatter
rate, which we determine from the imaginary part of t
electronic self-energy in Fig. 22~c!. By assuming a finite
impurity concentrationni and averaging over the position o
the impurities and the orientation of the incoming electro
for the average scattering rate we obtain

K 1

t L 52pni~2D0!
1

N
tr$vI abvI ba%. ~5.34!

Note that the factorD0 arises from the inverse density o
states%0

21 and is invariant under scaling. Substituting in
this equationvI ab5vI fp

ab1dvab, we see immediately that th
leading irrelevant operators do not give a contribution to
electronic scattering rate, which is dominated by sublead
operators and scales like

1

t
;Tlsl;TN/ f ~v50!,

1

t
;vN/ f ~T50!. ~5.35!

In higher orders this result should be replaced by 1t
;TN/( f 1N) and 1/t;vN/( f 1N).

D. Discussion of the possible physical realizations
of the NLS model

The simplest possible realization of the SU(N)3SU(f )
model is given by substitutional impurities in metals. The
impurities may form tunneling centers31,32 which then inter-
act with the conduction electrons’ band. An example of su
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a system is given by Pb12xGexTe.32 The alloy PbTe is a
narrow-gap semiconductor, but usually because of some
trinsic impurities it becomes metallic at low temperatur
Since the Ge21 ions are smaller than the Pb21 ions, and they
are also attracted by their nearest neighbor Te22 ions, they
form eight-state systems, and according to the our disc
sions in Sec. V A they would be good candidates for
SU~8!3SU~2! model.

However, while an unambiguous logarithmic anomaly h
been observed in the resistivity of these materials,32 no non-
Fermi-liquid behavior has been detected. There may be
eral reasons for that. According to the results of the B
calculations in the caseN. f the non-Fermi-liquid correc-
tions are subleading, and the physical quantities have
leading order a Fermi-liquid-like behavior. The subleadi
low-temperature behavior of these alloys has never been
lyzed, and the original measurements do not seem to be
curate enough to extract such a subleading behavior f
them. We are not aware of any measurement of other ph
cal quantities like the specific heat in the interesting conc
tration domain. Furthermore, PbTe has very complica
properties: it has a soft-phonon mode that drives the sys
through a ferroelectric phase transition as a function of
Ge concentration, and there is a strong spin-orbit scatte
in it, which probably spoils the SU~2! symmetry of the elec-
tron spins as well. Moreover, the measurements have b
carried out at relatively large Ge concentrations, where
interaction of the NLS’s can no lonber be neglected.

It seems to be that in order to observe non-Fermi-liq
scaling, much more accurate measurements should be ca
out at even lower temperatures forseveralphysical quantities
and lower Ge concentrations. One could also try to find
better candidate. Since in the case of PbTe the formatio
the NLS’s is induced by the ionic attractions, we think th
experimentalists should search among multicomponent m
als, where some interstitials can be solved in the materia

Similarly to the case of the two-channel Kondo mode33

another possible realization of the SU(N)3SU(f ) model
could be possible by means of nanotechnologies. In Fig.
we show a double-dot geometry which is a candidate for
realization of the SU~3!3SU~2! model. In the leads the elec
trons can be described as free particles:

H leads5 (
a5 l1,l2

(
es

eceas
1 ceas , ~5.36!

FIG. 26. A mesoscopic double-dot system, a candidate for
SU~3!3SU~2! model.
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where a5 l1,l2 refers to the two leads, ands56 is the
electron spin.

The Hamiltonian of the dots can be written as34

Hdots5 (
a5d1,d2

(
es

eceas
1 ceas1

~Q12V1C1!2

2CS,1

1
~Q22V2C2!2

2CS,2
1

Q1Q2

C12
, ~5.37!

wherea5d1,d2 is the index of the two dots,Q1 andQ2 are
the charges of them,V1 andV2 denote the applied gate volt
ages in the figure, and theC’s denote different capacitance
of the system.35 With a suitable choice of the gate voltage
one can achieve that the ground state of the dots beco
three times degenerate corresponding to the st
b : 5(Q1 ,Q2)5(0,0), (0,e), and (e,0). Then the tunneling
processes among the leads and dots result in simultan
flips in the electrons orbital quantum numbera
5$ l1,l2,d1,d2% and the charge variablesb which now take
over the role of the orbital index of the NLS. Since the tu
neling is diagonal in the electrons’ spin, we have an ad
tional SU~2! degeneracy in the spin of the electrons. The
fore this system is a good candidate for the realization of
SU~3!3SU~2! model, where the SU~3! fixed point symmetry
corresponds to the three times degenerate ground state
the dots.

VI. CONCLUSIONS

We have studied the multichannel Coqblin-Schrief
model~MCCS! and its relation to theN-level system~NLS!
model. The properties of the MCCS model depend on b
the spin and flavor symmetries, SU(N) and SU(f ), as well
as on thespin of the impurity.

We have performed both analytical and numerical stud
of the model. As with the multichannel Kondo model, the
are three different classes of fixed points depending on
spin of the impurity,m. The underscreened and complete
screened fixed points~m. f and m5 f , respectively! have
qualitatively similar behaviors to the analogous multichan
counterparts (N52).

There are overscreened fixed points. They display n
Fermi-liquid behavior. They have associated anomalous
sidual entropy and anomalous exponents in the lo
temperature expansion of quantities like the specific heat
the magnetic susceptibility.

For an impurity with spin in the fundamental represen
tion of SU(N), the residual entropy,S i , is only a function of
N1 f and u ln(N/f )u. Hence there are different fixed poin
with the same value ofS i . The exception corresponds toN
5 f , which yields the largest value of the residual entropy
fixed N1 f .

The low-temperature thermodynamics are determined
the value of the ratiog5 f /N alone, for anym, f . When f
ÞN, we have

CV
i

T
, x i}const.1S T

TK
D ~12g!/~11g!

, ~6.1!

which diverge forg.1, but remain finite forg,1. When
N5 f , the power is replaced by a logarithm, as in the tw

e
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channel Kondo model. The constant terms in Eq.~6.1! are
always present and when they are they are the domi
contributions in the completely screened case,m5 f , and
when f ,N. The Wilson ratio in such cases is given by

R5
N~N1 f !

N221
.

Channel anisotropy is a relevant perturbation. As
channel symmetry is reduced from SU(f ) to SU(f 8), the
entropy is quenched sinceN1 f decreases andu ln(N/f )u in-
creases. Likewise, a system with channel anisotropy m
behave like af .N system at intermediate temperatures a
flow at low-T to a f ,N system.

Then we turned to the comparison of the MCCS mode
theN-level system model describing a heavy particle tunn
ing betweenN different positions and interacting with th
conduction electrons. We have shown that the low-ene
fixed point of the NLS model is just the SU(N)3SU(f )
MCCS model. Performing a large 1/f study of the NLS
model, we have analyzed the operator content of this l
energy fixed point, and the scaling properties of differ
physical quantities in theN, f limit. We have shown in this
limit that while the operator content of the NLS model
different from that of the MCCS model, apart from som
subtle differences, the low-energy properties of the two m
els are the same. In particular, comparison with the e
results obtained in the first part of the paper and with
NCA calculations15 show that the susceptibility, the residu
entropy, and the resistivity of the two models behave in
same way, and for reasonable physical parameters eve
scaling of the specific heat is properly described by
MCCS model.

Finally, we discussed some possible physical realizat
of the SU(N)3SU(f ) models. First we discussed the ca
of tunneling interstitials in multicomponent metals such
.
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Pb12xGexTe compounds. We pointed out that the low co
centration of interstitials is essential to avoid strong interi
purity interactions and keep the diagonal elements of
self-energyDab small. Secondly, we suggested a doub
quantum-dot structure that could give an ideal realization
the SU~3!3SU~2! model.
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