
PHYSICAL REVIEW B 15 AUGUST 1998-IVOLUME 58, NUMBER 7
Overscreened multichannel SU„N… Kondo model: Large-N solution and conformal field theory
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The multichannel Kondo model with SU(N) spin symmetry and SU(K) channel symmetry is considered.
The impurity spin is chosen to transform as an antisymmetric representation of SU(N), corresponding to a
fixed number of Abrikosov fermions(a f a

† f a5Q. For more than one channel (K.1), and all values ofN and
Q, the model displays non-Fermi behavior associated with theoverscreeningof the impurity spin. Universal
low-temperature thermodynamic and transport properties of this non-Fermi-liquid state are computed using
conformal field theory methods. A large-N limit of the model is then considered, in whichK/N[g and
Q/N[q0 are held fixed. Spectral densities satisfy coupled integral equations in this limit, corresponding to a
~time-dependent! saddle point. A low-frequency, low-temperature analysis of these equations reveals universal
scaling properties in the variablev/T, in agreement with conformal invariance. The universal scaling form is
obtained analytically and used to compute the low-temperature universal properties of the model in the large-
N limit, such as theT50 residual entropy and residual resistivity, and the critical exponents associated with
the specific heat and susceptibility. The connections with the ‘‘noncrossing approximation’’ and the previous
work of Cox and Ruckenstein are discussed.@S0163-1829~98!01920-1#
t,
o
n
id
lin
a
a

ve
n

lti
i

io
id

ra

ro
r
g
ifi

p
t

7,
ber
s-
e

-
ua-
to
e
-
-

and

om
mit
al

er

n

I. INTRODUCTION AND MODEL

Multichannel Kondo impurity models1,2 have recently at-
tracted considerable attention, for several reasons. Firs
the overscreened case, they provide an explicit example
non-Fermi-liquid ground-state. Second, these models ca
studied by a variety of controlled techniques, and prov
invaluable testing grounds for theoretical methods dea
with correlated electron systems. One of the most recent
fruitful development in this respect has been the conform
field-theory approach developed by Affleck and Ludwig.3–5

Finally, multichannel models have experimental relevance
tunneling phenomena in quantum dots and two le
systems,6 and possibly also to some heavy-fermio
compounds.2

In this paper, we consider a generalization of the mu
channel Kondo model, in which the spin symmetry group
extended from SU(2) to SU(N). In addition, the model has
a SU(K) symmetry among theK ‘‘channels’’ ~flavors! of
conduction electrons. We focus here on spin representat
which are such that the model is in the non-Fermi-liqu
overscreenedregime. We shall derive in this paper seve
universal properties of this SU(N) ^ SU(K) Kondo model in
the low-temperature regime. Specifically, we obtain the ze
temperature residual entropy, the zero-temperature impu
resistivity andT matrix, and the critical exponents governin
the leading low-temperature behavior of the impurity spec
heat, susceptibility, and resistivity.

These results will be obtained using two different a
proaches. It is one of the main motivations of this paper
compare these two approaches in some detail. First~Sec. III!,
we apply conformal field theory~CFT! methods to study the
model for general values ofN and K. Then, we study the
limit of large N andK, with K/N5g fixed. This limit was
PRB 580163-1829/98/58~7!/3794~20!/$15.00
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previously considered by Cox and Ruckenstein,7 in connec-
tion with the ‘‘noncrossing approximation’’~NCA! . There is
a crucial difference between our work and that of Ref.
however, which is that we keep track of the quantum num
specifying the spin representation of the impurity by impo
ing a constraint~on the Abrikosov fermions representing th
impurity! which also scales proportionally toN. As a result,
the solution of the model at largeN follows from a true
saddle-point principle, with controllable fluctuations in 1/N.
Hence, a detailed quantitative comparison of the largeN
limit to the CFT results can be made. The saddle-point eq
tions are coupled integral equations similar in structure
those of the NCA, except for the different handling of th
constraint. TheT50 impurity entropy and residual resistiv
ity are obtained in analytical form in this paper from a low
energy analysis of these coupled integral equations
shown to agree with the large-N limit of the CFT results. We
also demonstrate that the spectral functions resulting fr
these equations take a universal scaling form in the li
v,T→0, which is precisely that expected from the conform
invariance of the problem.

The Hamiltonian of the model considered in this pap
reads

H5(
pW

(
i 51

K

(
a51

N

e~pW !cpW ia
†

cpW ia

1JK (
A51

N221

SA (
pW pW 8 iab

cpW ia
†

tab
A cpW 8 ib . ~1!

In this expression,cpW ia
† creates an electron in the conductio

band, with momentum pW , channel ~flavor! index i
51, . . . ,K, and SU(N) spin indexa51, . . . ,N. The con-
3794 © 1998 The American Physical Society
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PRB 58 3795OVERSCREENED MULTICHANNEL SU(N) KONDO . . .
duction electrons transform under the fundamental repre
tation of the SU(N) group, with generatorstab

A (A
51, . . . ,N221). They interact with a localized spin degre
of freedom placed at the originSW 5$SA,A51, . . . ,N221%
which is assumed to transform under a given irreducible r
resentationR of the SU(N) group.

In the one-channel case (K51), and whenR is taken to
be the fundamental representation, this is the Coqb
Schrieffer model of a conduction gas interacting with
localized atomic level with angular momentumj
(N52 j 11).8 In this article, we are interested in the possib
non-Fermi-liquid behavior associated with the multichan
generalization (K.1).1,2 We shall mostly focus on the cas
whereR corresponds to antisymmetric tensors ofQ indices,
i.e., the Young tableau associated withR is made of asingle
columnof Q indices. In that case, it is convenient to use
explicit representation of the localized spin in terms ofN
species of auxiliary fermionsf a (a51, . . . ,N), constrained
to obey

(
a51

N

f a
† f a5Q ~2!

so that theN221 ~traceless! components ofSW can be repre-
sented asSab5 f a

1 f b2 (Q/N)dab . For these choices ofR,
the Hamiltonian can be written as~after a reshuffling of in-
dices using a Fierz identity!

H5(
pW

(
i 51

K

(
a51

N

e~pW !cpW ia
†

cpW ia

1JK (
pW pW 8 iab

S f a
† f b2

Q

N
dabD cpW ib

†
cpW 8 ia . ~3!

In a recent paper,9 the case of asymmetricrepresentation of
the impurity spin~corresponding to a Young tableau made
a singleline of P boxes! has been considered by two of u
In that case, a transition from overscreening to underscre
ing is found as a function of the ‘‘size’’P of the impurity
spin. In contrast, the antisymmetric representations con
ered in the present paper always lead to overscreening~ex-
cept for K51 which is exactly screened!, as shown below.
As long as only the overscreened regime is considered,
analysis of the present paper applies to symmetric repre
tations as well, up to some straightforward replacements

II. STRONG-COUPLING ANALYSIS

It is easily checked that a weak antiferromagnetic c
pling (JK.0) grows under renormalization for allK andN,
and all representationsR of the local spin. What is needed
a physical argument in order to determine whether the re
malization group~RG! flow takesJK all the way to strong
coupling ~underscreened or exactly screened cases!, or
whether an intermediate non-Fermi-liquid fixed point exi
~overscreened cases!.

Following the Nozieres and Blandin1 analysis of the mul-
tichannel SU(2) model, we consider the strong-coupl
fixed pointJK51`. In this limit, the impurity spin binds a
certain number of conduction electrons~at mostNK because
of the Pauli principle!. The resulting bound-state correspon
n-
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-
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f
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to a new spin representationRsc which is dictated by the
minimization of the Kondo energy. For the specific choic
of R above, we have proven the following.

~i! In the one-channel case (K51) and for arbitraryN
and Q, Rsc is the ‘‘singlet’’ representation@of dimension
d(Rsc)51#. It is obtained by bindingN2Q conduction elec-
trons to theQ pseudofermionsf a . The impurity spin is thus
exactly screenedat strong-coupling.

~ii ! For all multichannel cases~K>2, arbitraryN andQ),
the ground state at the strong-coupling fixed point is
representationRsc characterized by a rectangular Young ta
leau with N2Q lines and K21 columns. Its dimension
d(Rsc) ~i.e, the degeneracy of the strong-coupling bou
state! is larger than the degeneracy at zero coupling, given
d(R)5(Q

N)[N!/Q!(N2Q)!.
The Young tableau associated with the strong-coupl

state in both cases is depicted in Fig. 1. The detailed proo
these statements and the explicit construction ofRsc are
given in Appendix A. These properties are sufficient to e
tablish the following.

~i! In the one-channel case, the strong-coupling fix
point is stable under RG, and hence the impurity spin
exactly screened by the Kondo effect.

~ii ! In the multichannel case, a direct RG flow from we
to strong coupling is impossible, thereby suggesting the
istence of an intermediate coupling fixed point~‘‘overscreen-
ing’’ !.

The connection between these statements and the a
results on the nature and degeneracy of the strong-coup
bound state is clear on physical grounds. Indeed, it is
possible to flow under renormalization from a fixed po
with a lower ground-state degeneracy to a fixed point wit
higher one, because the effective number of degrees of f
dom can only decrease under RG. Hence, no flow away f
the strong-coupling fixed point is possible in the one-chan
(K51) case since the strong-coupling state is nondege
ate. Also, no direct flow from weak to strong coupling
possible forK>2 sinced(Rsc).d(R). These statements ca
be made more rigorous5 by considering the impurity entropy
defined as

Simp[ lim
T→0

lim
V→`

@S~T!2Sbulk~T!#, ~4!

FIG. 1. Young tableau corresponding to the strong-coupl
state.
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whereSbulk denotes the contribution to the entropy which
proportional to the volumeV ~and is simply the contribution
of the conduction electron gas!, and care has been taken
specifying the order of the infinite-volume and zer
temperature limits. At the weak-coupling fixed poi
Simp(JK50)5 ln d(R), while Simp(JK5`)5 ln d(Rsc) at
strong-coupling.Simp must decrease under renormalizatio5

a property which is the analog for boundary critical pheno
ena to Zamolodchikov’s ‘‘c theorem’’ in the bulk. This sug
gests a RG flow of the kind indicated above. This conclus
can of course be confirmed by a perturbative calculation~in
the hopping amplitude! around the strong-coupling fixe
point.1 The value ofSimp will be calculated below at the
intermediate fixed point in the overscreened case, and fo
to be noninteger~as in theN52 case5!.

III. CONFORMAL FIELD THEORY APPROACH

Having established the existence of an intermediate fi
point for K>2, we sketch some of its properties that can
obtained from conformal field-theory~CFT! methods. This is
a straightforward extension to the SU(N) case of Affleck and
Ludwig’s approach for SU(2).3,4 The aim of this section is
not to present a complete conformal field-theory solution,
simply to derive those properties which will be compar
with the large-N explicit solution given below.

In the CFT approach, the model~1! is first mapped at low
energy onto a (111)-dimensional model ofNK chiral fer-
mions. At a fixed point, this model has a local conform
symmetry based on the Kac-Moody algebra SÛK(N)s

^ SÛN(K) f ^ Û(1)c corresponding to the spin-flavor-charg
decomposition of the degrees of freedom. The free-ferm
spectrum at the weak-coupling fixed point can be organi
in multiplets of this symmetry algebra: to each level cor
sponds a primary operator in the spin, flavor, and cha
sectors. A major insight3 is then that the spectrum at th
infrared stable, intermediate coupling fixed point can be
tained from a ‘‘fusion principle.’’ Specifically, the spectrum
is obtained by acting, in the spin sector, on the primary
erator associated with a given free-fermion state, with
primary operator of the SÛK(N)s algebra corresponding t
the representationR of the impurity spin~leaving unchanged
the flavor and charge sectors!. The ‘‘fusion rules’’ of the
algebra determine the new operators associated with
energy level at the intermediate fixed point.

This fusion principle also relates the impurity entro
Simp as defined above to the ‘‘modularS matrix’’ S0

R of the
SÛK(N) algebra~this is the matrix which specifies the actio
of a modular transformation on the irreducible characters
the algebra corresponding to a given irreducible represe
tion R). Specifically, denoting byR50 the trivial ~identity!
representation

Simp5 ln
S0

R

S0
0

. ~5!

The expression of the modularS-matrix for SÛK(N) can be
found in the literature.10 We have found particularly useful t
make use of an elegant formulation introduced by Dougla11

which is briefly explained in Appendixes A and B. For th
-

n

nd

d
e

t

l

n
d
-
e

-

-
e

ch

f
ta-

representationsR associated to a single column of lengthQ
@corresponding to Eq.~2!#, one finds using this representa
tion

Simp5 ln )
n51

Q
sin@p~N112n!/~N1K !#

sin@pn/~N1K !#
. ~6!

It is easily checked that indeedSimp, ln d(R) for all values
of N, Q, and K. Note also that this expression correct
yields Simp50 in the exactly screened caseK51 ~for arbi-
trary N,Q).

The low-temperature behavior of various physical quan
ties can also be obtained from the CFT approach. At
intermediate coupling fixed point, the local impurity spin a
quires the scaling dimension of the primary operator of
SÛK(N)s algebra associated with the@(N221)-dimensional#
adjoint representation of SU(N). Its conformal dimensionDs
@such that̂ S(0)S(t)&;1/t2Ds at T50# reads

Ds5
N

N1K
. ~7!

Integrating this correlation function, this implies that thelo-
cal susceptibilityx loc}*t0

1/T^S(0)S(t)&dt ~corresponding to

the coupling of an external field to the impurity spinonly!
diverges at low temperature whenK>N, while it remains
finite for K,N:

K>N:x loc;S 1

TD ~K2N!/~K1N!

,

K5N:x loc; ln 1/T,

K,N:x loc;const. ~8!

Exactly at the fixed point, the singular contributions to t
specific heat andimpurity susceptibilityx imp5x2xbulk ~de-
fined by coupling a magnetic field to the total spin densi!
vanish.3,12 Indeed, the singular behavior is controlled by t
leading irrelevant operator compatible with all symmetr
that can be generated. An obvious candidate for this oper
is the spin, flavor, and charge singlet obtained by contrac
the spin current with the adjoint primary operator abov
JW 21•fW . It has dimension 11 N/(N1K) 511Ds . This
leads to a singular contribution to the impurity susceptibil
~arising from perturbation theory atsecond orderin the ir-
relevant operator3,12! of the same nature than forx loc given in
Eq. ~8!: x imp;x loc .

Another irrelevant operator can be constructed in the
vor sector in an analogous manner, namely,JW 21

f
•fW f . This

operator has dimensionK/(N1K), which is thus lower than
the above operator in the spin sector whenK,N. This op-
erator coulda priori contribute to the low-temperature be
havior of the specific heat, which would lead to a diverge
specific heat coefficientC/T for both K.N andK,N. On
the basis of the explicit large-N calculation presented below
we believe, however, that this operator isnot generatedfor
model ~1! when the conduction band density of state~DOS!
is taken to be perfectly flat and the cutoff is taken to infin
~conformal limit!, so that the specific heat ratio has the sa
behavior as the susceptibilities above:C/T;x loc;x imp . If
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the model is extended to an impurity spin with internal flav
degrees of freedom, this operator will however show
~leading toC/T;T2(N2K)/(N1K) for K,N!. It also appears
~see Sec. VI B! if an Anderson model generalization o
model ~1! is considered away from particle-hole symmetr

IV. SADDLE-POINT EQUATIONS IN THE LARGE- N
LIMIT

We now turn to the analysis of the large-N limit of this
model. This will be done by setting

K5Ng, JK5
J

N
~9!

and taking the limitN→` for fixed values ofg and J, so
that the number of channels is also taken to be large. In
7 ~see also Ref. 2!, Cox and Ruckenstein considered th
limit while holding Q fixed (Q51). They obtained in this
limit identical results to those of the noncrossing approxim
tion ~NCA!.13 Here, we shall proceed in a different mann
by taking Q to be large as well:

Q 5 q0N. ~10!

This ensures that a true saddle point exists, with controlla
fluctuations order by order in 1/N. It will also allow us to
study the dependence on the representationR of the local
spin, parametrized byq0 .14 The approach of Ref. 7 is recov
ered in the limitq0→0 ~or 1).

The action corresponding to the functional integral form
lation of model~3! reads

S52E
0

b

dtE
0

b

dt8(
ia

cia
† ~t!G0

21~t2t8!cia~t8!

1E
0

b

dt(
a

f a
†~t!]t f a~t!1E

0

b

dt im~t!

3F(
a

f a
†~t! f a~t!2q0NG1

J

NE0

b

dt(
iab

cia
† ~t!cib~t!

3@ f b
†~t! f a~t!2q0dab#. ~11!

In this expression, the conduction electrons have been i
grated out in the bulk, keeping only degrees of freedom
the impurity site.G0( ivn)[(p1/(ivn2ep) is the on-site
Green’s function associated with the conduction elect
bath. In order to decouple the Kondo interaction, an auxili
bosonic fieldBi(t) is introduced in each channel, and th
conduction electrons can be integrated out, leaving us w
the effective action

Seff5E
0

b

dt(
a

f a
†~t!]t f a~t!

1E
0

b

dt im~t!F(
a

f a
†~t! f a~t!2q0NG

1
1

JE0

b

dt(
i

Bi
†Bi1

1

NE0

b

dtE
0

b

dt8

3(
ia

Bi~t! f a
†~t!G0~t2t8!Bi

†~t8! f a~t8!. ~12!
r
p

f.

-
r

le

-

e-
t

n
y

th

The quartic term in this expression can be decoupled
mally using two bilocal fieldsQ(t,t8) and Q̄(t,t8) conju-
gate to ( iBi

†(t8)Bi(t) and (a f a
†(t) f a(t8), respectively,

leading to the action

S5E
0

b

dt(
a

f a
†~t!]t f a~t!1

1

JE0

b

dt(
i

Bi
†Bi

1E
0

b

dt im~t!S (
a

f a
†~t! f a~t!2q0ND

2NE E dtdt8Q̄~t,t8!G0
21~t2t8!Q~t,t8!

2E E dtdt8 Q~t8,t!(
i

Bi
1~t!Bi~t8!

2E E dtdt8 Q̄~t,t8!(
a

f a
1~t! f a~t8!. ~13!

The B and f fields can now be integrated out to yield

S52NE E dtdt8Q̄~t,t8!G0
21~t2t8!Q~t,t8!

2Nq0E dt im~t!2N Tr ln$@2]t2 im~t!#d~t2t8!

1Q̄~t,t8!%1K Tr lnF1

J
d~t2t8!2Q~t8,t!G . ~14!

This final form of the action involves only the three fieldsQ,
Q̄, and m, and scales globally asN thanks to the scalings
K5gN andQ5q0N. Hence, it can be solved by the saddl
point method in the large-N limit. At the saddle point,
msp(t)5 il becomes static and purely imaginary, whi
Qsp5Q(t2t8) andQ̄sp5Q̄(t2t8) retain time dependence
but depend only on the time differencet2t8 ~they identify
with the bosonic and fermionic self-energies, respectively!.

The final form of the coupled saddle-point equations
the fermionic and bosonic Green’s functionsGf(t)[
2^T f(t) f †(0)&, GB(t)[^TB(t)B†(0)& and for the
Lagrange multiplier field read:

S f~t!5gG0~t!GB~t!, SB~t!5G0~t!Gf~t!, ~15!

where the self-energiesS f andSB are defined by

Gf
21~ ivn!5 ivn1l2S f~ ivn!, GB

21~ inn!5
1

J
2SB~ inn!.

~16!

In these expressionsvn5(2n11)p/b andnn52np/b de-
note fermionic and bosonic Matsubara frequencies. Let
note that the fieldB(t) is simply a commuting auxiliary field
rather than a true boson~its equal-time commutator van
ishes!. As a resultGB(t) is a b-periodic function, but does
not share the usual other properties of a bosonic Green f
tion ~in particular at high frequency!.

Finally, l is determined by the third saddle-point equati

Gf~t502![
1

b(
n

Gf~ ivn!eivn01
5q0 . ~17!
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These equations are identical in structure to the usual N
equations, except for the last equation~17! which imple-
ments the constraint and allows us to keep track of the ch
of representation for the impurity spin.

V. SCALING ANALYSIS AT LOW FREQUENCY
AND TEMPERATURE

A. General considerations

The analysis of the NCA equations in Ref. 15 can
applied in order to find the behavior of the Green’s functio
in the low temperature, long time regime defined byTK

21

!t!b→` ~where TK is the Kondo temperature!. In this
regime, a power-law decay of the Green’s functions is fou

Gf(t);
Af

t2D f
, GB~t!;

AB

t2DB
, ~TK

21!t!b→`!.

~18!

The scaling dimensions 2D f and 2DB can be determined
explicitly by inserting this form into the above saddle-po
equations and making a low-frequency analysis, as expla
in Appendix C. This yields

2D f5
1

11g
, 2DB5

g

11g
. ~19!

The overall consistency of Eqs.~15!, ~16! at large time also
constrains the product of amplitudesAfAB @Eq. ~C8! in Ap-
pendix C# and dictates the behavior of the self-energies@de-
noting byr052ImG0( i01)/p the conduction bath densit
of states at the Fermi level#

S f~t!;gr0ABS 1

t D 2DB11

, SB~t!;Afr0S 1

t D 2D f11

~20!

together with the sum rule

SB~v50,b5`!5
1

J
. ~21!

The expression~19! of the scaling dimensionsD f andDB is
in complete agreement with the CFT result. Indeed, the
mionic field transforms as the fundamental representatio
the SÛ(N)K spin algebra, while the auxiliary bosonic fie
transforms as the fundamental representation of the SÛ(K)N
flavor algebra, leading to 2D f5(N221)/N(N1K) and
2DB5(K221)/K(N1K), which agree with Eq.~19! in
the large-N limit. Also, the local impurity spin correlation
function, given in the large-N limit by ^S(0)S(t)&
}Gf(t)Gf(2t) is found to decay as 1/t2Ds, with Ds52D f
51/(11g) in agreement with the CFT result~7!.

As will be shown below, however, these asymptotic b
haviors atT50 do not provide enough information to allo
for the computation of the low-temperature behavior of
impurity free-energy and to determine theT50 impurity en-
tropy ~4!. One actually needs to determine the Green’s fu
tions in the limit t,b→`, but for an arbitrary value of the
ratio t/b @i.e., to analyze the low-temperature, low
frequency behavior of Eqs.~15!, ~16! keeping the ratiov/T
A

ce

e
s

:

ed

r-
of

-

e

-

fixed16#. It is easily seen that in this limit the Green’s fun
tions and their associated spectral densitiesr f ,B(v)
[2 (1/p) ImGf ,B(v1 i01) obey a scaling behavior~for
t,b@TK

21, with t/b arbitrary!

Gf ,B~t!5Af ,Bb22D f ,Bgf ,BS t

b D ~22a!

r f~v!5AfT
2D f21f f S v

T D , rB~v!5ABT2DB21fBS v

T D .

~22b!

In these expressions,gf ,B and f f ,B are universal scaling
functionswhich depend only ong and q0 and not on the
specific shape of the conduction band or the cutoff. These
scaling functions will now be found in explicit form.

B. The particle-hole symmetric representationq051/2

We shall first discuss the case where the representatioR
hasQ5N/2 boxes (q051/2), for which there is a particle
hole symmetry among pseudofermions underf a

†↔ f a . The
expression of the scaling functionsgf ,B in that case can be
easily guessed from general principles of conformal inva
ance. The idea is that, in the limitTK

21!b with t/b fixed,
the finite-temperature Green’s function can be obtained fr
the T50 Green’s function by applying the conformal tran
formation z5exp(i2pt /b).17 Applying this to the T50
power-law decay given by Eq.~18!, one obtains the well-
known result for the scaling functions (t̃[t/b):

gf~ t̃;q051/2!52S p

sin pt̃
D 2D f

,

gB~ t̃;q051/2!52S p

sin pt̃
D 2DB

~23!

with the periodicity requirementsgf( t̃11)52gf( t̃),gB( t̃
11)5gB( t̃). Note that these functions satisfy the addition
symmetrygf ,B(12 t̃)5gf ,B( t̃) indicating thatthey can only
apply to the particle-hole symmetric case q051/2. The cor-
responding form of the scaling functions associated with
spectral densities~22b! reads, withṽ[v/T ~after a calcula-
tion detailed in Appendix C!

f f~ṽ,q051/2!5
1

p
~2p!2D f21cosh

ṽ

2

3
G@D f1 i ~ṽ/2p!#G@D f2 i ~ṽ/2p!#

G~2D f !
,

~24!

fB(ṽ,q051/2)5
1

p
(2p)2DB21sinh

ṽ

2

3
G[DB1 i (ṽ/2p)]G[DB2 i (ṽ/2p)]

G(2DB)
.
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Note that thev→0 singularity of theT50 case is now
recovered forv@T:

f f ,B~ṽ,q051/2! ;
ṽ→1`

1
G~2D f ,B!

S 1
ṽ

D 122D f ,B
. ~25!

It is an interesting calculation, performed in detail in Appe
dix C, to check that indeed these scaling functions do so
the large-N equations~15!,~16! at finite temperature in the
scaling regime. That NCA-like integral equations obey t
finite-temperature scaling properties dictated by conform
invariance has not, to our knowledge, been pointed out in
previous literature.

C. General values ofq0

1. Spectral asymmetry

Let us move to the general case of representations
q0Þ 1

2 in which the particle-hole symmetry between pseud
fermions is broken. Theexponentof the power-law singular-
ity in theT50 spectral densities is not affected by this asy
metry. It does induce, however,an asymmetry of the
prefactorsassociated with positive and negative frequenc
asv→0. We introduce an angleu to parametrize this asym
metry, defined such that

r f~v→01!;h~g,u!
sin~pD f1u!

v122D f
,

r f~v→02!;h~g,u!
sin~pD f2u!

~2v!122D f
, ~26!

where h(g,u) is a constant prefactor. The explicit depe
dence ofu on q0 will be derived below. This corresponds t
the following analytic behavior of the Green’s function in th
complex frequency plane, asz→0:

Gf
R~z!;h~g,u!

e2 ipD f2 iu

z122D f
Im z.0. ~27!

Equivalently, this means that the symmetryGf(b2t)
5Gf(t) is broken, and that the scaling functiongf( t̃) must
satisfy ~from the behavior of its Fourier transform!

gf~01!

gf~12!
5

sin~pD f1u!

sin~pD f2u!
. ~28!

We have found, by an explicit analysis of the saddle-po
and constraint equations in the scaling regime, which is
tailed in Appendix C, that the full scaling functions for th
asymmetric case are very simply related to the symme
ones atq051/2, through

gf ,B~ t̃;q0!5
ea~t̃2 1/2!

cosh~a/2!
gf ,B~ t̃;q051/2!

52
ea~t̃2 1/2!

cosh~a/2!S p

sin pt̃
D 2D f ,B

, ~29!
-
e

e
l
e

th
-

-

s

t
e-

ic

where the parametera is simply related tou so as to obey
Eq. ~28!:

a5 ln
sin@p/2~11g! 2u#

sin@p/2~11g! 1u#
. ~30!

Fourier transforming, this leads to the scaling functions
the spectral densities

f f~ṽ,q0!5
cosh~ṽ/2!

cosh@~ṽ1a!/2#cosh~a/2!
f f~ṽ1a,q051/2!,

fB~ṽ,q0!5
sinh~ṽ/2!

sinh@~ṽ1a!/2#cosh~a/2!
fB~ṽ1a,q051/2!.

~31!

The thermal scaling function for the fermionic spectral de
sity f f and the bosonic onefb are plotted in Fig. 2 for
various values of the asymmetry parametera. We also note
the expression for the maximally asymmetric casea→2`
~corresponding, as shown below, toq0→0, i.e., to the limit
Q!N as in the usual NCA!:

FIG. 2. Plot off f and fb as a function ofṽ2a for different
values of the asymmetry parametera: a50, 22, 25, 2` (D f

50.3).
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f f~ṽ2a! ;
a→2`

eṽ/2~2p!2D f21G@D f1 i ~ṽ/2p!#G@D f2 i ~ṽ/2p!#
pG~2D f !

. ~32!
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We also note, for further use, the expressions of the
Green’s functions in the complex frequency plane„defined
by gf /B(z,a)[*2`

1`dṽ@f f /B(ṽ)/(z2ṽ)#…, in the scaling re-
gime for Im z.0:

gf~z,a!52
2i ~2p!2D f21

cosh~a/2! G~2D f !sin 2pD f

3GS D f1 i
z1a

2p DGS D f2 i
z1a

2p D
3cosS pD f2

ia

2 D sinS pD f1 i
z1a

2 D , ~33!

gB~z,a!52
2~2p!2DB21

cosh~a/2! G~2DB!sin 2pDB

3GS DB1 i
z1a

2p DGS DB2 i
z1a

2p D
3sinS pDB2

ia

2 D sinS pDB1 i
z1a

2 D . ~34!

The reader interested in the details of these calculation
directed to Appendix C.

At this stage, the point which remains to be clarified is t
explicit relation between the asymmetry parameteru and the
parameterq0 specifying the representation. This is the su
ject of the next section.

Before turning to this point, we briefly comment on th
CFT interpretation of the asymmetry parameteru ~or a) as-
sociated with the particle-hole asymmetry of the fermio
fields. The form~23! of the correlation functions at finite
temperature in the scaling limit can be viewed as those of
exponential of a compact bosonic field with periodic boun
ary conditions. The asymmetric generalization~29! corre-
sponds to a shifted boundary condition on the boson~i.e., to
a twisted boundary condition for its exponential!.

2. Relation between q0 and u

Let us clarify the relation between the spectral asymme
parameteru, and the parameterq0 specifying the spin rep-
resentation. That such a relation exists in universal form
remarkable fact: indeedu is a low-energy parameterassoci-
ated with the low-frequency behavior of the spectral dens
while q0 is the total pseudofermion number related by t
constraint equation~17! to an integral of the spectral densi
over all frequencies. The situation is similar to that of the
Friedel sum rule in impurity models, or to Luttinger theore
in a Fermi liquid, and indeed the derivation of the relati
betweenq0 and u follows similar lines.18 It is in a sense a
Friedel sum rule for the quasiparticles carrying the spin
grees of freedom~namely, the pseudofermionsf a!.

We start from the constraint equation~17! written at zero-
temperature as
ll

is

e

-

e
-

y

a

,

-

q052 i lim
t→01

E dv

2p
Gf~v!eivt. ~35!

In this expression, and below in this section,Gf(v) and
GB(v) denote the~Feynman! T50 Green’s functions while
the retarded Green’s functions are denoted byGR. Using
analytic continuation of Eq.~16!, we have

] ln Gf~v!

]v
2Gf~v!

]S f~v!

]v
52Gf~v!, ~36!

] ln GB~v!

]v
2GB~v!

]SB~v!

]v
50, ~37!

so that Eq.~35! can be rewritten as

q05 i lim
t→01

E dv
2p

F] ln Gf~v!
]v

2Gf~v!
]S f~v!

]v

2g S ] ln GB~v!
]v

2GB~v!
]SB~v!

]v
D Geivt. ~38!

In this expression, the bosonic part~which vanishes alto-
gether! has been included in order to transform further t
terms involving derivatives of the self-energy, using anal
icity. This transformation is only possible if both fermion
and bosonic terms are considered. This is because
Luttinger-Ward functional18 of this model involves both
Green’s functions. It has a simple explicit expression wh
reads

FLW~Gf ,a ,GB,i !5(
a,i

E dtG0~ t !Gf ,a~2t !GB,i~ t !

~39!

such that the saddle-point equations~15! are recovered by
derivation

S f ,a~ t !5
dFLW

dGf ,a~2t !
, SB,i~ t !52

dFLW

dGB,i~2t !
. ~40!

From the existence ofFLW , we obtain the sum rule

E
2`

`

dvS S f~v!
]Gf~v!

]v
2gSB~v!

]GB~v!

]v D50. ~41!

~Note that there is no logarithmic divergence atv50 in this
expression.! After integrating by parts and using th
asymptotic behavior of the two Green’s functions in order
eliminate the boundary terms, we get

q05 i E
2`

` dv

2pS ] ln Gf~v!

]v
2g

] ln GB~v!

]v Deiv01
.

~42!

Since G(v)5GR(v) for v.0 and G(v)5GR(v) for v
,0 ~with GR the retarded Green’s function!, this can be
transformed using
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E
2`

` dv

2p

] ln Gf ,B~v!

]v
eiv01

5E
2`

` dv

2p

] ln Gf ,B
R ~v!

]v
eiv01

1E
2`

0 dv

2p

]

]v
lnS Gf ,B

R ~v!

Gf ,B
R ~v!

D eiv01
. ~43!

The first integrals in the right hand side can be deformed
the upper plane and their sum vanishes.18 Thus we obtain
~denoting by argG the argument ofG)

pq05arg Gf
R~02!2arg Gf

R~2`!2g@arg GB
R~02!

2arg GB
R~2`!#. ~44!

arg Gf
R(02) directly follows from the parametrization~27!

definingu. It can also be read off from the behavior of th
scaling functiongf(z) for z56`. Thus, from Eqs.~33–34!
we can also read off argGB

R(02):

arg Gf
R~02!5pD f2u2p, argGB

R~02!5u2pD f .
~45!

Taking into account thatGf
R(v);v→2`1/v and that

Im Gf
R,0 we have argGf

R(2`)52p. Similarly, we have
arg GB

R(2`)50. Inserting these expressions into Eq.~44!,
we finally obtain the desired relation betweenq0 and u ~or
a):

u~11g!

p
5

1

2
2q0 , a5 ln

sin@pq0 /~11g!#

sin@p~12q0!/~11g!#
.

~46!

This, together with Eq.~33!, fully determines the universa
scaling form of the spectral functions in the low-frequenc
low-temperature limit.

VI. PHYSICAL QUANTITIES AND COMPARISON
WITH THE CFT APPROACH

A. Impurity residual entropy at T50

The impurity contribution to the free-energy~per color of
spin! f imp5(F2Fbulk)/N reads, at the saddle point

f imp5q0l1T(
n

ln Gf~ ivn!2gT(
n

ln GB~ inn!

2E
0

b

dtS f~t!Gf~2t!. ~47!

This expression can be derived either directly from
saddle-point effective action~in which case the last term
arises from the quadratic term inQ and Q̄!, or from the
relation between the free-energy and the Luttinger-W
functional. Fbulk5N2gT Tr ln G0 is the free energy of the
conduction electrons. In Eq.~47! the formulas Tr lnG are
ambiguous. We must precisely define which regularizat
of these sums we consider: the actual value of the s
depends on the precise definition of the functional integ
For the fermionic field, the standard procedure of adding
substracting the contribution of a free local fermion, and
troducing an oscillating term to regularize the Matsub
sum holds:
n

,

e

d

n
s

l.
d
-
a

Tr ln Gf52T ln 21T(
n

ln@ ivnGf~ ivn!#eivn01
.

~48!

The situation is somewhat less familiar for the bosonic fie
As pointed out above, the latter is merely a commuting a
iliary field ~rather than a true boson!. We have found that the
correct regularization to be used is

Tr ln GB5T lim
N→` (

n52N

n5N
ln@JGB~ ivn!#. ~49!

The factor ofJ takes into account the determinant introduc
by the decoupling withB, and asymmetricdefinition of the
~convergent! Matsubara sum has been used. Some det
and justifications about these regularizations are given in
pendix ~D!. We shall perform a low-temperature expansi
of Eq. ~47!, considering successively the particle-hole sy
metric (q051/2) and asymmetric (q0Þ1/2) cases, which re-
quire rather different treatments.

1. The particle-hole symmetric point q05 1
2

In this casel50, so that the first term in Eq.~47! does
not contribute. Let us consider the last term in~47!. Using
the spectral representation ofGf and the definition ofS f we
obtain easily~for l50!

C[E
0

b

dtS f~t!Gf~2t!5E
2`

1`

dv
vr f~v!

11ebv
. ~50!

We substract the value atT50:

C~T!2C~T50!52E
0

`

dvv@r f~v,T!2r f~v,T50!#

12E
0

`

dv
vr f~v!

11ebv
. ~51!

In the second term, we can replacer f by its scaling limit. So
this term is of orderO(T2D f11). We know the asymptotics
of f f : f f(x);x→`C1x2D f211C2x2D f23. ~The termx2D f22

cancels due to the particle-hole symmetry.! Thus, the first
term in Eq. ~51! is of the form T2D f11*0

`dxx@f f(x)
2C1x2D f21# ~the integral is convergent!. We conclude that
C(T)5C(0)1O(T2D f11), so that the last term in Eq.~47!
does not contribute to the zero-temperature entropy in
particle-hole symmetric case.

Let us express the remaining terms in Eq.~47! as integrals
over real frequencies, using the regularizations introdu
above. As detailed in Appendix D, this leads to the followi
expression, involving the argument of the~finite-
temperature! retarded Green’s functions:
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f imp5
1

pE2`

1`

dvH nF~v!FarctanS Gf8~v!

Gf9~v!
D 2

p

2 G
2gnB~v!arctanS GB9 ~v!

GB8 ~v!
D J . ~52!

In these expressionsnF ~respectively,nB! are the Fermi~re-
spectively, Bose! factor.

At this point, it would seem that in order to perform
low-temperature expansion of the free-energy, one ha
make a Sommerfeld expansion of the Fermi and Bose
tors. This is not the case, however, for two reasons:~i! the
argument of the Green’s functions appearing in Eq.~52! are
not continuous atv50, so that a linear term inT does ap-
pear~as expected from the nonzero value ofSimp! and~ii ! the
Green’s functions have anintrinsic temperature dependenc
and the full scaling functions computed above must be u
in Eq. ~52!. More precisely, when computing the differen
f imp(T)2 f imp(T50), the leading term is obtained by repla
ing the Green’s function by their scaling form~33!.

These considerations lead to the following expression
the impurity entropy~per spin color! simp5Simp /N at zero
temperature forq05 1

2 :

simp52
1

pE2`

0

dṽ@af~ṽ !2af~ṽ52`!#

2
1

pE2`

1`

dṽ
1

euṽu11
af~ṽ !sgn~ṽ !

2
g

pE2`

0

dṽ@ab~ṽ !2ab~ṽ52`!#

1
g

pE2`

1`

dṽab~ṽ !sgn~ṽ !
1

euṽu21
. ~53!

In this expression,af ,B denotes the arguments of the scali
functions, obtained from Eq.~33!:

af~ṽ ![arctan
gf8~ṽ !

gf9~ṽ !
52arctanS cot~pD f !tanh

ṽ

2
D ,

~54!

aB~ṽ ![arctan
gB9 ~ṽ !

gB8 ~ṽ !
5arctanS tan~pD f !tanh

ṽ

2
D .

~55!

From Eq.~53!, we obtain witht5tanpD f

simp

g11
52

2

pE0

1

duH 2arctant

p~12u2!
FuarctanS u

t D
1

arctan~ut!

u G2
arctan~ut!

u~12u2! J . ~56!

To perform the integration, we note that]/]t„(]/]t)$(1
1t2)@simp /(11g)#%…52 2t/p(11t2) and we obtain finally
the simple expression
to
c-

d

f

simpS q05
1

2D5 ln 22
g11

p E
0

tan@p/2~11g!# ln~11u2!

~11u2!
du.

~57!

This can also be rewritten, after a change of integration v
able, as

simp~q051/2![
1

N
Simp5

11g

p F f S p

11g D22 f S p

2~11g! D G
~58!

with

f ~x![E
0

x

ln sin~u!du.

This coincides with the large-N limit of the CFT result, Eq.
~6!, in the particle-hole symmetric case.

2. The general case q0Þ1/2

For q0Þ 1
2 , the first term in Eq.~47! also contributes to

the entropy. Indeed, as shown below, the Lagrange multip
l(T) at the saddle point has a term which is linear in te
perature. This stems from a very general thermodynamic
lation, which is derived by taking the derivative ofZ with
respect toq0 in the functional integral, leading to

K 2
1

bE0

b

im~t!L 5
]F

]q0
, ~59!

where the average is to be understood with the action~11!.
At the saddle point, we thus havel5 ] f imp /]q0 and in par-
ticular

]l

]T U
T50

52
]simp

]q0
. ~60!

We shall directly use this equation in order to compute
residual entropy, by calculating the linear correction inT to
l, and then integrating overq0 . This method shortcuts the
full low-temperature expansion of the free energy~as done in
the previous section!, which actually turns out to be quite
difficult task to perform correctly forq0Þ1/2.19 In order to
calculate this linear correction, we shall relatel to thehigh-
frequency behaviorof the fermion Green’s function. As
S f( ivn)→0 whenvn→6` we have

Gf~ ivn!5
1

ivn
2

l

~ ivn!2
1OS 1

~ ivn!2D . ~61!

This shows that2l is the discontinuity of the derivative o
Gf(t) with respect tot at t50:

]tGf~01!1]tGf~b2!5E
2`

1`

dv vr f~v!52l. ~62!

Let us defineg(t) by

Gf~t!5
ea~t/b 2 1/2!

cosha/2
g~t!, ~63!
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wherea is the spectral asymmetry parameter in Eq.~46! ~at
this stage we emphasize that the full finite temperature, fi
cutoff, Green’s functionGf is considered!. Equation~62! can
be rewritten as

l5aT1tanhS a

2 D @]tg~01!2]tg~b2!#

2@]tg~01!1]tg~b2!#, ~64!

where we have used thatGf(0
1)1Gf(b

2)521. Denoting
by rg(v) the spectral function associated withg, we have

]tg~01!2]tg~b2!5E dv
v@rg~v!2rg~2v!#

11e2bv
.

~65!

In the scaling limit, the spectral functionrg must become
particle-hole symmetric@since the effect of the particle-hol
asymmetry in this limit is entirely captured bya in Eq. ~63!#,
and must coincide withAfT

2D f21f f(v/T;q051/2). Hence,
following the same reasoning than forC above, the term in
Eq. ~65! is of order const1O(T2D f11). Thus we have

]l

]TU
T50

5a2
]A

]TU
T50

, ~66!

whereA5]tg(01)1]tg(b2) is the discontinuity of the de
rivative ]tg. A reflects the particle-hole asymmetry ofg and
thus vanishes in the scaling limit. Actually the derivati
]A/]T also vanishes asT→0 as we now show. Conside
first sending the bare cutoff to infinity~along withJ) so as to
keep the Kondo temperature fixed. In this limitA takes the
form: A5T f(T/TK). The low-energy scaling limit, in which
Eq. ~29! holds, can be reached by fixingT and sendingTK to
infinity. Sinceg must become particle-hole symmetric in th
limit, this implies thatf (x) vanishes at smallx. Hence, tak-
ing a derivative with respect to temperature, ofA
5T f(T/TK) we find that ]A/]T uT5050. Thus we finally
obtain

]simp

]q0
52

]l

]T U
T50

52a, ~67!

wherea(q0) is given in Eq.~46!. Integrating this equation
over q0 @taking into account as a boundary condition t
value ofsimp(q051/2) obtained above#, we finally derive the
expression of the entropy

simp[
1

N
Simp5

11g

p F f S p

11g D2 f S p

11g
~12q0! D

2 f S p

11g
q0D G . ~68!

with, as above,f (x)[*0
x ln sin(u)du. The expression~68!

coincides precisely with the largeN limit of the CFT result
~6!.20 A plot of the residual entropy and of the asymme
parametera as a function ofq0 is displayed in Fig. 3.simp is
maximal atq051/2 and vanishes asq0→0 as expected.

In this section, we have discovered that the spectral as
metry parameter~‘‘twist’’ ! a shares a fairly simple relation
with the residual entropy, given by Eq.~67!. These are two
te

-

universal quantities, characteristic of the fixed point. R
markably,a also coincides with the term proportional toT in
l ~while l itself is nonuniversal, its linear term inT is!. It is
tempting to speculate that a deeper interpretation of th
facts is still to be found.

B. Internal energy and specific heat

The low-temperature behavior of the internal energy
the large-N limit can be obtained by two different method
We shall briefly describe both since they emphasize differ
and complementary aspects of the physics.

In the first method, we use the effective action in the fo
~11!, before the decoupling with the auxiliary bosonic fiel
Bi(t) is made. We thus have a quartic interaction ver
between the conduction electrons at the origin and the A
kosov fermions representing the quasiparticles in the s
sector, which reads

J

N (
1<a,b<N

S f b
† f a2

Q

N
dabD(

i 51

K

cia
† cib . ~69!

One can then perform a skeleton expansion of the fr
energy functional in terms of theinteracting Green’s func-
tions for the pseudofermions and the conduction electr
Gf(t) and Gc(t). The first-order~Hartree! contribution to
this functional vanishes because the spin operator in Eq.~69!
is written in a traceless manner. The next contribution,
second order, yields the most singular contribution at l
temperature and reads

DE}J2 E
0

b

dtGc~t!2Gf~2t!2. ~70!

At the saddle point, the interacting conduction electr
Green’s function isGc(t)}Gf(t)GB(2t), and hence its
dominant long-time behavior isGc(t);1/t. Inserting this,
together withGf(t);1/t2D f in Eq. ~70!, we see that the
leading low-temperature behavior to the energy readsDE
}c1T4D f111c2T21¯, and hence to the specific heat coe
ficient

FIG. 3. Residual entropysimp anda vs q0 for g51.5.
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g.1: C/T;T 4Df21;S1TD~g21!/~g11!

,

g51: C/T;ln 1/T, ~71!

g,1: C/T; const

which agrees with the CFT result described above. We n
that there is a quite precise connection between this calc
tion and the CFT approach: the operator appearing in
Kondo interaction~69! acquires conformal dimension 2(Dc
1D f)5112D f and has the appropriate structure of the s
lar product of a spin current with the operatorSab ~trans-
forming as the adjoint!. Therefore, it is the large-N version
of the leading irrelevant operator associated with the s
sector, as described in Sec. III. It is satisfying that the lead
low-T behavior comes from the second-order contribution
this operator in this formalism as well. We note that for t
simple Kondo model~1!, in the scaling limit, the analogou
irrelevant operator in the flavor sectordoes notshow up in
the calculation of the energy in the large-N solution. We
shall comment further on this point below.

The second method to investigate the internal energy i
push the low-temperature expansion of the free energ
higher orders. To this end, we need to compute higher-o
terms in the expansion~22a! of the Green’s functions in the
scaling regime. This computation is detailed in Append
C 3, and leads to

Gf~t!5Afb
22D fgf S t

b D1b24D fgf
~2!S t

b D
1b26D fgf

~3!S t

b D1¯, ~72!

GB~t!5ABb22DBgBS t

b D1b21gB
~2!S t

b D
1b2122D fgB

~3!S t

b D1¯. ~73!

Let us emphasize that the exponents appearing in this ex
sion are not symmetric between the bosonic and fermio
degrees of freedom. This is because we are dealing with th
Kondo model for which the auxiliary field~bosonic! propa-
gator has no frequency dependence in the noninterac
theory. Also, the expansion given in Eq.~72! assumes a per
fectly flat conduction band in the limit of an infinite band
with ~conformal limit!. Using this expansion into the expre
sion ~52! of the free energy leads to a specific he
coefficientC/T;c0T2D f211c1T4D f211c21¯. The coeffi-
cientc0 actually vanishes, so that the behavior in Eq.~71! is
recovered. The vanishing ofc0 was clear in the first ap
proach, where it followed from the absence of Hartree ter
In the CFT approach, it is associated with the fact that
leading irrelevant operator does not contribute to the f
energy at first order. The vanishing ofc0 implies nontrivial
sum rules relating the scaling functionsgf ,B andgf ,B

(2) ~which
we have not attempted to check explicitly!.
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We also note that this behavior of the specific heat
modified when an Anderson model version of the pres
model is considered~as in Ref. 7!. Because the noninterac
ing slave boson propagator has a frequency depende
the exponents of the second-order terms as written in
~72! are only correct forg.1 for the Anderson model
For g,1, the term b24D fgf

(2)(t/b) is replaced by
b21gf

(2)(t/b), while b21gB
(2)(t/b) is replaced by

b24DbgB
(2)(t/b). As a result, one finds a diverging specifi

heat coefficientin both cases, with C/T;T2(g21)/(g11) for
g.1 and C/T;T2(12g)/(g11) for g,1. The behavior for
g,1 is due to the leading irrelevant operator in the flav
sector. Similarly, forg,1 in the Anderson model, the sus
ceptibility associated with theflavor (channel) sectorx f is
found to diverge,7 so that a finite Wilson ratio can still be
defined asTx f /C for g,1.

C. Resistivity and T matrix

In order to discuss transport properties, we define a s
tering T matrix for the conduction electrons in the usu
manner~for a single impurity!:

G~kW ,kW8,v1 i01!5G0~kW ,v1 i01!dkW ,k8W1G0~kW ,v1 i01!

3T~v!G0~kW8,v1 i01!, ~74!

whereG and G0 denote the interacting and noninteractin
conduction-electron Green’s functions, respectively. Tak
a flat particle-hole symmetric band for the conduction el
tron and denoting byr0 the local noninteracting density o
states, this yields the local conduction electron Green’s fu
tion in the form

G~v1 i01![(
kW ,kW8

G~kW ,kW8!52 ipr0@12 ipr0T~v!#.

~75!

Following Ref. 4, we parametrize the zero-frequency limit
the T matrix in terms of a scattering amplitudeS1 as

T~v50![2
i

2pr0
~12S1! ~76!

so that, the zero frequency electron Green’s function rea

G~ i01!52 ipr0

11S1

2
. ~77!

S151 corresponds to no scattering at all, whileS1521 cor-
responds to maximal unitary scattering~i.e., p/2 phase shift
and vanishing conduction electron density of states at
impurity site!. In the overscreened case, as noted in Ref
S1 is in general such thatuS1u,1, reflecting the non-Fermi-
liquid nature of the model, and the fact that the actual q
siparticles bear no resemblance to the original electrons
addition here, we shall find the feature thatS1 is in fact a
complex numberfor nonparticle-hole symmetric spin repre
sentations~i.e., q0Þ1/2!.
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We first derive an expression forS1 for arbitrary N, K
and spin representationQ5Nq0 by generalizing to SU(N)
the CFT approach of Ref. 4. There, it was shown thatS1 can
be expressed as a ratio of elements of the modularS matrix
Sa,b of the SÛ(N)K algebra. Denoting by 0 the identity rep
resentation, byF the fundamental representation~corre-
sponding to a Young tableau with a single box!, and byR the
representation in which the impurity lives~Young tableau
b

ly

s
ily

ry

’s
f

-
er
with a single column ofQ boxes!, one has3,4

S15
SF,R /S0,R

SF,0 /S0,0
. ~78!

The evaluation of these elements of the modularS matrix
can be done along the same lines as the conformal fi
theory calculation of the entropy, described above. Some
tails are given in Appendix B. The result is:
S15
sin@~N11!p/~N1K !#exp$2 i @p~122q0!/~N1K !#%2sin@p/~N1K !#exp$2 i @p~N11!~122q0!/~N1K !#%

sin@pN/~N1K !#
.

~79!
n’s
-

Notice thatS1 has both real and imaginary parts in the a
sence of particle hole symmetryq0Þ 1

2 .
Let us take the large-N limit of this expression, with

K/N5g fixed. This reads, to first nontrivial order

S1511
p

N~11g! Fcot
p

11g
2

cos@p~122q0!/~11g!#

sin@p/~11g!# G
2

ip

N~11g! F122q02
sin@p~122q0!/~11g!#

sin@p/~11g!# G .
~80!

We now show how to recover this expression from an ana
sis of the integral equations of the direct large-N solution.
Coupling an external source to the conduction electron
the functional integral formulation of the model, it is eas
seen that the conduction electronT matrix is given, in the
large-N limit, by

T~v! 5
1

N
G~v1 i01!, ~81!

whereG denotes the convolution of the fermion and auxilia
boson Green’s function

G~t!5Gf~t!GB~2t!. ~82!

Hence, we have atT50

S1512
2ipr0

N
G~ i01!. ~83!

We first make use of the scaling limit of the two Green
functions, given by Eq.~29!, and obtain the scaling form o
G:

G~t!5Gf~t!GB~b2t!5
pAfAB

b cosh2 ~a/2!sin~pt/b!
1¯.

~84!

We note that,in this scaling limit, the particle-hole asymme
try of the impurity Green’s function has been lost altogeth
a has cancelled completely in thet dependence ofG in this
limit and is only present in the prefactor. Thus, only ReS1

can be extracted from the scaling limit, while ImS1 requires
-

-

in

:

a more sophisticated analysis. Equation~84! implies
Im G5AfABp, and hence ReS12152p2AfABr0 /
@N cosh2 (a/2)#. We make use of the expression~C8! de-
rived in Appendix C for the product of amplitudesAfAB and
obtain

Re S12152
p

~11g!N
Re tanS pD f2

ia

2 D . ~85!

After expressinga in terms ofq0 using Eq.~46! as

tanhS a

2 D52cot~pD f !tanS ~122q0!p

2~11g! D , ~86!

Re S1 coincides with the real part of Eq.~80!.
We now consider ImS1, for which we need to go beyond

the scaling limit and use global properties of the Gree
functions. First expressingS f as a convolution on the imagi
nary axis and using]vG0( iv)→22ipr0d(v) in the limit
of a flat particle-hole symmetric band we obtain

2 ir0g2pG~ in!5A1B~n! ~87!

with the definitions

A5E dvGf~ iv!]vS f~ iv!, ~88!

B~n!5E dv@Gf~ iv1 in!]vS f~ iv!2Gf~ iv!]vS f~ iv!#.

~89!

In the limit of vanishingn, B(n) can be calculated from the
scaling limit of Gf . We obtain
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B~n→01!5
g

11gS ~2e2 ip~122q0!/~11g!

1e22ipD f !
p

sin2pD f
1 ip D . ~90!

On the other hand,A contains high-frequency informatio
that is lost in the scaling limit. We find

A52
ipg

11g
~122q0!. ~91!

The details of these calculations are provided in Appendix
Combining Eqs.~91!, ~90!, ~87!, ~83! we find agreemen

with the largeN limit of S1 in Eq. ~80!. For a dilute array of
impurities ~of concentrationnimp!, the conduction electron
self energy is given byS(v1 i01).nimpT(v), to lowest
order innimp . As shown above,T(v) is given in the large-N
approach by the Fourier transform ofGf(t)GB(2t). The
expansion ~72! yields the long-time behaviorGf(t)
;Af /t2D f1Af

(2)/t4D f1¯ and GB(t);AB /t2DB1AB
(2)/t

1¯. From the fact that 2D f12DB51, this implies
Gf(t)GB(t);1/t11/t112D f1¯. Hence the resistivity be
haves as

r~T!;nimpruS 12Re S1

2
2cT2D f1¯ D , ~92!

whereru is the impurity resistivity in the unitary limit. For
the same reasons as above, the Anderson model result w
lead to an exponent 2DB in the regimeg,1.7

D. The limit of a large number of channels„g˜`…

We finally emphasize that all the expressions deriv
above greatly simplify in the limit of a large number of cha
nels g→`. This is expected, since in this limit the non
Fermi-liquid intermediate coupling fixed point becomes p
turbatively accessible from the weak-coupling one.1,21 The
physics of the fixed point can be viewed as an almost f
spin of ‘‘size’’ Q5Nq0 weakly coupled to the conductio
electrons. Indeed the large-g expansion of the entropy~53!,
the Green functionGf ~33!, and the twista ~46! are

Simp52@q0ln q01~12q0!ln~12q0!#2
p2q0~12q0!

6g2
1¯,

gf~ t̃ !52
ea~t̃2 1/2!

cosh~a/2!F11
1

g
ln

p

sin pt̃
1¯G ,

~93!

r f~v!5
1

T
dS v

T
1a D1¯,

a5 ln
q0

12q0
1¯,

and the leading terms in these expansions are given by
corresponding quantities for a free spin of sizeNq0 . More-
over the scattering matrixS1 and resistivity have the follow-
ing expansion:
.

uld

d

-

e

he

ReS1512
2p2q0~12q0!

Ng2
¯, Im S15OS 1

g3D ,

r~T50!/~nimpru!5
1

N
q0~12q0!

p2

g2
1¯, ~94!

while the anomalous dimensions readDS52D f51/g
2 1/g2 1¯, 2DB512 1/g 1 1/g2 1¯.

VII. CONCLUSION

In this paper, we have focused on thenon-Fermi-liquid
overscreened regimeof the SU(N)3SU(K) multichannel
Kondo model. This model has actually a wider range of p
sible behavior, which become apparent when other kinds
representations of the impurity spin are considered. In a
cent short paper,9 two of us have studiedfully symmetric
representations corresponding to Young tableaus with
single line of P boxes. ~This amounts to considering
Schwinger bosonsin place of the Abrikosov fermions used i
the present work.! It was demonstrated that, in that case
transition occurs as a function of the sizeP of the impurity
spin, from overscreening~for P,K! to underscreening~for
P.K!, with an exactly screened point in between (P5K).
The large-N analysis of the overscreened regimeP,K is
essentially identical to that presented in the present pape
antisymmetric representations.

Obviously, an interesting open problem is to understa
the physics of the model for more general impurity spin re
resentations, involving both ‘‘bosonic’’ and ‘‘fermionic’’ de
grees of freedom~corresponding respectively to the horizo
tal and vertical directions in the associated Young tablea!.
CFT methods are a precious guide in achieving this goal
particular, the formulas and rules given in Appendixes A a
B allow for an easy derivation of the impurityT50 residual
entropy and zero-frequencyT matrix, using Affleck and Lud-
wig’s fusion principle and the identification of these quan
ties in terms of modularS matrices.

An open question which certainly deserves further stu
is to identify which of these more general spin represen
tions are such that a direct large-N solution of the model can
be found. This question has obvious potential application
the multi-impurity problem and Kondo lattice models.

During the course of this study, we learned of a work
A. Jerez, N. Andrei and G. Zara´nd on the same model usin
the Bethe Ansatz method. Our results and conclusions a
when a comparison is possible~in particular for the impurity
residual entropy and low-temperature behavior of phys
quantities!.
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FIG. 4. An example of an SU(N) Young tableau~for N55) and its associated fermionic representation.
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APPENDIX A: THE STRONG COUPLING STATE

We now describe in more detail the proof of the sta
ments in Sec. II about the nature and degeneracy of
strong-coupling stateRsc. For a general reference on th
group theory material used in this appendix, the reade
referred e.g., to Ref. 22. Let us noteNY the number of elec-
trons brought on the impurity site and byY the Young tab-
leau with NY boxes associated with the representation
which the conduction electrons on the impurity site combi
Because of the Pauli principle,the length of any of its lines
must be smaller than K~and henceNY must be smaller than
NK!. Indeed, we must antisymmetrize the wave funct
separately for each flavor.

The Kondo energy is given by

E5JK(
ab

SabSba8 ~A1!

with

Sab5 f a
† f b2

Q

N
dab Sab8 5ca

†cb ~A2!

in which f denotes the pseudofermion andc the conduction
electrons at the impurity site. We can introduce the lin
combinations

Tab5
Sab1Sba

A2
, a.b, Tab5

Sab2Sba

iA2
,

a,b, Tab5Saa , a5b, ~A3!

such that

(
ab

SabSba5(
ab

Tab
2 . ~A4!

This leads to the following expression of the Kondo ener

2E

JK
5C2~Rsc!2C2~Y!2C2~R! ~A5!

in which C2(Z) denotes the quadratic Casimir operator
the representationZ. The representationRsc is the specific
component ofY^ R associated with the bound state form
by the impurity spin and the conduction electrons at stro
coupling. We recall thatR is a column of lengthQ in this
paper. We have to minimizeE over all possible choices ofY
and ofRsc.

First let us recall that for a general representationY, C2 is
given by
-
e

is

n
.

r

:

f

g

C25
1

N
tnW A21S nW

2
11D , ~A6!

whereni(1< i<N21) is the number of columns with lengt
i in the Young tableauY andA is the Cartan matrix of the
SU(N) group.22 Let us denote byf j (1< j <N) the length of
the line j in the tableau. Then we have

C25
1

NF1

2 (
j 51

N

~ f j2 j 1N!22S 1

2N
N Y

21
N21

2
NYD

2
N~N21!~2N21!

12 G , ~A7!

with NY5( j 51
N f j is the number of boxes ofY. Note that

with this definition, all f j ’s can be shifted by the same con
stant without changing the representation~this is because a
column of lengthN can be removed without changing th
representation!. Equation~A7! can be given a simple inter
pretation in terms ofN ‘‘particles’’ occupying a set of fer-
mionic levels. This interpretation was introduced in a sligh
different form by Douglas.11 Let pj5 f j2 j 1N be the posi-
tion of the particle j . BecauseY is a Young tableau, the
particles are ordered and cannot be on the same level. Fi
4 gives an example of the construction of the diagram as
ciated with a simple Young tableau.

A simple construction of all allowed Young tableaus a
pearing in the tensor productY^ R ~Ref. 22! can be given in
this fermionic language. Starting with the diagram associa
with Y, we chooseQ particles and raise each of them by o
level beginning with the one in the highest level.~We note
that, in the fermionic interpretation, adding a box to linei
corresponds to raising thei th particle up by one level.! An
example is given in Fig. 5.

Let us denote bypi the positions of theN particles inY,
and bypi8 the new positions in a given allowed component
Y^ R. The Kondo energy is given by

E5
1

4NS (
j 51

N

~p8 i
22pi

2!2
NY

2N
2

2N21

8
2C2~R!D .

~A8!

The last two terms are constant~R is held fixed! and can be
dropped in the minimization process.
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FIG. 5. An example of the general composition rule explained in the text. We show the fermionic diagram associated withY, the
resulting fermionic diagrams and their transcription in terms of Young tableaus.~N is arbitrary in this example as shown by the dots!.
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The pi ’s can be decomposed in two sets: those for wh
pi85pi ~we haveN2Q of them! and those for whichpi8
5pi11 ~Q of them!. Let us denote byP the sum of the
latter ones. We have

E5
1

4NS Q12P2
NY

2N
2

2N21

8
2C2~R! D . ~A9!

Thus the lowest energy is achieved for the smallest poss
value of P. Since a given shiftp→p11 can only appear
once in the sum~because double occupancies are forbidd
and a given particle cannot be raised twice!, the absolute
minimum is obtained when we sum on all the lowestQ
shifts. This implies that the diagram associated withY hasQ
particles on theQ lowest levels~from 0 to Q21! and none
on theQth level.

The upper part of the diagram~above levelQ) is then
determined by the maximization ofNY . Going back to the
language of Young tableaus, the minimum is thus achie
whenY is a rectangle of heightN2Q and widthK, andRsc
is given by the same tableau with the first column remov

Two cases must thus be distinguished
~i! For (K51) and for arbitraryN andQ, Rsc is the trivial

~singlet! representation@of dimensiond(Rsc)51#.
~ii ! For ~K>2, arbitraryN andQ! the dimensiond(Rsc) is

larger than the dimension ofR. Indeed, denoting bydK(Rsc)
the dimensionRsc for K channels, we have the recursio
relation ~from the ‘‘hook law’’23!

dK11

dK
5

~N1K !~N1K21!¯~N1K2Q11!

~Q1K !~Q1K21!¯~Q1K112Q!
.1

~A10!

~becauseQ,N!. It increases withK. TheK52 case is just
a column of lengthN2Q which has the dimension ofR.
Moreover the inequality is strict forK.2.

APPENDIX B: CONSTRUCTION OF MODULAR
S-MATRICES

If two representationsR and R8 correspond to fermion
configurations with positions $p1 , . . . ,pN% and
$p18 , . . . ,pN8 % ~See Appendix A!, respectively, then the
modularS-matrix element is
h

le

n

d

.

SR,R85CN,Ke2 2p iNp̄p̄8/~N1K !det@e2p ipi p8 j /~N1K !# ~B1!

with p̄5( i pi /N, p8̄5( j pj8/N andCN,K is a constant which
depends only onN andK. Since for the trivial representatio
0, the p’s are the consequent integers 0,1, . . . ,N22,N21,
S0,R involves a determinant of the form

U 1 1 ••• 1 1

z1 z2 ••• zN21 zN

z1
2 z2

2
••• zN21

2 zN
2

A A A A

z1
N22 z2

N22
••• zN21

N22 zN
N22

z1
N21 z2

N21
••• zN21

N21 zN
N21

U ,

wherezj5e2p ip j /(N1K), $p1 , . . . ,pN% being the positions of
fermions corresponding to the representationR. This is just
the Van Der Monde determinantD(z)5) i , j (zi2zj ).

To calculate theT matrix, we also need to know th
S-matrix element between the fundamental representatioF
and an arbitrary representationR. For F, the positions of the
fermions are 0,1,2, . . . ,N22,N. ThereforeSF,R involves the
determinant

U 1 1 ••• 1 1

z1 z2 ••• zN21 zN

z1
2 z2

2
••• zN21

2 zN
2

A A A A

z1
N22 z2

N22
••• zN21

N22 zN
N22

z1
N z2

N
••• zN21

N zN
N

U .

This determinant has the same antisymmetry property inzi ’s
as the Van Der Monde determinant. However, the pres
determinant is one order higher thanD(z) as a homogeneou
polynomial in z’s. A little reflection shows it is (( izi)D(z).

Finally we find

SF,R

S0,R
5e2 2p i p̄/~N1K !(

j 51

N

e2p ip j /~N1K !. ~B2!

Using this formula we deduce Eq.~79! from Eq. ~78!.
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APPENDIX C: SOLUTION OF THE SADDLE-POINT
EQUATIONS IN THE SCALING REGIME

In this appendix we solve Eq.~15! in the scaling regime
as explained in Sec. V A and obtain the scaled spectral d
sities and Green functions.

1. Scaling functions

First we show that Eq.~29! is the solution of the saddle
point equations in the scaling regime. We deal with an a
trary q0 . Let us denote bys f ,B the scaling function of the
fermionic and bosonic self-energies

S f ,B~t!5AB, f b22DB, f21s f ,BS t

b D . ~C1!

G0 is the local Green function for the conduction electro
Its density of states does not depend onT. So its scaling
form is

G0~t!52
r0p

b sin~pt/b!
, ~C2!

with r052 (1/p)Im G0(v50). Using this formula and Eq
~15!, s f ,B are related togf ,B . We insert the scaling form
~22a! into Eq. ~16!. Matching the power inb leads to 2D f
12DB51 and
n-

i-

.

Af
21gf

21~ i v̄n!5@l2S f~ iv0!#b2DB2AB@s f~ i v̄n!

2s f~ i v̄0!#,

AB
21gB

21~ i n̄n!5S 1

J
2SB~0! Db2D f

2Af@sB~ i n̄n!2sB~0!# ~C3!

with i v̄n5 i (2n11)p and i n̄n5 i2np. The termivn in Eq.
~16! vanishes in this scaling limit becauseD f ,B,1. We as-
sume that at zero temperature

l2S f~0!5
1

J
2SB~0!50 ~C4!

so b disappears of these equations at lower order. O
s f( i v̄n)2s f( i v̄0) andsB( i n̄n)2sB(0) have a scaling form.

We insert our ansatz into Eq.~C3! with the following
Fourier transform formulas@which follow from Ref. 24, Eq.
~3.631!#:
gf~ i v̄n!5
~2p!2D fT2D f21i ~21!n11G~122D f !

cosh~a/2!G~12D f2 v̄n/2p 1 ia/2p!G~12D f1 v̄n/2p 2 ia/2p!
, ~C5a!

gB~ i n̄n!5
~2p!2DBT2DB21~21!n11G~122DB!

cosh~a/2!G~12DB2 n̄n/2p 1 ia/2p!G~12DB1 n̄n/2p 2 ia/2p!
, ~C5b!

s f~ i v̄n!2s f~ i v̄0!5
igr0~2p!2DB11T2DB~21!n11G~22DB!

cosh~a/2!G~ 1
2 2DB2 v̄n/2p1 ia/2p!G~ 1

2 2DB1 v̄n/2p2 ia/2p!
2~n50!, ~C5c!

sB~ i n̄n!2sB~0!5
r0~2p!2D f11T2D f~21!n11G~22D f !

cosh~a/2!G~ 1
2 2D f2 n̄n /2p 1 ia/2p!G~ 1

2 2D f1 n̄n/2p 2 ia/2p!
2~n50!. ~C5d!
We see that Eq.~29! is the solution of Eq.~C3! provided
that the following conditions are met.

~i! The precise form of the cancelation~C4! at finite tem-
perature is~at leading order inT)

1

JK
2SB~0!

5
r0Af~2p!2D f11T2D fG~22D f !

cosh~a/2!G~ 1
2 2D f1 ia/2p!G~1/22D f2 ia/2p!

,

~C6!
l2S f~ iv0!

5
igr0AB~2p!2DB11T2DBG~22DB!

cosh~a/2!G~2DB1 ia/2p!G~12DB2 ia/2p!
.

~C7!

~ii ! Equation ~19! is obeyed: 2D f51/(11g) , 2DB
5g/(11g) .

~iii ! We have the relation between amplitudes:

2DB522gAfABr0G~122DB!G~2DB!

3
usin~pDB2 ia/2!u2

cosh2~a/2!
. ~C8!
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In our scaling forms,a is the same for the fermionic and th
bosonic function. One can check easily that for a more g
eral ansatz witha f andaB the saddle-point equations impl
a f5aB .

2. Spectral densities

We calculate now the scaled spectral density from
above scaling function. Denotingz521 for fermions and
z51 for bosons we have the general formula

Gf ,B~t!52E
2`

1` e2t«

12ze2b«
r f ,B~«!d« 0<t<b.

~C9!

In the scaling regime, we have to solve

ea~x2 1/2!

cosh~a/2!S p

sin~px! D
2D f ,B

5E
2`

1` e2xu

12ze2u
f f ,B~u!du 0<x<1. ~C10!

Settingt5 i (x2 1/2) we see it is sufficient to solve

e2 iat

cosh~a/2!S p

cosh~pt ! D
2D f ,B

5E
2`

1` eitu

eu/22ze2 u/2
f f ,B~u!du uIm tu,

1

2
. ~C11!

Due to the properties of Fourier transformation, we can j
solve fora50, and obtain the solution for arbitrarya with
Eq. ~31!. With
in
e
r
a

w

q

n-

e

t

E
2`

1`

dtS p

cosh~pt ! D
D

e2 i tu

5~2p!D21
G~D/21 iu/2p!G~D/22 iu/2p!

G~D!

H0,D,1
u real, ~C12!

@see formula~3.313.2! of Ref. 24!, we find the result given in
the text~24!:

f f~ṽ,q051/2!5
1

p
~2p!2D f21cosh

ṽ

2

3
G@D f1 i ṽ/2p#G@D f2 i ṽ/2p#

G~2D f !

fB~ṽ,q051/2!5
1

p
~2p!2DB21sinh

ṽ

2

3
G@DB1 i ṽ/2p#G@DB2 i ṽ/2p#

G~2DB!
.

~C13!

The asymptotic behavior follows from formula~8.328! of
Ref. 24.

We then derive the full Green function by taking the H
bert transform

g~z!5E
2`

1`

dx
f~x!

z2x
. ~C14!

We find Eq.~33! using the following.
~i! The representation

1

z2u
52 i E

0

1`

eil~z2u!dl Im z.0. ~C15!

~ii ! The Fourier formula which inverses Eq.~C12!.
~iii ! The formula
E
0

1`

dx
eizx

@sinh~px/b!#D
52D21

b

p

G~D/22 ibz/2p!G~12D!

G@12 D/2 2 i ~bz/2p!#
H0,D,1
z real, ~C16!
e

icit
which results from formula~3.112.1! of Ref. 24.
Finally, we comment on the treatment of the constra

equation~17! in our derivation of the scaling functions. Th
relation betweena andq0 has been derived from a Luttinge
sum rule, which holds at zero temperature. So one m
worry whether the scaling form does satisfy the leading lo
temperature corrections to theT50 constraint equation. We
show now that this is actually the case. Starting from E
~17! written as:

E
2`

1`

dvr f~v,T!nF~v!5q0 ~C17!
t

y
-

.

we substract the relation atT50 and take into account th
asymptotic behavior off f given by Eq.~25! to obtain

E
2`

0

dxS f f~x!2
ea/2uxu2D f21

cosh~a/2! G~2D f !
D

1E
2`

`

dx
sgnxf f~x!

euxu11
50. ~C18!

It is a rather strong constraint on the scaling functionf f that
this equation should hold, and it is satisfying that the expl
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form obtained forf f does satisfy Eq.~C18!. This proves that
f f is really a solution of the full system~15!,~16!,~17! in the
scaling regimeat fixed q0 .

3. Higher-order terms in the scaling expansion

Here, we give some indications on the derivation the
pansion in Eq.~72!. Let us start from the long-time expan
sion for TK

21!t!b

Gf~t!;
Af

t2D f
1

Af
~2!

ta
, GB~t!;

AB

t2DB
1

AB
~2!

tl
, ~C19!

in which a and l are exponents to be determined belo
Then we have

Gf~v!;AfC2D f 21v2D f211Af
~2!Ca21va21, ~C20!

with CD5*dt (eit /tD11), and a similar expression forGB .
We can then deduce the expansions ofS f andSB , and insert
them into the saddle-point equation. We find

v122D f

AfC2D f21
2

Af
~2!Ca21

Af
2C2D f21

2
va1124D f5v2

gC2DB
ABr0

p
v2DB

2
gClAB

~2!r0

p
vl,

~C21!

v122DB

ABC2DB21
2

AB
~2!Cl21

AB
2C2DB21

2
vl1124DB52

C2D f
Afr0

p
v2D f

2
CaAf

~2!r0

p
va.

The first order yields

2p5r0AfABC2D f
C2DB215gr0AfABC2DB

C2D f21 ,
~C22!

which, using

CD21}DCD , ~C23!

gives Eq. ~19! again. The second equation leads tol5a
1124D f .

First supposel,1: in this case we must drop thev term
but we have

Ca21Cl21

C2DB21C2D f21
5

CaCl

C2DB
C2D f

, ~C24!

which impliesa52D f or a52D f21 @taking Eq.~C23! into
account#. So this possibility must be rejected. Finally we a
lead tol51 anda54D f . The higher order corrections ca
be dealt with in a similar manner. Restoring the scaling fu
tions, this leads to Eq.~72!.

APPENDIX D: CALCULATION OF THE RESIDUAL
ENTROPY

1. The formula of the free energy

We first give a few more details on the regularization
Eq. ~47!. We will check that Eq.~49! is the right formula for
the pseudoboson.
-

.

-

In the following we will denote by Tr6 the regularization
with eivn06

and by Trsym the regularization of Eq.~49!. We
note that Trsym5(Tr11Tr2)/2 as can be checked explicitl
using a spectral representation of the function to be summ

Let us introduce the following notation for any quantityA
~function of l!: DlA5Al2A2l. As the free energy is
particle-hole symmetric, we have

2l5Dl~T Tr ln Gf !2gDl~T Tr ln GB!. ~D1!

Let us consider

f~ ivn!5 lnS ivn1l2S f
l~ ivn!

ivn2l2S f
2l~ ivn!

D ~D2!

such that

Dl~T Tr1ln Gf !52f~t502!. ~D3!

As f is particle-hole symmetric, we havef(t501)5
2f(t502). As its asymptotic behavior isf( ivn)
; 2l/ ivn , its discontinuity is f(t501)2f(t502)5
22l.

We obtain

Dl~T Tr1ln Gf !52l. ~D4!

This implies that the bosonic term does not contribute to
~D1!. But there is an analogous relation for the boson:
first calculate the discontinuity ofSB from the saddle-point
equations, use an analogous functionf, and obtain
Dl(T Tr6ln GB)57(122q0)J/2. So we find

Dl~T Trsymln GB!50. ~D5!

So we have checked that Eq.~49! is the right regularization
for the bosonic term.

2. Derivation of Eq. „52…

We consider first the fermionic term. LetG0( ivn)
5 1/ivn be the Green function of free electrons. We have

T Tr1ln Gf52T ln 22
1

pERdv~ Im ln Gf2Im ln G0!

3nF~v!

52T ln 21
1

pERdvS arctan
Gf8~x!

Gf9~x!
1

p

2

2pu~2x!D nF~v! ~D6!

5
1

pE2`

1`

dvS arctan
Gf8~x!

Gf9~x!
2

p

2 D nF~v!.

~D7!

The bosonic term is obtained by an analogous calculation
the particle hole symmetric case considered in the text
three regularizations for the bosonic term are equivalent.
have
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2T Trsym ln GB52
1

pE2`

1`

dv Im ln@JG~v!#nB~v!

52
1

pE2`

1`

dv arctan
GB9 ~x!

GB8 ~x!
nB~v!.

~D8!

Finally we find the formula quoted in the text, Eq.~52!.

APPENDIX E: SOME DETAILS OF THE T-MATRIX
CALCULATION

In this appendix, we calculateA andB(01).

1. Computation of A

Using the definition ofS and introducing a oscillating
term to regulate the two integrals, we have

A5E dv Gf~ iv!]vS f~ iv! ~E1!

5 i E
2`

`

dv Gf~ iv!eiv01

1E
2`

`

dv ]vln Gf~ iv!eiv01
. ~E2!

The first term is 2ipq0 . Using Eq.~46! and

E
2`

`

dv
eiv01

v
5 ip ~E3!

~the integral is to be understood as a principal part!, we have
with c(z)5 ln@zGf(z)#

A522iu~11g!1E
iR

dz~]zc!~z! ~E4!

522iu~11g!2 lim
e→0

2i Im@c~ i e!2c~ i`!#
~E5!

522igu. ~E6!

We usedc( i`)50 andc( i e); ln(Ae2Df)2iu with A a real
constant. Finally we find Eq.~91!.

2. Computation of B„01
…

B~n!5 i E dv@Gf~ iv1 in!2Gf~ iv!#

2E dv@Gf~ iv1 in!2Gf~ iv!#]vGf
21~ iv!.

~E7!

We replaceGf by the scaling functiongf . The second term
is of order 1 whereas the first isO(T2D f) and can be ne-
glected. We have then
B~n!52E dx$gf@ i ~x11!ñ#2gf~ ix ñ !%]xgf
21~ ix ñ !

~E8!

with ñ5 n/T. We wantB(n501,T50) which is obtained
by taking the limit ñ→1` in the previous scaling limit of
B. To perform this limit we usegf( z̄)5gf(z) and the fol-
lowing expansion forg:

gf~ ix ! ;
x→1`

cAx2D f21 with A5 i coshS a

2
1 ipD f D ,

~E9!

wherec is a real constant@Eq. ~E9! is obtained directly from
Eq. ~33!#. We find

2B~01!5~122D f !F2E
2`

21

dx
eix01

uxu2D f ux11u122D f

2
A

Ā
E

21

0

dx
eix01

uxu2D f~x11!122D f

1E
0

`

dx
eix01

x2D f~x11!122D f
2E dx

eix01

x G .

~E10!

The last term a principal part and is given by Eq.~E3!. We
then use the following identity:

05E
R1 i01

dz
eiz01

z2D f~z11!122D f

52E
2`

21

dx
eix01

uxu2D f ux11u122D f

1e22ipD fE
21

0

dx
eix01

uxu2D f~x11!122D f

1E
0

`

dx
eix01

x2D f~x11!122D f
. ~E11!

We find

B~01!5~122DF!F S A

Ā
1e22ipD f D

3E
21

0

dv
eix01

uxu2D f~x11!122D f
1 ipG

5
g

11g F S A

Ā
1e22ipD f D p

sin 2pD f
1 ipG .

~E12!

A simple calculation with Eq.~E9! shows

A

Ā
52e2 ip~122q0!/~11g! ~E13!

and we find Eq.~90!.
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