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The multichannel Kondo model with SN spin symmetry and SU) channel symmetry is considered.
The impurity spin is chosen to transform as an antisymmetric representation 6f) Stdgrresponding to a
fixed number of Abrikosov fermionEafoa: Q. For more than one channl 1), and all values oN and
Q, the model displays non-Fermi behavior associated wittotrescreeningf the impurity spin. Universal
low-temperature thermodynamic and transport properties of this non-Fermi-liquid state are computed using
conformal field theory methods. A large-limit of the model is then considered, in whidk/N=+ and
Q/N=q, are held fixed. Spectral densities satisfy coupled integral equations in this limit, corresponding to a
(time-dependentsaddle point. A low-frequency, low-temperature analysis of these equations reveals universal
scaling properties in the variable/ T, in agreement with conformal invariance. The universal scaling form is
obtained analytically and used to compute the low-temperature universal properties of the model in the large-
N limit, such as thel' =0 residual entropy and residual resistivity, and the critical exponents associated with
the specific heat and susceptibility. The connections with the “noncrossing approximation” and the previous
work of Cox and Ruckenstein are discussgsD163-182¢08)01920-1]

I. INTRODUCTION AND MODEL previously considered by Cox and Ruckenstein,connec-
tion with the “noncrossing approximation(NCA) . There is
Multichannel Kondo impurity modet€ have recently at- a crucial difference between our work and that of Ref. 7,
tracted considerable attention, for several reasons. First, ilowever, which is that we keep track of the quantum number
the overscreened case, they provide an explicit example of $pecifying the spin representation of the impurity by impos-
non-Fermi-liquid ground-state. Second, these models can H8g a constrainton the Abrikosov fermions representing the
studied by a variety of controlled techniques, and providémpurity) which also scales proportionally 1. As a result,
invaluable testing grounds for theoretical methods dealinghe solution of the model at largd follows from a true
with correlated electron systems. One of the most recent angaddle-point principle, with controllable fluctuations N1/
fruitful development in this respect has been the conformaHence, a detailed quantitative comparison of the ldge-
field-theory approach developed by Affleck and Ludwig. limit to the CFT results can be made. The saddle-point equa-
Finally, multichannel models have experimental relevance tdions are coupled integral equations similar in structure to
tunneling phenomena in quantum dots and two levethose of the NCA, except for the different handling of the
system$ and possibly also to some heavy-fermion constraint. TheT =0 impurity entropy and residual resistiv-
compoundég. ity are obtained in analytical form in this paper from a low-
In this paper, we consider a generalization of the multi-energy analysis of these coupled integral equations and
channel Kondo model, in which the spin symmetry group isshown to agree with the larggdimit of the CFT results. We
extended from SU(2) to SW). In addition, the model has also demonstrate that the spectral functions resulting from
a SUK) symmetry among th& “channels” (flavorg of  these equations take a universal scaling form in the limit
conduction electrons. We focus here on spin representations, T— 0, which is precisely that expected from the conformal
which are such that the model is in the non-Fermi-liquidinvariance of the problem.
overscreenedegime. We shall derive in this paper several The Hamiltonian of the model considered in this paper
universal properties of this SBI) ® SU(K) Kondo model in  reads
the low-temperature regime. Specifically, we obtain the zero-
temperature residual entropy, the zero-temperature impurity N -t
resistivity andT matrix, and the critical exponents governing H=2 Zl Zl €(P)Cyi,Cpia
the leading low-temperature behavior of the impurity specific P
heat, susceptibility, and resistivity. N°-1
These results will be obtained using two different ap- +Jk 2 SA 2 CT‘i tgﬁcﬁ’iﬂ- (D
proaches. It is one of the main motivations of this paper to AS1 ppliap
compare these two approaches in some detail. Sest. 1), . .t . .
we apply conformal field theor§CFT) methods to study the In this expressionc,; , creates an electron in the conduction
model for general values dff andK. Then, we study the band, with momentump, channel (flavor index i
limit of large N andK, with K/N= v fixed. This limit was =1,... K, and SU{) spin indexa=1, ... N. The con-
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duction electrons transform under the fundamental represen-

tation of the SUN) group, with generatorstﬁﬁ (A
=1,...N?—1). They interact with a localized spin degree

of freedom placed at the origis={S" A=1,... N>—1}

which is assumed to transform under a given irreducible rep-

resentatiorR of the SUN) group.

In the one-channel cas& & 1), and wherR is taken to
be the fundamental representation, this is the Coqgblin
Schrieffer model of a conduction gas interacting with a
localized atomic level with angular momentumn)
(N=2j+1).8In this article, we are interested in the possible

non-Fermi-liquid behavior associated with the multichannel

generalization K >1).12 We shall mostly focus on the case
whereR corresponds to antisymmetric tensorsQpindices,
i.e., the Young tableau associated wiRhs made of asingle
columnof Q indices. In that case, it is convenient to use an
explicit representation of the localized spin in termsNof

species of auxiliary fermiong, (=1, ... N), constrained
to obey
N
2 fifa=Q )]
a=1

so that theN?—1 (tracelesscomponents ofs can be repre-
sented a§aB=foB— (Q/N)é,z. For these choices &,
the Hamiltonian can be written dafter a reshuffling of in-
dices using a Fierz identity

K

H=> >

5 i=1

+I¢ >
pp'iaB
In a recent papetthe case of aymmetricrepresentation of

the impurity spin(corresponding to a Young tableau made of
a singleline of P boxes has been considered by two of us.

N
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FIG. 1. Young tableau
state.

corresponding to the strong-coupling

to a new spin representatidRs. which is dictated by the
minimization of the Kondo energy. For the specific choices
of R above, we have proven the following.

(i) In the one-channel cas&K&1) and for arbitraryN
and Q, R, is the “singlet” representatiofof dimension
d(Rs) =1]. It is obtained by bindindN —Q conduction elec-
trons to theQ pseudofermion$,. The impurity spin is thus
exactly screenedt strong-coupling.

(i) For all multichannel case& =2, arbitraryN andQ),
the ground state at the strong-coupling fixed point is the
representatiofRg. characterized by a rectangular Young tab-
leau with N—Q lines andK—1 columns. Its dimension
d(Rs) (i.e, the degeneracy of the strong-coupling bound
statg is larger than the degeneracy at zero coupling, given by
d(R)=(5)=N!/QI(N-Q)!.

The Young tableau associated with the strong-coupling
state in both cases is depicted in Fig. 1. The detailed proof of
these statements and the explicit constructionRgf are
given in Appendix A. These properties are sufficient to es-
tablish the following.

In that case, a transition from overscreening to underscreen- () In the one-channel case, the strong-coupling fixed

ing is found as a function of the “size’P of the impurity

point is stable under RG, and hence the impurity spin is

spin. In contrast, the antisymmetric representations consicdXxactly screened by the Kondo effect.

ered in the present paper always lead to overscredieixg
cept forK=1 which is exactly screengdas shown below.

(i) In the multichannel case, a direct RG flow from weak
to strong coupling is impossible, thereby suggesting the ex-

As long as only the overscreened regime is considered, thistence of an intermediate coupling fixed pdifdverscreen-

analysis of the present paper applies to symmetric represe
tations as well, up to some straightforward replacements.

Il. STRONG-COUPLING ANALYSIS

ing”).
The connection between these statements and the above
results on the nature and degeneracy of the strong-coupling
bound state is clear on physical grounds. Indeed, it is not
possible to flow under renormalization from a fixed point

It is easily checked that a weak antiferromagnetic couwith a lower ground-state degeneracy to a fixed point with a

pling (Jx>0) grows under renormalization for & andN,
and all representatior® of the local spin. What is needed is

higher one, because the effective number of degrees of free-
dom can only decrease under RG. Hence, no flow away from

a physical argument in order to determine whether the renotthe strong-coupling fixed point is possible in the one-channel

malization group(RG) flow takesJy all the way to strong
coupling (underscreened or exactly screened cases
whether an intermediate non-Fermi-liquid fixed point exists
(overscreened cases

Following the Nozieres and Blandimnalysis of the mul-

(K=1) case since the strong-coupling state is nondegener-
ate. Also, no direct flow from weak to strong coupling is
possible folK=2 sinced(R.)>d(R). These statements can
be made more rigoroti®y considering the impurity entropy
defined as

tichannel SU(2) model, we consider the strong-coupling

fixed pointJx = +<. In this limit, the impurity spin binds a
certain number of conduction electrof@ mostNK because
of the Pauli principl@ The resulting bound-state corresponds

Simp= lim lim [S(T) — Spu(T) 1, 4

T—-0 Voo
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where S, denotes the contribution to the entropy which isrepresentation® associated to a single column of lenggh
proportional to the volum#& (and is simply the contribution [corresponding to Eq(2)], one finds using this representa-
of the conduction electron gasand care has been taken in tion

specifying the order of the infinite-volume and zero- o

temperature limits. At the weak-coupling fixed point _ H siMam(N+1—n)/(N+K)]
Simp(Jk=0)=In d(R), while Spy(Jk=)=Ind(Rs) at Smp=In L S (N K]
strong-coupling S, must decrease under renormalization,

a property which is the analog for boundary critical phenom-t is easily checked that indees,,<<In d(R) for all values
ena to Zamolodchikov’s “c theorem” in the bulk. This sug- of N, Q, and K. Note also that this expression correctly
gests a RG flow of the kind indicated above. This conclusioryields Si,,,=0 in the exactly screened cake-=1 (for arbi-

can of course be confirmed by a perturbative calculafion trary N,Q).

the hopping amplitudearound the strong-coupling fixed The low-temperature behavior of various physical quanti-
point! The value of Smp Will be calculated below at the ties can also be obtained from the CFT approach. At the
intermediate fixed point in the overscreened case, and founigtermediate coupling fixed point, the local impurity spin ac-

(6)

to be nonintegetas in theN=2 casé). quires the scaling dimension of the primary operator of the
SU«(N), algebra associated with theN?— 1)-dimensiond|
IIl. CONFORMAL FIELD THEORY APPROACH adjoint representation of SB). Its conformal dimensior ¢

[such that{S(0)S(t))~ 1/t?As at T=0] reads
Having established the existence of an intermediate fixed
point for K=2, we sketch some of its properties that can be N
obtained from conformal field-theoCFT) methods. This is As_m'
a straightforward extension to the SU) case of Affleck and ) ) ) ) R
Ludwig’s approach for S(2).34 The aim of this section is Integrating thls correlatllgn function, this implies tha_t tbe
not to present a complete conformal field-theory solution, bufal susceptibilityxoc /7 '(S(0)S(7))dr (corresponding to
simply to derive those properties which will be comparedthe coupling of an external field to the impurity spnly)
with the largeN explicit solution given below. diverges at low temperature whé6=N, while it remains
In the CFT approach, the modd)) is first mapped at low finite for K<N:
energy onto a (% 1)-dimensional model oNK chiral fer-
mions. At a fixed point, this model has a local conformal
symmetry based on the Kac-Moody algebria‘t\,((SIkll)S

®SUy(K);®@ U(1), corresponding to the spin-flavor-charge

Y

K=N: X0~ T

(l>(K—N)/(K+N)

decomposition of the degrees of freedom. The free-fermion K=N:xjoc~In 11T,
spectrum at the weak-coupling fixed point can be organized
in multiplets of this symmetry algebra: to each level corre- K<N: xjoc~Const. (8

sponds a primary operator in the spin, flavor, and charg
sectors. A major insigftis then that the spectrum at the

infrared stable, intgrmediatg coupling .fi.xed point can be ObTined by coupling a magnetic field to the total spin density
tained from a “fusion principle.” Specifically, the spectrum  Jiop312 |3 deed, the singular behavior is controlled by the

IS otbtalned b_yta(étlngt,hln the_: Sp"} sec]:[or, on th? f”mﬁg ?r?]eading irrelevant operator compatible with all symmetries
erator associated with a given free-iermion state, With gy, ot can pe generated. An obvious candidate for this operator

primary operator of the SHN); algebra corresponding 10 s the spin, flavor, and charge singlet obtained by contracting
the representatioR of the impurity spin(leaving unchanged {he spin current with the adjoint primary operator above,
the flavor and charge sectprsThe “fusion rules” of the jﬁl‘i’ It has dimension % N/(N+K)=1+A,. This

algebra determine the new operators associated with ea ) oo . : o
. . ' . eads to a singular contribution to the impurity susceptibility
energy level at the intermediate fixed point. s . . )
(arising from perturbation theory aecond ordeiin the ir-

This fusion principle also relates the impurity entropy : ;
Simp as defined above to the “modul& matrix” Si of the :Ee(;e\(/gr?txope:a;arlz) of the same nature than fgfo given in
. - Ximp loc -

SUk(N) algebra(this is the matrix which specifies the action anqther irrelevant operator can be constructed in the fla-
of a modular transformation on the irreducible characters of . 3t .
/or sector in an analogous manner, namél&1~ ¢'. This

the algebra corresponding to a given irreducible representé’ . . A
tion R). Specifically, denoting bR=0 the trivial (identity) ~ oPerator has dimensidf/(N+K), which is thus lower than
representation the above operator in the spin sector whera N. This op-

erator coulda priori contribute to the low-temperature be-
R havior of the specific heat, which would lead to a divergent
S,p=In E (5) specific heat coefficien®/T for both K>N and K<N. On
P sg the basis of the explicit largl-calculation presented below,
we believe, however, that this operatomist generatedor
The expression of the modul&matrix for SU((N) can be  model(1) when the conduction band density of stéROS)
found in the literaturé® We have found particularly useful to is taken to be perfectly flat and the cutoff is taken to infinity
make use of an elegant formulation introduced by Doutjlas, (conformal limid, so that the specific heat ratio has the same
which is briefly explained in Appendixes A and B. For the behavior as the susceptibilities abow@: T~ xoc™~ Ximp- If

%xactly at the fixed point, the singular contributions to the
specific heat anémpurity susceptibilityyim,= x — Xpuk (de-
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the model is extended to an impurity spin with internal flavorThe quartic term in this expression can be decoupled for-

degrges of freedoﬁm’\,litbi/sN?Eerator will however show upmally using two bilocal fieldQ(r,+') andQ(r,+') conju-
(leading toC/T~T~(N"K/(N1) for K<N). It also appears gate to 3;B/(+')B;(r) and 3,fl(7)f,(r'), respectively,
(see Sec.VIB if an Anderson model generalization of |gading to the action

model (1) is considered away from particle-hole symmetry.

_[”? S gt 10k S Bf
IV. SADDLE-POINT EQUATIONS IN THE LARGE- N S= fo d72, fo(m)drfa(m) jfo d72 BB
LIMIT
B

We now turn to the analysis of the lar¢edimit of this +f dr i,u(r)(E f1(7)f 4 r)—qu)

model. This will be done by setting 0 “«
K=Ny, JK:% (©) _Nf fdeT’@r,r')Gal(r—r')Q(m')

and taking the limitN—< for fixed values ofy andJ, so _J J drdr’ Q(7',7)>, B (7)Bi(7')
that the number of channels is also taken to be large. In Ref. i

7 (see also Ref. )2 Cox and Ruckenstein considered this
limit while holding Q fixed (Q=1). They obtained in this _J dedT' Or)S (i (). (13
limit identical results to those of the noncrossing approxima- a

tion (NCA). Here, we shall proceed in a different manner .. B andf fields can now be integrated out to yield
by taking Q to be large as well

Q = qoN. (10 s=—Nf fdeT'G(T,T')Ggl(T—T')Q(m’)
This ensures that a true saddle point exists, with controllable
fluctuations order by order in M/ It will also allow us to —NQOf drip(r)=N Trin{[—a,—ip(n)]8(r— ')
study the dependence on the representaftoof the local
spin, parametrized bgj,.'* The approach of Ref. 7 is recov- 1
ered in the limitqgy—0 (or 1). +6(7-, )} +KTrin=8(r—7")—Q(7',7)|. (14
The action corresponding to the functional integral formu- J
lation of model(3) reads This final form of the action involves only the three fielgs
B B 6 and u, and scales globally aN thanks to the scalings
S=-— fo er'O dr’E ciTa(r)Ggl(r— 7)Cio(T") K=vyN andQ=qyN. Hence, it can be solved by the saddle-
la

point method in the larg&t limit. At the saddle point,

8 B Msp(T)=1N become_s stitic and purely imaginary, while

+ fo drX, fi(7)d,f.(7)+ fo drip(7) Qsp=Q(7—7') andQg,=Q(7— 7') retain time dependence
“ but depend only on the time differenee- 7' (they identify

; Jrs ; with the bosonic and fermionic self-energies, respectively
X| X fL(D)f (1) —goN |+ Nf d7>, ¢l (7)Cip(7) The final form of the coupled saddle-point equations for
“ 0 lep the fermionic and bosonic Green’s functior@(7)=
XLEL(T) ol 1) — doBap)- a1y  —(Tf(nf'(0)), Gg(1)=(TB(7)B'(0)) and for the

) ) ) ~Lagrange multiplier field read:
In this expression, the conduction electrons have been inte-

grated out in the bulk, keeping only degrees of freedom at 2:(1)=vGo(7)Gg(7), 2g(7)=Go(7)Gi(7), (15
the impurity site.Gy(i w,)=2,1/(iw,—€,) is the on-site - :
Green’g fuzction ag(socri%ted pWigh the r::)onduction electrory/ 161 the self-energies; andX are defined by
bath. In order to decouple the Kondo interaction, an auxiliary 1
bosonic fieldB;(7) is introduced in each channel, and the G; (iw,)=iw,+A—3¢(iw,), Ggi(iv,) = j_EB(iVn)-
conduction electrons can be integrated out, leaving us with (16)
the effective action

In these expressions,=(2n+1)=/B and v,=2n=/B de-

S :Jﬁd E (o f note fermionic and bosonic Matsubara frequencies. Let us
e |, T4 A7) 07 ol 7) note that the field3(7) is simply a commuting auxiliary field
s rather than a true bosofits equal-time commutator van-
+f driu(7) Z f:fl(T)fa(T)_qu} ishes. As a resultGg(7) is a B-periodic function, but does

0 a not share the usual other properties of a bosonic Green func-

1(8 " 18 B tion (in particular at high frequengy
+ jfo dTEi BB+ Nfo deO dr’ Finally, \ is determined by the third saddle-point equation

X2, Bi(n)fL(1)Go(m— 7)BI(7)f (7). (12) Gf(r=0‘>E%2 Giliwp)e“®" =qp. (17)
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These equations are identical in structure to the usual NCAixed). It is easily seen that in this limit the Green’s func-
equations, except for the last equati7) which imple- tions and their associated spectral densitigsg(w)
ments the constraint and allows us to keep track of the choice= — (1/7) ImG; g(w+i0") obey ascaling behavior(for

of representation for the impurity spin. 7-,,8>T}21, with 7/8 arbitrary)

V. SCALING ANALYSIS AT LOW FREQUENCY s r
AND TEMPERATURE Gt g(7)=Ar B “"'BQt g B (22a

A. General considerations

The analysis of the NCA equations in Ref. 15 can be _ 2814 | @ _ 280p—1 w
applied in order to find the behavior of the Green'’s functions pi(@)=AT™ ¢f(T)’ pa(@)=AgT™"e ¢B(T)'
in the low temperature, long time regime defined By* (22b)
<7< B—» (whereTg is the Kondo temperatureln this . ) )
regime, a power-law decay of the Green'’s functions is found!n these expressiong; s and ¢ g are universal scaling
functionswhich depend only ony and gy and not on the
specific shape of the conduction band or the cutbffese

(Tg1< T<[B—>), scaling functions will now be found in explicit form.

G At g A
f(T) TZAf, B(T) TZAB,

(18)

The scaling dimensions & and 2Az can be determined
explicitly by inserting this form into the above saddle-point
equations and making a low-frequency analysis, as explain
in Appendix C. This yields

B. The particle-hole symmetric representationqy=1/2

We shall first discuss the case where the representgtion
hasQ=N/2 boxes (o=1/2), for which there is a particle-
ehole symmetry among pseudofermions unﬂb&fa. The

expression of the scaling functiog g in that case can be
easily guessed from general principles of conformal invari-
(19 ance. The idea is that, in the Iim‘lt,(l<,8 with 7/ fixed,

the finite-temperature Green’s function can be obtained from
The overall consistency of Eq&L5), (16) at large time also  the T=0 Green’s function by applying the conformal trans-
constrains the product of amplitud8sAg [Eq. (C8) in Ap-  formation z=exp(2w7/B).*" Applying this to the T=0
pendix 4 and dictates the behavior of the self-enerdiesss ~ Power-law decay given by Eq18), one obtains the well-
noting by po=—ImGy(i0™)/7 the conduction bath density known result for the scaling functions£ 7/ 8):
of states at the Fermi levil

Y

2Af:1Ty, ZAB=1+7.

24
2Ag+1 1 2A¢+1 g (;,q :1/2):_( - ,
24(7)~ YpoAs ;) : EB(T)~AfPo(;) nome sinmr
(20)
2Ag
together with the sum rule 0s(7:00=1/2) = _< — (23
sinat
1
Sp(w=0,8=0)=—. (21

with the periodicity requirementg;(7+1)=—g;(7),9s(7
+1)=gs(7). Note that these functions satisfy the additional
symmetryg; g(1—7) =g¢ g(7) indicating thatthey can only
apply to the particle-hole symmetric casg=g1/2. The cor-
qfesponding form of the scaling functions associated with the
spectral densitie22b) reads, witho= /T (after a calcula-
tion detailed in Appendix €

J

The expressionl9) of the scaling dimension&; andAg is

in complete agreement with the CFT result. Indeed, the fer

mionic field transforms as the fundamental representation

the ’S\L(N)K spin algebra, while the auxiliary bosonic field

transforms as the fundamental representation of’tFéKS,u

flavor algebra, leading to £=(N?—1)/N(N+K) and

2Ag=(K?—1)/K(N+K), which agree with Eq.(19) in L -

the largeN limit. Also, the local impurity spin correlation ~ _ 2A¢—1 w

function, given in the larg®d limit by (S(0)S(r)) ¢i(@,0o=1/2)= T(2m) ™ "cosh

*G¢(7)G¢(— 7) is found to decay as ##*s, with A;=2A; o o

=1/(1+ y) in agreement with the CFT resu(f). XF[Af'H (02m) JT[A¢—i (w/2m)]
As will be shown below, however, these asymptotic be- I'(2A¢) '

haviors atT=0 do not provide enough information to allow

for the computation of the low-temperature behavior of the 1 ~ (24)

impurity free-energy and to determine tifie=0 impurity en- ~ . _ _ = 20— 1ainh 2

tropy (4). One actually needs to determine the Green'’s func- ¢e(@.G0=1/2) 77(277) ® “sinh 2

tions in the limit r, 34—, but for an arbitrary value of the o~ o~

ratio 7/8 [i.e., to analyze the low-temperature, low- XF[AB+' (w2m)|I[Ag—i (w/27)]

frequency behavior of Eq$15), (16) keeping the ratiao/T I'(2Ag) '
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Note that thew—0 singularity of theT=0 case is now 1.0
recovered forw>T:

0.8

r.p(@,00=1/2) 1 (1\)1%‘8 (29
w, = I N .

18l Qo= = T(2A0)\ 5

It is an interesting calculation, performed in detail in Appen- .z
dix C, to check that indeed these scaling functions do solve;
the largeN equations(15),(16) at finite temperature in the

scaling regime. That NCA-like integral equations obey the
finite-temperature scaling properties dictated by conformal 0.2
invariance has not, to our knowledge, been pointed out in the

previous literature. 0.0
210.0 -5.0 0.0 5.0 10.0

0.6

O—0
C. General values ofqy
0.6

1. Spectral asymmetry

Let us move to the general case of representations witt
Qo+ 3 in which the particle-hole symmetry between pseudo-
fermions is broken. Thexponenof the power-law singular-
ity in the T=0 spectral densities is not affected by this asym- %2 |
metry. It does induce, howevemn asymmetry of the 2
prefactorsassociated with positive and negative frequencies €% |-
asw—0. We introduce an anglé to parametrize this asym-

metry, defined such that

-0.2

+y\ o . ) .

pi(0—07)~n(y,6) wl=2 400 5.0 0.0 5.0 10.0
W0l

B sin(wA¢—0) 5
pi(0—07)~N(y,0) —— = (26) FIG. 2. Plot of¢; and ¢, as a function ofw— « for different
(- o) ! values of the asymmetry parameter «=0, —2, —5, —» (A;

=0.3).

where h(y,6) is a constant prefactor. The explicit depen-
dence off on gq will be derived below. This corresponds to
the following analytic behavior of the Green'’s function in the

complex frequency plane, @s-0: where the parameter is simply related tod so as to obey

Eq. (28):
—imAi—i0

G(2)~h(y,0) — 55— Im z>0. (27) sina/2(1+ y) — 0]
z =N S w21t y) 1 6]

(30

Equivalently, this means that the symmet@:(8—7)
=G¢(7) is broken, and that the scaling functign(7) must  Fourier transforming, this leads to the scaling functions for

satisfy (from the behavior of its Fourier transfoym the spectral densities
g91(0") _ sin(mA¢+6) 29 - cosi w/2) ~ 1
== — . , = = + ’ =1 y
g(17) Sin(7A¢—6) $1(w.%o) costi (w+ a)/2]cos a/2) drlwtado )

We have found, by an explicit analysis of the saddle-point
and constraint equations in the scaling regime, which is de- sinh(w/2)

tailed in Appendix C, that the full scaling functions for this dp(@,q0)= dp(w+a,00=1/2).

asymmetric case are very simply related to the symmetric sinf{ (o + a)/2]cosi a/2)
ones atgy=1/2, through (3D)
a7 112 The thermal scaling function for the fermionic spectral den-
9 5(7:00) = ———=-0; 5(7,00=1/2) sity ¢¢ and the bosonic oneb, are plotted in Fig. 2 for
’ coshial2) =" various values of the asymmetry parameterWe also note
a7 12 / o \2Mis the expression for the maximally asymmetric case — o

-_ _ , (29 (corresponding, as shown below, gg—0, i.e., to the limit
cosha/2)\ sin 77 Q<N as in the usual NCA
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|
We also note, for further use, the expressions of the full o do )
Green’s functions in the complex frequency pladefined Qo= —1 lim JEGf(w)elwt- (35

by 9rs(z,@)=J " Zdw[ ¢gs(w)/(z—w)]), in the scaling re-
gime for Imz>0:

~ 2i(2m)?Ait
91(2.0) = = S S al2) T (2A,)sin 27A,
rla Zt«a rl a Zta«
e e A T b
ia) Zta
Xco§ mA¢— —=|sin wAi+i——]|, (33
2 2
2(27T)2AB_1
gB(Zia):_ :
cosia/2) T'(2Ag)sin 2mAg
rla Zta«a rla Zt«a
X B+|_277 B_I_27T
i
Xsin wAB—7)sin(7rAB+iT (39

The reader interested in the details of these calculations
directed to Appendix C.

At this stage, the point which remains to be clarified is the

explicit relation between the asymmetry parametand the

parameterq, specifying the representation. This is the sub-

ject of the next section.

Before turning to this point, we briefly comment on the

CFT interpretation of the asymmetry paramefigior ) as-

sociated with the particle-hole asymmetry of the fermionic

fields. The form(23) of the correlation functions at finite

t—ot

In this expression, and below in this sectid®;(w) and

Gg(w) denote thgFeynman T=0 Green’s functions while
the retarded Green’s functions are denoted@3. Using

analytic continuation of Eq16), we have

dInG 32

TR o) - Gyw), (36
dInG a3,
TR g TR0 @

so that Eq/(35) can be rewritten as
. deld In Gi(w) d2 (a))
i, | 4R 0 ) )

_,y(w Gg(w )&EB(‘U)) ot (38

In this expression, the bosonic pdwhich vanishes alto-
gethej has been included in order to transform further the
terms involving derivatives of the self-energy, using analyt-
I|%|ty This transformation is only possible if both fermionic
and bosonic terms are considered. This is because the
Luttinger-Ward functiondf of this model involves both
Green’s functions. It has a simple explicit expression which
reads

D \W(Gs 4,Gg,i) dtGo(t) Gy o —1)Gg (1)

(39

~%

temperature in the scaling limit can be viewed as those of theuch that the saddle-point equatiofi) are recovered by
exponential of a compact bosonic field with periodic bound-derivation

ary conditions. The asymmetric generalizati(®®) corre-
sponds to a shifted boundary condition on the bosen, to
a twisted boundary condition for its exponenjial

2. Relation between gjand 6

Let us clarify the relation between the spectral asymmetry

parameterd, and the parametey, specifying the spin rep-

resentation. That such a relation exists in universal form is a

remarkable fact: indeed is a low-energy parameteaissoci-

5P L
 8Gg(— 1)’

2f,oz(t) = 5nya( _t) y

Sgi(t)= (40)

From the existence ob,,,, we obtain the sum rule

f” f() B()

(Note that there is no logarithmic divergencewgat O in this

Si(w) —yZg(w)

) 0. (41

ated with the low-frequency behavior of the spectral densityexpressior. After integrating by parts and using the
while gy is the total pseudofermion number related by theasymptotic behavior of the two Green’s functions in order to
constraint equatiolil7) to an integral of the spectral density eliminate the boundary terms, we get

over all frequenciesThe situation is similar to that of the

Friedel sum rule in impurity models, or to Luttinger theorem
in a Fermi liquid, and indeed the derivation of the relation

betweenq, and ¢ follows similar lines® It is in a sense a

J In Gf((,l))
Jw

J In GB(O))) 00t
—y ele0,

_.J’“’ dw
qO_I 70"7% Jw
(42)

Friedel sum rule for the quasiparticles carrying the spin de-

grees of freedonjnamely, the pseudofermioris,).
We start from the constraint equati@hi7) written at zero-
temperature as

Since G(w)=GR(w) for >0 and G(w)=GR(w) for
<0 (with GR the retarded Green’s functipnthis can be
transformed using
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< dwdln G . » dw d In GR . .
f _“’ﬂe.wm:f do 71 Gig(®) o+ Trin Gy=—TIN2+ T, In[iw,G(iwy) e’
2T Jw _ 2T Jw n
- (48)
0 dw 4 Gig(w)) .
| ol g )e'“"’*- 43
—2eM 00 | Gfg(w) The situation is somewhat less familiar for the bosonic field.

The first integrals in the right hand side can be deformed irf*S POInted out above, the latter is merely a commuting aux-
the upper plane and their sum vanish®3hus we obtain iliary field (rather than a true bospriWe have found that the

(denoting by argG the argument of3) correct regularization to be used is
mQo=arg Gf(0 ") —arg Gr(—=) ~y[arg G5(0") i
—argGR(—»)]. (44) Trin GB=TNIian nrz\‘N IN[JGg(iwp)]. (49

arg G?(O*) directly follows from the parametrizatio(27)

defining 6. It can also be read off from the behavior of the The factor ofJ takes into account the determinant introduced

scaling functiongy(z) for z= +o0. Thus, from Eqs(33-34  py the decoupling wittB, and asymmetricdefinition of the

we can also read off arGg(0™): (convergent Matsubara sum has been used. Some details

and justifications about these regularizations are given in Ap-
argG(07)=mAi—0—m, argGg(0")=0—mA;. pencjjix (D). We shall perform agllow-temperature gexpansiorrl)

(45 of Eqg. (47), considering successively the particle-hole sym-

Taking into account thatGX(w)~, . _.l/lo and that metric (qo=1/2) and asymmetricop+# 1/2) cases, which re-

Im G$<O we have argEfR(—oo): —7r. Similarly, we have quire rather different treatments.

arg GS(—O@)ZO. Inserting these expressions into E44),

we finally obtain the desired relation betwegg and @ (or 1. The particle-hole symmetric point= 5
@): In this casex =0, so that the first term in Eq47) does
o(1+y) 1 sin 700 /(1+ 7)] not contribute. Let us consider the last term(#Y). Using

the spectral representation ¢ and the definition oE ; we
obtain easily(for A=0)

w2 Jo TG aA—q)/1+ 9]’
(46)

This, together with Eq(33), fully determines the universal

scaling form of the spectral functions in the low-frequency, B +o  wpi()
low-temperature limit. ‘PEJ dTEf(T)Gf(_T):f do . (50
0 = 1+ebe
VI. PHYSICAL QUANTITIES AND COMPARISON
WITH THE CFT APPROACH We substract the value at=0:
A. Impurity residual entropy at T=0
The impurity contribution to the free-enerdger color of o
spin fimp=(F—Fpu)/N reads, at the saddle point V(T)—¥(T=0)= —J doo[pi(w,T)—pi(w,T=0)]
0
fimp=CdoN+ T2, In Gs(i —yT In Gg(i o
mp=Goh + T2 In Gy(iwn) =y, In Gg(ivy) s f 4o, 2P1@) 51
, 0o 1+ef
_deTEf(T)Gf(_T)- (47)

In the second term, we can replaggeby its scaling limit. So
This expression can be derived either directly from thethis term is of ordelO(T?21*1). We know the asymptotics
saddle-point effective actiofin which case the last term of ¢;: ¢¢(X)~y ..C1x?21 1+ Cox?4173, (The termx?A1—2
arises from the quadratic term i@ and Q), or from the cancels due to the particle-hole symmetryhus, the first
relation between the free-energy and the Luttinger-Warderm in Egq. (51) is of the form T2AH11EdxH ¢p5(X)
functional. Fy,,=N?yT Trln G, is the free energy of the —C;x?41"1] (the integral is convergentWe conclude that
conduction electrons. In Eq47) the formulas TrInG are  W(T)=¥(0)+O(T?41*1), so that the last term in E¢47)
ambiguous. We must precisely define which regularizatiordoes not contribute to the zero-temperature entropy in the
of these sums we consider: the actual value of the sumgarticle-hole symmetric case.
depends on the precise definition of the functional integral. Let us express the remaining terms in E4j{) as integrals
For the fermionic field, the standard procedure of adding andver real frequencies, using the regularizations introduced
substracting the contribution of a free local fermion, and in-above. As detailed in Appendix D, this leads to the following
troducing an oscillating term to regularize the Matsubaraexpression, involving the argument of théfinite-
sum holds: temperaturgretarded Green’s functions:
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f 1J’+xd ()| aret Gi(w)| y+1 (talm21+y)] In(14u?)
imp— wi Ne(w)| arcta -5
imp N F G,f, w) 2

1
Simp QOIE =In2— T

0 (1+u?)
(57)
G"
— 'ynB(a))arCtar( B w)) } ) (520  This can also be rewritten, after a change of integration vari-
Gp(w) able, as
In th(iselexgres)esfiont& (respectivelyng) are the Fermire- ( ") 1 s 1+ f( - ) . - }
spectively, Bosgfactor. Simp(Qo= = =Smp=——f| 77— | —2f| 57—
At this point, it would seem that in order to perform a N 77 1ty 2(1+y)
low-temperature expansion of the free-energy, one has to (58

make a Sommerfeld expansion of the Fermi and Bose faawith

tors. This is not the case, however, for two reasdisthe

argument of the Green’s functions appearing in &) are x .

not continuous aw =0, so that a linear term i does ap- f(X)EL In sin(u)du.

pear(as expected from the nonzero valueSpf,) and(ii) the

Green’s functions have dntrinsic temperature dependence, This coincides with the larght limit of the CFT result, Eq.
and the full scaling functions computed above must be useb), in the particle-hole symmetric case.

in Eq. (52). More precisely, when computing the difference

fimp(T) — fimp(T=0), the leading term is obtained by replac- 2. The general case g+1/2

ing trr:e Green’_sdfunqtion ?y Ejhe" shcalfinl? fo_r(ﬁ3). . For go# 3, the first term in Eq(47) also contributes to
These considerations lead to the following expression %he entropy. Indeed, as shown below, the Lagrange multiplier
the impurity entropy(per spin ColoF Simy=Simp/N at Zero ) (1) 4t the saddle point has a term which is linear in tem-

temperature fogo=7: perature. This stems from a very general thermodynamic re-
1 (o lation, WhiCh- is derived .by ta_king the deriyative gf with
Simp=— ;f,xd:"[af(z’)_af(;: — )] respect togg in the functional integral, leading to
L= o 1 <—l Bm(r>>:£ (59
- — do——— a¢(w)sgn ) Blo 0o

m) e el
where the average is to be understood with the adtldn

o - ~ ~ i . i -
_ %J, do[ay(®) —ap(@=—»)] At the saddle point, we thus hawe= df;,/dqy and in par

ticular
+ 2| day(@)sgns) - (53 Ao T 60
w0 elel—1" aTl_, 0% (60
In this expressiona g denotes the arguments of the scalingwe shall directly use this equation in order to compute the
functions, obtained from Ed33): residual entropy, by calculating the linear correctioriro
5 B N\, and then integrating ovey,. This method shortcuts the
~ gi(w) ® full low-temperature expansion of the free enefgy done in
af(w)zarctan—g”(:u = —arctar} cof(wAg)tanh |, the previous sectionwhich actually turns out to be quite a
f

difficult task to perform correctly fogy+ 1/2.1° In order to

(54) calculate this linear correction, we shall relateéo thehigh-
. - frequency behaviorof the fermion Green’s function. As
~ 0} w i N
aB(w)Earctang? = =arctar< tar(q-rAf)tanhE . 24(iwn) —0 whenwy—*o we have
gg(w) L \ L
55
©9 Gf(iwn)zﬁ_ - 2+O( - 2). (62)
From Eq.(53), we obtain witht=tanrA n (i) (iwn)
This shows that-\ is the discontinuity of the derivative of
Smp __ 2 tdu 2arctarn uarctar{g G¢(7) with respect tor at 7=0:
v+1 7)o m(1—u?) t
+ o0
u Cu(l-u?) |- (56)

Let us defineg(r) by
To perform the integration, we note thatdt((d/t){(1

+t%)[Simp/ (1+ )1} = — 2t/ (1 +1t%) and we obtain finally (7)
the simple expression f

ea( 7B — 1/2)

~ “cosharz 97 ©3
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wherea is the spectral asymmetry parameter in Ef) (at 08 ' ' 10.0
this stage we emphasize that the full finite temperature, finite
cutoff, Green’s functiorG; is considered Equation(62) can

be rewritten as 0.6 5.0

[3,9(07)—3,9(87)]

o
A= aT+tan)—(§

S 04 00 O

—[3.9(0")+3.9(B7)], (64)
where we have used th@;(0*)+G;(8~)=—1. Denoting

by py(w) the spectral function associated wigh we have 02 -5.0

_ w[pg(w)_Pg(_w)]
aTg(0+)_(9Tg(B ):J’ do _ . . \ \ . R
1+e P 000 0.2 04 06 0.8 10100
(65 q

0
In the scaling limit, the spectral functiop, must become

particle-hole symmetrisince the effect of the particle-hole
asymmetry in this limit is entirely captured layin Eq. (63)], ) N o _ )
and must coincide withA;T?21~1¢((w/T;qo=1/2). Hence, Universal quantities, characteristic of the fixed point. Re-

following the same reasoning than fé above, the term in markably,a also coincides with the term proportionalTan
Eq. (65) is of order const O(T221*1). Thus we have N\ (while \ itself is nonuniversal, its linear term ifis). It is

tempting to speculate that a deeper interpretation of these
facts is still to be found.

FIG. 3. Residual entropg;,, and a vs q for y=1.5.

N
aT

dA

=a— — (66)
T=0 T

T=0
whereA=9_g(0")+d.9(B8") is the discontinuity of the de- B. Internal energy and specific heat

rivative d,g. A reflects the particle-hole asymmetrygfind The low-temperature behavior of the internal energy in
thus vanishes in the scaling limit. Actually the derivative the largeN limit can be obtained by two different methods.
dAIJT also vanishes a¥—0 as we now show. Consider We shall briefly describe both since they emphasize different
first sending the bare cutoff to infiniyalong withJ) so asto ~ and complementary aspects of the physics.

keep the Kondo temperature fixed. In this linAttakes the In the first method, we use the effective action in the form
form: A=Tf(T/Ty). The low-energy scaling limit, in which (11), beforethe decoupling with the auxiliary bosonic field
Eq. (29 holds, can be reached by fixifigand sendingc to ~ Bi(7) is made. We thus have a quartic interaction vertex
infinity. Sinceg must become particle-hole symmetric in this between the conduction electrons at the origin and the Abri-
limit, this implies thatf(x) vanishes at sma#. Hence, tak- kosov fermions representing the quasiparticles in the spin
ing a derivative with respect to temperature, @&  sector, which reads

=Tf(T/T) we find thatdA/dT |t—-,=0. Thus we finally
K

obtain J ; Q :
N2 | fhfam N %as| 2 ClaCip. (69
9 N N 1<ap=nN N =1
imp
a9 dT|._, €1
%o T=0 One can then perform a skeleton expansion of the free-

where a(q,) is given in Eq.(46). Integrating this equation energy functional in terms of thiateracting Green’s func-
over g, [taking into account as a boundary condition thetions for the pseudofermions and the conduction electrons
value ofs;y,(do= 1/2) obtained aboviewe finally derive the ~ G¢(7) and G¢(7). The first-order(Hartreg contribution to
expression of the entropy this functional vanishes because the spin operator ir(&3).

is written in a traceless manner. The next contribution, at

_ 1 1+ y[f T _f ™ 1- second order, yields the most singular contribution at low
Simp= Nsimp_ 7 | \1+y 1+ y( 9o) temperature and reads
n
_ B
iz yq‘)”' €8) AExJ? fo d7G(7)?Gy(— )2 (70)

with, as abovef(x)=/§ In sinu)du. The expressior(69)
coincides precisely with the large limit of the CFT result At the saddle point, the interacting conduction electron
(6).2° A plot of the residual entropy and of the asymmetry Green’s function isG.(7)*G;(7)Gg(—7), and hence its
parameter as a function ofy, is displayed in Fig. 3si,,is ~ dominant long-time behavior i6.(7)~1/7. Inserting this,
maximal atq,=1/2 and vanishes agp—0 as expected. together withG;(7)~1/7?*1 in Eq. (70), we see that the
In this section, we have discovered that the spectral asymeading low-temperature behavior to the energy reaés
metry parametef“twist” ) « shares a fairly simple relation «c,;T***1+¢,T?+---, and hence to the specific heat coef-
with the residual entropy, given by E7). These are two ficient
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y>1: CIT~T % 1~ T : modified when an Anderson model version of the present
model is considereéhs in Ref. 7. Because the noninteract-
ing slave boson propagator has a frequency dependence,
the exponents of the second-order terms as written in Eq.
(72) are only correct fory>1 for the Anderson model.
y<1: C/T~ const For y<1, the term B~ **ig{®(+/B) is replaced by

B 19?(7B), while B gP(7/B) is replaced by

—aA, (2) . L -
which agrees with the CFT result described above. We not€ ~ °98 '(7/B). As a result, one finds a?wgg/mglspeuflc
coefficienin both caseswith C/T~T~(r=D/(v*1) for

that there is a quite precise connection between this calculdeat RPNV ]

tion and the CFT approach: the operator appearing in th¢>1 andC/T~T~ (=7 for <1, The behavior for

Kondo interaction(69) acquires conformal dimension &{ y<1lis dyg to the Ieadlng irrelevant operator in the flavor

+A{)=1+2A; and has the appropriate structure of the Sca_sect_or_. _S|m|larly_, fory<_1 in the Anderson model, the sus-

lar product of a spin current with the operat8y (trans- ceptibility assomated with th_ﬁqvor (_channel) sectop(f_ is

forming as the adjoint Therefore, it is the largdt version foupd to divergé€, so that a finite Wilson ratio can still be

of the leading irrelevant operator associated with the spirflefined asTx/C for y<1.

sector, as described in Sec. lll. It is satisfying that the leading

low-T behavior comes from the second-order contribution of C. Resistivity and T matrix

this operator in this formalism as well. We note that for the

simple Kondo mode(1), in the scaling limit, the analogous

irrelevant operator in the flavor sectdoes notshow up in

the calculation of the energy in the larbesolution. We

shall comment further on this point below. . . .
The second method to investigate the internal energy is to G(k,k',w+i0")=Gy(k,w+i0") 5 i+ Go(k,w+i0™)

push the low-temperature expansion of the free energy to R

higher orders. To this end, we need to compute higher-order XT(w)Go(k",@+i0"), (74

terms in the expansio(22g of the Green’s functions in the

scaling regime. This computation is detailed in AppendixwhereG and G, denote the interacting and noninteracting

(1)(7—1>/(7+1> We also note that this behavior of the specific heat is

y=1: C/T~In 1/T, (72)

In order to discuss transport properties, we define a scat-
tering T matrix for the conduction electrons in the usual
manner(for a single impurity:

C 3, and leads to conduction-electron Green’s functions, respectively. Taking
a flat particle-hole symmetric band for the conduction elec-
r r tron and denoting by, the local noninteracting density of
_ —2A —4A:(2) L X )
Gi(1)=AiB “°fg¢ E + B "7 0; E states, this yields the local conduction electron Green’s func-
tion in the form
r
+ﬁ“fg<f3>(g) o (72 .
G(a)+i0+)52 G(k,k")Y=—impo[l—impoT(w)].
kK’
T T 75
Ge(7)=AsB ***0s| 5 +Blg§>(5) 7
Following Ref. 4, we parametrize the zero-frequency limit of
1ooa 3 T the T matrix in terms of a scattering amplitu®* as
+p g 2 4 (73)
B
i
Let us emphasize that the exponents appearing in this expan- T(w=0)=— m(l— st (76)
0

sion are not symmetric between the bosonic and fermionic
degrees of freedonThis is because we are dealing with the
Kondo model for which the auxiliary fiel¢bosoni¢ propa-
gator has no frequency dependence in the noninteracting
theory. Also, the expansion given in EJ2) assumes a per-
fectly flat conduction band in the limit of an infinite band-
with (conformal limi. Using this expansion into the expres-
sion (52) of the free energy leads to a specific heatS'=1 corresponds to no scattering at all, whife= — 1 cor-
coefficientC/T~coT?41 14+¢; T4 1+ c,+---. The coeffi-  responds to maximal unitary scatterifige., /2 phase shift
cientcy actually vanishes, so that the behavior in E&) is  and vanishing conduction electron density of states at the
recovered. The vanishing af, was clear in the first ap- impurity site). In the overscreened case, as noted in Ref. 4,
proach, where it followed from the absence of Hartree termsS! is in general such thdS!|< 1, reflecting the non-Fermi-

In the CFT approach, it is associated with the fact that thdiquid nature of the model, and the fact that the actual qua-
leading irrelevant operator does not contribute to the fregiparticles bear no resemblance to the original electrons. In
energy at first order. The vanishing of implies nontrivial  addition here, we shall find the feature tt8ltis in fact a
sum rules relating the scaling functiogsg andg,(c’zg (which ~ complex numbefor nonparticle-hole symmetric spin repre-
we have not attempted to check explicitly sentationdi.e., qo# 1/2).

so that, the zero frequency electron Green'’s function reads

1+t

G(i0")=—impg 5

(77
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We first derive an expression f@! for arbitrary N, K with a single column ofQ boxe$, one has*
and spin representatio=Nq, by generalizing to SUY)
the CFT approach of Ref. 4. There, it was shown Blatan Slzm (79)
be expressed as a ratio of elements of the modsiliaratrix Sr0/So0”
S.,p of the SUN) algebra. Denoting by O the identity rep- The evaluation of these elements of the modiBamatrix
resentation, byF the fundamental representatidicorre-  can be done along the same lines as the conformal field
sponding to a Young tableau with a single pcand byR the  theory calculation of the entropy, described above. Some de-
representation in which the impurity live¥oung tableau tails are given in Appendix B. The result is:

_sin[(N+ 1)/ (N+K) Jexp{ —i [ (1~ 2q0)/(N+K) T} = sin /(N + K) Jexp{ — i [w(N+ 1)(1—2qo)/(N+K) T}

s Si#N/(N+K)]

(79

Notice thatS! has both real and imaginary parts in the ab-a more sophisticated analysis. EquatigB4) implies

sence of particle hole symmetoy+ 5. Im G=A;Agm, and hence R&'—1=27%A¢Agpo/
Let us take the largdt limit of this expression, with [N costf (a/2)]. We make use of the expressi¢B8) de-
K/N= v fixed. This reads, to first nontrivial order rived in Appendix C for the product of amplitudésAg and
obtain
co 1-2qp)/(1+
Gogs T [ ™ codmL-2a0/(1 )]
N(1+y) 1+ sifa/(1+7)]
. . T e
i sif7w(1—2099)/(1+7)] ReS'—1=———Re tarﬁ wAf——). (85
- —————|1-2q,— . (1+y)N 2
N(1+y) siMa/(1+ )]

80
. . (80 After expressingy in terms ofqg using Eq.(46) as
We now show how to recover this expression from an analy-

sis of the integral equations of the direct lafgesolution.

Coupling an external source to the conduction electrons in }‘( (1-2q9) 7
tan

the functional integral formulation of the model, it is easily 2(1—+7)

seen that the conduction electr@nmatrix is given, in the
largeN limit, by

: (86)

—) = —cof(wA)ta

1 Re S! coincides with the real part of E80).
T(w) = ~G(w+i0"), (81) We now consider InSt, for which we need to go beyond
N the scaling limit and use global properties of the Green’s
whereg denotes the convolution of the fermion and auxiliary functions. First expressing; as a convolution on the imagi-
boson Green’s function nary axl|s and US|n@wG0(|w)%_2| ’7Tp05((,()) n the I|m|t
of a flat particle-hole symmetric band we obtain
G(7)=G¢(1)Gg(— 7). (82

Hence, we have af=0 —ipoy2mG(iv)=A+B(v) 87)

2impg
St=1- ——¢G(i0"). (83
N ( with the definitions

We first make use of the scaling limit of the two Green’s
functions, given by Eq(29), and obtain the scaling form of

g: A=f dwG(iw)d,S(iw), (89)
G(r)=Gy(7)Gg( B~ )= iala T
=GNl BT = R @iysin )

(84) B(v)=f do[G(iw+iv)d,S(iw)—Giiw)d,S(iw)].

We note thatjn this scaling limit the particle-hole asymme- (89)

try of the impurity Green’s function has been lost altogether:

a has cancelled completely in thedependence of in this

limit and is only present in the prefactor. Thus, only & In the limit of vanishingv, B(v) can be calculated from the
can be extracted from the scaling limit, while 184 requires  scaling limit of G;. We obtain
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B(v—>0+)=lTy7 (— e im(1-2a0)/(1+)
—2imA¢ ;
+e )sin27-rAf+”T . (90)

On the other handA contains high-frequency information

that is lost in the scaling limit. We find

_ dmy
A=— 1Ty(1_2q°)' (91
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2m2qg(1— 1
ReSt=1- 7 0~ 70/ Aol qO)---, Im St=0| —|,
Nyz ’)’3
1 G
P(T:o)/(nimppu):NQO(l_qO)_2+"'y (94)
Y

while the anomalous dimensions

reaAiS:ZAf:l/y
— 1y? 4+, 20g=1— 1y + Ly? +---.

VII. CONCLUSION

In this paper, we have focused on then-Fermi-liquid

The details of these calculations are provided in Appendix Eoverscreened regimef the SUN) X SU(K) multichannel

Combining Egs(91), (90), (87), (83) we find agreement
with the largeN limit of S; in Eq. (80). For a dilute array of
impurities (of concentratiom;y,), the conduction electron-
self energy is given b)E(w+i0+):nimpT(w), to lowest
order inn;y,. As shown aboveT () is given in the largeN
approach by the Fourier transform &(7)Gg(— 7). The
expansion (72) vyields the long-time behaviorG;(r)
~Ail A+ AP A 4 and Gg(7)~Agl T8+ AY) ¢
+---. From the fact that &;+2Ag=1, this implies
G¢(7)Gg(7)~1/r+ 17?21 +- ... Hence the resistivity be-
haves as

1-ReSt

P(T) Ny g~ CT2 1+

: (92

wherep, is the impurity resistivity in the unitary limit. For

Kondo model. This model has actually a wider range of pos-
sible behavior, which become apparent when other kinds of
representations of the impurity spin are considered. In a re-
cent short papet,two of us have studiedully symmetric
representations corresponding to Young tableaus with a
single line of P boxes. (This amounts to considering
Schwinger bosonis place of the Abrikosov fermions used in
the present work.It was demonstrated that, in that case, a
transition occurs as a function of the siReof the impurity
spin, from overscreeningfor P<K) to underscreeningfor
P>K), with an exactly screened point in betwedP<K).
The largeN analysis of the overscreened regiRecK is
essentially identical to that presented in the present paper for
antisymmetric representations.

Obviously, an interesting open problem is to understand
the physics of the model for more general impurity spin rep-

the same reasons as above, the Anderson model result woulgsentations, involving both “bosonic” and “fermionic” de-

lead to an exponent/s in the regimey<1.

D. The limit of a large number of channels(y— «)

We finally emphasize that all the expressions derive
above greatly simplify in the limit of a large number of chan-
nels y—o. This is expected, since in this limit the non-
Fermi-liquid intermediate coupling fixed point becomes per

turbatively accessible from the weak-coupling drié.The

physics of the fixed point can be viewed as an almost fre%

spin of “size” Q=Nq, weakly coupled to the conduction
electrons. Indeed the largeexpansion of the entrop§b3),
the Green functiorG; (33), and the twistx (46) are

2
1_
mqo( QO)+_”

Simp=—[doln go+(1—-0o)IN(1—-qo)] - 5
6y

5 ea(?—l/z) -
gf(T)Z—m —— -

1+ — In—
Y sinwT

(93

+...,

_ 15 w
Pf(w)—f TtHe

+ ..

a=In 0
1-qo '

grees of freedonfcorresponding respectively to the horizon-
tal and vertical directions in the associated Young tableau
CFT methods are a precious guide in achieving this goal. In
articular, the formulas and rules given in Appendixes A and
allow for an easy derivation of the impuriy=0 residual
entropy and zero-frequendymatrix, using Affleck and Lud-
wig's fusion principle and the identification of these quanti-

“ties in terms of modula matrices.

An open question which certainly deserves further study
to identify which of these more general spin representa-
tions are such that a direct larg\esolution of the model can
be found. This question has obvious potential applications to
the multi-impurity problem and Kondo lattice models.

During the course of this study, we learned of a work by
A. Jerez, N. Andrei and G. Zand on the same model using
the Bethe Ansatz method. Our results and conclusions agree
when a comparison is possibii@ particular for the impurity
residual entropy and low-temperature behavior of physical
quantities.
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FIG. 4. An example of an SU) Young tableaufor N=5) and its associated fermionic representation.

-

n+1
2

APPENDIX A: THE STRONG COUPLING STATE 1
C2:_ tnAil

o , (A6)

We now describe in more detail the proof of the state-
ments in Sec. Il about the nature and degeneracy of the
strong-coupling statdRy.. For a general reference on the
group theory material used in this appendix, the reader igvheren;(1<i<N—1) is the number of columns with length
referred e.g., to Ref. 22. Let us nok&, the number of elec- i in the Young tableay andA is the Cartan matrix of the
trons brought on the impurity site and hythe Young tab- SU(N) group?” Let us denote by;(1<j=<N) the length of
leau with Ay, boxes associated with the representation inthe linej in the tableau. Then we have
which the conduction electrons on the impurity site combine.

Because of the Pauli principléhe length of any of its lines

must be smaller than Kand henceVy, must be smaller than 11 X ) ) 1 ., N-1
NK). Indeed, we must antisymmetrize the wave function CZZN 2 1241 (fi=i+N)*= mNYJF 2 Ny
separately for each flavor.
The Kondo energy is given by N(N—1)(2N—1)
- - , (A7)
E=Jc> SusSpa (A1)
ap
with with NYZEJN:lfJ- is the number of boxes of. Note that

with this definition, allf;’s can be shifted by the same con-
Q , + stant without changing the representatidinis is because a
N Oas Sap=Calp (A2)  column of lengthN can be removed without changing the
representation Equation(A7) can be given a simple inter-
in which f denotes the pseudofermion aadhe conduction  pretation in terms o “particles” occupying a set of fer-
electrons at the impurity site. We can introduce the lineamionic levels. This interpretation was introduced in a slightly
combinations different form by Douglas® Let p;=f;—j+N be the posi-
tion of the particlej. BecauseY is a Young tableau, the
_ SuptSpa - ~ SapSga particles are ordered and cannot be on the same level. Figure
ap™ N azp, Tap= iV2 4 gives an example of the construction of the diagram asso-
ciated with a simple Young tableau.
a<B, Tup=Swa, a=p, (A3) A simple construction of all allowed Young tableaus ap-
pearing in the tensor produ¥t® R (Ref. 229 can be given in
such that this fermionic language. Starting with the diagram associated
with Y, we choosé&) particles and raise each of them by one
2 Saﬁsﬁa:E Ti,e- (A4) level 'beginning \{vith the one in t'he highgst levalVe noEe
B aB that, in the fermionic interpretation, adding a box to line
This leads to the following expression of the Kondo energy:gigiqug?gzit\?err]aiﬁlrllz?gfh;h particle up by one levglAn
2F Let us denote by; the positions of theN particles inY,
— =C,(Rs0 —C5(Y)—Cyx(R) (A5) and byp; the new positions in a given allowed component of
Jk Y®R. The Kondo energy is given by

Sup=fhig—

in which C,(Z) denotes the quadratic Casimir operator of
the representatiod. The representatioR is the specific

component ofY ® R associated with the bound state formed N P Ny 2N-1

by the impurity spin and the conduction electrons at strong E= AN J.Zl (p'7=pi)— N T_C2(R) '
coupling. We recall thaR is a column of lengthQ in this (A8)
paper. We have to minimize over all possible choices of

and of Rg.

First let us recall that for a general representa¥orC, is  The last two terms are constaiR is held fixed and can be
given by dropped in the minimization process.
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FIG. 5. An example of the general composition rule explained in the text. We show the fermionic diagram associat¢dthéth
resulting fermionic diagrams and their transcription in terms of Young tablébuts. arbitrary in this example as shown by the dots

The p;'s can be decomposed in two sets: those for which Srr =Cpnke" quiNE'/(NM)de[ezwipip'j IIN+K)] (B1)
p/ =p; (we haveN—Q of them and those for whichp/ Y ’
=pi+1 (Q of them. Let us denote by the sum of the with p=;p;/N, p’=;p;/N andCy  is a constant which

latter ones. We have depends only ol andK. Since for the trivial representation
L No IN-1 0, thep’s are the consequent integers ,Q,1. N—2N—1,
E=—|Q+2p— Ny “CR)|. (A9 Sor involves a determinant of the form
AN 2N 8
1 1 1 1

Thus the lowest energy is achieved for the smallest possible
value of P. Since a given shifp—p+1 can only appear

once in the sunfbecause double occupancies are forbidden z z - ., 7
and a given particle cannot be raised twjcthe absolute . . . .|
minimum is obtained when we sum on all the lowe&3t ) ’ ’

shifts. This implies that the diagram associated withasQ AN R A A
particles on theQ lowest levels(from 0 toQ—1) and none AN N1 gNEL N
1 2 N—1 N
on theQth level. _
The upper part of the diagratabove levelQ) is then  wherez;=?"Pi/(N*K) fp, . py} being the positions of

determined by the maximization df\,. Going back to the fermions corresponding to the representafnThis is just
language of Young tableaus, the minimum is thus achievethe Van Der Monde determinatt(z) =1II; ;(z;— z;).

whenY is a rectangle of heightl—Q and widthK, andRg, To calculate theT matrix, we also need to know the
is given by the same tableau with the first column removedS-matrix element between the fundamental representdtion
Two cases must thus be distinguished and an arbitrary representati® For F, the positions of the
(i) For (K=1) and for arbitraryN andQ, Rgis the trivial ~ fermions are 0,1,2 .. N—2,N. ThereforeS¢ y involves the
(singled representatiofiof dimensiond(Rg) =1]. determinant
(i) For(K=2, arbitraryN andQ) the dimensiord(R)) is
larger than the dimension &. Indeed, denoting byl (Rs) 1 1 -1 1
the dimensionR. for K channels, we have the recursion 7 7 S NP
relation (from the “hook law"?%) ; 2 2 ! g
Z1 Z; ot Iy-1 I
dK+l (N+K)(N+K—=1)--«(N+K-Q+1) : : : :
d¢ (Q+K)(Q+K—-1)---(Q+K+1—-Q) AL0) N2 A=z . N-2 N-2
2B e Iy

(because€)<N). It increases withK. The K=2 case is just

a column of lengthN—Q which has the dimension dk.  This determinant has the same antisymmetry propergy’sn
Moreover the inequality is strict fak>2. as the Van Der Monde determinant. However, the present
determinant is one order higher thAifz) as a homogeneous
polynomial in z's. A little reflection shows it is¥;z,)A(2).

APPENDIX B: CONSTRUCTION OF MODULAR . .
Finally we find

S-MATRICES
. ! H J— N
If_two r_epresentz-monﬁ an_d-R correspond to fermion SF'R=e‘ 2wip/(N+K)E 2Dy N B2
configurations  with  positions {p;,...,pn} and Sor “

{p1, -...py} (See Appendix A respectively, then the
modularS-matrix element is Using this formula we deduce E79) from Eq. (78).
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APPENDIX C: SOLUTION OF THE SADDLE-POINT A gt o) =[N—3¢(i wp) 20s_ Ao i wp)
EQUATIONS IN THE SCALING REGIME r 9 (o) =[h=2e(lwo)15 sl(ien
: . . . . —o(img)],
In this appendix we solve E@15) in the scaling regime oi(ioo)]
as explained in Sec. V A and obtain the scaled spectral den-
sities and Green functions.
. ) L 1
1. Scaling functions A; 1gB 1(| V)= (3 —EB(O)> BZAf
First we show that Eq29) is the solution of the saddle
point equations in the scaling regime. We deal with an arbi- —Af[og(ivy) —og(0)] (C3)

trary go. Let us denote by g the scaling function of the
fermionic and bosonic self-energies o
with iw,=i(2n+1)7 andiv,=i2n#. The termi w, in Eq.
- - T 16) vanishes in this scaling limit becaugg g<1. We as-
—Ag, p e (—) cy B
Zia(1) =R B It.8 €D cume that at zero temperature

Gy, is the local Green function for the conduction electron.
Its density of states does not depend DnSo its scaling

form is A—Ef(0)=%—23(0)=0 (C4

Po™

Col D=~ G sinmrp)’

(C2
so § disappears of these equations at lower order. Only
with po=— (1/7)Im Gy(w=0). Using this formula and Eq. ot(iwn) = o(iwp) andog(ivy,) — o(0) have a scaling form.

(15), o g are related tag; 5. We insert the scaling form Wg insert our ansatz into. EqC3) with the following
(223 into Eq. (16). Matchihg the power in3 leads to 2, Fourier transform formulapwvhich follow from Ref. 24, Eq.

+2Ag=1 and (3.631];

o (2m) T2 3 (~ )™ (124 )
911 ) = oS al2) T (1—A(— wyf2m + 1al2m T (1— A+ w27 — ial2m)’

(C5a

_ (27?5720 1~ 1)" I (1-2)
9ol )= oS al2) T (1— Ag— wyj2m + i al2m) T (1— Mg+ vyf2n — ial2m)’

(C5b

. - i ypo(2m)228 1 T24e(— 1) 11 (— 2Ap)
oi(iwn) —og(iwp) = e A R ~(n=0), (C50
cosia/2)T' (53 —Ag— w27+ 1al2m)['(53 —Ag+ w /27— ial27)

po(2m) 2 T2~ )7 In(— 24 )

og(ivy) —og(0)= — — —(n=0). (C50
B ® cosal2)T (3 —A¢— v, /27 + ial2m)T (5 — A¢+ vyf2m — i al27)
|
We see that Eq29) is the solution of Eq(C3) provided — \ -3 ((iwg)
that the following conditions are met. ) oAt 12A
(i) The precise form of the cancelati¢@4) at finite tem- _ | ypoAg(27)="8" "T=7BI'(—2Ap)
perature iqat leading order ifT) cosial/l2)['(—Ag+ ial2m)'(1-Ag—ial2m)’
(C7)
(i) Equation (19) is obeyed: A;=1/(1+7), 2Ag
=y/(1+7y).
i_EB(O) (iii) We have the relation between amplitudes:
_ poAH(2m)?ATIT?AT (— 24¢) 205=—2yAAgpol (1—2A5)T(2A5)
cosi@/2)T' (3 — A+ i al2m) T (12— Ag— i al2m) ISin(mAg— i a/2)[2 .

(Co) % coslt(al2)
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In our scaling formsg is the same for the fermionic and the
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Foo T A
. . . —itu
bosonic function. One can check easily that for a more gen—J dt(—cost( wt)) e

eral ansatz withw; and ag the saddle-point equations imply

ai=ag.

2. Spectral densities

We calculate now the scaled spectral density from the
above scaling function. Denotingj=—1 for fermions and

=1 for bosons we have the general formula

4o @ TE
Gf’B(T):_J piple)de O=7<pg.

—» l_ §e7ﬂ£
(C9
In the scaling regime, we have to solve
ga(x— 112 / 2A¢ g
cosh al2) | sin( wx))
+oo e—xu
= u)du 0O=x=1. C10
| et €10

Settingt=i(x— 1/2) we see it is sufficient to solve

e—iat

- 241
cosh a/2)| cosh wt))

+ o itu 1
- f,w eu/z_—_u/z¢f,s(u)du [Im t]<5. (C11)

e
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:(ZW)A—lr(A/2+ iu/2m)I'(A/I2—iu/2)
I'(A)
0<AK1l
u real (C12

[see formulg3.313.2 of Ref. 24, we find the result given in
the text(24):

- 1 oA 1 w
¢i(w,0o=1/2)= —(2m) =21~ “cosh;

I[A¢+io2TT[Ai—i w/2m]
T(2A9)

~ 1 W
¢e(0,qo=1/2)= ;(ZW)ZABflsth

I[Ag+i w27 T[Ag—iw/27]
T'(2Ag)

(C13
The asymptotic behavior follows from formul®.328 of
Ref. 24.
We then derive the full Green function by taking the Hil-
bert transform

9(2)= f dxd)( ). (C19
We find Eq.(33) using the following.
(i) The representation
1 oo
—=—if eMzmWg\  Im z>0. (C15
Z—U 0

Due to the properties of Fourier transformation, we can just

solve for =0, and obtain the solution for arbitragy with
Eqg. (32). With

(ii) The Fourier formula which inverses E@12).
(iii) The formula

a1 BT(AR2—iBzI2m)T(1-A) [0<A<1

7w T'[1— A2 —i(Bz/27)] zreal, (€16

[ —
0 [sinh(7x/B)]*

which results from formul43.112.1 of Ref. 24. we substract the relation 3t=0 and take into account the
Finally, we comment on the treatment of the constraintasymptotic behavior oé; given by Eq.(25) to obtain

equation(17) in our derivation of the scaling functions. The

relation betweerx andqg has been derived from a Luttinger

sum rule, which holds at zero temperature. So one may fo dx(¢ ()= e?x| 28t

worry whether the scaling form does satisfy the leading low- —w f cosia/2) T'(2Ay)
temperature corrections to tile=0 constraint equation. We

show now that this is actually the case. Starting from Eq. sgnxa¢¢(X)

(17) written as: j dx Tyl — . 0 (C19

It is a rather strong constraint on the scaling functinthat

C1
(€179 this equation should hold, and it is satisfying that the explicit

+ o
jﬁx dwpi(w,T)Ne(w)=0q
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form obtained forg; does satisfy EqC18). This proves that
¢ is really a solution of the full systeiti5),(16),(17) in the
scaling regimeat fixed @.

3. Higher-order terms in the scaling expansion

Here, we give some indications on the derivation the ex

OVERSCREENED MULTICHANNEL SUN) KONDO ...
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In the following we will denote by Tr the regularization
with n®" and by Tt,, the regularization of Eq49). We
note that Tg,,=(Tr, +Tr_)/2 as can be checked explicitly
using a spectral representation of the function to be summed.

Let us introduce the following notation for any quantity
(function of \): A\,A=A—-A"* As the free energy is

pansion in Eq(72). Let us start from the long-time expan- Particle-hole symmetric, we have

sion for T, '<7<p

G (T)~—f+A%2) G (T)~i+£ (C19
f P2A B 2

in which @ and A\ are exponents to be determined below.

Then we have
Gi()~AiCopi_ 10?2 T+ APC, 101, (C20)

with C,=fdt(e'/t**"1), and a similar expression fa@g.
We can then deduce the expansion&efindX 5, and insert
them into the saddle-point equation. We find

1-2A (2) Coa A
1) f _Af C.-1 R T YL2a,7BPO 28
AiCar-1  AZCS ™
f f2A,-1
2
YO\AE P
I
(Cc2)
- 2
w! 2 _ A5Cr-1 >\+174AB__C—2A‘Apr 244
AsCoa,-1  AZC2 @ B ™ @
B B-2a5-1
2
C.APpo
- W
T

The first order yields

—T= PoAfAsczAfczAB— 1= YPOAfAsczAsczAf— 1
(C22
which, using

Ca-1%AC,, (C23

gives EQ.(19) again. The second equation leads\e «
+1-4A;.
First suppose. <1: in this case we must drop theterm
but we have
Co-1Cr—1 C.Cy

= 1
Cong-1Caa,—1 Caa Coy,

(C24

which impliesa=2A; or a=2A;—1 [taking Eq.(C23) into

account. So this possibility must be rejected. Finally we are
lead toh=1 anda=4A;. The higher order corrections can
be dealt with in a similar manner. Restoring the scaling func-

tions, this leads to Eq72).

APPENDIX D: CALCULATION OF THE RESIDUAL
ENTROPY

1. The formula of the free energy

A=A, (T TrIn Gs)— yA\(T Tr In Gp). (DY)
Let us consider
_ lwp t A =3 (i wn)
¢('w“):m( iwn—x—zf”awn)) °2
such that
AT Triln Gy =—(7=0"). (D3)

As ¢ is particle-hole symmetric, we have(7=0")=
—¢(r7=07). As its asymptotic behavior is¢(iw,)
~ 2\ iw,, its discontinuity is ¢(7=0")—¢(7=0")=
—2\.

We obtain

A (T Tryln Gy)=—N\. (D4)

This implies that the bosonic term does not contribute to Eq.
(D1). But there is an analogous relation for the boson: we
first calculate the discontinuity &tz from the saddle-point
equations, use an analogous functiah, and obtain

A\ (T Treln Gg)=+(1—2q,)J/2. So we find

So we have checked that E@9) is the right regularization
for the bosonic term.

2. Derivation of Eq. (52)

We consider first the fermionic term. Le®Gq(iw,)
= 1w, be the Green function of free electrons. We have

1
TTrin Gi=—T In 2—;] do(Im In Gi—Im In G)
R

XNe(w)

1 Gf’(x) T
=—TIn2+ —J dw| arctan——+ —
7R Gi(x) 2

—Wﬁ(—x)) Ne(w) (D6)

’
w

:irwdw arctaﬁw—— Ne(w).
T) - G/f'(X) 2
(D7)

The bosonic term is obtained by an analogous calculation. In

We first give a few more details on the regularization inthe particle hole symmetric case considered in the text the

Eq. (47). We will check that Eq(49) is the right formula for
the pseudoboson.

three regularizations for the bosonic term are equivalent. We
have
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1(+=
=T TrgymIn Gg=— ;f do Im IN[JG(w)]ng(w)

+oo n

X
=—— dw arctan—— Ng(w).
™) G (x)

(D8)
Finally we find the formula quoted in the text, E&§2).

APPENDIX E: SOME DETAILS OF THE T-MATRIX
CALCULATION

In this appendix, we calculatd and B(0*).

1. Computation of A

Using the definition off and introducing a oscillating
term to regulate the two integrals, we have

A=f do Gi(iw)d, 2i(iw) (ED
=iJ dw G(iw)e'®”
+J dw d,In G(iw)e'“°". (E2)
The first term is 277qy. Using Eq.(46) and
i eimo+
f dw =i (E3)
— o0 w

(the integral is to be understood as a principal pave have

with () =In[zG(2)]

A=—2ie(1+y)+f dz(9,4)(2) (E4)
iR
= —2i0(1+y)—lim 2i | i€)— (oo
16(1+7y) elino i Im[¢(ie) = ip(ioe)] (E5)
= —2iy8. (E6)

We usedy(i)=0 and(i€)~In(Ae®*)—i0 with A a real
constant. Finally we find Eq91).

2. Computation of B(0%)
B(v)=if do[Gi(io+iv)—Gi(iw)]

—f do[Gi(iw+iv)—Gi(iw)]9,G; iw).

(E7)

We replaceG; by the scaling functiomy; . The second term
is of order 1 whereas the first ©(T?*1) and can be ne-
glected. We have then
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B = [ dxlg i 0+ 1-g(ix3)} a7 HixD)
(E8)
with = »/T. We wantB(r=0",T=0) which is obtained
by taking the limitv— +% in the pr_evious scaling limit of

B. To perform this limit we usey;(z)=gs(z) and the fol-
lowing expansion fog:

o

g:(ix) ~ cAXA™1 with A=i cosf{2

X— + %

+i7TAf),
(E9

wherec is a real constarjEq. (E9) is obtained directly from
Eq. (33)]. We find

—B(07)=(1-24A¢)

J‘ild eix0+
- X
—» |X|2Af|X+l|172Af

A (0 ix0
—=| dx
Afl |X|220(x+ 1)1 24

o ix0 ix0
+ | dX——————— | dXx
Jo X281 (x+ 1)1 21 j X

(E10

The last term a principal part and is given by EG3). We
then use the following identity:

eizO+

N
R+i0* Z28(z+ 1)1 %A

1 ix0
=— dx
fﬁm |X|2A,|X+1|1—2Af

) 0 ix0
+e‘2'”Aff dx
~1 |x|PAr(x+ 1)1 2Ax

- eixo+
+ | dX———m——.
fo X2A1(x+ 1)1 24

(E1)
We find
A aim
BO")=(1-2Ap)| | =+ 2™t
A
0 gix0”
X d +i
f_l w|x|2Af(X+1)1—2Af ™
Y ~2imA '” -
=—||=+ = +im|.
1+y(\A © )S|n27rAf '
(E12
A simple calculation with Eq(E9) shows
i: — g im1-2d9)/(1+y) (E13
A

and we find Eq(90).
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