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Nonlinear quantum magnetotransport in a strongly correlated two-dimensional electron liquid
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Experimental and theoretical studies of nonlinear quantum magnetotransport of a nondegenerate two-
dimensional electron liquid formed on the surface of liquid helium are reported. Measurements of the magne-
toconductivity as a function of the input voltage are done using the edge magnetoplésmMBndamping
method. A nonlinear theory based on the many-electron self-consistent Born approxi(&&iBA) is intro-
duced to explain the data. It is shown that the nonlinear decreasg,afbserved at strong magnetic fields
(B~3 T) is due to the cold quantum nonlinear effect caused by the peaked structure of the electron density
of states. At weak fieldsB<1 T), the heating effect competes with this effect and become of the same
magnitude. The magnetic field dependence of the nonlinear narrowing of the EMP damping is in good agree-
ment with the nonlinear many-electron SCBA0163-18208)07728-3

I. INTRODUCTION guanta or ripplonsthe effective collision frequency of elec-
tronsv(B) increases faster with the magnetic fi@dhan the
Quantum magnetotransport in two-dimensiof@d) elec-  cyclotron frequencyw.. This means that the Hall angle or

tron systems is of fundamental interest due to the singulathe sideways motion of electrons decreases with increasing
nature of these systems in the presence of a strong magnefitgggnetic field; a behavior that is opposite to the classical
field oriented normal to the 2D plane. The quantum HallHall effect. For vapor atom scattering at rather high tempera-
effect of degenerate 2D electrons in semiconduéfoend  turesT>1.5 K, this unusual behavior makes the high cyclo-
the unusual magnetoconductivity behavior of nondegeneratgon  frequency  approximation «(>v  0Or 0y

2D electrons on the surface of liquid helidfioriginate from  =e?nv(B)/mw?, heren is the electron density amd is the
the peaked structure of the electron density of states in strorfgee electron magsnapplicable in the limit of strong mag-
magnetic fields. netic fields. In Refs. 3 and 8 the extended SCBA was intro-

It is known that in 2D electron systems the usual Bornduced to describe the unusual Hall effect. In this theory, the
approximation leads to a magnetoconductivity,= for =~ SCBA is formulated for the effective collision frequency
elastic scattering at static impurities, due to the fact that the’(B), which determines quantum magnetotransport by
electron encounters the same scatterer multiple times and timeans of elementary equations for the conductivity tensor.
collision duration becomes effectively infiniteThe same For low electron densities, the extended SCBA perfectly de-
approach for inelastic scattering within the lowest Landauscribes the experimental data upBe-20 T.
level makeso,,=0 due to thes-function structure of the Another unexpected behavior of,, appears at low tem-
unperturbed density of states. The generally accepted way @leratures where the electron-ripplon scattering dominates.
treating such a singular system is the self-consistent BorAccording to Ref. 4, the energy exchanged at a collision,
approximation(SCBA),6 which takes into account the Lan- fiw,, increases with the magnetic fiell faster than the
dau level broadening due to the interaction with scatterers. lhandau-level broadeningj, due to the unusual ripplon dis-
this case, the duration of the collision at impurities is propor-persion wqocq3/2, which breaks the elastic approximation
tional to the lifetimer, or inversely proportional to the Lan- (Zwy<I") previously used in the single-electrorand
dau level broadenin§f =#/7 , which results in a finite con- many-electrotf theories of quantum magnetotransport of SE
ductivity: o, 1/T". For inelastic scattering, the final result on helium.
depends on the relation between the energy exchanged at aThe remarkable properties of SE on superfluid helium al-
collision #Aw and the level broadenifty In the limiting  lows the Landau level broadenify to satisfy the unique
case fiAw<TI', electron scattering can be approximately condition"<kgT<#w.. According to Ref. 11, under this
treated as elastic. condition, new nonlinear magnetotransport phenomena may

In a nondegenerate electron system like surface electroraccur without heating of the electron syste£T). These
(SB) on helium, the linear magnetotransport is rather unphenomena are of pure quantum nature, since they are
usual. In the ultraquantum limit, for both kinds of scattererscaused by the narrow peaked structure of the density of states
available in this systenfvapor atoms and capillary wave and therefore can be used for experimental studies of the
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many-body properties of a 2D electron liquid in quantizingand the results of previous theoretical approadi$es. 1\).
magnetic fields. The nonlinear analysis presented hg@ec. IV B) proves that
Physically, the cold nonlinear magnetotransport effect carthe narrowing of the SE magnetoconductivity with increas-
be explained as follows. For example, consider electron scatng amplitude of the input voltage observed at strong mag-
tering on helium vapor atoms, which can be treated like elasnetic fields and at low temperatures can be perfectly under-
tic scattering on static impurities, since the time duration thastood in terms of the quantum cold nonlinear effect.
an atom spends within the electron orbit of radils
=hc/eB is much larger than the orbit lifetime. In the
presence of a driving electric fielg, the drift of an electron
orbit with velocityu can reduce the amount of multiple scat- Here besides the considerable reduction of heating, which
tering on the same scatterer, if the time duration which ans important for studying the cold nonlinear effect, the EMP
electron spends near the impurity,=|/u becomes shorter damping method serves as an alternative to the capacitive
than 7=#/T". As the basic linear magnetoconductivity prop- coupling technique in the Corbino geometry. The latter
erties of a 2D electron system is caused by multiple encourproved to be quite effective for measuring, at relatively
ters of the same scatterer, this effect reduces bgtrandI".  high temperatures where the vapor atom scattering domi-
The cold nonlinear effect can also be explained in anothenates. At low temperatures and strong magnetic fields the
way, which is more appropriate for electron-ripplon scatter-Corbino technique requires many precautions to avoid the
ing, which is analogous to electron-phonon scattering in solexcitation of EMP waves, which causes spuriousness in the
ids. Strongly correlated SE are in equilibrium in the center-experimental data. Such waves are excited due to small de-
of-mass frame, which moves with the drift velocity.  viations of the system from axial symmetry or a slight tilt.
Relative to this frame, impuritiee&apor atomgand ripplons  The EMP damping method used here is immune to asymme-
move with the velocity— u in the opposite direction, and the try, and consequently the excitation of EMP waves is an
energy transfer between an electron and a scatteven for  excellent tool for studying the quantum magnetotransport of
electron-impurity scatterijgcan no longer be neglected. The SE at low temperatures.
additional energy exchanged at a single collisibA w In the EMP wavé*'> which propagates along the edge
=#q-u (herefq is momentum transfgican be inconsistent of the electron pool, charge density fluctuations are localized
with the Landau-level width, ifiAw|>T". For both kinds of ~ only near the edge within a characteristic widthAt strong
scatteringg=1/1 which makes the two nonlinear criteria magnetic fieldsa is the width of the transition region, where
found here ¢4<#/T" and#|q-u|>T) equivalent. Therefore the electron density changes smoothly from zero to its bulk
the effect can also be considered as the nonlinear breakdowialuen.
of the elastic approximation. The electron sheet in the present work has a circular ge-
In general, both the cold nonlinear effect and the heatinggmetry with radiusR, which is shaped by an assembly of
effect appear to be of the same importance for the SE oglectrodes. The inner electrode is 10 mm in radius, which is
helium, due to the relatively low-energy relaxation rate ofsurrounded by four outer electrodes that are identical and arc
the electron system. The energy collision frequemgyis  shaped. The outer radius of the assembly is 15 mm. The
approximately three or four orders of magnitude lower tharassembly is situated~1.0 mm under the liquid helium sur-
the momentum collision frequenay. To reduce heating and face. A numerical study of the charge distribution profile
to observe the quantum nonlinear effect in a real experimergives a~0.3 mm. The electron density was estimated
with SE, we use the edge magnetoplasribP) method of  from the depth of the liquid helium and the applied dc volt-
measuring the conductivity,, described in Refs. 4 and 12. age. The experiment was carried out under saturated electron
According to this methody,, is found from the EMP damp- density conditions with fixeah=3.5x 10" cm™2.
ing coefficient. In this case, the very narrow strip of SE near The cell containing the electrodes is mounted on a dilu-
the edge of the electron pool is heated and absorbs enerdipn refrigerator. Resistance thermometry was employed to
from the electric field. At the same time, due to the verymeasure temperature. At low temperatures the resistance
short electron-electron autocorrelation time, the electrorthermometers have been calibrated from fli¢ée melting
temperatureT ., is the same within the whole electron sheetcurve. Although the thermometers are not inside the cell, we
and all electrons take part in the energy relaxation. Thus théound that the temperature difference between the thermom-
effective energy collision frequency that enters the energgter and the sample is negligible, which we concluded from
balance equation increases by approximately one order dhe fact that no hysteresis was found in a temperature sweep
magnitude, which makes heating practically negligible atup and down.
strong magnetic fields. The EMP is excited by an ac voltage of frequenoy
Preliminary experimental results showing the nonlinearapplied to one of the outer electrodes. The voltage induced
narrowing of the EMP damping were reported in Refs. 12by the EMP is detected on the opposite end. The resonance is
and 13 for the ripplon scattering regime. observed by sweeping the frequency of the ac voltage. The
In this paper, we present a detailed experimental study o$ignal analyzed by a two-phase lock-in emerges as a typical
nonlinear quantum magnetotransport of highly correlated SEesonance curve. The basic resonante 1l is somewhat
on helium by means of the EMP damping meth&ec. I).  noisy (see Ref. 4 and there is a low-frequency distortion,
To interpret the data, we develop the nonlinear manywhich is due to the usual Hall effect. Therefore we mostly
electron SCBA theorySec. Il. As a probe for the many- used them=2 resonance to perform the analysis. This
electron SCBA, the limit of linear quantum magnetotransporichoice does not affect the conductivity results, since practi-
is analyzed and compared with available experimental dateally the same damping coefficient was found for the third

Il. EXPERIMENT
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bility determined independently. Then the conductivity ob-
tained from the EMP damping is in agreement with the the-
oretical and experimental results of Refs. 18 and 19.

EMP waves of the 2D electron liquid are excited by an ac
voltageV;, applied to one of the outer electrodes. Thus the
external ac electric fieldz[”= - V®(©), is mostly localized
V,=3mV near the gap between two neighboring electrodes and can be

; estimated a¥/;,/d, whered is the helium depth. The real
electric field responsible for EMP dampingy=—-V®, is
produced by electron density perturbatiofrs In general, it
is very difficult to find a direct relation between this fi
; - 1 s s s andV,,. Nevertheless it is possible to establish the frequency
and magnetic field dependencies of the proportionality coef-

Frequency (kHz) ficient betweerE; andV;,, which we employ when compar-
ing our experimental data and theory. For this purpose we

FIG. 1. The experimental signal from the biphase lock-in am-Use€ the qualitative analysis of the EMP dispersion introduced
plifier (X: in-phaseyY: out-of-phasgas a function of frequency for in Ref. 16(an analogous method was also described in Ref.
T=0.3 K,n=3.5x10’ cm 2, andB=1.8 T. Solid curves repre- 20).
sent the results obtained by fitting to Lorentzians. Employing the model of straight boundafEMP waves

propagate along thg direction, and the gap between two
and fourth resonances, in accordance with the basic concepeighboring electrodes is along tlyedirection, the EMP
of EMP waves. dispersion equation«{— wgyp) Q=0, can be found combin-

The resonance frequenay;, and the damping coefficient ing the continuity equationwQ~j,(y~a) and the equation
1/7, are obtained by fitting the observed resonance curve téor the current density at strong fields (> o)
the following formula based on the Lorentzian line shape,

Vo (MV)

jy=0yxdP/ox. (3)
Y(0;Cq,Cq,CoAT,0m,Trm)

The potential of the EMP wavé is proportional toQ with
Co eodT (1) a geometrical factor dependent anlf we take into account
02— w?+ 2i ol Ty, ' that the external potentiab(®) should be added td at the
right-hand side of Eq(3), then the relation betwee@ and
whereAr, oy, and 1k, are real parameters, where@g,  V,, can be written as
C,, andC, are complex ones. The exponential factor in Eq.
(1) takes into account the delad,r, of the signal because of Tyx
the electronic circuit. The terms containifig andC; elimi- Q« w_—wEMPVin- (4)
nate the baseline offset, which could arise from the influence
of resonances with othen numbers. Fitting was done itera- We found the same result by employing a more detailed
tively. Typical resonance graphs of the output signal and thanalysis of the continuity equation and boundary condition

- C0+ C1w+

fitting curves are shown in Fig. 1. for the current density proposed in Ref. 20.
According to Ref. 16, the EMP damping is At the resonant conditiom — wgyp— 0, the denominator
of Eq. (4) should be replaced by 4yp> o, and the relation
Jszdy between the amplitude of the electric field in the EMP wave
1 a and the applied voltage can be written as
TEMP Tx ®(a)Q "’ @
ny
where E and ® are the electric field and potential of the EII“U_XXVin- ®)

EMP respectively which are both proportional to the linear
charge densityQ accumulated near the edge. In the case ofSince the driving electric field in the EMP wave depends on
strong magnetic fieldgractically atB>0.1 T), the param- o,,, according to Eq(5), the nonlinear narrowing of the
etera is equal to the electron density transition width which EMP damping is proportional to the nonlinear change of the
is independent oB and T. Therefore at fixed electron den- SE conductivity only for sufficiently small nonlinear
sity the EMP damping is proportional i®,,. This conclu- changes. This condition is characterized by the linear relation
sion is in accordance with the detailed theoretical analysis obetweenE; andV;,. Strong nonlinear effects produce more
Ref. 17. The proportionality coefficient depends on the par+apid narrowing of the EMP damping than the real change of
ticular geometry of the experimental cell and the real shaper,,, which we observe.
of the electron density at the edge. The approximatior(1) is strictly valid only in the linear
Aiming mainly at studying the ripplon dominated regime, regime. In the nonlinear reginier,,(E|) # cons{, the EMP
we fixed the proportionality coefficient between, and damping becomes frequency dependent and the resonance
Uty at T=1.1 K where the ripplon contribution is negli- curves lose their Lorentzian shapes du&eQ and Eq.(4).
gible and the vapor atom scattering is well understood. W& ypical amplitude of the output signal is shown in Fig. 2 for
used a Drude formula &=0.294 T with the zero-field mo- different drive levels. For small nonlinear changes, to which
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FIG. 2. The amplitude of the experimental signal as a function €
of the frequency for different input voltages. The lowest curve cor-
responds to the smallest value\8f,. Experimental conditions are FIG. 3. The nonlinear resonance curves from the FDW model
the same as in Fig. 1. described in the textsolid curve$ for different strengths of the

nonlinear effect,y;,— ves. The lowest curve corresponds to the

. . . . linear regim = vin=0.4. The dashed curves represent the result
we mainly confine our experimental study, the correction to gIMEYres™ Vin P

. } 5 . of fitting to Lorentzians with a frequency-independent half-width
oxx IS proportional to—Ej and the nonlinear effect can be

Yiit -
described by the replacement ! i1 THEORY
1 4 Contrary to the SCBA theory, the single-electron
V= — Yin— (Yiin— ¥ S)L (Saitol) and many-electrofiDykman and Khazaf (DK)]
" OnTm " nore (e2+ yﬁn)z theories of quantum magnetotransport are more elaborate

and are free of the problem of sharp Landau level wings.

Nevertheless when applied to the real experimental condi-

in the usual Lorentzian functioR(e) = vy,,/(€*+ 7fn)_ Here tions, these t_heories have difficulties. T_he theo_ry of Ref. 9

e=(w—wy) oy, Vi, is the normalized linear EMP damp- did not take into account the Coulomb interaction between
ing 1/(w,,7) or half-width of the linear resonance curve, the electrons, WhICh is very important at Iow.temper'atures.
and y,., represents the EMP damping at the resonant condiThe DK theory m_cludes the effect _of mutual interaction on

tion e=0. th@T electroln density of states but disregards phe I(_evel broad-

Figure 3 shows the nonlinear resonance curves of h&ning that is caused by scatterers. Both theories disregard the

frequency-dependent widtfFDW) model presented above fhelastic effect important at strong magnetic fiefds.

. : . In Refs. 19 and 21 the DK theory was combined with
for different levels of the nonlinear effect described s  gcpa by means of the well known Einstein diffusion for-

=< %in - In this model the difference;, — y.esiS a measure of - yyja Unfortunately, the self-consistent procedure intro-
the nonlinear effect. Itis seen that the FDW model describegyced in these papers was based on results that were proven
quite effectively the nonlinear narrowing of the EMP reso-for the case where only one kind of scatterer is present and,
nances. The nonlinear effect observed makes the resonangferefore, is not strictly correct, when there are additional
curves narrower and higher mostly at the vicinity of thecauses for the level broadening such as mutual Coulomb
maximum, while the tails remain unchanged, in accordancénteraction(the procedure is revised in Secs. Il C and 1. A
with the FDW model. It means that the physics of the non- The nonlinear as well as the inelastic reductionogf,
linear EMP resonances is well understood. depends on the total broadening of the Landau level, which
Thus, in the nonlinear regime, the experimental signalsncludesboththe many-electron effect and the effect of scat-
should be fitted to the FDW Lorentzians introduced aboveerers. In this paper, we describe the nonlinear and inelastic
with an additional parametey,. representingo,, at w  effects in the frame of the many-electron SCBA theory. This
=wp. Still it should be pointed out that the conventional approach allows one to treat the Coulomb broadening of the
fitting of the nonlinear curves reproduces, remarkably  electron density of states in the same way as for the impurity
well as a half-width of the usual Lorentzian function with scattering, which in our opinion is more appropriate than
viir(w) =const, as was proven in Fig. 3 for the FDW model. combining DK theory with SCBA. The approach is physi-
The electric field of the EMP wave rapidly falls beyond cally consistent and very instructive. At the same time, it
the edge strip, where the charge density is accumulated. #ppears to be quite effective for describing experimental
allows one to estimate the number of SE that are heated atata, providing one with theoretical results within the accu-
ANg=2aN./Rg. In our experiment we havR,~15 mm racy of 13% at least. We assume that the detailed behavior of
anda~0.3 mm. These numbers are used in the energy bathe density of states at the wings of the Landau level is not
ance equation to estimate the electron temperafyre important under the conditiokgT>I" and the final result
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does not depend much on the particular shape for the LandauhereV,, is the electron-ripplon couplifg whose detailed
level. We prove this assumption by employing differentform will be presented in Sec. IV By is the liquid helium
kinds of Landau-level shapes. mass densityw, is the ripplon dispersionn is the electron

We use an extended version of the SCBA established fomass, and, is the electron-atom scattering length.

a highly correlated electron liquitf This approach is similar The influence of the strong magnetic field on the electron
to the momentum balance equation metRaased for de- system will be described in terms of Fermi creation and de-
scribing high-field magnetoresistance in semiconductor 2Bstruction operators of Landau level statBsX)
electron systems. In comparison with the version of Refs. 3
and 8 we incorporated the many-electron and nonlinear ef- nq:E 2 JNN’(q)CL,XCN’,X—IZq , (9)
fects. X NN/ y

_ _ with the matrix elementJyy =(N,X|exp(=ig-r)|N’,X

A. Basic notations _qy| 2>_

The scattering of SE on helium vapor atoms dominates Thus vapor atoms represent a nearly ideal example of
for T>1 K, while for sufficiently low temperature§  short-range scatterersy<l) convenient for the description
<0.7 K, it can be neglected as compared to the electronof basic magnetotransport phenomena in 2D electron sys-
ripplon scattering. Both kinds of scattering of SE can betems. Contrary to vapor atoms, ripplons are long-range scat-
described in a similar way by means of the interactionterers, like phonons in solids. The matrix elemghty|? is

Hamiltonian represented as follows: proportional to expfg2%/2), and restricts the wave vectors
to g<+/2/I. An additional restrictiorh w,<I" appears due to
. the inelastic effect.
Hint:j%r % Uin_A; q- nq=§ exp(—ig-re),
' (6) B. Nonlinear collision frequency concept

where the subscriit=a corresponds to vapor atom scatter- W€ consider an infinitely large isotropic 2D electron lig-
ing, andj=r corresponds to electron-ripplon scattering. TheUid moving along the helium surface in the presence of
many-body operators for ripplon&, ,=bg+ b’  have the Crossed magnetiB and electricg fields. In the center-of-
usual form b; is the creation opératbrln tﬁe case of Mmass frame, moving with the drift velocity, the frequency

] R
electron-atom scattering, it is convenient to introduce opera®f fiPPIoNs may be negative,=w,—q-u<0, due to the

. ) A . . . _ 3/2 .
tors A, 4 that have similar properties and that represent a sof¢nusual dispersion of the ripplons, = ya/pq”* (a is the

of projéction of the 3D vapor atom system onto the plane ourface tensiq)m It shquld be noted that negative frequ_encies
the 2D electron system appear even in the linear theory for small enouglwhich

means physically that perturbations reach a supersonic ob-

+ server in the reverse order. Still, the negative frequencies

Aaq= zk 77"2, k8K’ () make the boson distribution function negative in the momen-

K , tum balance equation method of Ref. 22. To avoid this un-

whereK ={q,k} is a 3D wave vectory,=(1|e*?1), (1||1)  physical quantity, we use another version of the momentum
means an average over the ground surface level,agnis  balance equation method introduced in Refs. 3,8 for the case

the creation operator ofHe atoms. of linear magnetotransport.
The interaction parametets; entering Eq(6) are defined In the Born approximation, the momentum loss per sec-
as ond and the kinetic frictiorF;, can be found as a function
) of the dynamic structure factor (DSF) S(q,w)
B hq _2mh*sg =N_ 1fe'“Yny(t)n_,(0))dt of the 2D electron liquid in the
U =Vo\/z— U,= , (8) e q q
9V 2p m fixed frame,

N
Fi=% 2 q-[uig [7d°2 N'S(0,80a) + UENG[S(0,0q) + exilfiog/KeT) S(0, ~wg)]
K!

where fo) and Ng) are the distribution functions of vapor atoms and ripplons, respectidglys the total number of SE,
ﬁAwaze(Kzf)—S(Kar)_K is the energy exchanged at the electron-atom collisions.

We assume that the strongly correlated electron system is in equilibrium in the center-of-mass frame, which leads to the
relation S(g,w) =Sy(dq,w—q-u) in the fixed frame, wher&, is the equilibrium DSF. Physically, it means that collective
excitations of the moving electron system like 2D plasmons, which are responsible for a singularity in the DSF, has a
dispersion affected by the Doppler shiff, o= w(°)+q-u in the fixed frame. This approximation is the quantum analog of
the semiclassical treatment of strongly correlated electrons by means of the drift velocity shifted distribution ffnction
=f(E—#k-u). In semiconductor systems, this approximation is quite common though it requires the conglition (here
vee IS the electron-electron autocorrelation frequeneshich is difficult to realize. Contrary to the semiconductor systems, for
SE on helium the conditiom.> v is fulfilled at low temperatures, and therefore the approximation is expected to be even
numerically correct.
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Using the well-known properties of the equilibrium DSK(q, — w) =e~ "“/*sTeSy(q, ) and the conditiorh w,<kgT, the
kinetic friction can be rewritten as

Ne p(ﬁqu)
Fe="2 q-|1—exp —=—
" ﬁ% a I(BTe

The Doppler energy correctidig- u enters Eq(10) by means of two different parameteig- u/kgT, andzq- u/T". The last
one appears in the argument of the DSF due to the singular nature of the electron density of states. Taking into account that
I'<kgT, we can expand the friction as a function of the small paranfedet/kg T, while keeping the argument of the DSF.

In the treatment proposed above, from the force balance equation we obtain the components of the conductiligy tensor
the resistivity tensop,,=my(B,u)/ne?, pxy=B/nec] in which the effective collision frequency(B,u) depends on the
magnetic field, drift velocity, and electron temperat{inere F;,= — N.mv(B,u)u]

. (10

1
UING So(0,0q =0 W+ 5UES |72 N&'So(dAwa—-u)
KI

v(B,u)=

1 1
P Q5{Ur2Ng)So(qawq—Q'U)+Engk EXD> N&E‘,)so(q,Awa—q-u)}. (11)
e K’

A significant simplification of the nonlinear transport theory E—Ey\|2
appears to be possible at sufficiently low temperatuies ( —ImGN(E)=F— 1—( T ) ,
<15 K) whereo<ay. In this case, Eq(1l) gives di- N
rectly the driving field dependence of the transport coeffi-is found as a solution of the self-consistent equations for the
cients caused by the cold nonlinear effect, if we take intosingle-electron Green’s function. The cumulant expansion
account thau=eFE/mw.. At the same time, the electron method of Ref. 28 yields the Gaussian Landau-level shape
temperatureT, is determined by the energy balance equa-with the same broadening. This shape has the appropriate
tion. physical behavior at the edges of the Landau levels. In the

Thus the magnetotransport problem is now reduced to thsimplified method® the half ellipses of SCBA are replaced
determination of the equilibrium DSF of a 2D electron liquid by Gaussians in the conductivity equations. The real Landau-
in the presence of a strong magnetic field. It is instructive tdevel shape in fact is a mixture of an elliptic and a Gaussian
note that for an ideal 2D electron gas in the limitwf-0,  form.2°
Eq. (11) and oy,=e’nv(B)/mw? lead to the results of the In the ultraguantum limit =0, I'y=I") and I'<<kgT,
center migration approach and SCBA theory applied to thd=gs.(12) and(13) yield
nondegenerate system of surface electf8ri3At low tem- -
peratures, especially in the ripplon dominated scattering re- ~ ﬁ _ ﬂ Y h_w 14
gime, SE represents a strongly correlated system in which So(9, @)= 3T ¥ 2 S\ T (14
the mean potential energy is approximately 100 times larger .
than the mean kinetic energy. Therefore, the ideal gas a;yy'th
proximation of the DSF should be corrected. However, it 3 (i-y
should be pointed out that in the limit of strong magnetic Yoy)= _f VI=x2J1—(x+y)2dx8(2—y|),
fields g=1/«c J\B—, the DSF of a 2D electron liquid is 4)-1
close to the DSF of an ideal electron gas, according to th
results of numerical studié§.

Following Ref. 27, we assume that the many-electron ef
fect produces an additional broadening of the electron de

(13

gvherea(x) is the unit step function. Numerically, we found
that Yg(y) is very close to the functionYg(y)
=(37%%16)expy?), as what one would find for the
NGaussian Landau-level shape. Therefore, in contrast to the
S ése of a degenerate 2D electron gas, the DSF for nondegen-
erate electrons is nearly independent of the used Landau-
level shape, ifl'<kgT. In the elastic theory the difference
betweenYg(0) andYg(0) is less than 5%, which explains
why the SE magnetoconductivity equations found for the
0% semielliptic and Gaussian level shapese numerically so
So(9, )= ﬁf dEf(E)[1-f(E+hw)] close to each other. _ '
7Nl Dynamic correlations of SE in the presence of a quantiz-
ing magnetic field are confined to the very narrow energy
X S |3y n |AMGN(E) MGy (E+ i), scale~T', which is in contrast to the semiclas_sical treatment
NN/ ’ wherekgT is the only energy parameter entering the DSF of
(12) a nondegenerate 2D electron §a#\s mentioned in the In-
troduction, the nonlinear transport of strongly correlated
nondegenerate 2D electrons should be treated as inelastic
wheref(E) is the Fermi-distribution function. even when there is only impurity scattering and no internal
In the SCBA theory, the semielliptic Landau-level shape,states of an impurity are excited at a collision. Though the

correction to the single-electron Green’s funct@g(E). In
this treatment, using notations of E(), the DSF can be
written as
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total (averagetlenergy transfer to the static impurities equalsself-energy in the elastic way ég% NGn(E). HereT'c y is
zero, the significant energy exchange between an electrafie broadening of the electron density of states produced by
and an impurity in a single collision appears for the electronhe mutual Coulomb interaction. For the ground levl (
center-of-mass frame due to the high drift veloaityThere- =) I can be estimated as the electron energy uncertainty
fore, the frequency dependence of DSF is the most importarjye to the fluctuating fielll c~eEl (the same estimate was
quantity for the description of the inelastic and nonlinearysed in Ref. 2L To be strict, we use the numerical propor-
effects. tionality factorb~1 in the equation

C. Dynamic correlations and level broadening I'c=beEl, E;=0.84 /47TkBTen§721 (18

The single-electron Green's function entering Etp) i \yhere the fluctuating electric field was taken from the nu-
assumed to be calculated in the center-of-mass frame, relﬂierical simulations of Ref. 18

tive to which the vapor atoms and the ripplons are moving In the elastic treatment, the total electron self-energy in-

With_ .the dr_ift velocity —u in the o_pposite direction. The cluding the Coulomb correction can be written in the same
additional time-dependent factor eigp(ut) that appears in way as Eq(17) with the total broadening
the interaction Hamiltoniag6) can be taken into account by )

determining the npplo’n ani vapor gas operatyg, in the r=T2+T2+T% (19)
center-of-mass framaj ,(t) =exp(q- ut) - A q(t).
The perturbation theory for the single-electron Green'sThis result shows that the simple sum of different kinds of

function operates with the correlators broadening as previously used in Ref. 19 in order to obtain
. , the total broadening is not correct and can differ from the
Dj(a,t=t")=—I(T[A] (DA —4(t")]), (15 strict result by a factor of/2. More importantly, as the mag-

which are written in a similar way for both kinds of electron netic field increases, the sum of collision broadening and the
scattering {=a,r). In the center-of-mass frame, we have many-electron effect of Ref. 19 approaches much more
D.(q w)=D(°)(q w+q-u), which describes the Doppler Slowly the single-particle SCBA result than fol’
J- 1 J 1 1 L i X X .
shift for the perturbation source moving with the velocity = yT2+T'Z according to the many-electron SCBA.
—u. Finally, the electron self-energy can be written as It is instructive to note that in the elastic regime there is
no need for an additional self-consistent procedure intro-

dw duced in Refs. 19 and 21 for the total broadening;if I"
—i 21 _ 2 ' rs
EN(E)_'% % [l JZWGN’(E ﬁ“’); Uj and ' are separately determined. Indeed, in the SCBA
theory, the self-consistent procedure is formulated for the
><D,(O)(q,w+q-u). (16)  electron Green'’s functioiGy(E), which is determined by

he self-consistent pair of equations: the Dyson equation and
quation for the electron self-energy. The total broadening is
etermined automatically, if the total self-energy is factored
with Gy (E), as in Eq.(17). Therefore the enhancement of
scattering, due to the concentration of the density of states,
proportioned toh w./ \/Fa2+ FC2 leads straightforwardly to a
new and more simple equation for the total conductiysge
Sec. IV A) than equations used previously in Refs. 19 and
21.

The Coulomb broadening is important for weak magnetic

It should be noted that the result is the same, if we woul
evaluateX  in the fixed frame and use the Doppler shift in d
the electron Green’s function instead of [y .

In the argument of the electron Green'’s functid®), the
frequency termfiw is equal to the energy exchanged at a
collision including the Doppler shift correction. If this term
is much smaller than the typical electron energy sckle,
~T", then we can disregard it as well as the mixing of the
different Landau leveldit is also assumed thdf <A w,).

This yields fields and high electron densities, duefgxn®4\B. At
SN(E)=1T2G\(E), (17)  strong magnetic fields the collision broadening dominates,
since it increases with the magnetic field likge /B.
whereI'y= \/Fa21N+F2r'N is the total broadeningl’, y and Thus in the many-electron SCBA theory, the complicated

I'; v are the level broadening induced by vapor atoms angroblem of the influence of internal forces on the quantum
ripplons, respectively. Consequently, contributions I’tﬁ; magnetotransport of a nondegenerate 2D electron liquid be-
from different scatterers are independent and @@) pro- comes a matter of a single numerical fadiowhich is close
vides us with the rule of how to combine them to the totalto unity. In principle a rigorous estimation bfcan be done
broadenind™ . Equation(17) together with the Dyson equa- in a more advanced theory. At the same time, any model
tion can be solved in a self-consistent way following Ref. 6,calculation will not be able to give a more accurate value
which results in the semielliptic Landau-level shape. than the simple choick~ 1, which appears to be in remark-
According to the general treatment of the Coulomb effectable agreement with the linear experimental data for both the
as presented in Ref. 27, the Landau levels will be additionvapor and the ripplon scattering regime.
ally broadened due to the many-electron fluctuating electric In general, Eq.(16) is actually an integral equation for
field E; for the same reason as it was due to the randonk \(E), which is rather difficult to solve. We assume that in
impurity potential. The fluctuating electric field is produced the limiting casekgT>T" the final result is nearly indepen-
in the center-of-mass frame, which means that there is ndent of the particular shape of the electron density of states
additional time-dependent factor eigp{ut) in this case. It (the assumption is checked for two kinds of shapes: Gaussian
allows one to find the Coulomb contribution to the electronand semiellipti¢. Then for the semielliptic shape, the level
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broadening can be defined dsy=-2 Im3y(Ey) (an 1 2nde [ )

analogous treatment for 2D semiconductor systems was used Ven:mfo EL daqVgSo(d, wq—a-u)- (23)

in Ref. 30. Taking into account thatD{"(q,w) and

DO(q,w) (atNg)>1) are purely imaginary, and neglecting This equation is the result of one-ripplon scattering processes
the mixing of the different Landau leveld (<% w.), the  under the conditioriw,<kgT. The two-ripplon process of

self-consistent equation for the Landau-level broadening cafilectron emission of short wavelength ripplons which are
be written as important in the case &= 0 (Ref. 32 are suppressed by the
peaked structure of the electron density of stateskgT) at
do strong magnetic fields.
Iy=2> |JNN|2f EImGN(E—hw)Z u? g mag
q i

5 IV. RESULTS AND DISCUSSIONS

1—‘C,N

X ImDJ(O)(q,wnLq- u)+ T (20 A. Vapor atom scattering regime
N

) _ _ o The vapor atom scattering has the most simple form, and
To solve this equation, we use the analytical approximatioRherefore it is instructive to start the final analysis of the cold
of Eq. (13) for ImGy(E). Equation(20) describes the influ-  nonlinear magnetotransport with this case. First we note that
ence of the inelastic_and nonlinear effects on the broadeningy, T>1 K, the energy exchanged at a collision in a fixed
of the electron density of states. . framefiAw,~%(q-q'+kk')/M (hereM is the helium atom

It should be additionally emphasized that, according Onassg can be neglected in comparisonko

numerical evaluations that will be presented in Sec. IV, the Before going into the details of the nonlinear analysis, we
main inelastic and nonlinear narrowing o{B,u) comes |se the vapor atom scattering as a probe for the many-
from the frequency dependence of D). (14)] rather than  gjectron SCBA theory. For a semielliptic Landau-level shape

from Eq. (20). The inelastic and nonlinear changes of thegne can find the effective collision frequency within the lin-
Landau-level broadening appear to be small as compared {9y theory

changes of the collision frequency. This explains the remark-

able efficiency of the SCBA in describing our experimental w2 fwe
data. vin(B)= cotl‘( X[coshT'/kgT)
Iln( ) 7TF2| 1(F/|(BT) 2kBT [ I'( B
D. The heating effect — (kgT/T)sinNT/kgT)]. (24)

In order to determine the electron temperatlii We  or0) () is the modified Bessel function of first order; the
consider the energy-tran;fer rate from the electron system Qectron-atom interaction parameters are combined fihto
vapor atoms and ripplonBe,, which can be represented in =h(2/7) wevg, Which represents the linear level broaden-
the formPg,=(To— T)Ngve,, Wherevg, is the energy colli-  ing for pure vapor atom scattering. For the Gaussian Landau-
sion frequency. The energy balance equation can be writtelevel shape we have

as
\/;wcl—‘g r \? hoc
) [t @

) , Equation(25) is numerically close to Eq24), if kgT>T.
whereAN is the number of SE in the EMP wave that absorbgqationg(24) and (25) are many-electron extensions of the
energy from the electric field. Equatiq@l) takes into ac- reqyits of the single-electron thedtyt is important to note
count that the electron-electron collision frequency is MUChn4; herel™ originates from the real density of states, while
higher thanve, and, therefore, all electronl§, are at the s the formal combination of the interaction parameters
same temperaturee . _ like U,, mean vapor densityg, and the parameter of the

We will see that the main change ofx caused by the  gjectron wave functionz|1)=zexp(—ye2), according tov,
cold nonlinear effect occurs for=\2Au/IT<1. Using the =(3U§nGyem)/8ﬁ2. In the pure cas& =T, it is usual to

relation between: and one can find cancel the broadening entering the denominator of Exf.
T.—T v 2 AN and (25) to the expense of the numerator, which hides the
£ )2 °. (220  singular nature of the conductivity,,>1/T".
T 2venhwkgT Ne In general, we should separate the total broadering
For electron scattering on vapor atomen~0_5>< 10*2_31 from Fa in Eq5(24) and (25) due to the other interactions
In the single-electron approximatiofi2 has the same mag- that are present. For instance, the many-electron effect
netic field dependence as,. At T~1 K, it can be esti- broadens additionally the Landau level, which maKkés
mated that Te—T)/T~X2AN/N,, and therefore heating =I'jn=\I'3+I'c. The total broadening as a function Bf
can be neglected in the EMP method of measuring the SBas a minimum whose position depends on the electron den-
magnetoconductivity SINCANg<<N,. sity n andT.
In the ripplon scattering regime, the energy collision fre- In the weak magnetic field range, the increasd oin-
quency is substantially lower and the heating effect shouldiuced by the many-electron effedf {=<1/yB) is the cause
be taken into account at least for weak magnetic fi@ds for the conductivity decreasgelative to the single-electron
~1 T. The same method as described in Sec. Il B yields theory resultobserved in Refs. 19 and 33. It should be noted

T—T mv v AN, 20 Vin(B) = ATk &
T KgT ven Ng '’
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that Eqs.(24) and(25) are valid only for rather small broad-
ening A"<fw., which allows one to neglect mixing of the
different Landau levels. In the single-electron SCBA theory
this restriction is less important, sindgB. The restric-
tion becomes decisive for the many-electron theory due to
the rapid increase of ¢ with a decrease of the magnetic
field. Additionally, the equations are restricted by the quan-
tum condition2w.>kgT, since we neglected the depen-
dence ofl"¢ on the level numbeN.

It is instructive to compare Eq25) with the result of the
lattice model theory introduced in Refs. 18 and 34 to de-
scribe the many-electron effect,

6,,(0) / c,,(B)

pxx(B)/Pxx(o):0-15(wc/wp)(ﬁwc/kBT)3/2a (26)

wherew,=(27e’n¥%m)*?is the plasmon frequency. In the

ultra-quantum limit, the many-electron SCBA equation Magnetic field, B (T)

_ : 2
pXX(B)/pXX(O)— v(B)/v(0) vyields ) (o) /(Z,J;FKBT)’ FIG. 4. The inverse conductivity,(0)/oy(B) vs the mag-
which would have the same analytical behavior as®6),  petic fieldB for T=1.2 K. The many-electron SCBA is shown by
if the vapor-atom-induced broadening is neglecdtedI'c.  the solid p=1) and the dashecb 1.58) curves for two electron

For the numerical factob which describes the Coulomb gensitiesn=0.75<10® cm 2 (1) andn=3.2x10° cm 2 (2 and

broadening in Eq(18), the comparison giveb=1.58. The  2’). Dotted curves represent the extended SCBA théoData

comparison of Eq(25) with experimental data, which will (circles are taken from Ref. 33. The inset shows/v(B) vs the

be presented later, shows that this valudafverestimates magnetic field for the highest density.

the many-electron effect, and the paramdieis closer to

unity. The physically correct combination of the conductivity
In Refs. 19 and 21 the quantum magnetotransport wadue to the many-electron effeet,, and the single-electron

analyzed by means of the Einstein relation between the mazonductivity o5 can be found in a straightforward way, as

bility and the diffusion constant, which gives follows. As mentioned in Sec. Ill C, there is no need for any
) additional self-consistent procedure oricgandI' are de-
- _emn fi @7 termined. We note that Eq28) is in accordance with the
XX

scattering rate enhancement in a magnetic fieg
~pofiw:/T". Then, using the correct definition foF

It is very important to establish the correct physical meaning_ T . . 2
) . ) } L /T2+TZ and using the relationsr«I'%/T and
of the so-called scattering rate in the fietg". Itis surely 2 G C pr%per equation m-tatc Is
a?’

not a momentum relaxation rat€B), since according to the
general analysis of Ref. 3, at,>v we have oy,
:eznv(B)/mwg. The comparison with EQq(27) gives O= s,
hlg=2kgTv(B)/w.. In Refs. 19 and 2%/ 75 was treated Vot o
as a collision broadening and combined with to get the
total broadening. The many-electron SCBA resLHigs.(24)
and(25)] show that this is true only when one kind of scat-
terer is present. Comparing the result of E&4) with the
formula based on the Einstein relation, Eg7), one finds

W 2kBTwCTB ’

OsOm

(29

which should be employed instead of the interpolation for-
mulas.

As shown in Ref. 3, for low electron densities the ex-
tended single-electron SCBA perfectly describes the experi-
mental data in a wide range of magnetic fields up to 20 T.

5 s T2 8 I2 Equations(24) and (25) of the linear many-electron SCBA

- __ a_ - & (29) theory show the way by which the Coulomb broadening and

s 3w I 37 ri+r2 the broadening induced by vapor atom scattering should be

o . combined in the magnetoconductivity equations. In order to

for the semlelhpnc Landau-level shape. For a Gaussiafjng an appropriate value for the numerical fadtoentering
shape the numerical factor 83hould be replaced bym/2.  into Eq.(18), in Fig. 4 we plot the magnetic field dependence
Equation(28) shows thati/7g can be treated as a collision of the ratioo,,(0)/a,(B) and the experimental data of Ref.
broadening only forl’c=0, which results intol’=I'5. In 33 for the SE conductance. The conductance is proportional
general,fi/ g is not a collision broadening and cannot betg ¢, with a numerical factor of order unity, which is un-
combined withI'c in order to get the total broadening. Ac- known for the experiment of Ref. 33. We fix this constant to
cording to the many-electron SCBA result, the total broadit the data and theory at extremely strong magnetic fields
eningl“z\/l“aanl“C2 differs from the previously used expres- (B=20 T), where the many-electron effect can be ne-
sions #i/7g+1c,'® and \[(#/7g)?+T2% Therefore, the glected. The magnetic field dependence of the ratio
combined theoretical conductivity obtained in Refs. 19 ando,,(0)/o.(B) at intermediate fieldB8<5 T appears to be
21 by means of an additional self-consistent procedure fovery sensitive to the many-electron effect. Figure 4 shows
the total broadening to fit experimental data is not correcfeven qualitatively that the numerical valub=1.58 found
and can only be considered as an interpolation formula.  from a comparison with the lattice model thetty overes-
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timates the many-electron effe(dashed curye while the  magnetic field asymptote, while the many-electron effect in-
simplest choiceb=1 leads to a perfect fitsolid curvey  creases the weak field part of the curves. This results in a
downto 2 T. crossing of the many-electron curves, as is seen in Fig. 4.

It should be noted that in Fig. 4, we neglected theThe inclusion of the electron-ripplon interaction increases

electron-ripplon interaction, which is small far=1.2 K, this effect. In Ref. 19, the data plots(0)/ay(B) for dif-
and we normalized the experimental and theoretical curvefrent densities do not cross but behave like they have par-
10 0r4,(0) for pure electron-atom scattering. The inclusion of2llél asymptotes at strong magnetic fields, which is in con-

the electron-ripplon scattering givées=1.1. This difference tradiction with the simple physical requirement mentioned
is within the experimental error of determiningand can above. Regarding the new data of Ref. 21, they are in con-

therefore be disregarded. Still, curves normalized to the totatf"JldICtIon with even a more simple rule, ”a”?e'y’ that experi-
: . mental plots for 14,,(B) should decrease with the electron
a4 (0) would be lower than curves of Fig. 4 by approxi-

mately a factor 1.15. This is due to the magnetic field effectdenSItyn in the limit of strong magnetic fields, due o

: o o,
on 0x(0)/o4(B) > 1/v(0)»(B), which multiplies the cor- We start our nonlinear analysis with the Landau-level
rections tov(0) andv(B).

- . broadening equation. As mentioned above, the Coulomb cor-
The cause of the deviation of the theoretical curve fromrectionl"c does not depend on [except for the weak indi-

the data for weak fieldB<1.5 T is clearly seen in the inset (ect dependence due to the heating effect taken into account

of Fig. 4, where we plot the ratia;/v(B) and the data py T (u)], since it is caused by the fluctuating field of the

extracted from the conductance experiment of Ref. 33 bylectrons, which are at rest in the center-of-mass frame. On

means of the elementary relation betwegg and»(B). The  the other hand the vapor atom gas moves with the drift ve-

single electron theorydotted curve describes the transition locity —u, which makes the vapor atom contribution to the

from the classical Hall effeC(tSidewa.yS motion of electrons level broadening dependent an The effect can be eas”y

increases witlB) to the abnormal Hall effect of the quantum described, if we take into account that

regime where the sideways motion decreases with magnetic

field. In the quantum regime, the single-electron theory gives

v(B)=xB%? which increases faster tham.. The many- DO(q,w)=—271 > | 72> N 6(w+Aw,). (30)

electron effect even increases this abnormal Hall effect: in 2 k P

the limiting casel'c>T', we would haver(B)xwI'2/T ¢

«B%? sincel'cc1/\/B. The solid curve represents the many-

electron theory, Eq25), and the data both clearly show this 1 2

Ier}g::??osr?thlgo:he quantum regime, the data_and the many- F2=F§—j d@f e*X\/l—AZ(Fﬁn/FZ)xcosz(cp)dx

y are in very good agreement in a wide range 7Jo

of magnetic fields 1.5 £B<20 T, where the mixing of )

the different Landau levels can be neglected. Bsrl.5 T, +I'e (31)

the data deviates from the solid curve and shows the norma\}\llhere Ty = \/lthr_I% is the total linear broadening)

Hall effect. The reason for this behavior is that at weak fields

the Landau-level broadening becomes comparable to the \/fﬁulll“”nz\/EeEHI/F”n is the nonlinear parameter.
We solve Eq.(31) numerically. Still, it is instructive to

level separation(at B=1.5 T the ratio 2/Aw.~0.7), G o Landau-level sh . der t | th
which restores the semiclassical nature of the magnetotrang-Se a aussian Landau-ievel shape in order to reveal the
nonlinear narrowing of” in an analytical form. In this case,

port, according to Ref. 18. h i ; . q
The agreement achieved between the theory and expefi?€ Sell-consistent equation reduces to

ment proves that in the ultraquantum limit the many-electron

For the semielliptic shape Eq&0) and (30) yield

effect mainly affects the electron density of states, which can rr

be taken into account by the simple replacemdnt M=——ee +T, (32
H\/l“‘,jlzﬂ“erl“c2 in the final equations of the extended [ anu/]

SCBA. which is a cubic equation and which can be solved analyti-

Since the experimental data of the Carbino techniqueally. In the limitI'c<T',, valid for strong magnetic fields

might be affected by spurious effects, it is very important foror jow electron densities, the solution is of a very simple
the final data to satisfy a simple physical behavior, whichform:

follows from the theoretical analysis. We cannot use the data
of Ref. 19 as a probe, since they do not satisfy the required
limiting behavioro,,(0)/04(B) at strong fields. The many-
electron curves and the data sets for different densities
should cross aB=<7 T under saturation condition for the
holding electric field,E, =2men, due to the holding field which shows clearly the effect of the drift velocity on the
dependence of the electron wave function. One easily findievel broadening. The first term describes the way by which
that the strong magnetic field asymptote of the ratiothe drift-time durationry,=1/u+/2 is combined with the lin-
04x(0) /oy (B)*= 1 vor(B)]* v, *(E,) depends onn. ear lifetimes/T,. The second term in E433) provides the
Therefore, each many-electron curve has its own singlerequired physical behavior oF in the limiting casey;
electron curve as an asymptote at strong magnetic fields. Th&#/I',: there is no level broadening in the single-electron
increase ofE, with the electron density reduces the strongtheory without vapor atom scatteringf{— 0).

2=~ /Ta+

(33

2r202\°  2h202
1z ]z
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FIG. 5. The Landau-level broadening as a function of the non-
linear parametet = 2Au/IT};, for three electron densities: 0.5
x10® cm™? (1), 2x1¢® cm 2 (2), and 5x 10 cm~2 (3). Solid

curves represent the many-electron SCBA with a semielliptic level’.
P Y P single-electron theorydashed Dotted curves represent the results

shape; dashed curves are from a solution of(B8) for the Gauss- . N
; . . of the single-electron approximatios)(and for the extreme many-
ian shape. Dotted curves represent the solution of the single-

electron theory for the semiellipticS] and the GaussianQ) electron limit,I'c>1",, (m) for a Gaussian Landau-level shape.
shapes as described in the text.

FIG. 6. The normalized effective collision frequency vs the non-
linear parametek for two electron densities: 0:610° cm ™2 (1),
nd 2<10° cm™? (2) for the many-electron SCBsolid), and the

Here the total broadening is a function of\. It is instruc-

tive to consider two extreme cases corresponding to the
shown in Fig. 5 for three electron densitiélid curves.  Single-electron approximatiofl’(x) is determined by Eq.
The level broadening becomes less dependent on the nonlif33] and approximation’c>T' or I'(A) =const. In the first
ear parametek with increasing electron density, which is case,
caused by the many-electron effect. The results of the Gauss-
ian approximation(dashed curvesfor I'(A) behave in a v(N)  J1+A%=\2
similar way, but they are shifted towards the range of smaller = .
\. The reason is that this shape f [ Vin (1A

. pe for the Landau level is not

appropriate for the self-consistent equation that is used, dugne approximatio (\) = const yields the more simple form

to the shape factoy'm/2. Correcting the nonlinear parameter ,,(x)/,, = (1+12)~¥2 Both these extreme analytical equa-

A by this factor shifts the dashed curves close to the solidions are shown in Fig. 6 by the dotted curvessand m).
curves, but this procedure is introduced only to show that thesyst it should be noted that both curves are remarkably
result does not depend significantly on the real Landau-levé|ose to each other, which supports the approximations used
shape. The linear broadening of the Gaussian density qf Ref. 11. Any many-electron nonlinear curve, within the
states found in the lowest-order cumulant appréaghthe  Gaussian approximation, will be situated between the curves
same as the broadening of the SCBA. Therefore, the solutiog angm. Secondly, the sharp nonlinear narrowingrofFig.
given by Eq.(31) is the most appropriate one. Moreover, asg) s more important than the rather weak narrowing of

will be shown below, the main nonlinear reduction of the () y/T, | which is also suppressed by the many-electron
effective collision frequency is nearly independent of thegffect, according to Fig. 5.

The results of a numerical evaluation of E@1) are

(36)

nonlinear change of . . o The results of a numerical evaluation of E§4) for the
According to Egs.(11) gnd (14), the effective collision  gemijelliptic shape are shown in Fig. 6 by the sdiidany-
frequency of the cold nonlinear effect{=T) becomes electron theory and dashedsingle-electron approximation

curves. These results additionally prove the universal behav-
v(N) Ty 1 (27 % . ior of the ratiov(\)/v, at A<1, where the main nonlinear
ZT;L d<PCOSZ(<P)fO dxxe narrowing occurs. Of course, the universal behavior of
v(\)/ v, does not imply that the nonlinear effect is insensi-
Ciin tive to the many-electron effect, sinde depends o'y, ,
k?\/;COSUP))- (34 which contains the Coulomb correctidi.. Therefore, the
dependence of the SE conductivity on the driving electric
As pointed out in Sec. Il B, it does not matter which repre-field is affected by the many-electron fluctuating field, as
sentation is uself5(y) or Yg(Yy), since they are very close. well as the magnetic field dependence of the critical drift
For the Gaussian shape, the nonlinear collision frequencyelocity.

Vlin

XYs

can be found in analytical form It should be emphasized that the dotted curves in Fig. 6
are plotted for the Gaussian Landau-level shape, which was
\) T r21-32 used for calculating botlw andI'". This shape is surely not
il ): —ln g 2t (35) appropriate for the self-consistent equation, as it was dis-
Viin r I? cussed above. Nevertheless, the dotted and solid curves are
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close, which proves that the results do not depend much oBquation(40), as well as Eq(38) for the level broadening,
the specific Landau-level shape used. The simple analyticahcorporates both the inelastic and nonlinear effects on equal
form of the nonlinear effect allows one to obtain direct ex-footing, which agrees with the physical concept of the cold
perimental knowledge of the Landau-level broadening fomonlinear magnetotransport as a nonlinear breakdown of the

the strongly correlated 2D electron liquid. elastic approximation discussed in the Introduction.
In the quasielastic limiting casé: (»,<I') of linear mag-
B. Electron-ripplon scattering regime netotransport X<<1), the ripplon-induced broadening and

the effective collision frequency can be written as follows:
The low-temperature regime of the SE magnetotransport

(T<0.7 K) is more difficult to analyze than the vapor gas

scattering regime, due to the complicated form of the ) A2kgT ) «
electron-ripplon couplingy/, .2* At the same time, this limit- I'r= Y f Wix)e 7dx/x,
ing case is the most convenient one for experimental obser-
vation of the cold quantum nonlinear magnetotransport phe-
nomena, since the level broadening decreases with lowering Am2A 203
T, and therefore much weaker driving electric fields are re- Vg”( B)= J W2(x)e *dx. 41
quired to reach the condition~ 1. 372t gjas 0
To describe ripplon-induced broadening we use the rel

% he effective collision frequency of Eg41) shows the sin-

gular nature of the elastic magnetotranspgytB) o< 1/T" ¢4

The lower limitx, of the integral that enters the level broad-
IMD{?(q,0) = —7(2N{'+ 1)[ 80— wq) + S0+ wg)], ening equation is introduced in order to cut off the logarith-

(37 mic singularity of theEf term, which appears for the capil-
lary spectrum. Of course, there is no singularity when the
real ripplon spectrum is used, which has the gravity-wave
behaviorw=q*? for q— 0. For the case of non-zero electron
density, the cutoff at wave vectogg~\/n, where the many-
A kBszwmpf W) electron effect screens the electron-ripplon interaction, is
X)e

tion

which is similar to Eq.(30) for the vapor atom scattering.
Assuming the capillary dispersian,=g*?, one finds

2= more important. Still, in the low-temperature limit, low elec-
tron densities are required for the system to be in a liquid
5 state, and this singular term is usually much smaller than the
elas- o a/a 2 polarization term of the electron-ripplon interaction.
\/1 T2 X H\\/—COSQD)] . (39 The field dependence of) as well asI', is hidden, due
to the complicated form of the interaction potenté(x). It
where the second integral is limited to the positivgange is possible to reveal it in a qualitative way, if we take into
for which the square root is read=fiwo /T ¢5sis the inelas-  account thatv(y) is numerically close to 1/(3y), which is
tic paramete{wgza(\/ﬁll)g’/p] and\=\24u/Ty,d is the  also supported by the temperature dependence of the zero-
nonlinear parameterl ¢, \/I“Z,Jrl“c2 is the total elastic field mobility wo<1/T, observed experimentalfy:* At low
broadening, temperature3 ~0.3 K the electron density should be rather
small n<4x 10" cm to avoid the Wigner solid transition,
) 5 which allows one to neglect thg, -dependent terms in the
Wix) = X ekl _ €(ene— 1) integrals ovex. In this case, we havé/?=1/B and conse-
(x) =XwW , A= ) gy
2|2 A A(€pet1) quently ', \/BT. In the single-electron treatment, it yields
v (B)=B¥% T or o, 1/\BT. This temperature and field
dependencies af,, are in agreement with the results of the
1+yJ1-y more sophisticated single-electron quasielastic theory
\/)—/ (Saitoh). More detailed comparison shows that the main dif-
ference between the theory of Ref. 9 and our results is just
ene is the dielectric constant of liquid heliunE, is the the difference of averaging of the interaction poteriié( x)
holding electric field. Equatior(38) represents the self- by means of dimensionless integrals in the equations for
consistent equation for the Landau-level broadening, wh|ch/(r)(B) and F2 For instance, the corresponding integral for

71'a|4

11
n
1=y @a-y)*

w(y)=— . (39

is to be solved numerically. I'Z is of the formeWZ(x)e *dx, which is more suitable for
According to Egs(11) and(14), the nonlinear effective high electron densities due to the analytical behavior at small
collision frequency can be written as X. In the case of high electron densities, E\% term of the

corresponding integralgE, )?1*/A2, can be used in E¢41)
AMPA203T (2nd . as an approximation instead of the logarithmically divergent
= )8 f —‘pcosz(go)f dxWA(x)e ¥ term. At low electron densities employed here &2 T,
3m2ah’T' T Jo 0 both kinds of averaging give very close results for the SE
conductivity (within 13% accuracy 7B
/4 In the opposite limiting casE>T",, we havel'«T/B,
T LoX H\\/—COS{(P)]) 0 hich results inv{)(B) < w2\BIT or gy, BIT, and which

r
% Ys elas
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FIG. 7. The Landau-level broadening vs the magnetic field for
n=3.5x10" cm 2. We show the results of the many-electron
SCBA (solid), the single-electron SCBAdashed and the approxi-
mationI"=T"; (dotted.

FIG. 8. Temperature dependence of the ratlm. for n=3.5
X 10" cm 2. The many-electron SCBA is shown by the solidl (
=1) and the dashedb& 1.58) curves. Dotted curves show the
elastic many-electron theor§l) and the single-electron inelastic

exhibits field and temperature dependencies consistent wit] CBA (2). Data are from the EMP damping coefficient using the
elementary relation between,, and v.
the results of the many-electron theory of Dykman and

Khazan (DK)." Therefore we can conclude that the ap- atom scattering regime. The numerical value estimated from
proach of the DK theory is physically equivalent to the Bornine many-electron theory of Refs. 18,3d= 1.58 (dashed
approximation in which the broadening of the electron de”'curve leads to a different temperature dependence Tror
sity of states is caused by the mutual Coulomb interaction-g 25 K which is caused by an overestimation of the Cou-
only (i.e.,I'=I'c), while the broadening induced by ripplons |omp proadening. Therefore, we found that a comparison
I, is neglected. It should be emphasized that in the ultrayith gifferent experimental data in independent scattering
quantum limit, I', cannot be neglected, since it increasesregimes leads to the same value for the Coulomb broadening
with B, while FCOC 1/\/§ decreases. Still, it is instructive to parameter b=1, in accordance with our previous
note that formally in the limiting casE—I'c and forn<4  estimation4 Thus, we will use this value ob=1 in our
x 10" cm, both extended SCBA and DK theories agree on aonlinear analysis.
6% accuracy level within a wide range of magnetic fields, if |n Fig. 8, the maximum reduction of the effective colli-
the absolute value of the Coulomb broadening paranei®r  sjion frequency caused by the inelastic effémlid curve
fixed to 1.58, according to the comparison made for the vareaches 64%. At the same condition, the relative narrowing
por atom scattering version of the DK thedfy* of the Landau-level broadening with regard to the elastic
In the intermediate regimg, ~I'¢ the total broadening as proadening is substantially small&r8%).
a function ofB is plotted in Fig. 7 and exhibits a minimum.  |n the nonlinear regime, the effective collision frequency
Since the dependencidd, =B and I'cx1/\B are rather narrows due to both the cold nonlinear effect and the heating
weak, we conclude that in the intermediate cd3B) vx1/T,, according to Eq(40). In our nonlinear analysis of
~const. This yields/(B)=B? and o,,(B)~const in agree- the ripplon scattering regime, we use the energy balance
ment with recent measurements of Ref. 4. At the same timesquation Eq. (22)] and the energy relaxation rate of Eg3)
the temperature dependeneg1/\/T is quite universal for to determine the electron temperatirgas a function of the
the quasielastic theories. nonlinear parametex. The results of our numerical evalua-
At strong magnetic fields, the temperature dependence dion of the effective collision frequency as a function of the
the magnetoconductivity is crucially affected by the inelasticinput potentialV;, and the experimental data are shown in
effect, which can serve as an additional probe for the CouFig. 9. The different theoretical curves are plotted under the
lomb broadening and for the parameterof the ultra- assumption that the drift velocity and the parametex are
quantum limit. The results of our numerical evaluation of theproportional toV;,. Since the exact value of the driving elec-
equations fol" and v are shown in Fig. 8, where the tem- tric field is unknown in the EMP experiment, the proportion-
perature dependence of the ratiaw , which is proportional  ality factor betweem andV,, is fixed at one experimental
to SE magnetoconductivity, is shown. Note that the elastipoint. Dotted curves represent the results for the pure cold
approach(dotted curve 1) cannot explain the experimentalnonlinear effectl) and the pure heating caé®. As is seen,
data as found by our EMP damping method. At the samehe cold nonlinear effect dominates the heating effect for the
time, the single-electron inelastic theofgiotted curve 2) chosen value of the magnetic field. The solid cutrany-
strongly deviates from the data at low temperatures. The inelectron SCBA, withb=1), which takes into account both
clusion of the Coulomb correctiofic with b=1 into the of these effects, is in good agreement with the data found
inelastic equations for the level broadening and effective colfrom the EMP damping. At the same time, the single-
lision frequency(solid curve gives the best fit, in accor- electron theory(dashed curvedeviates substantially from
dance with the results presented in Sec. IV A for the vapothe experimental results.
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FIG. 10. The SE magnetoconductivity vs the input voltage for
FIG. 9. The effective collision frequency vs the input voltage for four values of the magnetic field: 3.6 (€ircles, curves 1 and’},

the same electron density as in Fig. 5: the many-electron SCBR-7 T (squares, curves 2 and)2 1.8 T (triangles, curves 3 and

(solid curve and the single-electron approximatitashed curye ~ 3'), and 0.91 T(diamonds, curves 4 and'} Solid curves repre-

Dotted curves represent the pure cold nonlinear effécand the ~ Sent the many-electron SCBA theory. Dashed curves are plotted

pure heating effect2) as described in the text. Data are obtained neglecting the heating effect.

from the EMP damping coefficient.

tive driving electric field, which is the cause of the rapid

decrease of the experimental data with, if the nonlinear

As we already mentioned, it is difficult to establish a strict
y change exceeds 30%.

numerical relation between the nonlinear paramateand
the input potentiaV,,. Nevertheless it is possible to reveal
the magnetic field dependence of the proportionality factor. V. CONCLUSION
According to Egs.(4) and (5), under resonance conditions
we have Ejxayy(B)Vi,/oy(B). Therefore, the nonlinear
parameter becomes

We have investigated the nonlinear quantum magne-
totransport phenomena of a nondegenerate 2D electron liquid
on the surface of liquid helium. It is shown that there is a
physically interesting regime where the nonlinear decrease of

[ the EMP damping coefficient, and,, as functions of the
NBo T (42 input voltage, is due to the singular nature of the 2D electron

X elas system in a magnetic field. This cold quantum nonlinear ef-
fect appears to be dominant at strong magnetic fields. For
In the qualitative analysis we did for the linear transportweak magnetic fieldsB<1 T, this effect is of the same
regime we foundo,,(B)I'(B)~const, which leads to the importance as the usual heating effect.
approximate relation = V;,B~%?2 which is close to the ex- To describe the nonlinear quantum magnetotransport, we
perimental oneV,,B~2~const. We attribute the difference introduced the many-electron SCBA theory, in which the
to the heating effect, which becomes more important withmutual Coulomb interaction broadens the Landau levels in
decreasing magnetic field. The results of a numerical calcuaddition to the collision broadening produced by scatterers
lation by means of Eq40) are shown in Fig. 10. The many- [I'. In the linear regime, this approach reproduced the results
electron nonlinear theorgsolid curve shifts into the range of the single-electron theotyand the many-electron DK
of weakerV;, with decreasing magnetic field. The results for theory'® in the opposite limiting cases with regard to the
the pure cold nonlinear effect are shown by the dashegarameterI'c/T's (I'c/T's=0° and I'c/T'=x,'° respec-
curves. Here the proportionality constant between the leftively). The theory describes the available linear magneto-
and right sides of Eq4?2) is fixed atB=6.4 T (separately conductivity data in both the vapor atom and the ripplon
for solid curve 1 and dashed curvé)land remains the same scattering regimes. The nonlinear magnetoconductivity data
for all other magnetic fields. The shift between the solid andbtained here from the EMP damping coefficient for the rip-
the dashed curves is caused by the heating effect. plon dominated scattering regime are shown to be in good

Figure 10 shows that the many-electron SCBA describegeven quantitativeagreement with the many-electron SCBA
quite effectively the nonlinear narrowing of the EMP damp-theory.
ing coefficient and the dependence of the SE magnetocon-

QUctivity on the amplitude of the input voIFagen. Accord— ' ACKNOWLEDGMENTS

ing to the results of Sec. Il, the theoretical curves in this

figure are only strictly valid for small nonlinearities, since  This work was partly supported by a Grant-in-Aid for
o4y Which enters Eq(42) is actually a function ofA. For  Scientific Research from Monbusho, a Toray Science and
small\ it is possible to use the linear relation betweeand  Technology Grant, the INTAS-93-1495-ext project, and the
V;,. The decrease af,, with A sharply increases the effec- Flemish Science Foundation.

AxV



3776

1K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Ld#,
494 (1980.

2D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. 4&t.
1559(1982.

MONARKHA, SHIRAHAMA, KONO, AND PEETERS

PRB 58

171, L. Aleiner and L. I. Glazman, Phys. Rev. Left2, 2935(1994.

18M. 1. Dykman, M. J. Lea, P. Fozooni, and J. Frost, Phys. Rev.
Lett. 70, 3975(1993.

19\, J. Lea, P. Fozooni, P. J. Richardson, and A. Blackburn, Phys.

3p. J. M. Peters, P. Scheuzger, M. J. Lea, Yu. P. Monarkha, P. K. Rev. Lett.73, 1142(1994.

H. Sommerfeld, and R. W. van der Heijden, Phys. Re\xb(B
11 570(1994.

4Yu. P. Monarkha, S. Ito, K. Shirahama, and K. Kono, Phys. Rev.

Lett. 78, 2445(1997).

5R. Kubo, S. J. Miyake, and N. Hashitsume, Solid State Phys.
269 (1965.

6T. Ando and Y. Uemura, J. Phys. Soc. JB6, 959 (1974).

"Yu. P. Monarkha, K. Shirahama, and K. Kono, Low Temp. Phys.

23, 472(1997).

8Yu. P. Monarkha, Low Temp. Phy49, 530(1993.

°M. Saitoh, Solid State CommuB2, 63 (1984.

OM. 1. Dykman and L. S. Khazan, Zh.k&p. Teor. Fiz.77, 1488
(1979 [Sov. Phys. JETBO, 747 (1979].

1yu. P. Monarkha and F. M. Peeters, Europhys. Lat, 611
(1996.

125 Ito, K. Shirahama, and K. Kono, J. Phys. Soc. J$.533
(1997.

13p, K. H. Sommerfeld, R. W. van der Heijden, and A.T.A.M. de

20y, B. Shikin, JETP Lett47, 555(1988.

2IM. J. Lea, P. Fozooni, A. Kristensen, P. J. Richardson, K. Djerfi,
M. I. Dykman, C. Fang-Yen, and A. Blackburn, Phys. Rev. B
55, 16 280(1997).

22\W. Cali, X. L. Lei, and C. S. Ting, Phys. Rev.®, 4070(1985.

23Yu. P. Monarkha and V. B. Shikin, Sov. J. Low Temp. PH§s.
279(1982.

24p. W. Adams and M. A. Paalanen, Phys. Re\3B3805(1988;
38, 5064E) (1988.

25R. W. van der Heijden, M. C. M. van de Sanden, J. H. G. Sure-
waard, A. T. A. M. de Waele, H. M. Gijsman, and F. M. Peeters,
Europhys. Lett6, 75 (1988.

284, Totsuji, Phys. Rev. 22, 187(1980.

27y, Fukuyama, Y. Kuramoto, and P. M. Platzman, Phys. Rev. B
19, 4980(1979.

28R. R. Gerhardts, Surf. Scb8, 227 (1976.

29T, Ando, J. Phys. Soc. JpB7, 622 (1974).

%0p. R. Leadley, R. J. Nicholas, W. Xu, F. M. Peeters, J. T.
Devreese, J. Singleton, J. A. A. J. Perenboom, L. van Bockstal,

Waele, in Proceedings of the 21st International Conference on F. Herlach, C. T. Foxon, and J. J. Harris, Phys. Re¥8B5457

Low Temperature Physics, Prague, Czechoslovak, 1066
Phys.(Parig 46, Suppl. S1, p. 3191996)].

1D, B. Mast, A. J. Dahm, and A. L. Fetter, Phys. Rev. Lé&#,
1706 (1985.

15D, C. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B.
Williams, Phys. Rev. Lett54, 1710(1985.

16y, A. Volkov and S. A. Mikhailov, inModern Problems in Con-
densed Matter Sciencesdited by V. M. Agranovich and A. A.
Maradudin(North-Holland, Amsterdam, 199¥ol. 27.2, Chap.
15, p. 855.

(1993.

31M. Saitoh, J. Phys. Soc. Jp#2, 201 (1977.

32yu. P. Monarkha, Sov. J. Low Temp. Phys.515(1978.

33p. Scheuzger, J. Neuenschwander, W. Joss, and P. Wyder,
Physica B194-196 1231(1994.

34M. I. Dykman, J. Phys. A5, 7397(1982.

%A, S. Rybalko, Yu. Z. Kovdrya, and B. N. Esel'son, Pis'ma Zh.
Eksp. Teor. Fiz22, 569(1975 [ JETP Lett.22, 280(1975].

36R. Mehrotra, C. J. Guo, Y. Z. Ruan, D. B. Mast, and A. J. Dahm,
Phys. Rev. B29, 5239(1984).



