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Nonlinear quantum magnetotransport in a strongly correlated two-dimensional electron liquid
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Experimental and theoretical studies of nonlinear quantum magnetotransport of a nondegenerate two-
dimensional electron liquid formed on the surface of liquid helium are reported. Measurements of the magne-
toconductivity as a function of the input voltage are done using the edge magnetoplasmon~EMP! damping
method. A nonlinear theory based on the many-electron self-consistent Born approximation~SCBA! is intro-
duced to explain the data. It is shown that the nonlinear decrease ofsxx observed at strong magnetic fields
(B'3 T) is due to the cold quantum nonlinear effect caused by the peaked structure of the electron density
of states. At weak fields (B<1 T), the heating effect competes with this effect and become of the same
magnitude. The magnetic field dependence of the nonlinear narrowing of the EMP damping is in good agree-
ment with the nonlinear many-electron SCBA.@S0163-1829~98!07728-5#
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I. INTRODUCTION

Quantum magnetotransport in two-dimensional~2D! elec-
tron systems is of fundamental interest due to the sing
nature of these systems in the presence of a strong mag
field oriented normal to the 2D plane. The quantum H
effect of degenerate 2D electrons in semiconductors1,2 and
the unusual magnetoconductivity behavior of nondegene
2D electrons on the surface of liquid helium3,4 originate from
the peaked structure of the electron density of states in st
magnetic fields.

It is known that in 2D electron systems the usual Bo
approximation leads to a magnetoconductivitysxx5` for
elastic scattering at static impurities, due to the fact that
electron encounters the same scatterer multiple times an
collision duration becomes effectively infinite.5 The same
approach for inelastic scattering within the lowest Land
level makessxx50 due to thed-function structure of the
unperturbed density of states. The generally accepted wa
treating such a singular system is the self-consistent B
approximation~SCBA!,6 which takes into account the Lan
dau level broadening due to the interaction with scatterers
this case, the duration of the collision at impurities is prop
tional to the lifetimet, or inversely proportional to the Lan
dau level broadeningG5\/t , which results in a finite con-
ductivity: sxx}1/G. For inelastic scattering, the final resu
depends on the relation between the energy exchanged
collision \Dv and the level broadening.4,7 In the limiting
case \Dv!G, electron scattering can be approximate
treated as elastic.

In a nondegenerate electron system like surface elect
~SE! on helium, the linear magnetotransport is rather u
usual. In the ultraquantum limit, for both kinds of scattere
available in this system~vapor atoms and capillary wav
PRB 580163-1829/98/58~7!/3762~15!/$15.00
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quanta or ripplons! the effective collision frequency of elec
tronsn(B) increases faster with the magnetic fieldB than the
cyclotron frequencyvc . This means that the Hall angle o
the sideways motion of electrons decreases with increa
magnetic field; a behavior that is opposite to the class
Hall effect. For vapor atom scattering at rather high tempe
turesT.1.5 K, this unusual behavior makes the high cyc
tron frequency approximation (vc@n or sxx

.e2nn(B)/mvc
2 , heren is the electron density andm is the

free electron mass! inapplicable in the limit of strong mag
netic fields. In Refs. 3 and 8 the extended SCBA was int
duced to describe the unusual Hall effect. In this theory,
SCBA is formulated for the effective collision frequenc
n(B), which determines quantum magnetotransport
means of elementary equations for the conductivity tens
For low electron densities, the extended SCBA perfectly
scribes the experimental data up toB'20 T.

Another unexpected behavior ofsxx appears at low tem-
peratures where the electron-ripplon scattering domina
According to Ref. 4, the energy exchanged at a collisi
\vq , increases with the magnetic fieldB faster than the
Landau-level broadeningG, due to the unusual ripplon dis
persion vq}q3/2, which breaks the elastic approximatio
(\vq!G) previously used in the single-electron9 and
many-electron10 theories of quantum magnetotransport of S
on helium.

The remarkable properties of SE on superfluid helium
lows the Landau level broadeningG to satisfy the unique
condition G!kBT!\vc . According to Ref. 11, under this
condition, new nonlinear magnetotransport phenomena m
occur without heating of the electron system (Te.T). These
phenomena are of pure quantum nature, since they
caused by the narrow peaked structure of the density of st
and therefore can be used for experimental studies of
3762 © 1998 The American Physical Society
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PRB 58 3763NONLINEAR QUANTUM MAGNETOTRANSPORT IN A . . .
many-body properties of a 2D electron liquid in quantizi
magnetic fields.

Physically, the cold nonlinear magnetotransport effect
be explained as follows. For example, consider electron s
tering on helium vapor atoms, which can be treated like e
tic scattering on static impurities, since the time duration t
an atom spends within the electron orbit of radiusl
5A\c/eB is much larger than the orbit lifetimet. In the
presence of a driving electric fieldEi , the drift of an electron
orbit with velocityu can reduce the amount of multiple sca
tering on the same scatterer, if the time duration which
electron spends near the impuritytdr5 l /u becomes shorte
thant5\/G. As the basic linear magnetoconductivity pro
erties of a 2D electron system is caused by multiple enco
ters of the same scatterer, this effect reduces bothsxx andG.

The cold nonlinear effect can also be explained in anot
way, which is more appropriate for electron-ripplon scatt
ing, which is analogous to electron-phonon scattering in s
ids. Strongly correlated SE are in equilibrium in the cent
of-mass frame, which moves with the drift velocityu.
Relative to this frame, impurities~vapor atoms! and ripplons
move with the velocity2u in the opposite direction, and th
energy transfer between an electron and a scatterer~even for
electron-impurity scattering! can no longer be neglected. Th
additional energy exchanged at a single collision\Dv
5\q–u ~here\q is momentum transfer! can be inconsisten
with the Landau-level width, ifu\Dvu.G. For both kinds of
scatteringq.1/l which makes the two nonlinear criteri
found here (tdr,\/G and\uq–uu.G) equivalent. Therefore
the effect can also be considered as the nonlinear breakd
of the elastic approximation.

In general, both the cold nonlinear effect and the heat
effect appear to be of the same importance for the SE
helium, due to the relatively low-energy relaxation rate
the electron system. The energy collision frequencynen is
approximately three or four orders of magnitude lower th
the momentum collision frequencyn. To reduce heating and
to observe the quantum nonlinear effect in a real experim
with SE, we use the edge magnetoplasmon~EMP! method of
measuring the conductivitysxx described in Refs. 4 and 12
According to this method,sxx is found from the EMP damp
ing coefficient. In this case, the very narrow strip of SE n
the edge of the electron pool is heated and absorbs en
from the electric field. At the same time, due to the ve
short electron-electron autocorrelation time, the elect
temperatureTe is the same within the whole electron she
and all electrons take part in the energy relaxation. Thus
effective energy collision frequency that enters the ene
balance equation increases by approximately one orde
magnitude, which makes heating practically negligible
strong magnetic fields.

Preliminary experimental results showing the nonline
narrowing of the EMP damping were reported in Refs.
and 13 for the ripplon scattering regime.

In this paper, we present a detailed experimental stud
nonlinear quantum magnetotransport of highly correlated
on helium by means of the EMP damping method~Sec. II!.
To interpret the data, we develop the nonlinear ma
electron SCBA theory~Sec. III!. As a probe for the many
electron SCBA, the limit of linear quantum magnetotransp
is analyzed and compared with available experimental d
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and the results of previous theoretical approaches~Sec. IV!.
The nonlinear analysis presented here~Sec. IV B! proves that
the narrowing of the SE magnetoconductivity with increa
ing amplitude of the input voltage observed at strong m
netic fields and at low temperatures can be perfectly und
stood in terms of the quantum cold nonlinear effect.

II. EXPERIMENT

Here besides the considerable reduction of heating, wh
is important for studying the cold nonlinear effect, the EM
damping method serves as an alternative to the capac
coupling technique in the Corbino geometry. The lat
proved to be quite effective for measuringsxx at relatively
high temperatures where the vapor atom scattering do
nates. At low temperatures and strong magnetic fields
Corbino technique requires many precautions to avoid
excitation of EMP waves, which causes spuriousness in
experimental data. Such waves are excited due to small
viations of the system from axial symmetry or a slight ti
The EMP damping method used here is immune to asym
try, and consequently the excitation of EMP waves is
excellent tool for studying the quantum magnetotranspor
SE at low temperatures.

In the EMP wave,14,15, which propagates along the edg
of the electron pool, charge density fluctuations are locali
only near the edge within a characteristic widtha. At strong
magnetic fields,a is the width of the transition region, wher
the electron density changes smoothly from zero to its b
valuen.

The electron sheet in the present work has a circular
ometry with radiusRel , which is shaped by an assembly
electrodes. The inner electrode is 10 mm in radius, which
surrounded by four outer electrodes that are identical and
shaped. The outer radius of the assembly is 15 mm.
assembly is situatedd'1.0 mm under the liquid helium sur
face. A numerical study of the charge distribution profi
gives a'0.3 mm. The electron densityn was estimated
from the depth of the liquid helium and the applied dc vo
age. The experiment was carried out under saturated elec
density conditions with fixedn53.53107 cm22.

The cell containing the electrodes is mounted on a d
tion refrigerator. Resistance thermometry was employed
measure temperature. At low temperatures the resista
thermometers have been calibrated from the3He melting
curve. Although the thermometers are not inside the cell,
found that the temperature difference between the therm
eter and the sample is negligible, which we concluded fr
the fact that no hysteresis was found in a temperature sw
up and down.

The EMP is excited by an ac voltage of frequencyv
applied to one of the outer electrodes. The voltage indu
by the EMP is detected on the opposite end. The resonan
observed by sweeping the frequency of the ac voltage.
signal analyzed by a two-phase lock-in emerges as a typ
resonance curve. The basic resonancem51 is somewhat
noisy ~see Ref. 4! and there is a low-frequency distortion
which is due to the usual Hall effect. Therefore we mos
used them52 resonance to perform the analysis. Th
choice does not affect the conductivity results, since pra
cally the same damping coefficient was found for the th
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3764 PRB 58MONARKHA, SHIRAHAMA, KONO, AND PEETERS
and fourth resonances, in accordance with the basic con
of EMP waves.

The resonance frequencyvm and the damping coefficien
1/tm are obtained by fitting the observed resonance curv
the following formula based on the Lorentzian line shape

Y~v;C0 ,C1 ,C2 ,Dt,vm ,tm!

5FC01C1v1
C2

vm
2 2v212iv/tm

GeivDt, ~1!

whereDt, vm , and 1/tm are real parameters, whereasC0,
C1, andC2 are complex ones. The exponential factor in E
~1! takes into account the delay,Dt, of the signal because o
the electronic circuit. The terms containingC0 andC1 elimi-
nate the baseline offset, which could arise from the influe
of resonances with otherm numbers. Fitting was done itera
tively. Typical resonance graphs of the output signal and
fitting curves are shown in Fig. 1.

According to Ref. 16, the EMP damping is

1

tEMP
;sxx

E
a

`

E2dy

F~a!Q
, ~2!

where E and F are the electric field and potential of th
EMP respectively which are both proportional to the line
charge densityQ accumulated near the edge. In the case
strong magnetic fields~practically atB.0.1 T), the param-
etera is equal to the electron density transition width whi
is independent ofB andT. Therefore at fixed electron den
sity the EMP damping is proportional tosxx . This conclu-
sion is in accordance with the detailed theoretical analysi
Ref. 17. The proportionality coefficient depends on the p
ticular geometry of the experimental cell and the real sh
of the electron density at the edge.

Aiming mainly at studying the ripplon dominated regim
we fixed the proportionality coefficient betweensxx and
1/tm at T51.1 K where the ripplon contribution is negl
gible and the vapor atom scattering is well understood.
used a Drude formula atB50.294 T with the zero-field mo-

FIG. 1. The experimental signal from the biphase lock-in a
plifier (X: in-phase,Y: out-of-phase! as a function of frequency fo
T50.3 K, n53.53107 cm22, andB51.8 T. Solid curves repre
sent the results obtained by fitting to Lorentzians.
pt
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bility determined independently. Then the conductivity o
tained from the EMP damping is in agreement with the th
oretical and experimental results of Refs. 18 and 19.

EMP waves of the 2D electron liquid are excited by an
voltageVin applied to one of the outer electrodes. Thus t
external ac electric field,Ei

(0)52¹F (0), is mostly localized
near the gap between two neighboring electrodes and ca
estimated asVin /d, whered is the helium depth. The rea
electric field responsible for EMP damping,Ei52¹F, is
produced by electron density perturbationsdn. In general, it
is very difficult to find a direct relation between this fieldEi
andVin . Nevertheless it is possible to establish the freque
and magnetic field dependencies of the proportionality co
ficient betweenEi andVin , which we employ when compar
ing our experimental data and theory. For this purpose
use the qualitative analysis of the EMP dispersion introdu
in Ref. 16~an analogous method was also described in R
20!.

Employing the model of straight boundary~EMP waves
propagate along thex direction, and the gap between tw
neighboring electrodes is along they direction!, the EMP
dispersion equation, (v2vEMP)Q50, can be found combin-
ing the continuity equationivQ' j y(y;a) and the equation
for the current density at strong fields (syx@sxx)

j y.syx]F/]x. ~3!

The potential of the EMP waveF is proportional toQ with
a geometrical factor dependent ona. If we take into account
that the external potentialF (0) should be added toF at the
right-hand side of Eq.~3!, then the relation betweenQ and
Vin can be written as

Q}
syx

v2vEMP
Vin , ~4!

We found the same result by employing a more detai
analysis of the continuity equation and boundary condit
for the current density proposed in Ref. 20.

At the resonant conditionv2vEMP→0, the denominator
of Eq. ~4! should be replaced by 1/tEMP}sxx and the relation
between the amplitude of the electric field in the EMP wa
and the applied voltage can be written as

Ei}
syx

sxx
Vin . ~5!

Since the driving electric field in the EMP wave depends
sxx , according to Eq.~5!, the nonlinear narrowing of the
EMP damping is proportional to the nonlinear change of
SE conductivity only for sufficiently small nonlinea
changes. This condition is characterized by the linear rela
betweenEi andVin . Strong nonlinear effects produce mo
rapid narrowing of the EMP damping than the real change
sxx , which we observe.

The approximation~1! is strictly valid only in the linear
regime. In the nonlinear regime@sxx(Ei)Þconst#, the EMP
damping becomes frequency dependent and the reson
curves lose their Lorentzian shapes due toEi}Q and Eq.~4!.
Typical amplitude of the output signal is shown in Fig. 2 f
different drive levels. For small nonlinear changes, to wh
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PRB 58 3765NONLINEAR QUANTUM MAGNETOTRANSPORT IN A . . .
we mainly confine our experimental study, the correction
sxx is proportional to2Ei

2 and the nonlinear effect can b
described by the replacement

gm[
1

vmtm
→g lin2~g lin2g res!

g lin
4

~e21g lin
2 !2

in the usual Lorentzian functionR(e)5gm /(e21gm
2 ). Here

e5(v2vm)/vm , g lin is the normalized linear EMP damp
ing 1/(vmtm) or half-width of the linear resonance curv
andg res represents the EMP damping at the resonant co
tion e50.

Figure 3 shows the nonlinear resonance curves of
frequency-dependent width~FDW! model presented abov
for different levels of the nonlinear effect described byg res
<g lin . In this model the differenceg lin2g res is a measure of
the nonlinear effect. It is seen that the FDW model descri
quite effectively the nonlinear narrowing of the EMP res
nances. The nonlinear effect observed makes the reson
curves narrower and higher mostly at the vicinity of t
maximum, while the tails remain unchanged, in accorda
with the FDW model. It means that the physics of the no
linear EMP resonances is well understood.

Thus, in the nonlinear regime, the experimental sign
should be fitted to the FDW Lorentzians introduced abo
with an additional parameterg res representingsxx at v
5vm . Still it should be pointed out that the convention
fitting of the nonlinear curves reproducesg res remarkably
well as a half-width of the usual Lorentzian function wi
gfit(v)5const, as was proven in Fig. 3 for the FDW mod

The electric field of the EMP wave rapidly falls beyon
the edge strip, where the charge density is accumulate
allows one to estimate the number of SE that are heate
DNe.2aNe /Rel . In our experiment we haveRel'15 mm
anda'0.3 mm. These numbers are used in the energy
ance equation to estimate the electron temperatureTe .

FIG. 2. The amplitude of the experimental signal as a funct
of the frequency for different input voltages. The lowest curve c
responds to the smallest value ofVin . Experimental conditions are
the same as in Fig. 1.
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III. THEORY

Contrary to the SCBA theory, the single-electro
~Saitoh9! and many-electron@Dykman and Khazan10 ~DK!#
theories of quantum magnetotransport are more elabo
and are free of the problem of sharp Landau level win
Nevertheless when applied to the real experimental co
tions, these theories have difficulties. The theory of Ref
did not take into account the Coulomb interaction betwe
the electrons, which is very important at low temperatur
The DK theory includes the effect of mutual interaction
the electron density of states but disregards the level bro
ening that is caused by scatterers. Both theories disregar
inelastic effect important at strong magnetic fields.4

In Refs. 19 and 21 the DK theory was combined w
SCBA by means of the well known Einstein diffusion fo
mula. Unfortunately, the self-consistent procedure int
duced in these papers was based on results that were pr
for the case where only one kind of scatterer is present a
therefore, is not strictly correct, when there are additio
causes for the level broadening such as mutual Coulo
interaction~the procedure is revised in Secs. III C and IV A!.

The nonlinear as well as the inelastic reduction ofsxx
depends on the total broadening of the Landau level, wh
includesboth the many-electron effect and the effect of sc
terers. In this paper, we describe the nonlinear and inela
effects in the frame of the many-electron SCBA theory. T
approach allows one to treat the Coulomb broadening of
electron density of states in the same way as for the impu
scattering, which in our opinion is more appropriate th
combining DK theory with SCBA. The approach is phys
cally consistent and very instructive. At the same time,
appears to be quite effective for describing experimen
data, providing one with theoretical results within the acc
racy of 13% at least. We assume that the detailed behavio
the density of states at the wings of the Landau level is
important under the conditionkBT@G and the final result

FIG. 3. The nonlinear resonance curves from the FDW mo
described in the text~solid curves! for different strengths of the
nonlinear effect,g lin2g res. The lowest curve corresponds to th
linear regimeg res5g lin50.4. The dashed curves represent the res
of fitting to Lorentzians with a frequency-independent half-wid
gfit .
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does not depend much on the particular shape for the Lan
level. We prove this assumption by employing differe
kinds of Landau-level shapes.

We use an extended version of the SCBA established
a highly correlated electron liquid.3,8 This approach is similar
to the momentum balance equation method22 used for de-
scribing high-field magnetoresistance in semiconductor
electron systems. In comparison with the version of Refs
and 8 we incorporated the many-electron and nonlinear
fects.

A. Basic notations

The scattering of SE on helium vapor atoms domina
for T.1 K, while for sufficiently low temperaturesT
,0.7 K, it can be neglected as compared to the electr
ripplon scattering. Both kinds of scattering of SE can
described in a similar way by means of the interact
Hamiltonian represented as follows:

H int5 (
j 5a,r

(
q

U jn2qAj ,q , nq5(
e

exp~2 iq•re!,

~6!

where the subscriptj 5a corresponds to vapor atom scatte
ing, andj 5r corresponds to electron-ripplon scattering. T
many-body operators for ripplonsAr ,q5bq1b2q

† have the
usual form (bq

† is the creation operator!. In the case of
electron-atom scattering, it is convenient to introduce ope
torsAa,q that have similar properties and that represent a
of projection of the 3D vapor atom system onto the plane
the 2D electron system

Aa,q5(
k

hk(
K8

aK82K
† aK8 , ~7!

whereK5$q,k% is a 3D wave vector,hk5^1ueikzu1&, ^1uu1&
means an average over the ground surface level, andaK

† is
the creation operator of4He atoms.

The interaction parametersU j entering Eq.~6! are defined
as

Ur5VqA \q

2rvq
, Ua5

2p\2s0

m
, ~8!
au
t

or

D
3
f-

s

n-
e

a-
rt
f

whereVq is the electron-ripplon coupling23 whose detailed
form will be presented in Sec. IV B,r is the liquid helium
mass density,vq is the ripplon dispersion,m is the electron
mass, ands0 is the electron-atom scattering length.

The influence of the strong magnetic field on the elect
system will be described in terms of Fermi creation and
struction operators of Landau level statesuN,X&

nq5(
X

(
NN8

JNN8~q!cN,X
† cN8,X2 l 2qy

, ~9!

with the matrix elementJNN85^N,Xuexp(2iq•r )uN8,X
2qyl

2&.
Thus vapor atoms represent a nearly ideal example

short-range scatterers (s0! l ) convenient for the description
of basic magnetotransport phenomena in 2D electron
tems. Contrary to vapor atoms, ripplons are long-range s
terers, like phonons in solids. The matrix elementuJNN8u

2 is
proportional to exp(2q2l2/2), and restricts the wave vector
to q<A2/l . An additional restriction\vq<G appears due to
the inelastic effect.

B. Nonlinear collision frequency concept

We consider an infinitely large isotropic 2D electron li
uid moving along the helium surface in the presence
crossed magneticB and electricEi fields. In the center-of-
mass frame, moving with the drift velocityu, the frequency
of ripplons may be negativevq85vq2q•u,0, due to the
unusual dispersion of the ripplonsvq5Aa/rq3/2 (a is the
surface tension!. It should be noted that negative frequenci
appear even in the linear theory for small enoughq, which
means physically that perturbations reach a supersonic
server in the reverse order. Still, the negative frequenc
make the boson distribution function negative in the mom
tum balance equation method of Ref. 22. To avoid this
physical quantity, we use another version of the moment
balance equation method introduced in Refs. 3,8 for the c
of linear magnetotransport.

In the Born approximation, the momentum loss per s
ond and the kinetic frictionFfr can be found as a function
of the dynamic structure factor ~DSF! S(q,v)
5Ne

21*eivt^nq(t)n2q(0)&dt of the 2D electron liquid in the
fixed frame,
,

s to the
ve
, has a

of
tion

for
even
Ffr5
Ne

\ (
q

q•H Ua
2(

k
uhku2(

K8
NK8

~a!S~q,Dva!1Ur
2Nq

~r !@S~q,vq!1exp~\vq /kBT!S~q,2vq!#J ,

whereNK8
„a… and Nq

„r … are the distribution functions of vapor atoms and ripplons, respectively,Ne is the total number of SE

\Dva5E
K 8
(a)

2E
K 82K

(a)
is the energy exchanged at the electron-atom collisions.

We assume that the strongly correlated electron system is in equilibrium in the center-of-mass frame, which lead
relation S(q,v)5S0(q,v2q•u) in the fixed frame, whereS0 is the equilibrium DSF. Physically, it means that collecti
excitations of the moving electron system like 2D plasmons, which are responsible for a singularity in the DSF
dispersion affected by the Doppler shiftvp,q5vp,q

(0)1q•u in the fixed frame. This approximation is the quantum analog
the semiclassical treatment of strongly correlated electrons by means of the drift velocity shifted distribution funcf k
5 f (E2\k•u). In semiconductor systems, this approximation is quite common though it requires the conditionnee@n ~here
nee is the electron-electron autocorrelation frequency!, which is difficult to realize. Contrary to the semiconductor systems,
SE on helium the conditionnee@n is fulfilled at low temperatures, and therefore the approximation is expected to be
numerically correct.
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Using the well-known properties of the equilibrium DSFS0(q,2v)5e2\v/kBTeS0(q,v) and the condition\vq!kBT, the
kinetic friction can be rewritten as

Ffr5
Ne

\ (
q

q•F12expS \q•u

kBTe
D GFUr

2Nq
~r !S0~q,vq2q•u!1

1

2
Ua

2(
k

uhku2(
K8

NK8
~a!S0~q,Dva2q•u!G . ~10!

The Doppler energy correction\q•u enters Eq.~10! by means of two different parameters\q•u/kBTe and\q•u/G. The last
one appears in the argument of the DSF due to the singular nature of the electron density of states. Taking into acc
G!kBT, we can expand the friction as a function of the small parameter\q•u/kBTe while keeping the argument of the DSF

In the treatment proposed above, from the force balance equation we obtain the components of the conductivity t@or
the resistivity tensorrxx5mn(B,u)/ne2, rxy5B/nec# in which the effective collision frequencyn(B,u) depends on the
magnetic field, drift velocity, and electron temperature@hereFfr52Nemn(B,u)u#

n~B,u!5
1

mkBTe
(

q
qu

2H Ur
2Nq

~r !S0~q,vq2q•u!1
1

2
Ua

2(
k

uhku2(
K8

NK8
~a!S0~q,Dva2q•u!J . ~11!
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(
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A significant simplification of the nonlinear transport theo
appears to be possible at sufficiently low temperaturesT
,1.5 K) wheresxx!syx . In this case, Eq.~11! gives di-
rectly the driving field dependence of the transport coe
cients caused by the cold nonlinear effect, if we take i
account thatu.eEi /mvc . At the same time, the electro
temperatureTe is determined by the energy balance equ
tion.

Thus the magnetotransport problem is now reduced to
determination of the equilibrium DSF of a 2D electron liqu
in the presence of a strong magnetic field. It is instructive
note that for an ideal 2D electron gas in the limit ofu→0,
Eq. ~11! and sxx.e2nn(B)/mvc

2 lead to the results of the
center migration approach and SCBA theory applied to
nondegenerate system of surface electrons.24,25 At low tem-
peratures, especially in the ripplon dominated scattering
gime, SE represents a strongly correlated system in wh
the mean potential energy is approximately 100 times lar
than the mean kinetic energy. Therefore, the ideal gas
proximation of the DSF should be corrected. However
should be pointed out that in the limit of strong magne
fields q.1/l}AB→`, the DSF of a 2D electron liquid is
close to the DSF of an ideal electron gas, according to
results of numerical studies.26

Following Ref. 27, we assume that the many-electron
fect produces an additional broadening of the electron d
sity of states and therefore can be taken into account
correction to the single-electron Green’s functionGN(E). In
this treatment, using notations of Eq.~9!, the DSF can be
written as

S0~q,v!5
2\

p2Nel
2E dE f~E!@12 f ~E1\v!#

3 (
N,N8

uJN,N8u
2ImGN~E!ImGN8~E1\v!,

~12!

where f (E) is the Fermi-distribution function.
In the SCBA theory, the semielliptic Landau-level shap
-
o

-

e

o

e

e-
h

er
p-
t

e

f-
n-

a

,

2ImGN~E!5
2

GN
A12S E2EN

GN
D 2

, ~13!

is found as a solution of the self-consistent equations for
single-electron Green’s function. The cumulant expans
method of Ref. 28 yields the Gaussian Landau-level sh
with the same broadening. This shape has the approp
physical behavior at the edges of the Landau levels. In
simplified method,28 the half ellipses of SCBA are replace
by Gaussians in the conductivity equations. The real Land
level shape in fact is a mixture of an elliptic and a Gauss
form.29

In the ultraquantum limit (N50, G0[G) and G!kBT,
Eqs.~12! and ~13! yield

S0~q,v!.
32\

3pG
expS 2

q2l 2

2 DYSS \v

G D , ~14!

with

YS~y!5
3

4E21

12y
A12x2A12~x1y!2dxu~22uyu!,

whereu(x) is the unit step function. Numerically, we foun
that YS(y) is very close to the function YG(y)
5(3p3/2/16)exp(2y2), as what one would find for the
Gaussian Landau-level shape. Therefore, in contrast to
case of a degenerate 2D electron gas, the DSF for nonde
erate electrons is nearly independent of the used Land
level shape, ifG!kBT. In the elastic theory the differenc
betweenYS(0) andYG(0) is less than 5%, which explain
why the SE magnetoconductivity equations found for t
semielliptic and Gaussian level shapes3 are numerically so
close to each other.

Dynamic correlations of SE in the presence of a quan
ing magnetic field are confined to the very narrow ene
scale;G, which is in contrast to the semiclassical treatme
wherekBT is the only energy parameter entering the DSF
a nondegenerate 2D electron gas.26 As mentioned in the In-
troduction, the nonlinear transport of strongly correlat
nondegenerate 2D electrons should be treated as inel
even when there is only impurity scattering and no inter
states of an impurity are excited at a collision. Though
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total ~averaged! energy transfer to the static impurities equa
zero, the significant energy exchange between an elec
and an impurity in a single collision appears for the elect
center-of-mass frame due to the high drift velocityu. There-
fore, the frequency dependence of DSF is the most impor
quantity for the description of the inelastic and nonline
effects.

C. Dynamic correlations and level broadening

The single-electron Green’s function entering Eq.~12! is
assumed to be calculated in the center-of-mass frame,
tive to which the vapor atoms and the ripplons are mov
with the drift velocity 2u in the opposite direction. The
additional time-dependent factor exp(iq•ut) that appears in
the interaction Hamiltonian~6! can be taken into account b
determining the ripplon and vapor gas operatorsAj ,q in the
center-of-mass frameAj ,q8 (t)5exp(iq•ut)•Aj ,q(t).

The perturbation theory for the single-electron Gree
function operates with the correlators

D j~q,t2t8!52 i ^T@Aj ,q~ t !Aj ,2q~ t8!#&, ~15!

which are written in a similar way for both kinds of electro
scattering (j 5a,r ). In the center-of-mass frame, we ha
D j (q,v)5D j

(0)(q,v1q•u), which describes the Dopple
shift for the perturbation source moving with the velocit
2u. Finally, the electron self-energy can be written as

SN~E!5 i(
q

(
N8

uJN,N8u
2E dv

2p
GN8~E2\v!(

j
U j

2

3D j
~0!~q,v1q•u!. ~16!

It should be noted that the result is the same, if we wo
evaluateSN in the fixed frame and use the Doppler shift
the electron Green’s function instead of inD j .

In the argument of the electron Green’s function~16!, the
frequency term\v is equal to the energy exchanged at
collision including the Doppler shift correction. If this term
is much smaller than the typical electron energy scaleE
;G, then we can disregard it as well as the mixing of t
different Landau levels~it is also assumed thatG!\vc).
This yields

SN~E!5 1
4 GN

2 GN~E!, ~17!

where GN5AGa,N
2 1G r ,N

2 is the total broadening,Ga,N and
G r ,N are the level broadening induced by vapor atoms
ripplons, respectively. Consequently, contributions toGN

2

from different scatterers are independent and Eq.~17! pro-
vides us with the rule of how to combine them to the to
broadeningGN . Equation~17! together with the Dyson equa
tion can be solved in a self-consistent way following Ref.
which results in the semielliptic Landau-level shape.

According to the general treatment of the Coulomb eff
as presented in Ref. 27, the Landau levels will be additi
ally broadened due to the many-electron fluctuating elec
field Ef for the same reason as it was due to the rand
impurity potential. The fluctuating electric field is produce
in the center-of-mass frame, which means that there is
additional time-dependent factor exp(iq•ut) in this case. It
allows one to find the Coulomb contribution to the electr
on
n

nt
r

la-
g

s

d

d

l

,

t
-

ic
m

o

self-energy in the elastic way as1
4 GC,N

2 GN(E). HereGC,N is
the broadening of the electron density of states produced
the mutual Coulomb interaction. For the ground level (N
50) GC can be estimated as the electron energy uncerta
due to the fluctuating fieldGC'eEf l ~the same estimate wa
used in Ref. 21!. To be strict, we use the numerical propo
tionality factorb'1 in the equation

GC5beEf l , Ef50.84A4pkBTen
3/2, ~18!

where the fluctuating electric field was taken from the n
merical simulations of Ref. 18.

In the elastic treatment, the total electron self-energy
cluding the Coulomb correction can be written in the sa
way as Eq.~17! with the total broadening

G5AGa
21G r

21GC
2. ~19!

This result shows that the simple sum of different kinds
broadening as previously used in Ref. 19 in order to obt
the total broadening is not correct and can differ from t
strict result by a factor ofA2. More importantly, as the mag
netic field increases, the sum of collision broadening and
many-electron effect of Ref. 19 approaches much m
slowly the single-particle SCBA result than forG
5AGa

21GC
2 according to the many-electron SCBA.

It is instructive to note that in the elastic regime there
no need for an additional self-consistent procedure in
duced in Refs. 19 and 21 for the total broadening, ifGa , G r ,
and GC are separately determined. Indeed, in the SC
theory, the self-consistent procedure is formulated for
electron Green’s functionGN(E), which is determined by
the self-consistent pair of equations: the Dyson equation
equation for the electron self-energy. The total broadenin
determined automatically, if the total self-energy is factor
with GN(E), as in Eq.~17!. Therefore the enhancement o
scattering, due to the concentration of the density of sta
proportioned to\vc /AGa

21GC
2 leads straightforwardly to a

new and more simple equation for the total conductivity~see
Sec. IV A! than equations used previously in Refs. 19 a
21.

The Coulomb broadening is important for weak magne
fields and high electron densities, due toGC}n3/4/AB. At
strong magnetic fields the collision broadening dominat
since it increases with the magnetic field likeGa}AB.

Thus in the many-electron SCBA theory, the complicat
problem of the influence of internal forces on the quant
magnetotransport of a nondegenerate 2D electron liquid
comes a matter of a single numerical factorb, which is close
to unity. In principle a rigorous estimation ofb can be done
in a more advanced theory. At the same time, any mo
calculation will not be able to give a more accurate va
than the simple choiceb'1, which appears to be in remark
able agreement with the linear experimental data for both
vapor and the ripplon scattering regime.

In general, Eq.~16! is actually an integral equation fo
SN(E), which is rather difficult to solve. We assume that
the limiting casekBT@G the final result is nearly indepen
dent of the particular shape of the electron density of sta
~the assumption is checked for two kinds of shapes: Gaus
and semielliptic!. Then for the semielliptic shape, the lev
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broadening can be defined asGN522 ImSN(EN) ~an
analogous treatment for 2D semiconductor systems was
in Ref. 30!. Taking into account thatDa

(0)(q,v) and
Dr

(0)(q,v) ~at Nq
(r )@1) are purely imaginary, and neglectin

the mixing of the different Landau levels (GN!\vc), the
self-consistent equation for the Landau-level broadening
be written as

GN52(
q

uJNNu2E dv

2p
ImGN~E2\v!(

j
U j

2

3ImD j
~0!~q,v1q•u!1

GC,N
2

GN
. ~20!

To solve this equation, we use the analytical approximat
of Eq. ~13! for ImGN(E). Equation~20! describes the influ-
ence of the inelastic and nonlinear effects on the broade
of the electron density of states.

It should be additionally emphasized that, according
numerical evaluations that will be presented in Sec. IV,
main inelastic and nonlinear narrowing ofn(B,u) comes
from the frequency dependence of DSF@Eq. ~14!# rather than
from Eq. ~20!. The inelastic and nonlinear changes of t
Landau-level broadening appear to be small as compare
changes of the collision frequency. This explains the rema
able efficiency of the SCBA in describing our experimen
data.

D. The heating effect

In order to determine the electron temperatureTe , we
consider the energy-transfer rate from the electron system
vapor atoms and ripplonsṖen, which can be represented i
the form Ṗen5(Te2T)Nenen, wherenen is the energy colli-
sion frequency. The energy balance equation can be wr
as

Te2T

T
5

mu2

kBT

n

nen

DNe

Ne
, ~21!

whereDNe is the number of SE in the EMP wave that abso
energy from the electric field. Equation~21! takes into ac-
count that the electron-electron collision frequency is mu
higher thannen and, therefore, all electronsNe are at the
same temperatureTe .

We will see that the main change ofsxx caused by the
cold nonlinear effect occurs forl5A2\u/ lG,1. Using the
relation betweenu andl one can find

Te2T

T
5l2

n

2nen

G2

\vckBT

DNe

Ne
. ~22!

For electron scattering on vapor atomsn/nen;0.531022.31

In the single-electron approximation,G2 has the same mag
netic field dependence asvc . At T;1 K, it can be esti-
mated that (Te2T)/T;l2DNe /Ne , and therefore heating
can be neglected in the EMP method of measuring the
magnetoconductivity sinceDNe!Ne .

In the ripplon scattering regime, the energy collision fr
quency is substantially lower and the heating effect sho
be taken into account at least for weak magnetic fieldsB
;1 T. The same method as described in Sec. III B yield
ed

n

n

g

o
e

to
k-
l

to

en

h

E

-
ld

nen5
1

4prTe
E

0

2pdw

2pE0

`

dqq2Vq
2S0~q,vq2q•u!. ~23!

This equation is the result of one-ripplon scattering proces
under the condition\vq!kBT. The two-ripplon process o
electron emission of short wavelength ripplons which a
important in the case ofB50 ~Ref. 32! are suppressed by th
peaked structure of the electron density of states (G!kBT) at
strong magnetic fields.

IV. RESULTS AND DISCUSSIONS

A. Vapor atom scattering regime

The vapor atom scattering has the most simple form,
therefore it is instructive to start the final analysis of the co
nonlinear magnetotransport with this case. First we note
for T.1 K, the energy exchanged at a collision in a fix
frame\Dva'\(q•q81kk8)/M ~hereM is the helium atom
mass! can be neglected in comparison toG.

Before going into the details of the nonlinear analysis,
use the vapor atom scattering as a probe for the ma
electron SCBA theory. For a semielliptic Landau-level sha
one can find the effective collision frequency within the li
ear theory

n lin~B!5
2vcGa

2

pG2I 1~G/kBT!
cothS \vc

2kBTD3@cosh~G/kBT!

2~kBT/G!sinh~G/kBT!#. ~24!

Here I 1(x) is the modified Bessel function of first order; th
electron-atom interaction parameters are combined intoGa

5\A(2/p)vcn0, which represents the linear level broade
ing for pure vapor atom scattering. For the Gaussian Land
level shape we have

n lin~B!5
ApvcGa

2

4GkBT
expF2S G

4kBTD 2GcothS \vc

2kBTD . ~25!

Equation~25! is numerically close to Eq.~24!, if kBT.G.
Equations~24! and~25! are many-electron extensions of th
results of the single-electron theory.3 It is important to note
that hereG originates from the real density of states, wh
Ga is the formal combination of the interaction paramete
like Ua , mean vapor densitynG , and the parameter of th
electron wave function̂zu1&}zexp(2gez), according ton0

5(3Ua
2nGgem)/8\2. In the pure caseG5Ga , it is usual to

cancel the broadening entering the denominator of Eqs.~24!
and ~25! to the expense of the numerator, which hides
singular nature of the conductivitysxx}1/G.

In general, we should separate the total broadeningG
from Ga in Eqs. ~24! and ~25! due to the other interaction
that are present. For instance, the many-electron ef
broadens additionally the Landau level, which makesG
[G lin5AGa

21GC
2. The total broadening as a function ofB

has a minimum whose position depends on the electron d
sity n andT.

In the weak magnetic field range, the increase ofG in-
duced by the many-electron effect (GC}1/AB) is the cause
for the conductivity decrease~relative to the single-electron
theory result! observed in Refs. 19 and 33. It should be not
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that Eqs.~24! and~25! are valid only for rather small broad
ening 2G,\vc , which allows one to neglect mixing of th
different Landau levels. In the single-electron SCBA theo
this restriction is less important, sinceGa}AB. The restric-
tion becomes decisive for the many-electron theory due
the rapid increase ofGC with a decrease of the magnet
field. Additionally, the equations are restricted by the qu
tum condition \vc.kBT, since we neglected the depe
dence ofGC on the level numberN.

It is instructive to compare Eq.~25! with the result of the
lattice model theory introduced in Refs. 18 and 34 to d
scribe the many-electron effect,

rxx~B!/rxx~0!50.15~vc /vp!~\vc /kBT!3/2, ~26!

wherevp5(2pe2n3/2/m)1/2 is the plasmon frequency. In th
ultra-quantum limit, the many-electron SCBA equati
rxx(B)/rxx(0)5n(B)/n(0) yields (\vc)

2/(2ApGkBT),
which would have the same analytical behavior as Eq.~26!,
if the vapor-atom-induced broadening is neglectedG→GC.
For the numerical factorb which describes the Coulom
broadening in Eq.~18!, the comparison givesb.1.58. The
comparison of Eq.~25! with experimental data, which wil
be presented later, shows that this value ofb overestimates
the many-electron effect, and the parameterb is closer to
unity.

In Refs. 19 and 21 the quantum magnetotransport
analyzed by means of the Einstein relation between the
bility and the diffusion constant, which gives

sxx5
e2n

m

\

2kBTvctB
. ~27!

It is very important to establish the correct physical mean
of the so-called scattering rate in the fieldtB

21 . It is surely
not a momentum relaxation raten(B), since according to the
general analysis of Ref. 3, atvc@n we have sxx

.e2nn(B)/mvc
2 . The comparison with Eq.~27! gives

\/tB52kBTn(B)/vc . In Refs. 19 and 21\/tB was treated
as a collision broadening and combined withGC to get the
total broadening. The many-electron SCBA results@Eqs.~24!
and ~25!# show that this is true only when one kind of sca
terer is present. Comparing the result of Eq.~24! with the
formula based on the Einstein relation, Eq.~27!, one finds

\

tB
5

8

3p

Ga
2

G
[

8

3p

Ga
2

AGa
21GC

2
~28!

for the semielliptic Landau-level shape. For a Gauss
shape the numerical factor 8/3p should be replaced byAp/2.
Equation~28! shows that\/tB can be treated as a collisio
broadening only forGC50, which results intoG5Ga . In
general,\/tB is not a collision broadening and cannot
combined withGC in order to get the total broadening. Ac
cording to the many-electron SCBA result, the total broa
eningG5AGa

21GC
2 differs from the previously used expre

sions \/tB1GC,19 and A(\/tB)21GC
2.21 Therefore, the

combined theoretical conductivity obtained in Refs. 19 a
21 by means of an additional self-consistent procedure
the total broadening to fit experimental data is not corr
and can only be considered as an interpolation formula.
y

to

-

-

s
o-

g

n

-

d
r
t

The physically correct combination of the conductivi
due to the many-electron effectsm and the single-electron
conductivity ss can be found in a straightforward way, a
follows. As mentioned in Sec. III C, there is no need for a
additional self-consistent procedure onceGa andGC are de-
termined. We note that Eq.~28! is in accordance with the
scattering rate enhancement in a magnetic fieldtB

21

'n0\vc /G. Then, using the correct definition forG
5AGa

21GC
2 and using the relationssm}Ga

2/GC and ss

}Ga , one finds the proper equation

sxx5
sssm

Ass
21sm

2
, ~29!

which should be employed instead of the interpolation f
mulas.

As shown in Ref. 3, for low electron densities the e
tended single-electron SCBA perfectly describes the exp
mental data in a wide range of magnetic fields up to 20
Equations~24! and ~25! of the linear many-electron SCBA
theory show the way by which the Coulomb broadening a
the broadening induced by vapor atom scattering should
combined in the magnetoconductivity equations. In order
find an appropriate value for the numerical factorb entering
into Eq.~18!, in Fig. 4 we plot the magnetic field dependen
of the ratiosxx(0)/sxx(B) and the experimental data of Re
33 for the SE conductance. The conductance is proportio
to sxx with a numerical factor of order unity, which is un
known for the experiment of Ref. 33. We fix this constant
fit the data and theory at extremely strong magnetic fie
(B.20 T), where the many-electron effect can be n
glected. The magnetic field dependence of the ra
sxx(0)/sxx(B) at intermediate fieldsB<5 T appears to be
very sensitive to the many-electron effect. Figure 4 sho
~even qualitatively! that the numerical valueb.1.58 found
from a comparison with the lattice model theory18,34 overes-

FIG. 4. The inverse conductivitysxx(0)/sxx(B) vs the mag-
netic fieldB for T51.2 K. The many-electron SCBA is shown b
the solid (b51) and the dashed (b51.58) curves for two electron
densities:n50.753108 cm22 (1) andn53.23108 cm22 (2 and
28). Dotted curves represent the extended SCBA theory.3 Data
~circles! are taken from Ref. 33. The inset showsvc /n(B) vs the
magnetic field for the highest density.
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timates the many-electron effect~dashed curve!, while the
simplest choiceb51 leads to a perfect fit~solid curves!
down to 2 T.

It should be noted that in Fig. 4, we neglected t
electron-ripplon interaction, which is small forT51.2 K,
and we normalized the experimental and theoretical cur
to sxx(0) for pure electron-atom scattering. The inclusion
the electron-ripplon scattering givesb.1.1. This difference
is within the experimental error of determiningn and can
therefore be disregarded. Still, curves normalized to the t
sxx(0) would be lower than curves of Fig. 4 by approx
mately a factor 1.15. This is due to the magnetic field eff
on sxx(0)/sxx(B)}1/n(0)n(B), which multiplies the cor-
rections ton(0) andn(B).

The cause of the deviation of the theoretical curve fr
the data for weak fieldsB,1.5 T is clearly seen in the inse
of Fig. 4, where we plot the ratiovc /n(B) and the data
extracted from the conductance experiment of Ref. 33
means of the elementary relation betweensxx andn(B). The
single electron theory~dotted curve! describes the transition
from the classical Hall effect~sideways motion of electron
increases withB) to the abnormal Hall effect of the quantu
regime where the sideways motion decreases with magn
field. In the quantum regime, the single-electron theory gi
n(B)}B3/2, which increases faster thanvc . The many-
electron effect even increases this abnormal Hall effect
the limiting caseGC@Ga we would haven(B)}vcGa

2/GC

}B5/2, sinceGC}1/AB. The solid curve represents the man
electron theory, Eq.~25!, and the data both clearly show th
increase. In the quantum regime, the data and the m
electron theory are in very good agreement in a wide ra
of magnetic fields 1.5 T<B<20 T, where the mixing of
the different Landau levels can be neglected. ForB<1.5 T,
the data deviates from the solid curve and shows the nor
Hall effect. The reason for this behavior is that at weak fie
the Landau-level broadening becomes comparable to
level separation~at B51.5 T the ratio 2G/\vc'0.7),
which restores the semiclassical nature of the magnetotr
port, according to Ref. 18.

The agreement achieved between the theory and ex
ment proves that in the ultraquantum limit the many-elect
effect mainly affects the electron density of states, which
be taken into account by the simple replacementG
→AGa

21G r
21GC

2 in the final equations of the extende
SCBA.

Since the experimental data of the Carbino techniq
might be affected by spurious effects, it is very important
the final data to satisfy a simple physical behavior, wh
follows from the theoretical analysis. We cannot use the d
of Ref. 19 as a probe, since they do not satisfy the requ
limiting behaviorsxx(0)/sxx(B) at strong fields. The many
electron curves and the data sets for different dens
should cross atB<7 T under saturation condition for th
holding electric field,E'52pen, due to the holding field
dependence of the electron wave function. One easily fi
that the strong magnetic field asymptote of the ra
sxx(0)/sxx(B)}1/@n0n(B)#}ge

23/2(E') depends on n.
Therefore, each many-electron curve has its own sin
electron curve as an asymptote at strong magnetic fields.
increase ofE' with the electron density reduces the stro
s
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magnetic field asymptote, while the many-electron effect
creases the weak field part of the curves. This results
crossing of the many-electron curves, as is seen in Fig
The inclusion of the electron-ripplon interaction increas
this effect. In Ref. 19, the data plotssxx(0)/sxx(B) for dif-
ferent densities do not cross but behave like they have
allel asymptotes at strong magnetic fields, which is in co
tradiction with the simple physical requirement mention
above. Regarding the new data of Ref. 21, they are in c
tradiction with even a more simple rule, namely, that expe
mental plots for 1/sxx(B) should decrease with the electro
density n in the limit of strong magnetic fields, due tos
}n.

We start our nonlinear analysis with the Landau-lev
broadening equation. As mentioned above, the Coulomb
rectionGC does not depend onu @except for the weak indi-
rect dependence due to the heating effect taken into acc
by Te(u)#, since it is caused by the fluctuating field of th
electrons, which are at rest in the center-of-mass frame.
the other hand the vapor atom gas moves with the drift
locity 2u, which makes the vapor atom contribution to th
level broadening dependent onu. The effect can be easily
described, if we take into account that

Da
~0!~q,v!522p i(

k
uhku2(

K8
NK8

~a!d~v1Dva!. ~30!

For the semielliptic shape Eqs.~20! and ~30! yield

G25Ga
2 1

2pE0

2p

dwE e2xA12l2~G lin
2 /G2!xcos2~w!dx

1GC
2, ~31!

where G lin5AGa
21GC

2 is the total linear broadening,l
5A2\u/ lG lin.A2eEil /G lin is the nonlinear parameter.

We solve Eq.~31! numerically. Still, it is instructive to
use a Gaussian Landau-level shape in order to reveal
nonlinear narrowing ofG in an analytical form. In this case
the self-consistent equation reduces to

G25
Ga

2G

AG214\2u2/ l 2
1GC

2, ~32!

which is a cubic equation and which can be solved anal
cally. In the limit GC!Ga , valid for strong magnetic fields
or low electron densities, the solution is of a very simp
form:

G2.AGa
41S 2\2u2

l 2 D 2

2
2\2u2

l 2
, ~33!

which shows clearly the effect of the drift velocity on th
level broadening. The first term describes the way by wh
the drift-time durationtdr5 l /uA2 is combined with the lin-
ear lifetime\/Ga . The second term in Eq.~33! provides the
required physical behavior ofG in the limiting casetdr
!\/Ga : there is no level broadening in the single-electr
theory without vapor atom scattering (Ga

2→0).
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The results of a numerical evaluation of Eq.~31! are
shown in Fig. 5 for three electron densities~solid curves!.
The level broadening becomes less dependent on the no
ear parameterl with increasing electron density, which
caused by the many-electron effect. The results of the Ga
ian approximation~dashed curves! for G(l) behave in a
similar way, but they are shifted towards the range of sma
l. The reason is that this shape for the Landau level is
appropriate for the self-consistent equation that is used,
to the shape factorAp/2. Correcting the nonlinear paramet
l by this factor shifts the dashed curves close to the s
curves, but this procedure is introduced only to show that
result does not depend significantly on the real Landau-le
shape. The linear broadening of the Gaussian density
states found in the lowest-order cumulant approach28 is the
same as the broadening of the SCBA. Therefore, the solu
given by Eq.~31! is the most appropriate one. Moreover,
will be shown below, the main nonlinear reduction of t
effective collision frequency is nearly independent of t
nonlinear change ofG.

According to Eqs.~11! and ~14!, the effective collision
frequency of the cold nonlinear effect (Te.T) becomes

n~l!

n lin
5

G lin

G

1

pE0

2p

dwcos2~w!E
0

`

dxxe2x

3YSS l
G lin

G
Axcos~w! D . ~34!

As pointed out in Sec. II B, it does not matter which rep
sentation is usedYS(y) or YG(y), since they are very close
For the Gaussian shape, the nonlinear collision freque
can be found in analytical form

n~l!

n lin
5

G lin

G F11l2
G lin

2

G2 G23/2

. ~35!

FIG. 5. The Landau-level broadening as a function of the n
linear parameterl5A2\u/ lG lin for three electron densities: 0.
3108 cm22 ~1!, 23108 cm22 ~2!, and 53108 cm22 ~3!. Solid
curves represent the many-electron SCBA with a semielliptic le
shape; dashed curves are from a solution of Eq.~32! for the Gauss-
ian shape. Dotted curves represent the solution of the sin
electron theory for the semielliptic (S) and the Gaussian (G)
shapes as described in the text.
lin-
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Here the total broadeningG is a function ofl. It is instruc-
tive to consider two extreme cases corresponding to
single-electron approximation@G(l) is determined by Eq.
~33!# and approximationGC@Ga or G(l)5const. In the first
case,

n~l!

n lin
5

A11l42l2

~11l4!3/4
. ~36!

The approximationG(l)5const yields the more simple form
n(l)/n lin5(11l2)23/2. Both these extreme analytical equ
tions are shown in Fig. 6 by the dotted curves (s and m).
First, it should be noted that both curves are remarka
close to each other, which supports the approximations u
in Ref. 11. Any many-electron nonlinear curve, within th
Gaussian approximation, will be situated between the cur
s andm. Secondly, the sharp nonlinear narrowing ofn ~Fig.
6! is more important than the rather weak narrowing
G(l)/G lin , which is also suppressed by the many-electr
effect, according to Fig. 5.

The results of a numerical evaluation of Eq.~34! for the
semielliptic shape are shown in Fig. 6 by the solid~many-
electron theory! and dashed~single-electron approximation!
curves. These results additionally prove the universal beh
ior of the ration(l)/n lin at l,1, where the main nonlinea
narrowing occurs. Of course, the universal behavior
n(l)/n lin does not imply that the nonlinear effect is insen
tive to the many-electron effect, sincel depends onG lin ,
which contains the Coulomb correctionGC. Therefore, the
dependence of the SE conductivity on the driving elec
field is affected by the many-electron fluctuating field,
well as the magnetic field dependence of the critical d
velocity.

It should be emphasized that the dotted curves in Fig
are plotted for the Gaussian Landau-level shape, which
used for calculating bothn and G. This shape is surely no
appropriate for the self-consistent equation, as it was
cussed above. Nevertheless, the dotted and solid curve

-

l

e-

FIG. 6. The normalized effective collision frequency vs the no
linear parameterl for two electron densities: 0.53108 cm22 (1),
and 23108 cm22 (2) for the many-electron SCBA~solid!, and the
single-electron theory~dashed!. Dotted curves represent the resu
of the single-electron approximation (s) and for the extreme many
electron limit,GC@Ga , (m) for a Gaussian Landau-level shape.
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close, which proves that the results do not depend much
the specific Landau-level shape used. The simple analy
form of the nonlinear effect allows one to obtain direct e
perimental knowledge of the Landau-level broadening
the strongly correlated 2D electron liquid.

B. Electron-ripplon scattering regime

The low-temperature regime of the SE magnetotrans
(T,0.7 K) is more difficult to analyze than the vapor g
scattering regime, due to the complicated form of t
electron-ripplon couplingVq .23 At the same time, this limit-
ing case is the most convenient one for experimental ob
vation of the cold quantum nonlinear magnetotransport p
nomena, since the level broadening decreases with lowe
T, and therefore much weaker driving electric fields are
quired to reach the conditionl;1.

To describe ripplon-induced broadening we use the r
tion

ImDr
~0!~q,v!52p~2Nq

~r !11!@d~v2vq!1d~v1vq!#,
~37!

which is similar to Eq.~30! for the vapor atom scattering
Assuming the capillary dispersionvq}q3/2, one finds

G25GC
21

L2kBT

pa l 4 E0

2pdw

2pE W2~x!e2x

3A12
Gelas

2

G2
@dx3/41lAxcos~w!#2

dx

x
, ~38!

where the second integral is limited to the positivex range
for which the square root is real;d5\v0 /Gelas is the inelas-
tic parameter@v0

25a(A2/l )3/r# andl5A2\u/Gelasl is the
nonlinear parameter,Gelas5AG r

21GC
2 is the total elastic

broadening,

W~x!5xwS x

2ge
2l 2D 1

eE'l 2

L
, L5

e2~eHe21!

4~eHe11!
,

w~y!52
1

12y
1

1

~12y!3/2
lnF11A12y

Ay
G , ~39!

eHe is the dielectric constant of liquid helium;E' is the
holding electric field. Equation~38! represents the self
consistent equation for the Landau-level broadening, wh
is to be solved numerically.

According to Eqs.~11! and ~14!, the nonlinear effective
collision frequency can be written as

n~r !5
4m2L2vc

3T

3p2a\2GTe
E

0

2pdw

p
cos2~w!E

0

`

dxW2~x!e2x

3YSS Gelas

G
@dx3/41lAxcos~w!# D . ~40!
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Equation~40!, as well as Eq.~38! for the level broadening,
incorporates both the inelastic and nonlinear effects on eq
footing, which agrees with the physical concept of the co
nonlinear magnetotransport as a nonlinear breakdown of
elastic approximation discussed in the Introduction.

In the quasielastic limiting case (\vq!G) of linear mag-
netotransport (l!1), the ripplon-induced broadening an
the effective collision frequency can be written as follows

G r
25

L2kBT

pa l 4 Ex0

`

W2~x!e2xdx/x,

n0
~r !~B!5

4m2L2vc
3

3p2a\2Gelas
E

0

`

W2~x!e2xdx. ~41!

The effective collision frequency of Eq.~41! shows the sin-
gular nature of the elastic magnetotransportn0(B)}1/Gelas.
The lower limitx0 of the integral that enters the level broa
ening equation is introduced in order to cut off the logari
mic singularity of theE'

2 term, which appears for the capi
lary spectrum. Of course, there is no singularity when
real ripplon spectrum is used, which has the gravity-wa
behaviorv}q1/2 for q→0. For the case of non-zero electro
density, the cutoff at wave vectorsq'An, where the many-
electron effect screens the electron-ripplon interaction,
more important. Still, in the low-temperature limit, low ele
tron densities are required for the system to be in a liq
state, and this singular term is usually much smaller than
polarization term of the electron-ripplon interaction.

The field dependence ofn0
(r ) as well asG r is hidden, due

to the complicated form of the interaction potentialW(x). It
is possible to reveal it in a qualitative way, if we take in
account thatw(y) is numerically close to 1/(3Ay), which is
also supported by the temperature dependence of the z
field mobility m}1/T, observed experimentally.35,36 At low
temperaturesT;0.3 K the electron density should be rath
small n<43107 cm to avoid the Wigner solid transition
which allows one to neglect theE'-dependent terms in the
integrals overx. In this case, we haveW2}1/B and conse-
quently G r}ABT. In the single-electron treatment, it yield
n0

(r )(B)}B3/2/AT or sxx}1/ABT. This temperature and field
dependencies ofsxx are in agreement with the results of th
more sophisticated single-electron quasielastic the
~Saitoh9!. More detailed comparison shows that the main d
ference between the theory of Ref. 9 and our results is
the difference of averaging of the interaction potentialW2(x)
by means of dimensionless integrals in the equations
n0

(r )(B) andG r
2 . For instance, the corresponding integral f

G r
2 is of the form*0

`W2(x)e2xdx, which is more suitable for
high electron densities due to the analytical behavior at sm
x. In the case of high electron densities, theE'

2 term of the
corresponding integral, (eE')2l 4/L2, can be used in Eq.~41!
as an approximation instead of the logarithmically diverg
term. At low electron densities employed here andB.2 T,
both kinds of averaging give very close results for the
conductivity ~within 13% accuracy!.

In the opposite limiting caseGC@G r , we haveG}AT/B,
which results inn0

(r )(B)}vc
2AB/T or sxx}AB/T, and which
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exhibits field and temperature dependencies consistent
the results of the many-electron theory of Dykman a
Khazan ~DK!.10 Therefore we can conclude that the a
proach of the DK theory is physically equivalent to the Bo
approximation in which the broadening of the electron d
sity of states is caused by the mutual Coulomb interac
only ~i.e.,G5GC), while the broadening induced by ripplon
G r is neglected. It should be emphasized that in the ul
quantum limit, G r cannot be neglected, since it increas
with B, while GC}1/AB decreases. Still, it is instructive t
note that formally in the limiting caseG→GC and forn<4
3107 cm, both extended SCBA and DK theories agree o
6% accuracy level within a wide range of magnetic fields
the absolute value of the Coulomb broadening parameterb is
fixed to 1.58, according to the comparison made for the
por atom scattering version of the DK theory.18,34

In the intermediate regimeG r;GC the total broadening a
a function ofB is plotted in Fig. 7 and exhibits a minimum
Since the dependenciesG r}AB and GC}1/AB are rather
weak, we conclude that in the intermediate caseG(B)
'const. This yieldsn(B)}B2 andsxx(B)'const in agree-
ment with recent measurements of Ref. 4. At the same ti
the temperature dependencesxx}1/AT is quite universal for
the quasielastic theories.

At strong magnetic fields, the temperature dependenc
the magnetoconductivity is crucially affected by the inelas
effect, which can serve as an additional probe for the C
lomb broadening and for the parameterb of the ultra-
quantum limit. The results of our numerical evaluation of t
equations forG and n are shown in Fig. 8, where the tem
perature dependence of the ration/vc , which is proportional
to SE magnetoconductivity, is shown. Note that the ela
approach~dotted curve 1) cannot explain the experimen
data as found by our EMP damping method. At the sa
time, the single-electron inelastic theory~dotted curve 2)
strongly deviates from the data at low temperatures. The
clusion of the Coulomb correctionGC with b51 into the
inelastic equations for the level broadening and effective c
lision frequency~solid curve! gives the best fit, in accor
dance with the results presented in Sec. IV A for the va

FIG. 7. The Landau-level broadening vs the magnetic field
n53.53107 cm22. We show the results of the many-electro
SCBA ~solid!, the single-electron SCBA~dashed!, and the approxi-
mationG5GC ~dotted!.
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atom scattering regime. The numerical value estimated fr
the many-electron theory of Refs. 18,34,b51.58 ~dashed
curve! leads to a different temperature dependence foT
,0.25 K, which is caused by an overestimation of the Co
lomb broadening. Therefore, we found that a comparis
with different experimental data in independent scatter
regimes leads to the same value for the Coulomb broade
parameter b.1, in accordance with our previou
estimations4. Thus, we will use this value ofb51 in our
nonlinear analysis.

In Fig. 8, the maximum reduction of the effective coll
sion frequency caused by the inelastic effect~solid curve!
reaches 64%. At the same condition, the relative narrow
of the Landau-level broadening with regard to the elas
broadening is substantially smaller~18%!.

In the nonlinear regime, the effective collision frequen
narrows due to both the cold nonlinear effect and the hea
n}1/Te , according to Eq.~40!. In our nonlinear analysis o
the ripplon scattering regime, we use the energy bala
equation@Eq. ~22!# and the energy relaxation rate of Eq.~23!
to determine the electron temperatureTe as a function of the
nonlinear parameterl. The results of our numerical evalua
tion of the effective collision frequency as a function of th
input potentialVin and the experimental data are shown
Fig. 9. The different theoretical curves are plotted under
assumption that the drift velocityu and the parameterl are
proportional toVin . Since the exact value of the driving ele
tric field is unknown in the EMP experiment, the proportio
ality factor betweenl and Vin is fixed at one experimenta
point. Dotted curves represent the results for the pure c
nonlinear effect~1! and the pure heating case~2!. As is seen,
the cold nonlinear effect dominates the heating effect for
chosen value of the magnetic field. The solid curve~many-
electron SCBA, withb51), which takes into account bot
of these effects, is in good agreement with the data fou
from the EMP damping. At the same time, the sing
electron theory~dashed curve! deviates substantially from
the experimental results.

r
FIG. 8. Temperature dependence of the ration/vc for n53.5

3107 cm22. The many-electron SCBA is shown by the solid (b
51) and the dashed (b51.58) curves. Dotted curves show th
elastic many-electron theory~1! and the single-electron inelasti
SCBA ~2!. Data are from the EMP damping coefficient using t
elementary relation betweensxx andn.
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As we already mentioned, it is difficult to establish a str
numerical relation between the nonlinear parameterl and
the input potentialVin . Nevertheless it is possible to reve
the magnetic field dependence of the proportionality fac
According to Eqs.~4! and ~5!, under resonance condition
we have Ei}syx(B)Vin /sxx(B). Therefore, the nonlinea
parameter becomes

l}Vin

l

BsxxGelas
. ~42!

In the qualitative analysis we did for the linear transp
regime we foundsxx(B)G(B)'const, which leads to the
approximate relationl}VinB

23/2, which is close to the ex-
perimental one,VinB

22'const. We attribute the differenc
to the heating effect, which becomes more important w
decreasing magnetic field. The results of a numerical ca
lation by means of Eq.~40! are shown in Fig. 10. The many
electron nonlinear theory~solid curve! shifts into the range
of weakerVin with decreasing magnetic field. The results f
the pure cold nonlinear effect are shown by the das
curves. Here the proportionality constant between the
and right sides of Eq.~42! is fixed atB56.4 T ~separately
for solid curve 1 and dashed curve 18) and remains the sam
for all other magnetic fields. The shift between the solid a
the dashed curves is caused by the heating effect.

Figure 10 shows that the many-electron SCBA descri
quite effectively the nonlinear narrowing of the EMP dam
ing coefficient and the dependence of the SE magneto
ductivity on the amplitude of the input voltageVin . Accord-
ing to the results of Sec. II, the theoretical curves in t
figure are only strictly valid for small nonlinearities, sinc
sxx which enters Eq.~42! is actually a function ofl. For
smalll it is possible to use the linear relation betweenl and
Vin . The decrease ofsxx with l sharply increases the effec

FIG. 9. The effective collision frequency vs the input voltage
the same electron density as in Fig. 5: the many-electron SC
~solid curve! and the single-electron approximation~dashed curve!.
Dotted curves represent the pure cold nonlinear effect~1! and the
pure heating effect~2! as described in the text. Data are obtain
from the EMP damping coefficient.
t
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tive driving electric field, which is the cause of the rap
decrease of the experimental data withVin , if the nonlinear
change exceeds 30%.

V. CONCLUSION

We have investigated the nonlinear quantum mag
totransport phenomena of a nondegenerate 2D electron li
on the surface of liquid helium. It is shown that there is
physically interesting regime where the nonlinear decreas
the EMP damping coefficient, andsxx as functions of the
input voltage, is due to the singular nature of the 2D elect
system in a magnetic field. This cold quantum nonlinear
fect appears to be dominant at strong magnetic fields.
weak magnetic fields,B<1 T, this effect is of the same
importance as the usual heating effect.

To describe the nonlinear quantum magnetotransport,
introduced the many-electron SCBA theory, in which t
mutual Coulomb interaction broadens the Landau levels
addition to the collision broadening produced by scatter
Gs. In the linear regime, this approach reproduced the res
of the single-electron theory9 and the many-electron DK
theory10 in the opposite limiting cases with regard to th
parameterGC/Gs (GC/Gs50,9 and GC/Gs5`,10 respec-
tively!. The theory describes the available linear magne
conductivity data in both the vapor atom and the rippl
scattering regimes. The nonlinear magnetoconductivity d
obtained here from the EMP damping coefficient for the r
plon dominated scattering regime are shown to be in g
~even quantitative! agreement with the many-electron SCB
theory.
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FIG. 10. The SE magnetoconductivity vs the input voltage
four values of the magnetic field: 3.6 T~circles, curves 1 and 18),
2.7 T ~squares, curves 2 and 28), 1.8 T ~triangles, curves 3 and
38), and 0.91 T~diamonds, curves 4 and 48). Solid curves repre-
sent the many-electron SCBA theory. Dashed curves are plo
neglecting the heating effect.
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