Relativistic separable dual-space Gaussian pseudopotentials from H to Rn

C. Hartwigsen, S. Goedecker, and J. Hutter

Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany (Received 20 March 1998)

We generalize the concept of separable dual-space Gaussian pseudopotentials to the relativistic case. This allows us to construct this type of pseudopotential for the whole Periodic Table, and we present a complete table of pseudopotential parameters for all the elements from H to Rn. The relativistic version of this pseudo-

potential retains all the advantages of its nonrelativistic version. It is separable by construction, it is optimal for integration on a real-space grid, it is highly accurate, and, due to its analytic form, it can be specified by a very small number of parameters. The accuracy of the pseudopotential is illustrated by an extensive series of molecular calculations. [S0163-1829(98)05628-8]

I. INTRODUCTION

Pseudopotentials are a well-established tool in *ab initio* structure calculations of molecules and solids. First, by replacing the atom by a pseudoatom, the number of orbitals which have to be calculated is reduced, and, second, the size of the basis set can substantially be reduced because the pseudo-wave-functions are smoother than their all-electron counterparts. In addition, relativistic effects which are relevant for heavier elements can be included in the pseudopotential construction, so that a nonrelativistic calculation can reproduce these.

In 1982, Bachelet, Hamann, and Schlüter¹ published a list of pseudopotentials for all elements up to Pu, that has found widespread application. There have been many attempts since to improve the pseudopotential transferability and their numerical efficiency. One major advance was the introduction of a separable form by Kleinmann and Bylander,² that significantly reduces the computational effort for the calculation of the nonlocal part, especially when using a planewave basis set. Gonze, Stumpf, and Scheffler³ investigated the Kleinmann-Bylander form carefully and computed a list⁴ of pseudopotentials for many elements up to Xe. Goedecker, Teter, and Hutter proposed a dual-space Gaussian-type pseudopotential which is separable and satisfies an optimality criterion for the real-space integration of the nonlocal part. For large systems there is only a quadratic scaling with respect to the system size if the integration of the nonlocal part is performed on a real-space grid, compared to a cubic scaling if a Fourier space integration is used.⁶ In contrast to most other pseudopotential construction methods, the authors of Ref. 5 also included unoccupied orbitals in their method, thereby generating highly transferable pseudopotentials. They gave the nonrelativistic pseudopotential parameters for the first two rows of the periodic system, and showed that their pseudopotentials give highly accurate results in molecular calculations. They obtained results which are much closer to the quasi-exact all-electron LDA (Refs. 7 and 8) (localdensity approximation) value than what is obtained in allelectron calculations with a standard Gaussian $6-31G^*$ basis sets. In other words, the errors due to the pseudopotential approximation were much smaller than the errors in an allelectron calculation introduced by incomplete basis sets.

In this paper we give the parameters of dual-space Gaussian pseudopotentials for all elements from H to Rn. In contrast to Ref. 5, all pseudopotentials are now generated on the basis of a fully relativistic all-electron calculation, i.e., by solving the two-component Dirac equation. The generalization of the norm-conservation property to the relativistic case proposed by Bachelet and Schlüter⁹ is used for the construction. We also introduced some slight modifications of the analytic form of the pseudopotential. The parameters are given in the context of the local-density approximation. Even though the parameters change only slightly if the pseudopotential is constructed within the framework of a generalized gradient approximation^{10,11} (GGA) functional, we found that molecular properties are less accurately described if LDA pseudopotentials are inserted in a molecular calculation using GGA's. Since it is not possible to construct pseudopotential tables for all current GGA schemes, a program that can construct pseudopotentials for the most common GGA's can be obtained from the authors.

II. FORM OF THE PSEUDOPOTENTIAL

The local part of the pseudopotential is given by

$$V_{\rm loc}(r) = \frac{-Z_{\rm ion}}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}r_{\rm loc}}\right) + \exp\left[-\frac{1}{2}\left(\frac{r}{r_{\rm loc}}\right)^2\right] \\ \times \left[C_1 + C_2\left(\frac{r}{r_{\rm loc}}\right)^2 + C_3\left(\frac{r}{r_{\rm loc}}\right)^4 + C_4\left(\frac{r}{r_{\rm loc}}\right)^6\right], \quad (1)$$

where erf denotes the error function. Z_{ion} is the ionic charge of the atomic core, i.e., the total charge minus the charge of the valence electrons. The nonlocal contribution $V_l(\mathbf{r},\mathbf{r}')$ to the pseudopotential is a sum of separable terms

$$V_{l}(\mathbf{r},\mathbf{r}') = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{m=-l}^{3} Y_{l,m}(\hat{\mathbf{r}}) p_{i}^{l}(r) h_{i,j}^{l} p_{j}^{l}(r') Y_{l,m}^{*}(\hat{\mathbf{r}}'),$$
(2)

where $Y_{l,m}$ are the spherical harmonics, and *l* the angular momentum quantum number. The projectors $p_i^l(r)$ are Gaussians of the form

3641

$$p_{i}^{l}(r) = \frac{\sqrt{2}r^{l+2(i-1)} \exp\left(-\frac{r^{2}}{2r_{l}^{2}}\right)}{r_{l}^{l+(4i-1)/2} \sqrt{\Gamma\left(l+\frac{4i-1}{2}\right)}},$$
(3)

a 1

where Γ denotes the gamma function. The projectors satisfy the normalization condition

$$\int_{0}^{\infty} p_{i}^{l}(r) p_{i}^{l}(r) r^{2} dr = 1.$$
(4)

It is a special property of our pseudopotential that it also has an analytical form if expressed in reciprocal space. The Fourier transform of the pseudopotential is given by

$$V_{\rm loc}(g) = -\frac{4\pi Z_{\rm ion}}{\Omega g^2} e^{-(gr_{\rm loc})^2/2} + \sqrt{8\pi^3} \frac{r_{\rm loc}^3}{\Omega} e^{-(gr_{\rm loc})^2/2} \times \{C_1 + C_2(3 - g^2 r_{\rm loc}^2) + C_3[15 - 10(gr_{\rm loc})^2 + (gr_{\rm loc})^4] + C_4[105 - 105(gr_{\rm loc})^2 + 21(gr_{\rm loc})^4 - (gr_{\rm loc})^6]\}$$
(5)

for the local part, and

$$V_{l}(\mathbf{g},\mathbf{g}') = (-1)^{l} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{m=-l}^{+l} Y_{l,m}(\hat{\mathbf{g}}) p_{i}^{l}(g) h_{i,j}^{l} p_{j}^{l}(g')$$
$$\times Y_{l,m}^{*}(\hat{\mathbf{g}}')$$
(6)

for the nonlocal part. The Fourier transform of the projectors $p_i^l(r)$ can be calculated analytically, and for the relevant cases one obtains

$$p_1^{l=0}(g) = \frac{4\sqrt{2r_0^3}\pi^{5/4}}{\sqrt{\Omega} \exp[\frac{1}{2}(gr_0)^2]},$$
(7)

$$p_2^{l=0}(g) = \frac{\sqrt{8\frac{2r_0^3}{15}}\pi^{5/4}(3-g^2r_0^2)}{\sqrt{\Omega} \exp[\frac{1}{2}(gr_0)^2]},$$
(8)

$$p_{3}^{l=0}(g) = \frac{16\sqrt{\frac{2r_{0}^{3}}{105}}\pi^{5/4}(15 - 10g^{2}r_{0}^{2} + g^{4}r_{0}^{4})}{3\sqrt{\Omega} \exp[\frac{1}{2}(gr_{0})^{2}]}, \quad (9)$$

$$p_1^{l=1}(g) = \frac{8\sqrt{\frac{r_1^5}{3}}\pi^{5/4}g}{\sqrt{\Omega} \exp[\frac{1}{2}(gr_1)^2]},$$
(10)

$$p_2^{l=1}(g) = \frac{16\sqrt{\frac{r_1^5}{105}}\pi^{5/4}g(5-g^2r_1^2)}{\sqrt{\Omega} \exp[\frac{1}{2}(gr_1)^2]},$$
 (11)

$$p_{3}^{l=1}(g) = \frac{32\sqrt{\frac{r_{1}^{5}}{1155}}\pi^{5/4}g(35 - 14g^{2}r_{1}^{2} + g^{4}r_{1}^{4})}{3\sqrt{\Omega} \exp[\frac{1}{2}(gr_{1})^{2}]},$$
(12)

$$p_1^{l=2}(g) = \frac{8\sqrt{\frac{2r_2^7}{15}}\pi^{5/4}g^2}{\sqrt{\Omega} \exp[\frac{1}{2}(gr_2)^2]},$$
(13)

$$p_2^{l=2}(g) = \frac{16\sqrt{\frac{2r_2^7}{105}}\pi^{5/4}g^2(7-g^2r_2^2)}{3\sqrt{\Omega}\,\exp[\frac{1}{2}\,(gr_2)^2]},\qquad(14)$$

$$p_1^{l=3}(g) = \frac{16\sqrt{\frac{r_3^9}{105}}\pi^{5/4}g^3}{\sqrt{\Omega} \exp[\frac{1}{2}(gr_3)^2]}.$$
 (15)

In both real and Fourier space, the projectors have the form of a Gaussian multiplied by a polynomial. Due to this property the dual-space Gaussian pseudopotential is the optimal compromise between good convergence properties in real and Fourier space. The multiplication of the wave function with the nonlocal pseudopotential arising from an atom can be limited to a small region around the atom as the radial projectors $p_i^l(r)$ asymptotically tend to zero outside the covalent radius of the atom. In addition, a very dense integration grid is not required, as the nonlocal pseudopotential is reasonably smooth because of its good decay properties in Fourier space.

The use of this form for the pseudopotential is also very advantageous if atom-centered basis functions are used instead of plane waves. Because of the separability all threecenter integrals are products of two-center integrals, and so only these two-center integrals have to be calculated. If atom-centered Gaussian-type orbitals are used, these twocenter integrals can easily be evaluated analytically.

In the relativistic case the spin orbit coupling splits up all orbitals with l>0 into spin-up and spin-down orbitals with an overall angular momentum $j=l\pm 1/2$. So for each angular-momentum l>0, one spin-up orbital and one spin-down orbital with different wave functions and pseudopotentials exist. Following Bachelet and Schlüter,⁹ we give a weighted average and difference potential of these potentials. The average pseudopotential is conveniently defined as

$$V_{l}(\mathbf{r},\mathbf{r}') = \frac{1}{2l+1} [lV_{l-1/2}(\mathbf{r},\mathbf{r}') + (l+1)V_{l+1/2}(\mathbf{r},\mathbf{r}')]$$
(16)

weighted by the different *j* degeneracies of the $l \pm \frac{1}{2}$ orbitals. The difference potential describes the spin-orbit coupling, and is defined as

$$\Delta V_l^{\text{SO}}(\mathbf{r}, \mathbf{r}') = \frac{2}{2l+1} [V_{l+1/2}(\mathbf{r}, \mathbf{r}') - V_{l-1/2}(\mathbf{r}, \mathbf{r}')].$$
(17)

The total pseudopotential is then given by

$$V(\mathbf{r},\mathbf{r}') = V_{\rm loc}(r)\,\delta(\mathbf{r}-\mathbf{r}') + \sum_{l} V_{l}(\mathbf{r},\mathbf{r}') + \Delta V_{l}^{\rm SO}(\mathbf{r},\mathbf{r}')\mathbf{L}\cdot\mathbf{S},$$
(18)

where $V_{loc}(r)$ and $V_l(\mathbf{r}, \mathbf{r}')$ are now scalar relativistic quantities but with the same form [Eqs. (1) and (2)] as the non-relativistic case. To express $\Delta V_l^{SO}(\mathbf{r}, \mathbf{r}')$, we also use Eq. (2) just replacing the $h_{i,j}^l$ by different parameters $k_{i,j}^l$, i.e.,

$$\Delta V_{l}^{\text{SO}}(\mathbf{r},\mathbf{r}') = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{m=-l}^{+l} Y_{l,m}(\hat{\mathbf{r}}) p_{i}^{l}(r) k_{i,j}^{l} p_{j}^{l}(r') Y_{l,m}^{*}(\hat{\mathbf{r}}').$$
(19)

Neglecting the contributions from $\Delta V_l^{SO}(\mathbf{r}, \mathbf{r}')$ in Eq. (18) gives an average potential that contains all scalar parts of the relativistic pseudopotential, whereas the total potential contains relativistic effects up to order α^2 .

III. DETERMINATION OF THE PSEUDOPOTENTIAL PARAMETERS

The parameters of the pseudopotentials were found by minimizing the differences between the eigenvalues and the charges within an atomic sphere of the all-electron atom and the pseudoatom. In most cases the radius of the atomic sphere was taken to be the covalent radius of the atom. For consistency we always performed a fully relativistic calculation for the all-electron atom, even when relativistic effects are negligible. The exchange and correlation energy was calculated with the functional given in Ref. 5 This functional reproduces very well the Perdew-Wang¹² functional, but is much easier to compute. To ensure transferability of the pseudopotential, we also considered the next two or three higher unoccupied orbitals for each angular momentum, and the lowest orbital of the next two unoccupied angular momenta. However, in our calculations we never exceeded l_{max} =3. The atom was put in an external parabolic confining potential to have well-defined unoccupied orbitals. The pseudopotential parameters given in Table I typically reproduce the eigenvalues of the occupied orbitals, with an error of less than 10^{-5} a.u., and for unoccupied orbitals to within 10^{-3} a.u. Pseudopotentials containing semicore electrons (Sec. IV) are an exception, as the errors for the semicore orbitals are usually larger than for the valence orbitals. In many cases we found it unnecessary to include all unoccupied orbitals in our fitting procedure. For most cases the inclusion of only the first unoccupied orbital for an angular momentum results in comparably good results for the following higher unoccupied orbitals. Nevertheless we always checked all-electron eigenvalues, and pseudoeigenvalues and charges of the unoccupied orbitals to verify this.

It was already discussed in Ref. 5 that our fitting procedure yields pseudopotentials that obey the normconservation¹³ condition, and meets several additional conditions,^{14–16} such as extended norm conservation and hardness, thereby leading to pseudopotentials of a very high quality. In Table II we give the transferability errors for several excited and ionized states for some elements.

The construction of our pseudopotential differs somehow from the usual method because we fit the pseudopotential parameters that give the best overall representation for the eigenvalues and charges of several orbitals, rather than producing pseudo-wave-functions that are identical to their allelectron counterparts beyond some cutoff radius. Therefore, the wave functions of the pseudoatom and the all-electron atom approach each other only exponentially. Nevertheless the difference is very small beyond the core region, as can been seen from Fig. 1. A second consequence of our fitting procedure is that, contrary to most other pseudopotential construction methods, the local part of our pseudopotential does not correspond to a certain wave function.

It is a special feature of our method that we fit our parameters directly against the all-electron eigenvalues and charges, rather than fitting analytical or numerical potentials that reproduce pseudo-wave-functions, which themselves are constructed from their all-electron counterparts. Therefore, our pseudopotentials require significantly fewer parameters than those tabulated by Bachelet, Hamann, and Schlüter.¹ During the generation of our pseudopotentials we found that there is in general no single minimal parameter set that gives the best overall pseudopotential for one atom. This finding is different to the former study of Ref. 5, where only the first two rows of the Periodic Table were considered. We always tried to use a minimum parameter set, which is sufficient to reproducing the desired accuracy of the fitted eigenvalues and charges. Identical parameter sets were used for comparable elements, i.e., the same parameter set was used for all 3d or 4d elements, respectively. The fitting of the pseudopotential parameters is numerically demanding, as many local minima exist, so that sometimes up to some 10^5 pseudopotential evaluations are necessary until one finds good parameter values. We used a slow Simplex-Downhill algorithm¹⁷ for the optimization, that proved to be much more robust than more sophisticated methods. The pseudopotential parameter $r_{\rm loc}$ was set by hand, except for the first row, because this parameter is not easily accessible by our fitting procedure. For many elements we generated and tested pseudopotentials with different values of $r_{\rm loc}$. After selection of the optimum pseudopotentials, the $r_{\rm loc}$ values for the elements in between were interpolated so that no discontinuities occur.

IV. SEMICORE ELECTRONS

For many atoms there is no unambiguous separation of the electronic system into a well-isolated core and valence shell. For example, it is well known the n-1 p levels of the heavy alkali atoms are relatively shallow in energy and extended in space. The 3d wave functions of the 3d elements are strongly localized, so that there is a significant overlap with the 3(s,p) wave functions, although the latter are much lower in energy than the 3d and 4(s,p) valence wave functions. The same is true for the 4d and 5d elements. Analogously, the 4f wave functions of the 4f elements are so localized that they overlap with the 5s and 5p wave functions. In all these cases, where a non-negligible overlap between valence and core wave functions exists, the frozencore approximation underlying the construction of all pseudopotentials is not well satisfied. One way to overcome this problem is the inclusion of a nonlinear core correction¹⁸ that considers the contribution of the core charge to the exchange-correlation potential. Another, more straightfor-

text.						
Н	1	0.200000	-4.180237	0.725075		
He	2	0.200000	-9.112023	1.698368		
Li	1	0.787553	-1.892612	0.286060		
		0.666375	1.858811			
		1.079306	-0.005895			
			0.000019			
Li ^{sc}	3	0.400000	-14.034868	9.553476	-1.766488	0.084370
Be	2	0.739009	-2.592951	0.354839		
		0.528797	3.061666			
		0.658153	0.092462			
			0.000129			
Be ^{sc}	4	0.325000	-24.015041	17.204014	-3.326390	0.165419
В	3	0.433930	-5.578642	0.804251		
		0.373843	6.233928			
		0.360393	0.000000			
			0.000878			
С	4	0.348830	-8.513771	1.228432		
		0.304553	9.522842			
		0.232677	0.000000			
			0.004104			
Ν	5	0.289179	-12.234820	1.766407		
		0.256605	13.552243			
		0.270134	0.000000			
			0.003131			
0	6	0.247621	-16.580318	2.395701		
		0.221786	18.266917			
		0.256829	0.000000			
			0.004476			
F	7	0.218525	-21.307361	3.072869		
		0.195567	23.584942			
		0.174268	0.000000			
	-		0.015106			
Ne	8	0.190000	-27.692852	4.005906		
		0.179488	28.506098	-1.076245		
		0.214913	-0.000090			
NT		0.005500	0.010336			
Na	1	0.885509	-1.238867	0.500004		
		0.661104	1.84/2/1	0.582004		
		0.857119	0.4/1133			
Nasc	0	0.246219	0.002023	1 125007		
Ina	9	0.240318	- 7.343393	1.123997		
		0.141251	- 10 202082			
		0.139008	-10.392083			
Μα	2	0.651812	-2 864207			
wig	2	0.556478	2.804297	1 3200/1		
		0.550478	2.970937	1.329941		
		0.077507	0.005152			
Mosc	10	0.210950	-19 419008	2 871331		
	10	0.141547	40 316626	2.071331		
		0.105469	-10.891113			
		0.102 107	0.096277			
Al	3	0.450000	-8.491351			
	-	0.460104	5.088340	2.679700		
		0.536744	2.193438	0.000000		
			0.006154	0.003947		

TABLE I. LDA pseudopotential parameters in atomic units. The meaning of the entries is given in the ext.

			TABLE I. (Con	ttinuea).		
Si	4	0.440000	-7.336103			
		0.422738	5.906928	3.258196		
		0.484278	2.727013	0.000000		
			0.000373	0.014437		
Р	5	0.430000	-6.654220			
		0.389803	6.842136	3.856693		
		0.440796	3.282606	0.000000		
			0.002544	0.017895		
S	6	0.420000	-6.554492			
		0.361757	7.905303	4.471698		
		0.405285	3.866579	0.000000		
			0.005372	0.022062		
Cl	7	0.410000	-6.864754			
		0.338208	9.062240	5.065682		
		0.376137	4.465876	0.000000		
			0.010020	0.025784		
Ar	8	0.400000	-7.100000			
		0.317381	10.249487	5.602516		
		0.351619	4.978801	0.000000		
			0.016395	0.029171		
K	1	0.950000				
		0.955364	0.914612	0.287551	-0.300224	
		1.086411	0.315462	0.068194		
			-0.004343	0.010261		
		0.720606	-1.529514			
		0.400000	0.000354			
K ^{se}	9	0.400000	-4.989348	-0.756048		
		0.294826	11.238705	7.067779		
		0.322359	5.256702	0.938947		
C-	2	0.800000	0.015795	0.048923		
Ca	2	0.800000	1 (4501 4	1 502401	0.205007	
		0.009/3/	1.043014	0.126220	0.293990	
		0.940474	-0.002262	0.120329		
		0 526550	-0.005502 -2.022221	0.012779		
		0.520550	- 3.032321			
Casc	10	0.300000	-4.028146	-1 232854		
Ca	10	0.390000	12 352340	7 657455		
		0.201909	5 722423	0.923591		
		0.510545	0.021701	0.056661		
		0.904330	0.016806	0.000001		
		0.001000	0.000371			
Sc	3	0.750000				
	-	0.597079	1.835768	1.734309	1.418483	
		0.847994	0.784127	0.246733		
			-0.008463	0.020913		
		0.454653	-3.859241			
			0.001430			
Sc^{sc}	11	0.385000	7.425036	-0.489852		
		0.359707	6.119585	-2.563453		
		0.243234	6.376618	-6.016415		
			0.083053	0.093017		
		0.252945	-8.020892			
			0.004812			
Ti	4	0.720000				
		0.528411	1.866613	1.440233	3.658172	
		0.791146	0.967916	0.260687		

			-0.009333	0.025291	
		0.408712	-4.826456		
			0.002010		
Ti ^{sc}	12	0.380000	7.548789	-0.588377	
		0.334235	6.925740	-3.142005	
		0.242416	5.079086	-6.284281	
			0.122395	0.057447	
		0.242947	-9.125896		
			0.005822		
V	5	0.690000			
		0.514704	2.208670	1.896763	3.076377
		0.743504	1.115751	0.286649	
			-0.010973	0.030816	
		0.374890	-5.841633		
			0.002717		
\mathbf{V}^{sc}	13	0.375000	4.941291	-0.096443	
		0.326651	7.659390	-3.892229	
		0.246407	4.256230	-5.941212	
		0.040500	0.156408	0.008030	
		0.240792	-8.828518		
C	<i>,</i>	0.660000	0.006548		
Cr	6	0.660000	2 400756	2 072227	2 0 5 2 1 5 0
		0.498578	2.400756	2.072337	2.952179
		0./19/08	1.145557	0.278230	
		0 25/2/1	-6.615978	0.053625	
		0.554541	-0.013878		
Crsc	14	0.370000	5 113362	-0.646810	
CI	14	0.370000	8 617835	-4.137695	
		0.300011	3 161588	4.137095	
		0.241090	0 169781	0.000411	
		0 219577	-11 157868	0.000411	
		0.219577	0.009007		
Mn	7	0.640000	0.007007		
		0.481246	2.799031	2.486101	2.565630
		0.669304	1.368776	0.316763	
			-0.013685	0.042938	
		0.327763	-7.995418		
			0.004536		
Mn ^{sc}	15	0.365000	6.748683	-0.576569	
		0.280753	9.379532	-5.575280	
		0.254536	0.371176	-4.229057	
			0.164188	-0.039396	
		0.221422	-12.115385		
			0.009590		
Fe	8	0.610000			
		0.454482	3.016640	2.583038	3.257635
		0.638903	1.499642	0.326874	
			-0.014909	0.049793	
		0.308732	-9.145354		
			0.005722		
Fe ^{sc}	16	0.360000	5.392507	-0.030066	
		0.269268	10.193723	-6.834982	
		0.247686	0.145613	-5.234954	
		0.000000	0.201450	-0.075829	
		0.223021	-12.026941		
			0.010322		

Co	9	0.580000				
		0.440457	3.334978	2.873150	3.091028	
		0.610048	1.634005	0.356083		
			-0.017521	0.058766		
		0.291661	-10.358800			
- 60			0.007137			
Cosc	17	0.355000	3.418391	0.482078		
		0.259140	11.195226	-7.845825		
		0.251425	-0.551464	-4.639237		
			0.207915	-0.108249		
		0.221665	-12.075354 0.011475			
Ni	10	0 560000	0.011475			
111	10	0.25399	3 619651	3 088965	3 058598	
		0.584081	1 742220	0.386341	5.050570	
		0.384081	-0.020384	0.068770		
		0 278113	-11608428	0.008770		
		0.278115	0.008708			
N;sc	18	0.350000	3 610311	0 110638		
111	10	0.330000	12 161131	-0.078020		
		0.245105	-0.820624	-6.020071		
		0.234741	0.820024	-0.142442		
		0.214050	12 205062	-0.145442		
		0.214950	-13.395062 0.013538			
Cu	1	0.580000				
		0.843283	0.975787	-0.822070	-0.133237	
		1.089543	0.024580	-0.249001		
			0.010792	-0.006734		
		1.291602	-0.065292			
			-0.000730			
Cu ^{sc}	11	0.530000				
		0.423734	3.888050	3.276584	2.290091	
		0.572177	1.751272	0.374943		
			-0.024067	0.076481		
		0.266143	-12.676957			
			0.010489			
Zn	2	0.570000				
		0.640712	2.088557	-0.218270	-0.941317	
		0.967605	0.163546	-0.227086		
			0.012139	-0.004876		
		1.330352	0.010486			
			0.000225			
Zn ^{sc}	12	0.510000				
		0.400866	4.278710	3.627342	2.849567	
		0.539618	2.023884	0.431742		
			-0.025759	0.090915		
		0.252151	-14.338368			
			0.012767			
Ga	3	0.560000				
		0.610791	2.369325	-0.249015	-0.551796	
		0.704596	0.746305	-0.513132		
			0.029607	-0.000873		
		0.982580	0.075437			
			0.001486			
Ga ^{sc}	13	0.490000				
		0.384713	4.831779	4.238168	2.833238	
		0.586130	1.940527	-0.299738		

			0.026949	0.031400		
		0.240803	-15.795675			
			0.015503			
Ge	4	0.540000				
		0.493743	3.826891	1.100231	-1.344218	
		0.601064	1.362518	-0.627370		
			0.043981	0.009802		
		0.788369	0.191205			
			0.002918			
As	5	0.520000				
		0.456400	4.560761	1.692389	-1.373804	
		0.550562	1.812247	-0.646727		
			0.052466	0.020562		
		0.685283	0.312373			
			0.004273			
Se	6	0.510000				
		0.432531	5.145131	2.052009	-1.369203	
		0.472473	2.858806	-0.590671		
			0.062196	0.064907		
		0.613420	0.434829			
			0.005784			
Br	7	0.500000				
		0.428207	5.398837	1.820292	-1.323974	
		0.455323	3.108823	-0.632202		
			0.074007	0.068787		
		0.557847	0.555903			
			0.007144			
Kr	8	0.500000				
		0.410759	5.911194	1.967372	-1.458069	
		0.430256	3.524357	-0.691198		
			0.087011	0.086008		
		0.517120	0.629228			
DI	1	1.00(207	0.009267	0.740120		
Rb	1	1.096207	0.84/333	-0./48120	0.006750	
		0.955699	0.88/460	0.903088	-0.006750	
		1.156681	0.461/34	0.336113		
		0 664222	-0.043445	0.057876		
		0.004323	-1.302938			
DLSC	0	0.400000	0.005708	0.741019		
KU	9	0.490000	4.304131	-0.741018		
		0.202301	9.550529	9.400034 5.475240		
		0.301880	-0.867370	1 237532		
		0.514805	0.440376	1.237352		
		0.514695	0.449370			
Sr	2	1.010000	0.684749	-0.062125		
51	2	0.837564	1 200395	0.002125	-0.315858	
		1 17/178	0.439983	0.018267	0.515656	
		1.174170	0.004022	0.022207		
		0 743175	-1 386990	0.022207		
		0.745175	0.002846			
Sr ^{sc}	10	0.480000	5.571455	-1.079963		
	10	0.275441	9.995135	9.336679		
		0.302243	3.169126	4.049231		
			-0.576265	0.990062		
		0.502045	0.43728			
			0.008991			

TABLE I. (Continued).

				,		
Y	3	0.900000	-0.343891			
		0.782457	1.520655	1.484368	-0.189013	
		0.949864	0.780950	0.368739		
			-0.043336	0.079989		
		0.653851	-1.256930	-0.075368		
			0.009198	-0.011657		
\mathbf{Y}^{sc}	11	0.475000	13.217914	1.353178		
		0.414360	2.522621	-4.363769		
		0.406442	-0.569552	-3.020044		
			0.251526	-0.077005		
		0.513304	-1.571003	0.627616		
			0.012450	-0.007507		
Zr	4	0.750000	-0.782611			
		0.649998	1.739877	2.388208	1.205349	
		0.874408	1.018294	0.528223		
			-0.057486	0.104495		
		0.630668	-1.173911	0.212179		
			0.009380	-0.011973		
Zr ^{sc}	12	0.470000	15.782342	0.433648		
		0 396540	2 571767	-4714509		
		0.388558	-0.794123	-3.172114		
		0.000000	0.301247	-0.098654		
		0 520496	-1548402	0.826127		
		0.520490	0.013187	-0.010136		
Nh	5	0 724000	4 021058	0.010150		
110	5	0.724000	1 532651	1 428264		
		0.846672	0.609675	0 596788		
		0.040072	-0.080816	0.125243		
		0 516072	-2.696830	-1.694967		
		0.510072	0.025653	-0.031541		
Nh ^{sc}	13	0.460000	13 505394	0.752434		
110	15	0.400000	3 222025	-4 500342		
		0.373708	-0.822023	-2 247366		
		0.403020	0.246821	-0.086650		
		0 513644	-1 480848	0.030039		
		0.515044	0.014064	-0.012055		
Mo	6	0 600000	7.005969	0.012055		
NIO	0	0.099000	1 280607	0.008112		
		0.078120	0.201412	0.998115		
		0.800771	-0.104124	0.152006		
		0 152291	2 200702	6.820046		
		0.455584	-2.809708	-0.820940		
N. J SC	14	0.420000	0.008972	-0.075391		
MO	14	0.430000	10.237452	1.490330		
		0.376255	3.362426	-5.289276		
		0.361/34	-0.379571	-4.06//13		
		0.505000	0.378681	-0.124561		
		0.525828	-1.543211	1.074388		
T	-	0 170000	0.014460	-0.014769		
Ic	7	0.673000	13.315381	0.040450		
		0.677612	0.819218	0.348460		
		0.784275	0.028673	0.658363		
		0 - 100	-0.080760	0.140668		
		0.519890	-5.984224	0.721822		
			0.026025	-0.041776		

			. (
Tc ^{sc}	15	0.430000	14.910011	1.046381	
		0.369721	3.917408	-5.268399	
		0.357772	-0.270000	-3.737771	
			0.340791	-0.065948	
		0.510487	-1.586709	1.132307	
			0.015790	-0.016485	
Ru	8	0.647214	8.687723		
		0.625656	1.637866	1.329335	
		0.746425	0.639012	0.650376	
			-0.095454	0.164257	
		0.440358	-4.883365	-3.063746	
			0.046652	-0.061808	
Ru ^{sc}	16	0.430000	13.582571	0.596227	
		0.364084	4.480632	-5.268679	
		0.364053	-0.320372	-3.059714	
			0.337322	-0.103467	
		0.495850	-1.597870	1.165495	
D1	0	0. (01.100	0.017773	-0.019725	
Rh	9	0.621429	5.397962	0 1 5 1 5 0 5	
		0.598079	2.242111	2.151597	
		0.709586	1.155278	0.704846	
		0.260207	-0.114357	0.193923	
		0.369207	-1.053058	-10.923960	
D1 -8C	17	0.420000	0.135036	-0.127750	
Kn°*	17	0.420000	15.225012	0.415911	
		0.330032	4.713292	- 3.803323	
		0.330233	-0.304094	-3.373040 -0.122856	
		0 406050	-1 685504	1 387707	
		0.490950	0.018875	-0.022837	
Pd	10	0 596000	5 209665	0.022037	
i u	10	0.590000	2 411076	2 318920	
		0.688787	1 227253	0.758021	
		0.000707	-0.136909	0.220805	
		0 442835	-4377131	0.413271	
		0.112035	0.033797	-0.047798	
Pd ^{sc}	18	0.410000	15.720259	0.140765	
	10	0.342151	5,177686	-5.852819	
		0.343111	-0.372561	-3.258728	
			0.406984	-0.110764	
		0.494916	-1.608273	1.446609	
			0.020374	-0.026732	
Ag	1	0.650000	-2.376061		
U		1.012705	0.897931	-0.748323	0.029787
		1.235842	0.130081	-0.277495	
			0.019692	-0.006821	
		1.016159	-0.038842		
			0.009455		
Ag ^{sc}	11	0.570000	1.017053		
		0.498900	2.990284	3.912395	2.205847
		0.630009	1.813968	1.304450	
			-0.201869	0.319708	
		0.387660	-3.420076	-1.019949	
			0.045193	-0.051565	
Cd	2	0.625000	-1.796838		
		0.828465	1.485292	-0.424753	-0.407986
		0.972873	0.469208	-0.448111	

TABLE I. (Continued).

			0.037714	-0.002009		
		1.240949	0.065412			
			0.003109			
Cd^{sc}	12	0.550000	2.382713			
		0.491505	3.207932	4.140963	1.584234	
		0.598565	1.940150	1.515892		
		0.070000	-0.241409	0.376830		
		0.377874	-4.190072	-0.770156		
		0.577071	0.049329	-0.058835		
In	3	0.610000	2.865777	0.0000000		
	U	0.770602	1 256194	-0.397255	-0.278329	
		0.858132	0 494459	-0.380789	0.27032)	
		0.050152	0.066367	-0.005563		
		1 088691	0.129208	0.0000000		
		1.000091	0.004448			
In ^{sc}	13	0.530000	2 395404			
111	15	0.330000	3 554411	4 754135	1 565040	
		0.559819	2 223664	2 035278	1.505040	
		0.557617	-0.306488	0.479435		
		0 360488	-4.566414	-0.773785		
		0.500488	4.500414	-0.073414		
Sn	4	0.605000	4 610012	0.075414		
511	4	0.663544	4.010912	-0.141074	-0 576546	
		0.005544	0.760355	-0.445070	0.370340	
		0.745805	0.103031	0.445070		
		0.044450	0.225115	0.005057		
		0.944439	0.223113			
Sh	5	0.500000	6 680228			
30	5	0.590000	1.051477	0.027527	-0.786621	
		0.397084	1.931477	0.057557	-0.780051	
		0.072122	0.970313	-0.400/31		
		0.95(557	0.139222	0.025515		
		0.850557	0.300103			
т	6	0.575000	0.009432			
le	0	0.575000	9.387085	0.020222	0.001110	
		0.556456	2.046890	-0.029333	-0.881119	
		0.615262	1.033478	-0.4811/2		
		0.005101	0.172997	0.050641		
		0.805101	0.31/411			
	7	0.5(0000	0.010809			
1	/	0.560000	14.001825	0.024051	0 467 429	
		0.552830	1.338054	-0.834851	-0.46/438	
		0.562251	0.6/4496	-0.5///8/		
		0 50 100 5	0.213967	0.093313		
		0.794325	0.224345			
	0		0.010180			
Xe	8	0.560000	12.734280			
		0.507371	2.236451	-0.403551	-1.132507	
		0.541024	1.130043	-0.752764		
			0.236603	0.108473		
		0.729821	0.280131			
G		1 2000	0.013362			
Cs	1	1.200000				
		1.224737	0.611527	0.239830	-0.294024	
		1.280478	0.244893	0.227279		
			-0.107627	0.138132		
		1.107522	-0.542163			
			0.003259			

TABLE I. (Continued).

Cs ^{sc}	9	0.540000	35.234438	-3.318070		
		0.456821	-0.282378	-2.780956		
		0.362467	-2.696733	-2.290940	0.000000	
			-2.748528	1.815069	1.204825	
		0.761462	0.183754			
			0.010841			
		0.333507	-17.948259			
			0.004760			
Ba	2	1.200000				
		1.016187	0.922593	0.763495	-0.333465	
		1.249880	0.447168	0.151081		
			-0.041017	0.088800		
		0.937158	-0.718934			
			0.005321			
Ba ^{sc}	10	0.540000	24.478653	-2.500850		
		0.514776	1.046729	-0.977217		
		0.375190	-0.202439	0.680331	0.000000	
			-0.415083	0.599763	0.927065	
		0.665403	0.378419			
			0.017660			
		0.304920	-18.795208			
- 60			0.006151			
La ^{se}	11	0.535000	19.909308	-1.474830		
		0.551775	1.293272	-1.121819	0.00055	
		0.476308	1.172527	-0.828810	0.029857	
		0 (2((72	0.524623	-0.030901	0.142077	
		0.626672	0.328377			
		0.200210	0.020900			
		0.299310	-18.209439			
Case	10	0.525000	18 847470	0765626		
Ce	12	0.555000	1 221616	-0.703030 -1.700444		
		0.321790	0.972641	-1.451337	0.00000	
		0.470324	0.463710	0.000257	0.000000	
		0 703593	0.403710	0.090237	0.012500	
		0.705575	0.013265			
		0 306717	-17214790			
		0.300717	0.007568			
Pr ^{sc}	13	0.532083	18.424739	-0.657669		
		0.526850	1.012621	-1.717982		
		0.458897	1.117060	-1.852109	0.000000	
			0.314280	0.350982	-0.165254	
		0.747610	0.017571			
			0.010905			
		0.300773	-17.897119			
			0.008547			
Nd ^{sc}	14	0.529167	17.815030	-0.594798		
		0.503000	1.529110	-2.153732		
		0.467013	0.721553	-1.647499	0.000000	
			-0.214396	1.100446	-0.832670	
		0.325290	-0.543240			
			0.611413			
		0.294743	-18.520228			
			0.009598			
Pm ^{sc}	15	0.526250	18.251723	-0.492107		
		0.489879	1.308978	-2.507751		
		0.472260	0.160512	-1.565305	0.000000	

TABLE I. (Continued).

			-0.339955	1.359017	-1.145883	
		0.473709	-0.429952			
			0.064044			
		0.291527	-19.305057			
			0.010619			
Sm ^{sc}	16	0.523333	17.206792	-0.532803		
		0.479677	1.723635	-2.659367		
		0.490598	-0.082403	-1.111009	0.000000	
			-0.240300	1.200867	-1.054041	
		0.470840	-0.410630			
			0.063352			
		0.284040	-19.984292			
			0.011924			
Eu ^{sc}	17	0.520417	17.373516	-0.648468		
		0.469043	1.763638	-2.916932		
		0.445907	0.518046	-2.135186	0.000000	
			0.252258	0.584324	-0.480586	
		0.490038	-0.426120			
		0.070.101	0.051028			
		0.278401	-20.946528			
G 150	10	0.515500	0.013267	0 510504		
Gd ^a	18	0.517500	17.512556	-0.719534		
		0.462014	1.551856	-3.068/03	0.000000	
		0.456953	-0.058347	-1.69//11	0.000000	
		0 497269	0.555540	0.022024	-0.054301	
		0.482308	-0.362601			
		0 272200	-21.022400			
		0.275590	-21.923490			
Thsc	10	0 514592	0.014000	_0 020000		
10	19	0.448604	1 718481	-3 435230		
		0.448094	0.562400	-2.781827	0.00000	
		0.424220	-0.008725	1 144007	-0.860425	
		0 482809	-0.625802	1.144007	0.000425	
		0.402007	0.051754			
		0 268260	-22.911697			
		0.200200	0.016197			
Dv ^{sc}	20	0.511667	16,994331	-0.955298		
	20	0.440590	1.940320	-3.559798		
		0.434642	0.014315	-2.046238	0.000000	
			-0.124371	1.327404	-1.092142	
		0.467229	-0.668924			
			0.058286			
		0.261670	-23.922358			
			0.017938			
Ho ^{sc}	21	0.508750	16.781570	-1.173514		
		0.432212	2.052797	-3.674534		
		0.420138	0.253295	-2.355289	0.000000	
			0.895947	-0.275149	0.205729	
		0.447131	-0.742863			
			0.069483			
		0.254992	-25.197211			
			0.019830			
Er ^{sc}	22	0.505833	17.105293	-1.430953		
		0.419948	2.144503	-3.984203		
		0.414455	0.054087	-2.294477	0.000000	
			1.255135	-0.891960	0.749717	

			INDLE I. (Com	iiniicu).		
		0.418385	-0.999006			
			0.091862			
		0.249126	-26.696809			
			0.021783			
Tm ^{sc}	23	0.502917	17.247293	-1.627697		
		0.413373	1.947196	-4.121556		
		0.409923	-0.094493	-2.224087	0.000000	
			2.045370	-2.347237	1.902736	
		0.392870	-1.353308			
			0.119299			
		0.243917	-28.104159			
			0.023833			
Yb ^{sc}	24	0.500000	17.357144	-1.773916		
		0.402309	2.120771	-4.802990		
		0.414358	-0.923212	-1.678540	0.000000	
			-0.349470	2.074295	-1.814297	
		0.444025	-0.889967			
			0.070076			
		0.238298	-29.932854			
			0.025718			
Lu ^{sc}	25	0.497000	17.037053	-1.661610		
		0.391206	2.184678	-5.432346		
		0.393896	-0.719819	-2.723799	0.000000	
			0.152450	1.395416	-1.238744	
		0.436518	-1.173245			
			0.072130			
		0.232629	-31.852262			
			0.028006			
\mathbf{Hf}^{sc}	12	0.560000	5.134801	0.529191		
		0.422810	2.564442	-6.013732	1.109760	
		0.472681	-1.025275	-1.872548	0.000000	
			0.607504	-0.331637	-0.121021	
		0.426388	1.459363	-5.282764		
			0.222119	-0.121283		
Та	5	0.744000	3.623116			
		0.581801	2.005338	3.027036		
		0.770646	0.518567	1.185378		
			-0.485635	0.695148		
		0.534370	-2.202200	-1.666675		
			0.086716	-0.094635		
Ta ^{sc}	13	0.550000	4.546236	0.779422		
		0.421853	2.708136	-5.790959	0.947663	
		0.461345	-0.724853	-2.215211	0.000000	
			0.649992	-0.336371	-0.101322	
		0.410994	1.348495	-5.386947		
			0.205344	-0.102353		
W	6	0.719000	4.058450			
		0.582463	2.161166	2.741500		
		0.742307	0.600973	1.299943		
			-0.509800	0.751739		
		0.534959	-2.517063	-0.789137		
			0.075772	-0.086193		
\mathbf{W}^{sc}	14	0.540000	4.800251	0.901544		
		0.418570	2.692204	-6.022637	1.218316	
		0.449555	-0.702084	-2.451680	0.000000	
			0.715480	-0.385339	-0.077093	
		0.399602	1.177436	-5.553621		
			0.205860	-0.100046		

Re	7	0.693000	8.180816		
		0.509816	2.269379	3.528529	
		0.745839	0.496693	0.925829	
			-0.370589	0.616765	
		0.500954	-3.689630	-1.894601	
			0.111557	-0.131595	
Re ^{sc}	15	0.530000	5.592660	0.943957	
		0.403252	2.760720	-6.396415	0.868732
		0.440951	-0.900546	-2.511211	0.000000
			0.788715	-0.489984	-0.017012
		0.390395	0.875251	-5.672543	
			0.209737	-0.102862	
Os	8	0.667000	9.440459		
		0.510307	2.402367	3.046706	
		0.717553	0.499523	1.053284	
			-0.430746	0.701752	
		0.487586	-4.142035	-1.666100	
			0.116941	-0.139761	
Os ^{sc}	16	0.520000	5.613073	0.921955	
		0.410578	2.785758	-6.692130	2.247034
		0.422395	-0.590006	-3.018323	0.000000
			0.870817	-0.412886	-0.139506
		0.380252	0.880133	-5.732892	
	0	0 (11000	0.216440	-0.103221	
Ir	9	0.641000	10.720016	2 911027	
		0.509960	2.445999	2.811037	
		0.084971	0.401792	1.304720	
		0 471745	-0.303347 -4.545484	-1.635428	
		0.471745	-4.343484	-1.033428 -0.151050	
Ir ^{sc}	17	0.510000	4 904509	1 313786	
п	17	0.404469	3 243278	-7 315509	2 956978
		0.411426	-0.380574	-3504403	0.00000
		0.411420	0.930121	-0 379865	-0.262716
		0.376428	0.754315	-5.875580	0.202710
		0.070.20	0.219517	-0.112145	
Pt	10	0.616000	11.027417	01112110	
		0.520132	2.447430	2.640360	
		0.658976	0.408453	1.647716	
			-0.763296	1.065883	
		0.451243	-4.552295	-2.102396	
			0.146912	-0.169306	
Pt ^{sc}	18	0.500000	5.445832	1.156382	
		0.409942	2.994366	-7.448772	4.243095
		0.398652	-0.225181	-3.776974	0.000000
			1.017060	-0.348213	-0.331919
		0.367964	0.632067	-5.755431	
			0.226472	-0.114346	
Au	1	0.650000	-1.963712	-1.698123	
		0.919308	1.539599	-0.468779	-0.792039
		1.140351	0.471229	-0.497538	-0.209758
			0.039349	0.132970	-0.153427
Au ^{sc}	11	0.590000	11.604428		
		0.521180	2.538614	2.701113	
		0.630613	0.394853	2.057831	
			-0.960055	1.296571	
		0.440706	-4.719070	-1.650429	

TABLE I. (Continued).

			TABLE 1. (Co	ontinued).		
			0.148484	-0.169493		
Hg	2	0.640000	-3.296329			
-		0.812108	1.765041	-0.466127	-0.799941	
		1.053714	0.474056	-0.531816		
			0.092330	-0.001118		
		1.100000	0.120638			
			0.020931			
Hø ^{sc}	12	0.570000	2.134572			
		0.521802	3 293920	4 661001		
		0.621648	2.100960	1 689988	0.00000	
		0.021010	0.084989	0.072771	0.653348	
		0 401894	-1 669886	-2 473265	0.055510	
		0.401074	0 155759	-0.122282		
TI	3	0.630000	-1.235846	0.122202		
11	5	0.754005	1.255040	-0 303680	-0.781337	
		0.003742	0.750668	-0.586721	0.781337	
		0.903742	0.759008	0.004459		
		1.062512	0.108041	0.004439		
		1.005512	0.247014			
TISC	12	0.550000	0.022941			
11	15	0.550000	7.301886	4 241200		
		0.502423	3.320500	4.541390	0.000000	
		0.572016	1.272807	2.992206	0.00000	
		0.000105	0.012233	0.031664	1.019164	
		0.393185	-3.200652	-3.008296		
			0.186849	-0.1/0651		
Pb	4	0.617500	0.753143		0.00.40.40	
		0.705259	1.979927	-0.164960	-0.806060	
		0.846641	0.864420	-0.540969		
			0.207711	0.012948		
		0.971939	0.374967			
			0.029256			
Bi	5	0.605000	6.679437			
		0.678858	1.377634	-0.513697	-0.471028	
		0.798673	0.655578	-0.402932		
			0.305314	-0.023134		
		0.934683	0.378476			
_			0.029217			
Ро	6	0.592500	10.411731			
		0.647950	1.144203	-0.735851	-0.339386	
		0.748947	0.594562	-0.353595		
			0.396354	-0.031462		
		0.880468	0.433232			
			0.033886			
At	7	0.580000	13.520411			
		0.627827	0.945557	-0.965903	-0.190429	
		0.709823	0.527078	-0.318821		
			0.480774	-0.034954		
		0.838365	0.468948			
			0.037544			
Rn	8	0.570000	14.629185			
		0.615182	0.981832	-1.038963	-0.120456	
		0.676697	0.612279	-0.344122		
			0.549896	-0.023760		
		0.788337	0.557746			
			0.045488			

Element	state	ΔE (Ha)	Error (Ha)
С	$2s^{1}2p^{3}3d^{0}$	0.3073	-0.40×10^{-3}
	$2s^22p^33d^0$	0.4294×10^{-1}	0.11×10^{-3}
	$2s^22p^13d^0$	0.3612	-0.44×10^{-3}
	$2s^22p^23d^1$	0.3882	0.95×10^{-4}
Si	$3s^{1}3p^{3}3d^{0}$	0.2529	-0.20×10^{-3}
	$3s^23p^33d^0$	-0.5293×10^{-2}	0.38×10^{-4}
	$3s^23p^13d^0$	0.2673	-0.28×10^{-3}
	$3s^23p^23d^1$	0.2462	0.43×10^{-4}
Ge	$4s^{1}4p^{3}4d^{0}$	0.2970	-0.48×10^{-3}
	$4s^24p^34d^0$	-0.1682×10^{-1}	0.58×10^{-4}
	$4s^24p^14d^0$	0.2681	-0.23×10^{-3}
	$4s^24p^24d^1$	0.1879	0.52×10^{-4}
Sn	$5s^{1}5p^{3}5d^{0}$	0.2605	-0.40×10^{-3}
	$5s^25p^35d^0$	-0.2482×10^{-1}	0.46×10^{-4}
	$5s^25p^15d^0$	0.2510	-0.35×10^{-3}
	$5s^25p^25d^1$	0.1084	0.34×10^{-4}
Pb	$6s^16p^36d^0$	0.3181	-0.35×10^{-3}
	$6s^26p^36d^0$	-0.3587×10^{-1}	-0.41×10^{-5}
	$6s^26p^16d^0$	0.2505	-0.46×10^{-3}
	$6s^26p^26d^1$	0.7216×10^{-1}	0.33×10^{-4}
Ti	$4s^{1}4p^{1}3d^{2}$	0.1198	-0.17×10^{-3}
	$4s^24p^03d^0$	0.1166×10^{1}	-0.47×10^{-1}
	$4s^04p^03d^0$	0.3258×10^{1}	-0.10
	$4s^24p^13d^2$	0.3593×10^{-1}	0.65×10^{-4}
Ti ^{sc}	$4s^{1}4p^{1}3d^{2}$	0.1198	-0.37×10^{-4}
	$4s^24p^03d^0$	0.1166×10^{1}	-0.31×10^{-2}
	$4s^04p^03d^0$	0.3258×10^{1}	-0.28×10^{-2}
	$4s^24p^13d^2$	0.3593×10^{-1}	0.15×10^{-3}

TABLE II. Transferability errors.

ward, solution is the explicit inclusion of the semicore electrons into the pseudopotential. In this work we decided on the second method. This ensures that our semicore pseudopotentials still can be used with programs where nonlinear corrections are not considered. In addition, the explicit inclusion of the semicore electrons ensures that our pseudopotentials still work well for systems where nonlinear core corrections fail. It is unnecessary that the eigenvalues and charge distribution of the semicore wave functions have the same accuracy as the valence wave functions of the pseudoatom. We always tried to generate semicore pseudopotentials with semicore pseudo-wave-functions that are as smooth as possible, but still yield accurate results for the valence wave functions. Therefore the error for the eigenvalues of semicore wave functions for our pseudopotentials is within 10^{-3} - 10^{-2} a.u., which is about three orders of magnitude worse than the typical error for the valence wave functions.

The choice of which electrons are treated as semicore electrons also depends on the required accuracy. As we were interested in generating pseudopotentials that can be used together with plane-wave basis sets within a reasonable computational effort, we tried to include not too many semicore electrons into our pseudopotentials. Our semicore pseudopotentials for the group Ia and IIa elements, the transition metals of groups IIIb–VIIIb, and the lanthanides treat the (n-1) *s* and the (n-1)p electrons as semicore electrons. For the elements of groups Ib, IIb, and IIIa (except B and Al), all

FIG. 1. Relativistic all-electron (solid line) wave function and pseudo-wave-function (dashed line) of the valence electrons of gold. The difference between them is shown by the dotted line on a logarithmic scale.

electrons of the completely filled *nd* shell are treated as semicore electrons.

For all elements mentioned above semicore wave functions improve the description of highly positive charged ions. In Table III the transferability error of two Ti pseudopotentials is listed for several states. For most states the calculated excitation energies are much closer to the all-electron values for the Ti semicore pseudopotential, including the 3*s* and 3*p* semicore electrons. This is most significant for the $4s^04p^03d^0$ state, which corresponds to a Ti⁴⁺ ion. For the 4e pseudopotential the error is 0.1 hartree, but only 0.28 $\times 10^{-2}$ hartree for the 12*e* semicore pseudopotential.

Pseudopotentials with semicore wave functions always require higher computational effort. They contain more electrons, and larger basis sets are necessary for a sufficient description of the localized semicore wave functions. In many applications like molecular structure calculations semicore pseudopotentials yield converged results with comparably small basis sets even if the calculated total energy is still far from its converged value. Therefore the inclusion of semicore electrons does not inevitably require the use of extremely large basis sets. In fact, in our molecular calculations the highest plane-wave energy cutoff was needed for calculations with the fluorine pseudopotential which has no semicore electrons at all.

In many cases it is not quite clear if semicore electrons play an important role or not. For most applications the need to use semicore pseudopotentials depends on the required

TABLE III. Comparison of bond lengths of molecules calculated with our pseudopotentials (PSP) and obtained with GAUSSIAN 94 or NUMOL (Ref. 21) (AE) and the experimental data. All GAUSSIAN 94 calculations were done with a 6-311++G(3df,3pd) basis set if not otherwise mentioned. Bond lengths are given in bohr.

Molecule		PSP	AE	Expt.	Ref.
H ₂		1.447	1.447	1.401	21
Li ₂		5.100 ^{sc} , 5.016	5.120	5.051	21
LiH		3.029 ^{sc} , 2.929	3.029	3.015	21
Be ₂		4.516 ^{sc} , 4.497	4.510	4.63	22
BF ₃		2.477	2.469	2.470	23
BH		2.363	2.371	2.373	21
CH_4		2.072	2.072	2.052	24
C_2H_2	r(CC)	2.263	2.270	2.274	23
	r(HC)	2.028	2.030	2.005	23
N_2		2.067	2.070	2.074	21
NH ₃		1.932	1.932	1.912	23
HCN	r(CN)	2.169	2.174	2.179	25
	r(HC)	2.038	2.039	2.013	25
H ₂ O		1.836	1.834	1.809	23
CO		2.127	2.130	2.132	21
CO_2		2.196	2.195	2.192	23
F_2		2.622	2.613	2.668	21
HF		1.764	1.760	1.733	21
CH₃F	r(CF)	2.605	2.592	2.612	23
5	r(HC)	2.082	2.082	2.069	23
Na ₂	× ,	5.76	5.64	5.818	21
NaH		3.534 ^{sc} , 3.381	3.529	3.566	21
Mg ₂		6.31	6.41	7.351	21
MgH		3.318^{sc} , 3.279	3.313	3.271	21
AlH		3.140	3.174	3.169	21
SiH ₄		2.808	2.820	2.795	26
SiO		2.827	2.861	2.853	21
SiF4		2.922	2.952	2.936	23
P_2		3.547	3.542	3.578	21
PH ₃		2.696	2.704	2.671	27
PN		2.789	2.808	2.871	21
S ₃		3.595	3.609 ^a		
H ₂ S		2.553	2.558	2.524	23
ĊŚ		2.882	2.897	2.901	21
CS ₂		2.918	2.930	2.934	23
Cl ₂		3.725	3.742	3.756	21
HCI		2.436	2.440	2.409	21
CH ₂ Cl	r(CCl)	3.330	3.331	3.374	23
5	r(CH)	2.072	2.072	2.060	23
K ₂		6.936	7.358 ^a	7.413	21
кн		$2.200^{sc}, 2.969$	2.303 ^a	2.307	21
СаН		3.706 ^{sc} , 3.187	4.126 ^a	3.783	21
ScH		3.304 ^{sc} , 3.182	3.300 ^b		
ScO		3.116^{sc}	3.109 ^b	3.152	21
TiO		3.018^{sc} , 2.840	3.020 ^b	3.062	21
VO		2.943 ^{sc} , 2.845	2.959 ^b	3.003	21
CrO		2.955^{sc} . 2.903	2.997 ^b	3.052	21
MnO		2.996^{sc} , 2.991	3.032 ^b	3.114	28
FeO		2.958	2.994 ^b	2.97	21
CoO		2.932	3.037 ^b	3.024	29
NiO		3.027	3.035 ^b	2.021	
NiH		2.726	2.000	2.787	21
		2.720		2.707	

			<i>,</i>		
CuO		3.153 ^{sc} , 2.749	3.176 ^b	3.258	21
CuH		2.731 ^{sc} , 2.463	2.755 ^b	2.765	21
Cu ₂		4.086 ^{sc} , 3.472	4.110 ^b	4.195	21
ZnO		3.157 ^{sc} , 2.886	3.161 ^b		
ZnH		3.010 ^{sc} , 2.858	3.025 ^b	3.013	21
GaH		3.176 ^{sc} , 3.095	3.173	3.143	21
GaO		3.167 ^{sc} , 3.022	3.173		
GaF		3.376 ^{sc} , 3.183	3.367	3.353	30
GeH ₄		2.861	2.896	2.882	23
GeO		3.010	3.074	3.118	21
As ₂		3.912	3.951	3.974	21
As ₄		4.551	4.573	4.602	23
AsH ₃		2.875	2.887	2.855	23
H ₂ Se		2.783	2.788	2.759	23
Se ₂		4.089	4.097	4.076	21
Se ₃ (C _{2v})		4.142	4.146		
SeO ₂		3.041	3.045	3.038	30
Br ₂		4.296	4.299	4.314	21
HBr		2.701	2.705	2.670	21
CH ₃ Br	r(CH)	2.069	2.063	2.052	23
r(CBr)		3.636	3.635	3.653	23
BrF		3.326	3.322	3.318	21
BrF ₃	$r_1(BrF)$	3.437	3.434	3.420	23
	$r_2(BrF)$	3.289	3.285	3.252	
Rb ₂		7.671 ^{sc} , 7.333		7.956	31
RbH		4.368 ^{sc} , 3.072		4.473	21
SrH		4.009 ^{sc} , 3.522		4.053	21
SrI2		5.560 ^{sc} , 5.327		5.69	23
SrO		3.591 ^{sc}		3.630	21
ZrO		3.235 ^{sc} , 2.848		3.234	21
RhC		3.027		3.049	21
PdH		2.865		2.889	
AgH		3.023 ^{sc} , 2.688		3.056	21
Ag ₂		4.717 ^{sc} , 3.760		4.67	21
CdH		3.323 ^{sc} , 3.108		3.329	21
InH		3.504 ^{sc} , 3.394	3.512 ^c	3.473	21
SnH		3.331		3.373	21
SnO		3.401		3.473	21
SnS		4.123		4.174	21
Sb_2		4.624		4.70	32
SbCl ₃		4.414		4.411	33
Te ₂		4.824		4.832	21
H ₂ Te		3.146	3.156 ^c	3.133	23
HI		3.073	3.073 ^c	3.031	21
I_2		5.029		5.039	21
Cs ₂		8.479 ^{sc} , 7.976		8.783	34
CsH		4.630 ^{sc} , 3.171		4.713	21
BaH		4.176 ^{sc} , 3.403		4.217	21
IrC		3.324		3.180	21
PtH		2.872		2.888	21
PtC		3.612		3.371	21
AuH		2.898 ^{sc} , 2.424		2.879	21
HgH		3.278 ^{sc} , 3.067		3.284	21
TlH		3.600 ^{sc} , 3.440		3.534	21
TlCl		4.472		4.81	21
PbH		3.433		3.475	21

TABLE III (Continued)

PbS	4.237	4.526	22
PbCl ₂	4.552	4.609	34
BiH	3.374	3.411	22

^aGAUSSIAN 94 with 3-21G basis set.

^bGAUSSIAN 94 with 6-311++G(3d,3pd) basis set. ^cReference 20.

accuracy and necessary computational effort, and should be tested carefully. Therefore we constructed both types of pseudopotentials for most elements where semicore electrons can play a significant role in electronic structure calculations.

V. MOLECULES

We tested our pseudopotentials by calculating the bond lengths of a large number of molecules. In all calculations we used our scalar relativistic pseudopotentials, neglecting the terms for spin-orbit interaction. Whenever possible we tried to determine values for the bond lengths, that are converged to $\approx 10^{-3}$ bohr. To obtain this high level of accuracy, extremely large boxes and high plane-wave energy cutoffs were needed, so that for some molecules the accuracy of the calculations was limited by our computational resources. The calculated bond lengths, together with their experimental values, are listed in Table III. As a reference for the quasiexact LDA value, we also list the bond lengths calculated 19) using a 6-311G with GAUSSIAN 94 (Ref. ++(3df,3pd) basis set (for the 3d elements, no f polarization functions have been used). With a few exceptions the values calculated with GAUSSIAN 94 agree within a few thousandths of a bohr, with the LDA results published by Dickson and Becke,²⁰ and therefore should be close to the LDA limit. For some molecules where no high precision basis sets are available, we took the all-electron results from Dickson and Becke. To estimate the error arising from the pseudopotential approximation, our calculated values should be compared with these LDA results rather than with the experimental bond lengths. Unfortunately exact LDA values for molecules containing heavier elements often are not available because of the lack of a sufficiently accurate basis set.

The bond lengths calculated with our pseudopotentials, including semicore electrons where necessary, agree very well with the all-electron values obtained with GAUSSIAN 94. The error of the pseudopotential approximation for first row atoms is nearly ten times smaller than the LDA error, and for the heavier elements at least comparable to the LDA error. In all cases except for the non-semicore pseudopotentials, the accuracy relative to the exact LDA value is, however, better than the results obtained with standard Gaussian $6-31G^*$ basis sets, and it is comparable to or better than the results obtained with other all-electron methods. It must be mentioned that our results especially for molecules with heavier elements are not exactly comparable to the values obtained with GAUSSIAN 94 or the values of Dickson and Becke, as our pseudopotentials also include relativistic effects.

For some non-semicore pseudopotentials, the error in the calculated bond lengths is quite large. Nevertheless these pseudopotentials may still be of interest for electronic structure calculations if no high precision is required, or if the computational resources are limited. These pseudopotentials require only small basis sets which is sometimes a necessity for the study of large systems.

Our calculated bond lengths containing only first or second row atoms also agree to within one or two thousandths of a bohr to those obtained with nonrelativistic versions of these pseudopotentials that have already been published⁵ (differences in the case of HCN are due to the choice of a different simulation box). This clearly demonstrates that relativistic effects do not influence the bond lengths for these molecules on a relevant scale.

VI. PARAMETERS

In the following we list the parameters for all elements up to Rn. The entries in Table I have the following meaning:

Element	Z_{ion}	$r_{\rm loc}$	C_1	C_2	C_3	C_4
		r_0	$h_{1,1}^{0}$	$h_{2,2}^{0}$	$h_{3,3}^0$	
		r_1	$h^1_{1,1}$	$h_{2,2}^1$	$h^1_{3,3}$	
			$k_{1,1}^1$	$k_{2,2}^{1}$	$k_{3,3}^1$	
		r_2	$h_{1,1}^2$	$h_{2,2}^2$	$h_{3,3}^2$	
			$k_{1,1}^2$	$k_{2,2}^2$	$k_{3,3}^2$	
		:				

Only the nonzero parameters are shown in Table I. Parameters for elements marked with *sc* correspond to semicore pseudopotentials. In order to keep the table as small as possible, the coefficients $h_{i,j}^l$ and $k_{i,j}^l$ of the nonlocal projectors for $i \neq j$ are not listed. To obtain the full parameter set, the missing $h_{i,j}^l$ and $k_{i,j}^l$ have to be calculated from $h_{i,i}^l$ and $k_{i,i}^l$. The relevant equations for the $h_{i,j}^l$ are

$$h_{1,2}^{0} = -\frac{1}{2}\sqrt{\frac{3}{5}}h_{2,2}^{0},$$
(20)

$$h_{1,3}^{0} = \frac{1}{2} \sqrt{\frac{5}{21}} h_{3,3}^{0}, \qquad (21)$$

$$h_{2,3}^{0} = -\frac{1}{2}\sqrt{\frac{100}{63}}h_{3,3}^{0}, \qquad (22)$$

$$h_{1,2}^{1} = -\frac{1}{2}\sqrt{\frac{5}{7}}h_{2,2}^{1}, \qquad (23)$$

$$h_{1,3}^{1} = \frac{1}{6} \sqrt{\frac{35}{11}} h_{3,3}^{1}, \qquad (24)$$

$$h_{2,3}^{1} = -\frac{1}{6} \frac{14}{\sqrt{11}} h_{3,3}^{1}, \qquad (25)$$

$$h_{1,2}^2 = -\frac{1}{2}\sqrt{\frac{7}{9}}h_{2,2}^2, \qquad (26)$$

$$h_{1,3}^2 = \frac{1}{2} \sqrt{\frac{63}{143}} h_{3,3}^2, \qquad (27)$$

$$h_{2,3}^2 = -\frac{1}{2} \frac{18}{\sqrt{143}} h_{3,3}^2, \qquad (28)$$

$$h_{i,j}^{l} = h_{j,i}^{l}$$
 (29)

By this procedure we minimize linear dependencies of the $h_{i,i}^l$ during the fit. Replacing $h_{i,i}^1$ by $k_{i,i}^l$ in Eqs. (20)–(29)

- ¹G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B **26**, 4199 (1982).
- ²L. Kleinmann and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982); D. C. Allan and P. Teter, *ibid.* 59, 1136 (1987).
- ³X. Gonze, R. Stumpf, and M. Scheffler, Phys. Rev. B 44, 8503 (1991).
- ⁴R. Stumpf, X. Gonze, and M. Scheffler, Fritz-Haber-Institute Research Report No. 1, April 1990 (unpublished).
- ⁵S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B **54**, 1703 (1996).
- ⁶X. Gonze, P. Kaekell, and M. Scheffler, Phys. Rev. B **41**, 12 264 (1990); D. J. Singh, H. Krakauer, C. Haas, and A. Y. Liu, *ibid.* **46**, 13 065 (1992).
- ⁷P. Hohenberg and W. Kohn, Phys. Rev. **136**, B864 (1964).
- ⁸W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965).
- ⁹G. B. Bachelet and M. Schlüter, Phys. Rev. B 25, 2103 (1982).
- ¹⁰J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- ¹¹A. D. Becke, Phys. Rev. A **38**, 3098 (1988); C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B **37**, 785 (1988); B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. **157**, 200 (1988); J. P. Perdew and Y. Wang, Phys. Rev. B **33**, 8800 (1986); J. P. Perdew, *ibid.* **33**, 8822 (1986); **34**, 7406(E) (1986).
- ¹²J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13 244 (1992).
- ¹³D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1980).
- ¹⁴E. L. Shirley, D. C. Allan, R. M. Martin, and J. D. Joannopoulos, Phys. Rev. B **40**, 3652 (1989).
- ¹⁵R. G. Parr and W. Wang, *Density-Functional Theory of Atoms and Molecules* (Oxford University Press, New York, 1989); M.

gives the equations for $k_{i,j}^l$. We found that the treating all $h_{i,j}^l$ for $i \neq j$ as independent pseudopotential parameters does not improve the results.

VII. SUMMARY

We developed a complete set of relativistic LDA pseudopotentials for the whole periodic system up to Rn. The pseudopotentials are easy to use as only a few parameters are necessary. All terms for both Fourier and real space are given analytically, and no tabulated functions are needed. The pseudopotentials are highly accurate and transferable, and have been tested in extensive atomic and molecular calculations.

Gaussian-type pseudopotentials for other exchange correlation functionals or gradient-corrected functionals can easily be constructed using our LDA parameter sets as an initial guess. The necessary programs are available from the authors upon request.

ACKNOWLEDGMENTS

Financial support by Hoechst AG is gratefully acknowledged. We thank Sverre Froyen and Mike Teter for making available their relativistic atomic codes.

Teter, Phys. Rev. B 48, 5031 (1993).

- ¹⁶S. Goedecker and K. Maschke, Phys. Rev. A 45, 88 (1992).
- ¹⁷W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recepies* (Cambridge University Press, New York, 1986).
- ¹⁸S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).
- ¹⁹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN 94, Gaussian, Inc., Pittsburgh, PA, 1995.
- ²⁰R. M. Dickson and A. D. Becke, J. Chem. Phys. **99**, 3898 (1993).
- ²¹K. P. Huber and G. Herzberg, *Constants of Diatomic Molecules* (Van Nostrand Reinhold, New York, 1979).
- ²²V. E. Bondybey and J. H. English, J. Chem. Phys. 80, 568 (1984).
- ²³J. H. Callomon *et al.*, in *Atomic and Molecular Physics. Structure and Data of Free Polyatomic Molecules*, edited by K.-H. Hellwege and A. M. Hellwege, Landolt-Börnstein, New Series, Group II, Vol. 7 (Springer, Berlin, 1976).
- ²⁴D. L. Gray and A. G. Robiette, Mol. Phys. 37, 1901 (1979).
- ²⁵S. Carter, I. M. Mills, and N. C. Handy, J. Chem. Phys. **97**, 1606 (1992).
- ²⁶M. D. Harmony et al., J. Phys. Chem. Ref. Data 8, 619 (1979).
- ²⁷G. A. McRae, M. C. L. Gerry, and E. A. Cohen, J. Mol. Spectrosc. **116**, 58 (1986).
- ²⁸R. M. Gordon and A. J. Merer, Can. J. Phys. **59**, 642 (1980).

- ²⁹T. C. DeVore and T. N. Gallaher, J. Chem. Phys. **71**, 474 (1979).
- ³⁰J. Demaison *et al.*, in *Atomic and Molecular Physics. Molecular Constants*, edited by K.-H. Hellwege and A. M. Hellwege, Landolt-Börnstein, New Series, Group II, Vol. 6 (Springer, Berlin, 1974).
- ³¹C. Amiot, P. Crozet, and J. Verges, Chem. Phys. Lett. **121**, 390 (1985).
- ³²A. A. Radzig and B. M. Smirnov, *Reference Data on Atoms, Molecules and Ions* (Springer, Berlin, 1985).
- ³³E. Hirota *et al.*, in *Atomic and Molecular Physics. Structure Data of Free Polyatomic Molecules*, edited by K. Kuchitsu, Landolt-Börnstein, New Series, Group II, Vol. 21 (Springer, Berlin, 1992).
- ³⁴W. Weickenmeier et al., J. Chem. Phys. 82, 5354 (1985).