PHYSICAL REVIEW B VOLUME 58, NUMBER 7 15 AUGUST 1998-I

Excitation spectrum of the quasi-one-dimensional electron gas
with long-range Coulomb interaction
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Using ground-state energy calculations we calculate the density and width dependence of the spin suscep-
tibility and the compressibility of the one-dimensional electron gas with long-range Coulomb interaction. An
oscillator potential is used for the confinement. With the compressibility and the spin-susceptibility sum rule
we describe charge-density and spin-density excitations in quantum wires as a function of the electron density
and the wire-width parameter. Analytical results are presefig@il63-1828)00831-3

Spin-density excitations have been observed experimeri=2x. The energy is expressed in units of the effective
tally in two-dimensional systemsnd recently in quasi-one- Rydberg Ry =m*e*/2e2. For GaAs with m* =0.067n,
dimensional quantum wires as realized in dopedand e, =12.7 the relevant parameters aa&=100A and
GaAs/AlLGa,_,As heterostructures. The dispersion was Ry*=5.4meV. m, is the electron mass in vacuum. The
found to be linear in wave number. Together with the experi-electron densityN defines the Fermi wave numb&g via
mental studies of charge-density excitatfotise excitaton N=2kg/7. The Fermi energyer is given by er/Ry*
spectrum of this model system for quasi-one-dimensionafr 7?/16r2 and the Fermi wave numbekg by kga*
systems is known experimentally. The observed dispersior 7/4rs. The Coulomb interaction potentiaf(q) in the
relation for charge-density excitation is in agreement withFourier space depends on the confinement and is expressed
analytical results for plasmons in one-dimensional system8&s
calculated within the random-phase approximatig®A).3
In the following we study many-body effects of electrons in
guasi-one-dimensional quantum wires of finite width inter-
acting via a long-range Coulomb potential.

The RPA describes many-body effects in systems witiFor the oscillator confinement potential.(p) = p?/8m* b*
long-range Coulomb interaction. This theory is exact in thewith the width parameteb (and p is the distance from the
high-density limit and must be improved for intermediateWire axis the interaction potential is given byf(x)
and low density’. A very powerful approach was developed =2E1(x*)exp(?).° E;(x) is related to the exponential-
by Singwi, Tosi, Land, and Sjander(STLS). For a review, integral function Eik). We use in our calculation a one-

see Ref. 5. This theory provides results for the ground-statgubband model at zero temperature. This means that the

energy in good agreement with quasi-exact Monte Carlo calFermi energy must be smaller than the intersubband energy

culations. We have recently applied this theory and calcudiStanceAE /Ry =a* ?/b?, which leads for the oscillator

lated the ground-state energy of quasi-one-dimensional sy§enfinement torg>rg = mb/4a*. Forre<rg at least two
tems as function of the densitand the spin polarizatiohin ~ Subbands are occupied. . _
fact, the ground-state energy as a function of the density The dynamical response function for charge-density fluc-
determines the compressibility, while the ground-state entua@tionsXc(q,) and spin-density fluctuationsy(q,w) are
ergy as a function of the spin polarization determines thediven in terms of the response fun8c:t|(1|:1ndhard function
spin susceptibility. Using exact sum rulésone can calcu-  Of the free electron gaXo(q,w) by*
late the collective modes of the system: one finds charge-
density and spin-density excitations. B Xo(q, )

As the model we consider a quasi-one-dimensional elec- Xes(G,0)= 1+ Ve () Xo(q,0)
tron gas with an effective mass* and with the wire axis in ’
the z direction. The confinement in they plane is described V.(q)=V(q)[1—G.(q)] andVs(q)=—V(q)Gs(q) are the
by a width parametéb. The electron gas is characterized by effective potentials including the local-field corrections for
the one-dimensional carrier densiy and a positive back- charge-density fluctuationG.(q) and spin-density fluctua-
ground within the jellium model leads to a local neutrality. tions G4(q). The collective modes are defined by 1
The Wigner-Seitz parameteg for one-dimensional systems + V. () Xo[ 0, s(0)]=0. ForV,(q) one obtains the col-
is given byr,=1/2Na*. a* =g, /m*€? is the effective Bohr lective charge-density modgglasmong and V4(q) deter-
radius defined with the background dielectric constant  mines the collective spin-density modes. The dispersion re-
the electron charge, andm*. For Planck’s constant we use lation w. 4(q) for one-dimensional systems is given by

eZ
V(q)=5— f(qb). (]
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Q+(Q)2Ac S(q)_Q_(q)Z 172 TABLE 1. Inverse spin susceptibility &4 (in units of the in-
wes(Q)= A : =1 (39 verse spin susceptibility of the free electron gasyl/within the
c.s(d VWN approach(Ref. 14 for various values of ; and the oscillator
with confinement parametér In the last row we give the values fog..
Acs(a)=exd m|ql/m* V¢ (a)] (3b) Kol ks
and r b=a*/5 b=a*/2 b=a* b=2a* b=3a* b=4a*
Q. (q)=veq[1+q/2ke]. (30 0.6 0.758 0.911 0970 0.991 0.996 0.998

5. . . . 1.0 0.501 0.748 0.891 0.964 0.983 0.990
ve=kg/m* =2 Ry*kra*“ is the Fermi velocity. Equation 20 0.001 0314 0581 0803 0890 0931
(3) was derived to describe collective particle- den5|ty 0266 0577 0.729 0815

modes? and later generalized to describe collective spin-

4.0 0.347 0.543 0.665

density mode¥ of a one-dimensional electron gas with a
. . : h 5.0 0.132 0.357 0.505
short-range interaction potential()..(q) describes the 6.0 0.345
electron-hole  spectrum wgy(Q): [Q_(9)|<swen(q) 7'0 0'191

<|Q.(q)| with wen(q—0)=ve|g|. For small wave num-
bers one can us8; ((q—0)=1+x|q|/m*V,(q—0) and
we find

[re] [1.46 [2.14 [2.98 [425 [529 [6.20

_ 112 in terms of the ground-state energy of the free electron gas
©c(4=0)=velalL1+ peVe(a—0)]™ @ (0), the exchangéex) and the correlatiofcor) contribution?
pr=2m*/mk is the density of states of the free electron gasThe compressibilityx. of the one-dimensional electron gas
at the Fermi energy. The collective modes depend ofs given asg/xc=1+ ko/k¢ ext Kol ke cor- NUumerical re-
G.,s(q). We note thaV(q—0)>0 andV,(q—0)<0 and  sults fork,/«. have been given in Ref. 6. The spin suscep-
we conclude thatog(q— 0)<vg|q|<w.(q—0). tibility «s is expressed agq/xs=1+ ko/ ks ext Ko/ Ks cor-
The long-wavelength behavior of the effective potentialsRecently, we derived an analytical expression #gr., and
is determined by sum rules for the compressibiktyand the i, ..: k! k¢ ex= Ko/ ks ex=— 25 sf (2keb)/72< 0.1 In the

spin-susceptibilityx g via*® mean-spherical approximatiqgMSA) the local-field correc-
L tion is set to zero and we found beforg/xgysa=1[1
1_KO/"c,s_;'mO[PFV(Q)chs(Q)]' G 4 4r f(2keb)/72]Y27 The MSA is very similar to the RPA,

however, in the MSA an analytical expression for the static
ko=16r3a*/7?Ry* is the compressibility of the free- structure factor is used. In the Hartree-Fock approximation
electron gas. These sum rules allow one to express the calHFA) correlation effects are neglected.
lective modes as a function &f, s as Some numerical results for the spin susceptibility ob-
tained by using the Vosko, Wilk, and Nusa{vWN)
0(q—0)=ve|ql[peV(q—0) + ko/kc ¥ (68  approach are given in Table | for <r . and different wire
width. r . will be explained later. The results obtained within
the VWN approach are in very good agreement with results
w(q—0)=v|q|[ Ko/ ks] V2 (6b) ~ obtained within the STLS approaéiWe find 0< kq/ks<1
for 0<rg=r,. and the spin susceptibility is enhanced near
Equation(6) is an essential result of the present paper. Usmg o Ks~4KO- An approximating A) expression for the spin

our numerical results fok; and x; we derive predictions for susceptibility Kksa, Which gives good agreement with our

and

the collective modes. _ . results obtained numerically, is given by
For the oscillator confinemeht with f(q—0)
=4[In(1/g|b) —C/2] (C=0.577 is Euler’s constantve find ko 1
, =5 (1-p) +(1+p) : (8)
wc(q—0)=ve|q|[16rIn(1/q|b) — C/2]/ m*+ Ko/ K]V Ks.A Ks,HFA Ks ,MSA
(7

We get a very good fit to our data in Table | with E§) for

and the leading term i&.(q— 0)|q|[In(1/q|b)]¥2*2 For ~ p=0.55. ko/ksa has a large validity rangere<r¢.. We

r<—0 the spin susceptibility is given by,/«ks~1 and we believe thatk o together with Eq(6b) is useful for experi-

predictog(q—0)~wen(q—0)=vg|q|. This is in agreement menters in order to analyze experimental results.

with experiments made with structures having a high elec- Numerical results fow.(q—0)/vrq and ws(q—0)/veq

tron density and large wire radiddn the long-wavelength versusrg are shown in Fig. 1 and Fig. 2, respectively. In-

limit the charge-density modes are determined by the intereluding only exchange effects we deriva.(q—0)

action potentialV(q—0): the compressibilityky/x.<1 is  =vg|q|[peV(q—0)+1+ko/keed® and  wg(q—0)

only a correction term. The spin-density modes are deter»vF|q|[1+ Kol ks ]2 For charge density modes correla-

mined by xqo/xs<1: it is essential to know the spin- tion effects become important for larggrvalues only. For

susceptibility including exchangend correlation. spin-density modes exchange effects are not sufficient to de-
In order to calculatec, and k¢ the ground-state energy scribe many-body effects and correlation effects must be

eo(rg,{) per particle as a function of the density parametertaken into account; see Fig. 2. We suggest studying the col-

rs and the spin polarizatiofi must be known. It is expressed lective modes by Raman spectroscopy. Quantum wires with
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FIG. 1. Charge-density excitation eneray(q) (in units of FIG. 2. Spin-density excitation energys(q—0) (in units of

veQ) T according to Eq(6a for different oscillator-confinement ved) VS rs according to Eq.(6b) for different oscillator-
parameteb and forqa*=0.1 (q=1x 10° cm ! and a GaAs wire confinement parametér The solid lines contain exchange and cor-

with a* =100 A). The solid lines contain exchange and correlationrelation effects. For the dashed line only exchange effects are taken
effects. For the dashed line only exchange effects are taken intéito accountonly shown forbza*).*The Wigner-Seitz parameter
account(only shown forb=a*). The Wigner-Seitz parameter, I'sc is shown as a full circle. Fars<rg two subbands are occupied

. . . * 3 H H

is shown as a full circle. Far,<r* two subbands are occupied and andry is indicated by an arrow.

r¥ is indicated by an arrow.

, i and indicated in Fig. 1 and Fig. 2 by arroder r%) and full
a lower electron density than in current Raman

) o ircles (for rg). Forrg>r% only on nd i ied.
experimenté® should be used. We also note that within our - cles (for reg). Forre>ry only one subband is occupied

g LT . *
theory electron-hole excitations are expected, due tJhe _results given in Fig. 1 a_md Fig. 2_ fog<rg can be
Xo(q, @) in Eqg. (2). considered as guide to experimenters: in that case the num-

Collective modes in quantum wires have been discussefier Of charge-densityand spin-density modes should be
using the bosonization approdéfand are described by un- equal to the number of occupied subbands. We think that
specified parameters. The results are not predictive. Groun@ven forrs<rg our prediction for the collective modesf
state energy calculations are missing and the results for cothe lowest subbandhould be correct if the electron density
lective modes are not in agreement with our exact results iin the lowest subband is used to calculaieand v . We
Eqg. (6). This is most clearly seen by taking only exchangestress that the validity range for the exchange-only calcula-
effects into account. Moreover, sum rules are not satisfiedtion for spin modes is;<r} ; see the dashed line in Fig. 2.
We stress that Luttinger-liquid effects, for instance, critical ~ For r, we found® eq(rsc,{=0)=¢go(rsc,{=1) and for
exponents, are described by the STLS approach, which we>r . we derivedey(rs,{=1)<eq(rg,{=0). This would
used in our calculations. This was shown in Ref. 11 for asuggest that the electron gas undergoes a Bloch instability
short-range interaction potentid]. and a polarized state is expected fgrr..2° On the one

In a recent paper we determined the validity range of thehand it is not clear if this transition really occurs because the
STLS approach for a short-range interaction potenfial. Bloch instability is in contradiction with a theorem predict-
Translated to the present model, this study implies that théng the absence of a magnetized state in one dimeRSion.
STLS approach should give correct values for the compressa/e are not convinced that one can apply this theorem: see
ibility and the spin susceptibility fors<<(1.-1.5)¢.. Infact,  our discussion of this theorem in Ref. 7. On the other hand
we found that the validity range for the compressibility andwe note that experimental indications for the Bloch instabil-
the spin susceptibility is larger than for the ground-stateity found in ballistic transport experiments with point con-
energy'® We conclude that,. is at the border of the validity tacts have been reporté4?*We believe that our finding that
range of the STLS approach. The valug introduced in  gy(re.,{=1)=gq(rsc,£=0) either means that far,>r.. a
Table | is the largest, value for which our theory should be new phase is approached or that our calculated values of the
applied. We conclude that the validity range of our theoryground-state energy cannot be trusted fger.. In any
concerning the charge density excitatiomempressibility  case our results should only be used figr,.

and the spin-density excitatiofispin susceptibilityis given We calculated charge-density and spin-density excitations

by of quantum wires using exact sum rules. Exchange and cor-
. relation effects have been taken into account. Spin-density
Mg <rs<Trsc (9 modes cannot be described by exchange-only calculations.
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