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The two-legt-J ladder forms a spin liquid at half filling that evolves to a Luther-Emery liquid upon doping.
Our aim is to obtain a complete phase diagram for isotropic cougliag rungs and legs equals a function
of electron densityn and the ratial/t. Two known limiting cases are< % which is a single band Luttinger
liquid, and small hole doping<<1 for J/t—0, which is a Nagaoka ferromagnet. Using Lanczos techniques we
examine the region between the Nagaoka and Luther-Emery phases mmsi We find evidences for gapless
behavior in both spin and charge channelsJtir 0.3, consistent with Luttinger liquids in both bonding and
antibonding bandsi.e., C2S2). This proposal is based on the behavior of spin and charge correlation func-
tions. For example, the hole-hole correlation function that displays hole pairing at Htggnows hole-hole
repulsion in this region. As a further test, we examined the dependence of the energy on a relative phase shift
between bonding and antibonding bands. Bk 0.3 this is very weak, indicating a lack of pairing between
these channel$S0163-182108)06629-9
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H=tljZ (€]} oCaj o+ H.C) (1)
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The surprising discovery of high; materials by Bednorz
and Muler! has sparked renewed interest in low-dimensional
strongly correlated quantum systems. A striking feature of
these materials is that they show simple long-range antifer-
romagnetic order at low temperatures when they are not 4+ 2 (&,&,_En n )
doped with holes. 4 172 g T

Between the well-known one-dimensional systems and 1
the difficult two-dimensional system, coupled chafoslad- +JHE (51'+1S' T ) 2
derg are interesting intermediate systems. The most striking lj . o4 .

feature of 2n-leg ladders is the appearance of a spin gap at . . ~
half filing and small doping:® For instance, compounds Where the index < {1,2 refers to legs andlto rungs. Thec

such as St ,Cu, . ,0,, have been shown to be well de operators denote the fermion operators with projection onto
-1%Un+1Y2n B . : Pl

scribed by a lattice of coupled,-leg ladders, withw,=(n  the singly occupied states, i.&yj,,=Cjj (1 =Ny, —5). In

+1)/2210 Another example containing two-leg ladders is thIS. paper, we report a detailed study of the phase diagram

the system S ,CaCu,404 (Refs. 11 and 1R which is a for isotropic coupling(i.e., rungs and legs equais a func-

material with doped laddel$**and where superconductivity tiOTnOIheeleS(i:g%n ieor:JSiTiyr: aﬂ?nitge;%ﬂojt/;é <bin gap can be
(under high pressuyénas been observéd:*’ g-coupling L2 pin gap

An important step is the determination of the phase dia_easny represented. At half filling, the ground state is formed

. . by spin singlets lying on each rung. Turning over one spin
gram. Balents and Flsh]érhave computed the phase d'a_gramgives a triplet on the corresponding rung. The energy differ-
of the Hubbard ladder in the weak-coupling linkit—0 in

oo L ence between the two states, the spin gap\4sJ, . Nu-
the frame of bosonization and renormalization-group theorymerically, it is found that the spin gap in the isotropic case,
To distinguish the different phases, they introduced the nOJH:‘]J_’ reduces toA~J,/2.27% The spin gap of a doped
tation xSy for labeling phases with gaplesscharge and/  |adder forJ, >J; is due to a qualitatively different process.
gaplessspin excitations. Noack and co-work€tthen inves-  Some singlets have been replaced by hole pairs moving
tigated the d_|fferent phases numerlca_lly with d_en3|ty-maFr|xa|ong the ladder with a renormalized hoppﬁg The lowest
renormalization-group methods for intermediate couplingeyitation arises by breaking one hole pair, equivalently,
and found good agreement with the analytical results of thg, singlet bony and putting each unbound spin on well-
weak-coupling limit. The main feature is the existence ofseparated rungs. Turning over one of the separate spins gives
two regions, the Luther-EmerLE) region with & spin gap  the lowest triplet excitation witth ~J, —2t, —2t;, leading
(C1S0) and the Luttinger-LiquidLL) with one gapless ex- to a finite spin gapgLE). At the isotropic point], =J; and
citation (C1S1). for J/t=0.3, the spin gap still exists where now the bound
The strong-couplind-J modef®?* has also been studied holes share neighboring rungs and strong singlet correlations
extensively by different authors. It is given by the Hamil- are measured on the remaining sft88The spin gap is thus
tonian a discontinuous function of doping in the vicinity of half

+tH; (NCE +l,0'E|j ‘0.+ HC)
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filling. For higher values of the parametdft, holes and o 13/ 14 15} 16 17/ u; 19 20 11 12
electrons separate completely at all doping levels. / [ [ [

Thus, the appearance of the spin gap in a doped ladder is / /
directly correlated with the formation of hole pairs, and it is 1 23745 67 8 910 1 2

an interesting problem to study their stability. Poilblanc and .
co-workerg® used a numerical method based on Lanczos al- F!G: 1. A 10-rung ladder with two holes on the same rung. Due
gorithms, which has allowed them to distinguish between thé® MBC, the hole pair when sitting on the same rung does not
gapped and gapless regions in the phase diagram. Haywaflrél'Strate_ the Nel ordering. The labeling convention used in future
and Poilblan&* determined the nonuniversal correlation ex- 9raphs is shown.
ponentsK, defining the behavior of the Iong-ralnge correla-
tions. They found that, at low electron density. 3, the sys- " )
tem is in z)a/ LL phase, while for a higher elesétron der¥sity aboundary (.:O.Ud't'OWOSBC,S)' : :
gapped phase with hole pairs is stabilized. A large region of The definition of the BC's for the bonding and antibond-
this gapped phase exhibits dominant superconducting corrd29 operators
lations. The boundary of these two phases was determined to
ben=3 where, in the band picture, the Fermi eneEyjust b. —i(c Cde,) 3)
touches the antibonding band. Jo— Yo 7 ¥2)00

However, some parts of the phase diagram are still un-
clear. First, the finite-size scaling process to determine the 1
spin-gap region does not give clear results for valued/of a,=—(C1i y—Coi o), (4)
<0.3. Second, the radius of the hole pairs increases with 2 g
decreasingl/t, and it is not clear whether it diverges for a | . . o )
particular value, and if a transition to a gapless phase occuf§ 9iven by the set of equatiorithe spin index is dropped for
for small J/t. For very small values od/t, thet-J model is ~ SIMPlicity)
similar to the Hubbard model withJ —oo. Since, for two

pairing instabilities. This configuration is called open shell

I

coupled chains, all spin configurations with a fixg are To T =e%bf,;, 1<j<L, ®
coupled by hole hopping as in a two-dimensional system, the _

essential condition for the Nagaoka theof@is fulfilled. A Ta/T '=e'al,,, 1<j<L, (6)
ferromagnetic phase occurs for very small valueg/ofand

low hole doping. In this phase, no spin gap occurs and holes Th/ T 1=¢'%h], (7)
repel each other. With increasigt, the ground state rap-

idly evolves into a singlet state. Ta/ T t=gl(¢+mma] (8

This part of the phase diagram will be extensively studied
on the basis of exact diagonalization results for small clusfor m=0, the usual BC's with the geometry of a ring are
ters, typically 10-rung ladders. Finite-size effects can be imrecovered. They will be generally referred to as RBCJ.
portant for such systems, and it will be tried to minimize ¢L =0 () are the most-used phases, which will be called a
them as much as possible. periodic (antiperiodig boundary condition or PBCAPBC).
For m=1, the operators at the end of the legs fulfill the
relationship
Il. BOUNDARY CONDITIONS

_ _ _ _ _ Tcl T 1=e'%c),, 9
A Lanczos algorithm will be used to investigate the dif-

ferent phases. With current computers it is possible to inves-
tigate two-leg ladders of length= 10 at any filling. In order

to carry out a systematic analysis for different doping, theyqresponding to the geometry of a Moebius band. They will
boundary condition¢BC'’s) must be chosen carefully. be called Moebius boundary conditions and denoted by
MBC's(¢L). MBCs(0) means that periodic boundary con-
ditions for bonding states and antiperiodic boundary condi-
tions for antibonding states are taken and vice versa for
Usually, the BC’s are defined in the noninteracting limit MBCs(sr). In real space they can be viewed as a way to
of the model where the Hamiltonian is exactly described byprevent antiferromagnetic frustration in some cases, as sche-
two parallel bandsE. (k), also labeledE(k,,k,) with k, matically shown in Fig. 1 for a 10-rung ladder with two
e{0,7}. Since the system is finite, the=(k,,k,) values holes. For a phase differencaw other than 0 orm, the
belong to a discrete set. In genetgl= (2#7/L) 1+ ¢, where  translation of one particle leads to two states, each one with
a priori ¢ needs not be the same for bondirig€0) and one particle on each leg. This case will not be considered
antibonding k,= ) branches. BC’s giving either fully oc- further.
cupied or empty single-particle orbitals in the noninteracting By introducing these BC's, it is possible to get CSBC’s
case, called closed shéC'S) boundary condition§CSBC’y,  for all doping with an even number of holes. In the situation
are chosen. where two CSBC's are possible, the one giving the minimal
If this condition is not fulfilled, the ground state is degen- energyin the tJ modelwill be generally preferred®
erate, This favors the pairing of spins Bt and enhances The Fourier transform

Tch, T 1=e'%cl,, (10

A. Definition of boundary conditions
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FIG. 2. The two different sets dfvalues for RBC and MBC for
a 10-rung ladder. For MBC, the set bivalues ak,= 7 is shifted
by 7/L, respectively, to thé&,=0 branch.

11

fk:; eikjfj s

with k= (ky,k,) andj=(ji,j,) will be computed consis-
tently by takingk, as a function ok, €{0,7},

RBC,

L

Ky ( ky) = (12

T+ T8~ MBC,
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FIG. 3. The CSBC for a 10-rung ladder with two holes. The
upper graphs represent the filling of the band with APBC and
MBC(0) for a saturated ferromagnet. The lower graphs show the
filling in the noninteracting limit forS=0 for MBC(w) and
MBC(0). Filled circles represent the doubly occupied states while
open circles stand for empty states.

ent BC. For each graph, the transition to the saturated ferro-
magnet where the energy #t-independent is clearly seen
for CSBC’s. The two other BC’s do not have CS and the
corresponding energy states are singlets showing a linear
J/t-dependent energy lying above the energy of the fully
polarized state. This case will not be considered further.

A crude finite-size scaling can be made by extrapolating
the critical values of a 5-rung and a 10-rung ladtfept a
doping of 6=0.1, forL=5 the lowest critical value is given
by APBC with value (/t)5=0.052 while forL=10 both
APBC and MBC(0) give the same critical value af/{)4q

wherel is an integer. The two possible setskofalues are
summarized in Fig. 2.

Ill. NAGAOKA PHASE

As discussed in the introduction, a Nagaoka pHage
J/t—0 is expected at low doping. Numerically, Troyer and
co-worker§ have shown that the ground statelof 4-rungs
t-J ladders with a doping of two holes is a saturated ferro-
magnet atl/t=0. In the following, the doping and/t de-
pendence of this phase will be investigated.

The analysis of that phase is simplified by first consider-
ing the subspace of the completely polarized sta®8' (
=N¢/2, with Ng the number of spinsthat is equivalent to a
spinless fermion system. The eigenvalues are exactly given
by the band pictur& .. (k) = — 2t cosk)*t, and the eigen-
states are direct products of bonding and antibonding states.
For finite clusters, CSBC's can be sometimes obtained with
different BC'’s. For instance, for a 10-rung ladder with two
holes and witht, =t;, both APBC and MBC(0) allow a CS
configuration with the same ground-state energy as schemati-
cally plotted in the upper graphs of Fig. 3. For higlit,
when the ground state is a singlet, the corresponding CSBC
configurations are shown in the lower graphs of Fig. 3 where
black circles stand for fully occupied states. Both MBC(0)
and MBC(w) are possible.

In Figs. 4 and 5 the ground-state energy is shown for
different cases. In Fig. 4 the upper graph shows the lowest
energies for a 5-rung ladder with one hole and the lower
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FIG. 4. The uppeflower) graph shows the data for a(&0)-

graph for a 10-rung ladder with two holes. In Fig. 5 the rung ladder with 12) hole(s) for different BC. The insets show the
lowest energies for a 5-rung ladder with two holes and for anagnified region where the saturated ferromagnet appears. The to-
10-rung ladder with four holes is shown in the upper andtal spin of the ground stat@ising APBQ for the 10-rung ladder is
lower graph, respectively. Each curve corresponds to differindicated at the bottom of the lower graph.
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FIG. 5. The uppeflower) graphs show the data for a(30)- FIG. 6. The spin-spin correlation for a 10-rung ladder doped

rung ladder with 24) holes for different BC. The insets show the with two holes in real space and its respective Fourier transform at
magnified region where the saturated ferromagnet appears. The t9mal| values ofJ/t for S,=S and using APBC. TheM(k=0)

tal spin of the ground state for the 10-rung ladder is indicated at th@<5§> are out of the figure for th&,=9 andS,=5 cases.

bottom of the lower graph.

The spin-spin correlations for the 10-rung ladder with
=0.042. The infinite extrapolation gived/t)..=~0.032. For n, =2 and forS,=S are plotted in Fig. 6. The correlations in
6=0.2, the two values areJ(t)s=0.078 and J{/t);, real space are plotted in the uppermost graph where the sites
=0.056, respectively, and the extrapolation to infinity giveson the first leg are labeled<lj<10, and on the second leg
(J/t).=0.034. For higher doping, i.e., for a 5-rung ladder 11<j<20, as pictured in Fig. 1. Fa}/t=0.05, they show
with three holes and for a 10-rung ladder with five and sixan alternating behavior around a ferromagnetic value indicat-
holes withJ/t=0, no ferromagnetic ground state has beening antiferromagnetic correlations. However, their Fourier
found. In conclusion, the diagonalization of small clusterstransform, plotted in the lower graph, do not clearly indicate
shows signs of saturated ferromagnetism up to a doping &f continuous process. Fdft=0.07, the correlation func-
6=0.2 and for small values af/t (J/t=0.033). tions have a maximum in the bran&h=, indicating that

the sum of the interband scattering processes is greater than
the intraband processes and thus, that the correlations be-
A. For J/t>(J/1) 1, sign of partial ferromagnetism? tween both bands are important. The correlations at other

For some clusters, the transition from the Nagaoka phasgalues ofJ/t display a maximum in th&,=0 branch show-
to the singlet phase does not occur immediately, but passdld that the intraband processes are now favored.
through different phases with an intermediate spit % These effects are not found for small systelins'5). Itis
<Ng/2. The lowest energy of the,=2, 10-rung ladder for th_us tempting to concIL_Jde the existence of narrow regions
J/t<0.09 is always given by APBQwith the exception of a with partial ferroma_gnetlc phases in the thermodynamic limit
very tiny region close td/t=0.04). In that region, the spin of the n-J phase diagram. Howeve_r, the pr.esent'results are
of the corresponding ground state passes through the finif&t enough to draw a clear conclusion on this subject and the
values S=5 for 0.043<J/t<0.057 andS=1 for 0.058 e€xistence of these phases is still open.
<J/t=<0.062. ForJ/t=0.062, the ground state is a singlet
with a finite momentum ok==/5 and a singlet at zero
momentum ford/t=0.083; they are mentioned at the bottom
of Fig. 4. For a 10-rung ladder with,=4 (Fig. 5, some The spin gap of a doped system is intrinsically bound to
partial ferromagnetism also occurs. For 0.85)/t<0.072, the formation of hole pairs. Moreover, it is known that for
the spin isS=2 with MBC(0) giving the lowest energy. For very low J/t, when the system is ferromagnetic, holes repel
J/t>0.072, the lowest energy is given by PBCkat=0 and  each other. The question of whether the transition between
is a singlet. repulsive and attractive holes occurs at the ferromagnetic to

IV. EXISTENCE OF A C2S2 REGION?
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FIG. 7. The instantaneous hole-hole correlations for a 10-rung isotropic ladder at different doping. The upper graphs give the correlation
in the site representation while the lower graphs show their respective Fourier transforms. The convention of the labeling is that of Figs. 1
and 2. The correlations in the ferromagnetic phase are also givenfda2,4.

paramagnetic transition will be addressed in this section. NuFig. 7 the correlations are plotted for different valuesJ4f
merical evidence shows that a region of holes with repulsiveand different fillings, namelyn,=2 with MBC(7), n,=4

residual interactions, and thus with gapless spin excitationsyith PBC,n,=6 with MBC(0), andn,,=8 with PBC?’ For

occurs between the ferromagnetic and the LE phase. np=2 andn,=4, the correlation for the ferromagnetic state
computed with APBC is also shownircles. The uppermost
A. Hole-hole correlations graphs in the figure show the correlation functions in real

A first insight into this question can be obtained by look- space with the site convention pictured in Fig. 1. Each cor-
ing at the hole-hole correlation functiofn,(1)n,(j)). In  relation is normalized such thab,(1)n,(1))=1.
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The lower graphs show the Fourier transform atky=(2kg o+ 27/L,0)=(3/5,0), respectively. The corre-
sponding curves in Fig. 8 show a maximumkgtwhile no
(Np(KNK(— K)o MK) =D, €M(n(1)ny(j)), (13 peaks appear &t,, showing that these processes do not
i dominate in the sum of Eq14). Moreover, these processes

wherek is defined in Sec. Il. The normalization correspondsf’lre quite small compared to the interband processes plotted

to A{0)=n, (out of the graphs In Fourier space, the points in the right part of the graph. According to the band picture,

. _ . : : the lowest energy interband processes arekat=(kgp
Ienatchhegiap%(ﬂ branch are given by the leftight) curves in +Kg g+ /L, 7) =(97/10,7). The curves display a maxi-

In real space, each graph shows the same behavior. Fgum at that point, dominating all the other processes and

instance, fom,=2 (5=0.1) atJ/t=0.1, the second hole is especially the intraband scattering ones. It leads to the inter-

found to sit at the farthest point from the first hole. Wlih pretation that the bonding and antibonding particles are
. trongly correlated aEr. In the next section a picture will

:anl?r? éesa asri?a, rtuhne gf;r?l:er(-agoslgsf:(\)/\r/r%%t;? Iﬁ; T]%\llén% otl\g(z; gr(_)les;e proposed in which the gapless phase is a manifesta’gion of
relation clearly shows their bound cha1racter. the absencg of correlat!on betweer_l pands. In such a picture,
In the larged, ,t, limit, with J,>2t, , the hopping of the correlation fon,=2 is chara_cterlstl_c for agapped phe_lse.
hole pairs betwée’nLrungs, is givefl in sLe’cond—order perturba- For n,=4[PBC], the band picture in the noninteracting
X ~ 5 , Eﬁmit predicts dominant intrabonding band scattering pro-
tion theory byt =—2t{/(J, —2t,). As the hole pairs actas cegges ak,=(,0) and intra-antibonding band scattering
hard-core bosons, they repel each other in order to gain thﬁrocesses ak,=(3/5,0). Dominant interband scattering
maximal kinetic energy. This can be viewed in the lower . occas occur &, = (47/5,7). These values correspond
graphs plotting the Fourier transform, where peaks in thg, he (jocal) maxima of the correlation, in agreement with

k,=0 branch appear. This feature clearly appears in the foug,q simple noninteracting band picture.

different graphs. At the same time, the total weight in the g, n,=6[MBC(0)], the dominant scattering processes

Ky=m decreases. _ _ are expected atk,=(m0), k,=(27/50), and K,
This behavior raises the question of the existence of an__(777/10 ). Forn,=8[PBC], the dominant scattering pro-

intermediate phase below the LE phase. In fact, for two holeg,ggag a,re expected laj= (7710), k,=(/5,0), and ak,;,

and values of 0.08J/t<0.2, the system seems to be in a =(3/5,7). The corresponding graphs display correspond-

phase W_here hol_es repel_ each other. A_cco_rding to the ab(_)\fﬁg maxima in good agreement with the band-picture predic-
picture, it would imply spin-gapless excitations. However, tiions.

could also be a pure finite-size effect in that the radius of a In Fig. 9 the maxima of the correlation functions for the
two-hole bound_s’gatt_e Is greater than the length .Of the 'addq{y:o (circle) and thek, =7 (squarg branches are plotted.
sample. Thus, finite-size effects strongly complicate the |n]:0mh:4 6, andn, =8, they show a crossover from a region

terpretatlt_)n_._The above_ correlations are not enough to CORYith dominant intraband scattering to a region with dominant
clude definitively the existence of a new phase. interband scattering. This suggests that the system has uncor-
o . related bonding and antibonding bandsEat such that the
B. Spin-spin correlations low-energy physics is analogous to that of two one-
The spin-spin correlation of the systems are plotted in Figdimensional systems, with spin and charge gapless excita-
8. The uppermost graphs show the spin-spin correlationtions (C2S2). A rough criterion for the transition can be
(S,(1)S,(j)) in real space. They clearly show the antiferro- defined by taking the critical/t at the crossover. This yields
magnetic ordering of the spins along the chain. Rge4  (J/1)=0.32,0.34,0.26 for6=0.2,0.3, andé=0.4, respec-
and n,=6, and for the low value of)/t, the correlation tively. For n,=2, the interband scattering is always much
across the rungS,(1)S,(11)) is ferromagnetic, not antifer- bigger than the intraband scattering, yielding to the conclu-
romagnetic. Increasind/t, however, stabilizes the system to sion that noC2S2 phase occurs for that particular filling.
have antiferromagnetic ordering across the rung. This emphasizes that care must be taken in interpreting the
This feature is also clearly emphasized by the Fouriesimple hole-hole correlations.
transform, plotted in the lower graph of Fig. 8, which has
their maxima in thek,=0 branch. Their Fourier transforms C. (Anti) bonding pair correlations
M(k) also give information on the different scattering pro- . . .
cesses occurring between the different spins in the band pic- Defining the singletS| and triplet T}y, T/, ae{1,1}
ture. In fact, they are proportional to the equal-time correlacreation operator on the rurigvith
tion function

1
at_ = ot of oAt
MI95(S008(~ k)=, (alSM0IO)% (14 3 GG an) o
where the sum is taken over all eigenstate$icdnd where
|0) denotes the ground state. For the casg=2, the 3t :i(CT_ b +ch ek (16)
MBC(m) has bonding states filled up tg ,= 7/2 and anti- 107 o HTTAL L AT

bonding tokg .= /5, as schematically shown in Fig. 3. The
lowest energy intraband excitations in the bonding and anti- At 4+t
bonding band occur &, = (2kg -+ 27/L,0)=(67/5,0) and Tia=C1iaCoia: (17)
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FIG. 8. The instantaneous spin-spin correlations for a 10-rung isotropic ladder at different doping. The upper graphs give the correlations
in the site representation while the lower graphs show their respective Fourier transforms. The convention of the labeling is that of Figs. 1
and 2. The correlations in the ferromagnetic phase are also given, 02,4 with s,=0.

the different pair correlations between bonding and antibondin the C2S2 phase, when the bonding and antibonding states
ing states in the subspace of single occupied states can lage not correlated, all pair correlations are short range. In the

written ag® spin-gapped region, the ground state is characterized by the
- 1 sn formation of an interchain singlet. Thus, long-range singlet-
(biybi ajray)=5(S'S), singlet (S pair correlations will appear while the triplet-
L triplet (TT) pair correlations will remain short range.
<biTTaiTLbjTajl>:_§<1A-iT0:rj0>’ (18) For an undoped system, the pair correlations are finite

only on the same rung=i, where they are proportional to
o the number operator for singlet or triplet states, and depend
(bl al bisa; e =—(T1,T; ). only on the ratioJ, /J;. For J;=0, the singlet-singlet pair
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F_IG. 9. 10-rung Igdder at different fi_IIings. The graphs show the  F|G. 10. The pair correlation&ST(1)S(1)), (TH(1)To(1)) as a
maxima of the Fourier transform1(k) in the branche&,=0,m.  function of J/t for a 10-rung isotropic ladder at different doping.
They correspond to excitations &t . The corresponding, values

re given in the text. .
are give the text two holes has a gap for very low't values, in agreement

correlation atj=i is 1 while the triplet-triplet pair correla- with t.he dISCUSSIO'n of the spln—§5>|n gorrelatloq. W',th n-
tion atj=i is 0. At the isotropic point, the values for the creasingJ/t the singlet numbexS'(1)S(1)) rapidly in-

undoped 10-rung ladder are creases while the triplet numbgF((1)T(1)) decreases. On
~ . the contrary, fom,=4 (6) a crossover between the singlet
(s'(1)S(1))=0.7, (19 and triplet number occurs at/t=0.23 (0.17). This is in
R R R R agreement with the speculated gapless region atlléwThe
(TUDTo(1))=(TT(1)T;(1))=0.1. (200 case withn,=8 exhibits a favored rung singlet configura-

In a doped system, the pair correlations at the isotropic ointtion'
P y k P picp In Fig. 11 the pair correlation at different rungs is shown

depend on the ratio)/t. In Fig. 10, (S'(1)S(1)) and  as a function of/t for the different cases. To make a con-
(TJ(1)To(1)) are plotted as a function af/t. The casen,  sistent comparison of the long-range order for varidlts

=2 shows tha{S"(1)S(1))>(T{(1)To(1)) for all plotted  the pair correlations are normalized according to the singlet
valuesJ/t, It favors the scenario that a 10-rung ladder with number, (S7(1)S(j)),=(S"(1)S(j))/(57(1)3(1)). For nj

0.06
n.=4, PBC
0.05 r
0.10 1
A 0.04 |
=
2 0.08
he 0.05
¢ o002 ¢
0.01 ¢
0.00 s 0.00 ‘ FIG. 11. The pair correlations
0.0 0.0 0.5 1.0 P, )
(S"(1)S(1)), as function of J/t
. . , for a 10-rung isotropic ladder at
W different doping and for different
0.20 B 0 — Derj2 lattice sitej.
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=2, the pair correlations uniformly tend to zero whéh R I
decreases to zero. The solid and dotted lines show the de- o 1
rivative (forward difference of the curves forj=2 and j -/dai/’f“;;//:
=3. Both show a peak arourlit=0.3, indicating the value oL 1
of J/t below which the pair correlation becomes short . e
ranged. The curve does not show any different behavior for g 0 | uos
J/t>0.1. Below this value, it has been seen that the system w — L]
has a transition to a ferromagnetic phasd/at=0.032. Be- -1ro // |
tween these two points some sign of partial ferromagnetism -
has been discussed, but no direct evidence fo282 phase 190 //
has been observed. T

The striking feature of the graphs for,=4,6, andny, %0 0.1 02 03 04 0.5

=8 is the qualitatively different behavior of the different v

curves at small/t. The normalized short-range pair corre-  FiG. 12. The ground-state energy ydor a 10-rung ladder with
lation (S'(1)S(2)), shows a minimum af/t=0.30, 0.45, 4 holes. The ground-state energy is an increasing functiop of
and 0.50 forn,=4, 6, and 8, respectively. The solid and

dashed/dotted lines show the derivative of the differenwhich occur in theHJ” andHJl part. They couple the bond-

curves. Maxima in the derivatives appear in both cases foing and the antibonding operators and are thus responsible
0.25<J/t<0.5, below which value the correlation gets shortfor the appearance of the spin gap.

range. With y= ¢, — ¢, the total transformation is summarized
A critical value will be defined to be at the point where through the definition

the long-range pair correlatio(ST(l)é(S))r changes the

slope of its curve. This gives the valuesJ/), PH(cjj)P—PH(cij )P=H(7), (22)

=0,20,0.25,0.25 fo$6=0.2,0.3, and 0.4, respectively. o o
respectively where the transformed Hamiltonidth(y) has a periodicity

of 7 in y. The site operators are transformed according to
V. TRANSFORMED HAMILTONIAN the rulec;;—c; , with

In this section, the physical picture for tl&2S2 phase
based on the absence of phase correlation between the bond-
ing and antibonding bands is examined. Bfir=0.5, phase

Cij =3 [(€'%+€'%a)cy +(e'%—e%a)cy], (29

coherence between the bandsEat exists, leading to a LE Coj =3 [(€'%—€'%a)cy;+ (e'+e'%a)cy]. (29
liquid with the spin-gap. The question whether this phase . o . .
coherence disappears for smadt |eading to two indepen_ The final transformed Hamiltonian can be written with

dent LL (C2S2) will be investigated® The terms in the three distinct terms,
Hamiltonian coupling both bands are of the form

bll'oblzﬁ,aksl(,,akwﬂL H.c. They must be irrelevant near Hi=Hn+ HH\ +Heg

inreases. To mvestiats ths. we transform the HamitonialfNEre the st pal i the hopping par,being the same as
by i - : ' ; E}] the original Hamiltonian. The second teiry ; , involv-

y introducing a relative phase between the bonding an¢ _ ) ) o o
antibonding operators so that only terms of the above forni?d Magnetic coupling along the chain, contains four distinct
are affected, then the dependence of the ground state on tH&MS.
phase difference will be studied.

Ht’;h: Ht,%‘ ,]_+ Ht’%‘ ,2+ Ht’;h '3+ Ht"h 4 (25)
A. Relative phase transformation which are listed and discussed in the Appendix. The interleg
The transformation is defined by magnetic COupling-ILJl vanishes aty— r (see Appendixin

agreement with the suppression of correlation between the
bonding and antibonding operators.
H=PH(b,a)P—PH(e'%b,e'%aa)P=H,, (21
B. Ground-state energy

where P is the projector onto singly occupied states and The ground state may not be completely decoupled into a
H(a,b) is thet-J Hamiltonian (without projection written  bonding and an antibonding part. Only the particles with a
in the bonding and antibonding basis. The hopping term of/alue nealEg must be uncorrelated for two independent LL.
the Hamiltonian is diagonal in the bonding and antibondingBy calculating the ground-state energyléf, the influence
basis and thus does not change. The introduction of a phagg the phase shift on all bonding and antibonding operators is
shift will only affect terms of the form included and it is thus possible that the influence of the phase
shift is qualitatively similar for different values af/t. In
fact, in Fig. 12 the ground-state energy is plotted for a 10-
b'bTaa—e'?¢~¢JpThtaa, rung ladder with four holes and using PBC. By switching on
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FIG. 14. The instantaneous spin-spin correlations of a 10-rung
FIG. 13. The instantaneous hole-hole correlation of a 10-rungsotropic ladder with four holes for different values &ft and .
isotropic ladder with four holes for different values &ft andy.  The upper graphs show the correlations in the site representation
The upper graphs show the correlation in the site representatioghile the lower graphs represent the Fourier transforms. The con-
while the lower graphs show their Fourier transform. The convenvention of the labeling is that of Figs. 1 and 2.
tion of the labeling is that of Figs. 1 and 2.
to the phase shift. In real space the antiferromagnetic corre-
7, the energy increases for all plotted valuesJff. How-  lation across the rungs is turned into leg-independent behav-
ever, no clear qualitative change in the evolution of the enior (rung ferromagnetisim However, M(k) measures all
ergy vsvy for differentJ/t can be observed. This is a conse- spins in the band pictures, therefore not only thos&gat
guence of the fact that all particléalso away fromEg) are
involved. It is interesting to consider the different correlation

functions to look for signs if the system undergoes a phas 30 25 -
transition wheny is altered. 25 - 1 '
N R 20 /4
C. Correlation functions '::1.5 - { 15
In Fig. 13 the hole-hole correlations for a 10-rung ladder — #0F —"=—e—a | ol
with four holes are plotted. The correlations are shown a o5t .01 1 =03
different J/t for different values ofy. The upper graphs 0.0 ; 05

show the correlations in real space, and the lower their Fou 01 02 08 04 05 700 01 02 08 04 05

rier transform. Fold/t<0.3, only small changes in the shape
of the correlations are observed whenincreases. Fod/t
=0.4 andJ/t=1.0, the shape of the correlation is clearly
changed, indicating a state with repulsive interactiony at £ 45
=0.57. The influence ofy for J/t=1.0 is the most impor- =

25

tant. The rung correlatioqn,(1)n,(11)) is clearly sup- 1or R

pressed, in agreement with the breaking of hole pairs. Th | '

diagonal correlation(n,(1)ny(12)) shows a peak aty %%0 o1 oz 03 04 05 "0 01 0z 03 04 05
=0.27 that is suppressed foy=0.57. The peak in the vr v

branchk,=0 of the Fourier transform, characteristic of the

homogeneity of the hole-pair repartition, is also suppressed. FIG. 15. The maxima of the spin-spin correlations for a 10-rung
In Fig. 14 the spin-spin correlation for the same cluster isadder with four holes in Fourier space in the branckgs 0,7 as

plotted. The measured antiferromagnetism is quite sensitive function of y/ .
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‘ 10 —
02 \

T*“')Tm —67=0.00m,<5"(1)S()> Nagaoka K
0.20 L < > G0 4=0.25m N
G---0v=0.50n Phase | phase separation
B 04 <SS 1 |B—DBy=0.00m,<T"(1)T(j)> 08 % y\ﬁ\ .
A &8 y=0.251 spin modes gapped
® [ G- --0y=0.50n Cos2 [, T (C150)
2 02 04 ] %81 \
© vr c Lol \
B e e J U
© 04t
spin & charge modes gapless
& =3 =3 =) =3 02 (C181)
BT s 4 s 6 7 8 e 10 00 ‘ ‘ ‘ ~ gas o eleciion pairs
j(rung index) 00 05 10 15 20 25 30 35 40
Jit
050 —
T OG—@Ozjgggz‘S'“)SUb FIG. 18. The speculative phase diagram. The ph&de30 and
0.40 3\ 04 Smon 1 [o-ov0500 C1S1 are taken from the work of Poilblanc and co-workers and
\ 0z ey il were discussed in the Introduction. The new phases discussed in
w 030¢ L = G---0y=050z this paper appear in the upper left of the phase diagram. The Na-
IS ool — o ;T’f gaska phase occurs at low valuesJt near half filling. At the
S o204 | ‘Y/“ ‘ ] critical line J/t=0.03, signs for partially polarized phases have
g been found. For larged/t the system is in &£2S2 phase. The
critical line between this gapless phase and@i&0 phase afl/t
=0.3 has been estimated using different criteria discussed in the
text.
exception of J/t=0.1, where the maximum is ak

j(rung index) =(3#/5,0) wheny=0.47}, emphasizing the intraband pro-
cesses in the antibonding band. The crossing of the maxima
FIG. 16. The pair correlation&S'(1)3(j)) and(T{(1)To(j)) at ~ for J/t=0.4 is related to the destruction of the hole pairs. It
different y values as function of the rung index for a 10-rung ladderoccurs aty=0.11wr for J/t=0.4, while for J/t=1.0 the
with n,=4 holes. The upper graph shows dataJtr=0.1 and the ~ crossover occurs at a highgr=0.21zr since the hole pairs
lower graph forJ/t=1.0. The insets show the on-site pair correla- are more strongly bound.

tions (8(1)3(1)) and(TH(1)To(1)) as a function ofy. _The influence of the relative phaseon the singlet and
triplet pair correlation functions is plotted in Figs. 16 and 17.

and a change in the correlation is also compatible with th n_the upper graph of Fig. 16 the pair correlation
Lo o ST(1)3(j)) and (TH(1)To(j)) at I/t=0.1 are plotted for
gapless phase. The most striking picture of the spin-spin co iff((argnt(J)’>s Pair< cg(rre)la(t)i(cj)r)1>s along the run gecrease rap-
relations is given by their Fourier transforms. As discussecl%ly o zejr/o .Atj 1 the pair correlaqcion meagures the numF—)
above, dominant peaks in the bondln_g chanr@I:(O). are er of singletqtriplets on the rung. The number of singlets
expected for th'e gapless phase, while dom"."a“t mterbanl much lower than the triplet humber of the first rung, in
(ky=m)_scattering processes are expected in the gappegyreement with the destruction of the singlet liquid state. By
phase. This behavior appears clearly in all graphs. switching onvy, the singlet number decreases while the trip-
In Fig. 15 the maxima of the spin-spin correlations as &gt number increases. The inset of the graph shows the num-
function of y are shown for the differed/t values. They are per operators as a function af. In the lower graph, the
atk=(m,0) (circle) andk=[(4m/5) 7] (squarg {with the  singlet and triplet pair correlations are measured in the spin-

gapped phase df't=1.0. The singlet pair correlation starts
0.03

o A1 = TREE with a higher value than the triplet pair correlation. It de-
° Oj/t=1.o,<1s;(1>$<s)>, creases rapidly to a lower value and shows a finite value at
5 ot oran j=6. Wheny is switched on, the on-site singlet is sup-
© pressed while the triplet pair correlation is increased. The
0 0% crossover occurs at=0.257. This on-site behavior empha-
§ sizes the picture of destroyed singlets on the rungs.
g The long-range behavior is shown in Fig. 17, where the
© sot . normalized SEI'T) pair correlation at sit¢=6 are plotted as
functions of y. For J/t=0.1, the pair correlations remain
_ nearly unaffected by the introduction of while for J/t
, B =1.0 the pair correlations are suppressed and reach nearly
& G
0.00 F—e——n = the same value ag=0.57.
0.0 0.1 0.2 0.3 0.4 0.5

Vr
VI. CONCLUSIONS

FIG. 17. Long-range normalized pair correlatic® (1)S(j) ), In this paper, an extensive study of the sndatl region at
and(T}(1)To(j)), as a function ofy. low doping using exact diagonalization results of small clus-
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ters has been performed. First the hole-hole correlatioiis similar to the first part but with antiferromagnetic coupling
showed hole repulsion for small/t for a certain doping along diagonals.

range, indicating the presence o€2S2 phase® However, The third part,

finite-size effects strongly affect the result and different cor-

relations were introduced in order to examine other proper- 1

ties of_the system. _For a very small dopanS(O.l), no Ht,q,SZJIIZ {_ Z[1-cog27)]

clear sign of the existence of such a region has been seen. | i 4

However, a very tiny region between the ferromagnetic and
the LE phase may occur.

For larger doping, clear signs ofG2S2 phase have been
observed. Two different sets of critical values were found.
Those obtained from the study of the crossover of the maxi- %
mal value of the spin-spin correlation functigei(k) in Sec.

IV B are consistent with the values from the study of the

X

Y Y
Cii Eczi — Gy 2 Cij

Y Y
C1i+1502i+1_02i+1501i+1

T T
long-range singlet-singlet pair correlation of Sec. IV C. Their — 7 (c1idcq—cyley)

mean values areJ(t).~0.26, 0.29, and 0.25 fo$6=0.2,

0.3, .and 0.4, respec.tively. In Fig. 18 they are included in the X (el 12Cs 11— ¢ 11Chi+1) ]
previous phase diagram proposed by Hayward and

H 24 .
Poilblanc In the very smalU/t region the Nagaoka phase features spin-dependent hopping terms involving a simulta-

is shown. At quarter filling, in the noninteracting limig hooDi ¢ iahbori For th ke of
just touches the antibonding band while Umklapp processe cous Nopping on two neignboring rungrs. or the sake o
licity, the spin indices are not showay;(o/2)(c;;) de-

occur in the bonding band. These features are difficult to'MP
simulate in finite clusters and will not be discussed here.
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Ht,q‘,4=3|\2i ( - Z[sm(Zy)]
APPENDIX: TRANSFORMED HAMILTONIAN

The introduction of the relative phase between bonding X
and antibonding operators does not transform the hopping
termH,, but the magnetic part is considerably modified. The
first term of the magnetic coupling along the chain, Ep), +

g a
(Sli_SZi)(CIi+1EC2i+1_C£i+1§C1i+1)

t g + g
€15 C2i~Cai 5 Cai | (Sti+1~Si+1)
_1 _ i _ ot

7 (N1 = N2)(Cqj 1 11Co 11— Co 1 1Cs5 1)
is a combination of spin and hopping operators involving a

is similar to the original Hamiltonian with a renormalized spin-dependent hopping on one rung if the neighboring rung
coupling constant that decreasesyas[0,7] increases. For is occupied.

1
Ht,q‘,1:J||2 [(1— Z[l—COS(Z'y)])[SliSlH_l

1 T T
— 7 (Cq1C5—Cy1Cq) (N1~ N2it1)

1
+$5iS5 1= 7 (N4iNgj 1+ NoiNg 1) ]

y=r, the coupling strength is half that ¢f=0. The interchain magnetic coupling after some algebra can
The second term be written as
Hoy =913 | 211-co82) 1Sy, ! L
W27l | g 2L Ht,Ji:JJ_Ei 1= 5[1—cod2y)] || SuiSei— 7 MiNai |

+S5iSpi+1— 7 (NgiNgi 1+ Nging 1)1, vanishing fory=r.
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