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Rigorous analytical results on phase locking in Josephson junction ladder arrays

M. Basler,* W. Krech,† and K. Yu. Platov‡
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Based on a previously developed analytical procedure combining ideas from the first harmonic approxima-
tion with those from the slowly varying phase we obtain some rigorous analytical results on the dynamics of
two-dimensional Josephson-junction ladder arrays composed of an arbitrary number of cells. We are able to
derive a general analytic expression for the reduced equations governing phase locking of the cells. While
solving these reduced equations seems not to be possible in general, we were able to evaluate them up to the
end for three experimentally relevant cases:~i! arrays composed of strongly damped junctions and small ring
inductances without an external shunt,~ii ! arrays composed of strongly damped junctions and small ring
inductances with an external shunt, and~iii ! arrays composed of strongly damped junctions and large ring
inductances without an external shunt.@S0163-1829~98!01630-0#
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I. INTRODUCTION

Josephson-junction~JJ! arrays have been under conside
ation as tunable microwave radiation sources for sev
years now.1,2 After some success with one-dimensional~1D!
arrays3–5 simple estimates led to the conclusion that tw
dimensional ~2D! arrays should be able to provide eve
larger output power.6–8 However, up to now the radiation
output of 2D arrays observed in experimental setups
been generally below that obtained from 1D arrays9 and as a
result, interest in this type of arrays has declined recentl

There may be several reasons responsible for this disc
ancy, ranging from constructional and technological det
to an insufficient theoretical understanding of phase lock
in 2D Josephson-junction arrays. Our paper is devoted to
second aspect. We perform an analytical investigation
phase locking in 2D-Josephson junction arrays supported
numerical simulations carried out in parallel.

A good review on early theoretical work on 2D arrays c
be found in Ref. 8. This is one of the rather few pap
providing a more systematical approach to phase lockin
2D JJ arrays. Based on an analytical treatment of linear
equations Wiesenfeldet al. investigated the stability of the
in-phase state with all junctions oscillating in phase. As
main result, they did not find any internal mechanism
sponsible for phase locking which seems rather plaus
from our point of view, as ring inductances were neglected
their approach. In a more recent paper by Filatrella a
Wiesenfeld10 these inductances were taken into account w
a corresponding coupling being observed, although the lim
of the two-row coupling approximation exploited there ha
not been fully worked out.

There is another treatment of 2D arrays involving fab
cation and simulation as well as an analytical approac11

Contrary to our work this investigation is mainly aimed t
wards modeling extended junctions, though. As a result,
authors choose a bias regime different from ours as wel
weakly damped, hysteretic junctions.

Looking for a more consistent approach we develope
systematic framework for studying these types of arrays d
ing the last years.12–15 Our main goal was looking toward
PRB 580163-1829/98/58~6!/3409~8!/$15.00
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small ring inductances, including the effect of nonvanishi
ring inductances as well as external flux, and to appro
larger arrays step by step starting from simple configuratio
The general conclusion to be drawn from these papers s
that nonvanishing, small ring inductances lead to a sm
phase shift between the junctions oscillating within each c
but there is a tendency of the junctions to align antiphase
bias direction caused by the internal coupling of the cells

Here, we will extend these results to larger arrays of
ladder type exploiting an analytical approximation sche
developed earlier.15 Our approach takes into account fini
~even arbitrary! ring inductances, nonvanishing external flu
an external shunt and, at least concerning the general re
a nonvanishing junction capacitance~finite McCumber pa-
rameter! as well. A short note on some strong-coupling r
sults was published before16 which is extended here by~i!
giving a more explicit description of the method~ii ! includ-
ing longitudinal inductances as well as some results on n
vanishing junction capacitance~iii ! including the technically
more involved case of large inductances.

We start by writing down the basic dynamical equatio
for the array and explaining the approximation scheme
Sec. II. The lowest and first-order results presented in S
III give already a complete description of the dynami
within the cells while still containing a free phase parame
for each cell yet to be determined. While we are able
formulate reduced equations for these oscillation phase
Sec. IV taking into account all the parameters named ab
we were not able~and we doubt that it is possible at all! to
present a general solution to it up to now.

Accordingly, we decided to restrict to some experime
tally relevant limiting cases rendering the equations solva
~i! small ring inductances without an external shunt~Sec. V!,
~ii ! mall ring inductances with an external shunt~Sec. VI!,
~iii ! large ring inductances without an external shunt~Sec.
VII !. Our treatment is completed by a summary of the res
and some more general conclusions being presented in
VIII. As a general observation, the behavior in the larg
inductance case turns out to be quite different from the
observed for small ring inductances: While for small rin
inductances the internal coupling gives rise to an antiph
3409 © 1998 The American Physical Society
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~nonradiating! alignment of the voltage oscillations of neigh
boring junctions in the bias direction, large-inductance ce
may cause in-phase oscillations of these junctions. Howe
for deriving more general conclusions this has to be c
trasted with the fact observed earlier2,12 that large-inductance
cells lead to a relatively large phase shift in the presence
nonvanishing external flux, while this shift is suppressed
smaller inductances. As a result, building 2D arrays prov
ing a large radiation output will require a very special tuni
of the junction as well as array parameters.

II. BASIC EQUATIONS AND APPROXIMATION SCHEME

The 2D JJ ladder array under consideration is shown
Fig. 1. It has two junctions within each cell and no junctio
transverse to the bias direction~sometimes being called
hybrid array17!. All junctions and inductances are consider
as being identical with junctions being characterized by th
critical currentI C , normal resistanceRN and capacitanceC.
For applying our perturbation scheme it proves convenien
normalize all quantities with respect to the bias current
junction I 0 instead of the critical current. Thus, we introdu
normalized time ass52eRNI 0t/\ ~differing from usual Jo-
sephson physics normalization by a factorI 0 /I C), normal-
ized junction capacitance asb52eRN

2 I 0C/\, and normal-
ized ring currents asi k

o5(I k22I k1)/2I 0 with I k j being the
ring currents through junctionk j as indicated in Fig. 1. Fur
thermore, we define a normalized shunt current asi S
5I S /I 0 with I S being the shunt current, shunt capacitance
cS52eRN

2 I 0CS /\, effective shunt inductance aslS

FIG. 1. A scheme of the two-dimensional ladder array un
consideration. 2I 0 is the bias current,L' andL i are the transverse
and longitudinal, respectively, inductances of the array,F denotes
the external flux,I S is the current through the shunt andCS ,LS ,RS

are the capacitive, inductive, and resistive, respectively, contr
tion to the shunt impedance.
s
r,
-

a
r
-

in

ir

to
r

s

52pI0(LS1NLi/21L'/2)/F0, and shunt resistance asr S
5RS /RN with CS ,LS ,RS being the shunt’s capacitance, in
ductance, and resistance, respectively. Finally,l',i

52pL',iI 0 /F0 are the normalized inductance
perpendicular/parallel to the bias direction withL',i being
the corresponding inductances itself andw52pF/F0 is the
normalized external flux withF being the external flux and
F0 the magnetic flux quantum. A prime denotes the norm
ized time derivative with respect tos. In addition, we intro-
duce the expansion parameterb5I C /I 051/i 0.

The array will be described within the resistively capa
tively shunted junction~RCSJ! model. As in previous work it
proves convenient to combine the Josephson phase di
ences within each cell asSk5(fk21fk1)/2 andDk5(fk2
2fk1)/2.

Based on these assumptions the array can be describe
the following set of 3N11 equations:

bSk91Sk81b sin SkcosDk512
i S

2
, ~1!

bDk91Dk81b sin DkcosSk5 i k
o , ~2!

Dk2
w

2
1~ l i1 l'!i k

o2
l'
2

~ i k11
o 1 i k21

o !50, ~3!

(
k51

N

Sk92r Si S82lSi S92
1

cS
i S50, ~4!

with k51 . . .N. While Eqs. ~1!, ~2! are a direct conse
quence of the RCSJ model, Eq.~3! follows from the flux
quantization condition and Eq.~4! from Kirchhoff’s mesh
rule for the loop involving the external shunt.

Our calculational scheme will be based on a combinat
of two perturbation expansions. First, we perform a smalb
51/i 0 expansion along the lines described in Refs. 15,
This is achieved by writing

Sk5Sk,01bSk,1 , ~5!

Dk5Dk,01bDk,1 , ~6!

i k
o5 i k,0

o 1bik,1
o , ~7!

i S5 i S,01biS,1 . ~8!

After inserting expansions~5!–~8! into the system~1!–~4!,
like powers ofb are compared to give zeroth- and first-ord
equations.

III. LOWEST- AND FIRST-ORDER RESULTS

Evaluating the lowest-order equations is almost triv
giving the Josephson phase differencesDk,05w/2, Ohm’s
law for the sumsSk,05p/22dk1s and vanishing currents
i S,050, i k,0

o 50. Taking into account these lowest-order r
sults, the first-order equations forSk,1 ,Dk,1 are inhomoge-
neous oscillation equations with the inhomogeneity sinus
dally oscillating with period 1. As our interest is focused o
the stationary state the first-order solutions are suppose
be harmonic with the same period.

r

u-
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This way, a tedious but straightforward calculation lea
to

Sk5
p

2
1s2dk2b

cos~w/2!

11b2
@sin~s2dk!2b cos~s2dk!#

1b
cos~w/2!

2~11b2!uZSu
(
j 51

N

@cos~s2d j2cS!

1b sin~s2d j2cS!#, ~9!

Dk5
w

2
1b sin~w/2!S l'

2
~ak111ak21!2~ l i1 l'!akD coss

1b sin~w/2!S l'
2

~bk111bk21!2~ l i1 l'!bkD sin s,

~10!
no
in
al

ci
lo
In

a

th
sand corresponding expressions fori k
o ,i S being omitted here.

uZSu andcS are the amount and the phase angle, respectiv
of the external shunt impedance as

uZSu5A~r S1N/2!21~lS21/cS!2 ~11!

and

sin cS5
r S1N/2

uZSu
, coscS5

1/cS2lS

uZSu
. ~12!

At this point the oscillations within each cell are alrea
completely determined up to the phasesdk . However, the
problem is essentially complicated by the fact that the v
tors ak and bk have to be determined from the linear alg
braic system

Pa1Qb5c, 2Qa1Pb5d, ~13!

where the tridiagonal matricesP andQ read
P5S b~ l i1 l'!21 2b l'/2

2b l'/2 b~ l i1 l'!21 2b l'/2 0

2b l'/2 b~ l i1 l'!21 2b l'/2

0 � � �

2b l'/2 b~ l i1 l'!21

D , ~14!

Q5S 2~ l i1 l'! l'/2

l'/2 2~ l i1 l'!1 l'/2 0

l'/2 2~ l i1 l'! l'/2

0 � � �

l'/2 2~ l i1 l'!

D , ~15!
f

the

e-
l-
e

one
ur-

d-
the
-

while the vectors on the right hand sides of the system~13!
are

ck52sin dk , dk5cosdk . ~16!

Although this is a genuine algebraical problem we are
able to write down the general solution of this system;
stead, we will have to restrict ourselves to several physic
relevant special cases later.

IV. SLOWLY VARYING PHASE

For working out the unknown phases characterizing os
lations of junctions adjacent in the bias direction, we exp
a procedure differing from the one described in Ref. 18.
stead of investigating the second order of the small-b expan-
sion we perform a slowly varying phase analysis which h
proven successful in investigating 1D arrays before.1,2,19Ac-
cordingly, we allow for an adiabatic time dependence of
phases,

dk5dk~s!, udk8u!1. ~17!
t
-
ly

l-
it
-

s

e

To proceed, we take the time derivative of Eqs.~9!, ~10!,
insert the resulting expressions together with those fori k

o ,i S

into the full system~1!–~2! and average over one period o
oscillations regarding Eq.~17! ~for details, see Ref. 15!. This
way we end up with so-called reduced equations for
phasesdk ,

bCd̈k1 ḋk5
1

2i 0

cos2~w/2!

11b2
1

cos2~w/2!

4i 0uZSu (
i 51

N

sin~dk2d i2cS!

2
sin2~w/2!

2i 0
(
i 51

N

~dkQkiai2ckQkibi !. ~18!

Here, and in the following dots denote derivatives with r
spect to times̄5s/ i 0 in the conventional Josephson norma
ization ~cf. Sec, II!. The second term on the right-hand sid
describes the action of the external shunt while the third
characterizes interaction of the cells via internal ring c
rents.

In principle, the synchronization regimes of junctions a
jacent in the bias direction can be worked out by solving
system~18!. However, this is complicated by the circum
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stance that the coefficientsai andbi depending ondk of their
own are not explicitly known but have to be determined fro
the system~13! which we are unable to solve in general.
possible strategy which we will pursue in the following sta
by solving Eq.~13! imposing certain additional restrictions
inserting the resulting vectorsa andb together withc andd
into Eq. ~18! and evaluating fordk . In general, there will be
more than one solution of this system and one has to ch
the corresponding stability regions via a Lyapunov analy

V. STRONGLY COUPLED CELLS
WITHOUT EXTERNAL LOAD

Generally, we are able to solve the algebraic system~13!
only for b50 having the consequence that the followi
explicit results are applicable to overdamped junctions on
~Concerning some effects to be expected forbÞ0 we refer
to Ref. 15; for an earlier note on strongly coupled cells,
Ref. 16.! In the following we will additionally requestl',i

!1 corresponding to strong inductive coupling within t
cells.

The strongly coupled ladder array without external lo
can be solved rather easily. Forb50 the matrixP in Eq.
~13! becomes proportional to unity. In addition, the matrixQ
being proportional tol i and l' , respectively, can be ne
glected in comparison toP. In this limit the system~13!
admits the simple solution

ak5sin dk , bk52cosdk . ~19!

Inserting Eq.~19! into Eq. ~18! leads to the reduced system

ḋk5
1

2i 0
cos2~w/2!1

l'
4i 0

sin2~w/2!

3@sin~dk2dk21!1sin~dk2dk11!#,

~k52 . . .N21!. ~20!

The boundary cells do only have one neighbor and thus
described by different equations as

ḋ15
1

2i 0
cos2~w/2!1

l'
4i 0

sin2~w/2!sin~d12d2!, ~21!

ḋN5
1

2i 0
cos2~w/2!1

l'
4i 0

sin2~w/2!sin~dN2dN21!. ~22!

This way we were able to reduce the problem to the c
responding one-dimensional one being characterized by
actly the same system of equations~see, e.g. Ref. 19!. This
one has been solved long ago based on a Lyapunov func
analysis, a matter of fact enabling us to write down the
lution immediately.@The only difference from Ref. 19 is of a
technical nature and results from the fact that we put
first-order frequency correction intodk(s) instead of writing
it down explicitly asz2z0.#

We will not go into the details of the stability analys
being identical to the one described in Ref. 19. It results
the fact that the only possible solutions are of the type

dk112dk50, p, k51 . . .N21, ~23!
ck
s.

.

e

re

r-
x-

on
-

e

n

of which only the strictly antiphase oscillations

dk112dk5p ~24!

of neighboring junctions are stable against small fluctuatio
Accordingly, the natural oscillation state of an unload
small-inductance array is practically a nonradiating one.

VI. STRONGLY COUPLED CELLS
WITH EXTERNAL LOAD

The second example being at least partly solvable up
the end concerns strongly coupled cells with an exter
load. In this case the system~20! gets an additional term
resulting from the external load as

ḋk5
1

2i 0
cos2~w/2!2

l'sin2~w/2!

4i 0

3@sin~dk212dk!1sin~dk112dk!#

1
cos2~w/2!

4i 0uZSu (
i 51

N

sin~dk2d i2cS!,

~k52 . . .N21!, ~25!

and analogous equations for the boundary cells,

ḋ15
1

2i 0
cos2~w/2!1

l'
4i 0

sin2~w/2!sin~d12d2!

1
cos2~w/2!

4i 0uZSu (
i 51

N

sin~d12d i2cS!, ~26!

ḋN5
1

2i 0
cos2~w/2!1

l'
4i 0

sin2~w/2!sin~dN2dN21!

1
cos2~w/2!

4i 0uZSu (
i 51

N

sin~dN2d i2cS!. ~27!

Subtracting the phases of neighboring cells gives the s
tem

q̇k52
l'
4i 0

sin2~w/2!~sin qk2122 sin qk1sin qk11!

1
cos2~w/2!

2i 0uZSu (
i 51

N

cosS qk,i

2
1

qk21,i

2
2cSD sin

qk

2
,

~28!

where we introduced difference variables as

qk,i5dk112d i , ~29!

and especially for neighboring junctions

qk5qk,k5dk112dk . ~30!

It is a nontrivial result that the system can be reduced in s
a way that it contains difference variables~29! only. Evi-
dently the system~28! allows for the homogeneous mode
a static solution,

qk5dk50, ;k, ~31!



sc
,

f
r

e

de

is
n

rn
ng
er

o

a

re
ab

a

a-
e of

PRB 58 3413RIGOROUS ANALYTICAL RESULTS ON PHASE . . .
and a more detailed investigation shows that antiphase o
lations are among the possible static solutions as well
least as long as the number of cellsN is even. Of course, this
does not exclude the existence of more solutions.

In the following we will concentrate on the stability o
this uniform modeqk50. For this purpose we conside
small perturbations exploiting the Lyapunov ansatz

qk501eke
ls, ueku!1. ~32!

This way we arrive at a linear algebraic system for the p
turbation amplitudesek admitting nontrivial solutions only
for

U x 1 0 0 . . .

1 x 1 0 . . .

0 1 x 1 . . .

0 0 1 x . . .

A A A A �

U
N21

50 ~33!

with

x5
4l

l'sin2~w/2!
222

N coscS

l'uZSu
cot2~w/2!.

As k runs from 1 toN21 there areN21 Lyapunov coeffi-
cients

l5S 12cos
kp

N D l'
2i 0

sin2~w/2!1
N coscS

4i 0uZSu
cos2~w/2!

~34!

corresponding to theN21 possible relative oscillation
modes of the cells. The largest~most positive! of these co-
efficients limits the stability of the coherent oscillation mo
of junctions adjacent in the bias direction.

The first term resulting from the internal interaction
positive definite this way trying to destabilize the cohere
mode. On the other hand, according to Eq.~12! the sign of
the second term depends on the character of the exte
load. Moreover, it is interesting to note that not the ri
inductances, but only their horizontal contributions det
mine the weight of the first term. Furthermore, because
the second term being proportional toN the sign of the
Lyapunov coefficients is essentially determined by the ch
acter of the external load alone for sufficiently largeN.

VII. WEAKLY COUPLED CELLS
WITHOUT EXTERNAL LOAD

Treatment of weakly coupled cells is essentially mo
complicated than that of strongly coupled cells even in
sence of an external load. Based on Eq.~14! the following
considerations can be shown to hold true even for nonv
ishing longitudinal inductancesl i as long asl i! l' . In this
case the system~13! is solved by expandinga and b with
respect to 1/l' . This leads to the reduced equations

ḋk5
1

2i 0
1

sin2~w/2!

2i 0l'
(
j 51

N

@dk~b1!k1ck~a1!k#, k51 . . .N,

~35!
il-
at

r-

t

al

-
f

r-

-

n-

where the first-order expansion terms (a1)k ,(b1)k have to be
determined from the algebraic system

(
j 51

N

Q̄i j
~N!~a1! j522di ,

~36!

(
j 51

N

Q̄i j
~N!~b1! j52ci ,

whereQ̄(N) is theN-dimensional tridiagonal matrix

Q̄~N!5S 22 1 0 0 . . .

1 22 1 0 . . .

0 1 22 1 . . .

0 A A A �

D . ~37!

For finding the general solution of the system~36! we exploit
Cramers’s rule, e. g.,

~a1!k5
1

D ~N!
Rk

~N! , ~38!

with the N-dimensional determinant

D ~N!5det Q̄~N! ~39!

and

Rk
~N!5 (

k51

N

Q̄k j
~N!adj~22dj ! ~40!

and an analogous expression forbk ; Q̄(N)adj denotes the ad-
joint of Q̄(N).

For evaluatingD (N) we make use of the formula

D ~N!5~N11!~21!N ~41!

based on the recursion relation

D ~N!522D ~N21!2D ~N22!. ~42!

Exploiting a procedure in which the dimensions of the m
trices are reduced step by step and making repeated us
Eq. ~41! we arrive at

Rk
~N!5~21!N21F (

i 51

k21

di~N2k11!i 1dk~N2k11!k

1 (
i 5k11

N

di~N2 i 11!kG . ~43!

Combining Eq.~38! with Eqs.~41! and ~43! we obtain

~a1!k5
2

N11 F (
i 51

k21

~N2k11!i cosd i1~N2k11!k cosdk

1 (
i 5k11

N

~N2 i 11!k cosd i G , ~44!



h-
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~b1!k5
2

N11 F (
i 51

k21

~N2k11!i sin d i1~N2k11!k sin dk

1 (
i 5k11

N

~N2 i 11!k sin d i G , ~45!

and finally the compact reduced equations
th
tio
c-

ttl
lit
s
v

th
ḋk5
1

2i 0
2

sin2~w/2!

i 0l'~N11!F (i 51

k21

~N2k11!i sin~dk2d i !

1 (
i 5k11

N

~N2 i 11!k sin~dk2d i !G , ~46!

(k51 . . .N). Again it is recommended to combine neig
boring phases according to Eq.~23! leading to
q̇k5
sin2(w/2)

i 0l'(N11) S (
i 51

k21

[(N2k) i (sin qk21,i2sin qk,i)1 i sin qk21,i ] 22(N2k)k sin qk

1 (
i 5k12

N

[(N2 i 11)k(sin qk21,i2sin qk,i)2(N2 i 11)sin qk,i ] D , k51 . . .N21. ~47!
-

sily
first
A general solution of this system lies beyond the scope of
present article. However, the stationary in-phase solu
dk50, k51 . . .N being the most important one for pra
tical purposes obvious exists.

The pure existence of this solution alone does say li
regarding its actual realization; instead, Lyapunov stabi
has to be taken into account. As all possible combination
phases enter Eq.~47!, we are forced to adopt the Lyapuno
ansatz

qk,i5dk112d i502ek11,ie
ls, uek11,i!1u. ~48!

Expanding the sines and defining

l̄5
i 0l'~N11!l

sin2~w/2!
, ~49!

we obtain the following linear system (i ,k51 . . .N21):

~ l̄12Nk22k2!ek,k112 (
i 51

k21

~N2k11!i ek,1

2 (
i 51

k21

~N2k!i e i ,k111 (
i 5k12

N

~N2 i 11!ek,i

2 (
i 5k12

N

~N2 i 11!~k11!ek11,i50. ~50!

After some tedious algebra the characteristic equation of
system can be written as

detN21@~ l̄1 f k!dk j2gk j#50 ~51!

with

f k5k~N2k!S 11
N

2 D ~52!

and
e
n

e
y
of

is

gk j55
j ~ j 11!

2
, k. j ,

0, k5j,

~N2j!~N2j11!

2
, k,j.

~53!

Combining Eqs.~52! and ~53! into

r jk5 f kd jk2gjk , ~54!

Eq. ~51! can be rewritten as

(
i 1 . . . i N21

e i 1 . . . i N21
~ l̄d1i 1

1r 1i 1
!

3~ l̄d2i 2
1r 2i 2

!•••~ l̄dN21 i N21
1r N21 i N21

!50, ~55!

where e i 1 . . . i N21
is the N21-dimensional completely anti

symmetricale symbol.
There is one particular term in this sum withi 1

51, . . . ,i N215N21 in which all l̄ are present,

~ l̄1r 11!~ l̄1r 22!~ l̄1r 33!•••~ l̄1r N21 N21!. ~56!

In all of the other terms, as for instance in

~ l̄1r 11!r 23r 32•••~ l̄1r N21 N21!, ~57!

there are at least two indices interchanged. One can ea
see that all these terms are small in comparison to the
one if

f kf j@gk jgjk , ; j ,k. ~58!

Via an estimate based on Eqs.~52!, ~53! it can be proven that
Eq. ~58! is indeed fulfilled as long asN@1. However, ex-
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plicit evaluation for a three- and four-cell array prove con
tion ~58! being valid in this case already. Our earlier inve
tigation for a double cell15 confirmed this result, too.

Given condition~58! being fulfilled the determinant~51!
can be approximately substituted by Eq.~56!. However, as
the r jk reduce tof k for j 5k expression~56! can be further
collapsed as

~ l̄1 f 1!~ l̄1 f 2!~ l̄1 f 3!•••~ l̄1 f N21!50. ~59!

This way we get a factorization to be easily solved by

lk52
sin2~w/2!

i 0l ~N11!
f k , k51 . . .N21. ~60!

As by definition~52! all the f k are positive definite, all the
Lyapunov coefficients turn out to be negative definite. T
way we have shown that any two junctions adjacent in
bias direction, i.e., all junctions in the bias direction admi
stable in-phase oscillation regime.

VIII. SUMMARY AND CONCLUSIONS

Concerning the use of ladder arrays as microwave lo
oscillators several general conclusions can be drawn f
our results. Concerning ‘‘pure’’ ladder arrays without a
external feedback we observed a strange and unexpe
kind of duality. While junctions adjacent in the bias directio
oscillate in phase as long as the perpendicular inducta
~denoted byl') are large, they oscillate antiphase for sma
inductance loops. On the other hand, it has been known
fore that the oscillation phases of junctions adjacent withi
cell perpendicular to the bias current will spread as soon
an external flux enters the cells. This effect becomes m
dangerous the larger the cell inductance is. Unfortunat
raising the perpendicular inductances enhances the tota
inductance as well. Thus, there seems to be only a l
chance to build local oscillators based on the scheme sh
in Fig. 1 without the shunt, at least as long as flux canno
completely expelled from the array. Moreover, the oscil
tion state of junctions adjacent in the bias direction is alw
marginally stable in a flux-free environment, as can alrea
be deduced from Eq.~18!. A similar finding has been re
ported in Ref. 8.

However, decoupling radiation out of the array requir
an external load anyway. We obtained detailed and rigor
results for arrays with an external shunt. While for suf
ciently small inductances phase splitting within the cells w
remain small, Eq.~34! shows several parameters to adjust~in
a way! coupling junctions adjacent in the bias direction
phase as well. The most important fact to notice is tha
sufficiently inductively dominated external load (1/cS!lS)
will render any ladder array oscillating in-phase as long
wÞp. This fact has not found much attention in most e
periments performed with 2D arrays so far. Moreover,
sufficiently long arrays (N@1) the second term in Eq.~34!
will always dominate over the first one. Thus, for sufficien
long arrays it is actually not required that the inductive co
tribution of the impedance of the external load must be v
large compared to the capacitive one, as long as the first
dominates over the second one at all. In addition, asl in-
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volves L i as well, the longitudinal inductances have a te
dency of driving the cells in phase, too.

While we were able to derive reduced equations for
oscillation phases, including non-vanishing McCumber p
rameters, a detailed treatment of junction capacitance eff
was beyond the scope of the present investigation. Howe
previous investigations of a two-cell array15 have already
indicated the tendency of inductancesbC<0.8 driving junc-
tions adjacent in the bias direction in phase while still avo
ing hysteresis.

To summarize, our results suggest the following des
criteria for realizing the in-phase oscillation mode in 2
Josephson-junction arrays of the ladder type:~i! It is recom-
mended to make ring inductances small,l 052pLI C /F0
&0.5, foraligning oscillations within the cells in phase.~ii !
The external load required for decoupling radiation from t
array must be inductive in character, 1/cS,lS . ~iii ! The lad-
der should be sufficiently long for the external load domin
ing the Lyapunov coefficients and driving junctions in th
bias direction in phase.~iv! Junctions should have a sma
but nonvanishing McCumber parameterbc<0.8.

Another possible design can only be guessed from
current results but needs further investigation. If it is possi
to expel external flux completely from the cell, junction
within each cell will oscillate in phase in any case. In
unloaded array the ‘‘natural’’ oscillation state of the jun
tions in the bias direction was found to be in phase. Acco
ing to our small-inductance results and having in mind t
the internal/external contributions to Lyapunov coefficien
do not mix up, addition of an inductive external load can
expected to improve this alignment, at best. Thus, in a co
pletely shielded environment weakly coupled cells with
inductive external load might work as well.

Finally, we would like to mention that a numerical simu
lation of the problem was performed in parallel. The resu
for a four-cell array can be seen in Fig. 2. For sufficien
large i 0@1 ~being the prerequisite for our approximation
general! as well as sufficiently large ring inductancesl 0
52(l i1 l')@1, all four junctions adjacent in the bias dire
tion are found to oscillate strictly in phase. On the oth
hand, for small ring inductancesl 0,1 with at leasti 0.1,
adjacent junctions are observed to oscillate antiphase.
additional conclusion to be drawn from this figure says t
outside of these limiting cases the behavior turns out to

FIG. 2. Phase-locked states of a 2D array consisting of four c
in the bias direction. Plotted here are the results from a numer
simulation.i 05I 0 /I C is the bias current andl 052pLI C /F0 is the
ring inductance both being normalized in conventional Joseph
units.
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quite involved. There are also additional oscillation regim
with pairs of adjacent junctions oscillating in phase while t
pairs oscillate antiphase relative to each other. There
even parameter regions where there is no synchronizatio
all pointing to marginally stable oscillation regimes.
t
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