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Rigorous analytical results on phase locking in Josephson junction ladder arrays
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Based on a previously developed analytical procedure combining ideas from the first harmonic approxima-
tion with those from the slowly varying phase we obtain some rigorous analytical results on the dynamics of
two-dimensional Josephson-junction ladder arrays composed of an arbitrary number of cells. We are able to
derive a general analytic expression for the reduced equations governing phase locking of the cells. While
solving these reduced equations seems not to be possible in general, we were able to evaluate them up to the
end for three experimentally relevant cas@sarrays composed of strongly damped junctions and small ring
inductances without an external shuft) arrays composed of strongly damped junctions and small ring
inductances with an external shunt, afiid) arrays composed of strongly damped junctions and large ring
inductances without an external shui$0163-18208)01630-7

I. INTRODUCTION small ring inductances, including the effect of nonvanishing
ring inductances as well as external flux, and to approach
Josephson-junctiofl) arrays have been under consider- larger arrays step by step starting from simple configurations.
ation as tunable microwave radiation sources for severarhe general conclusion to be drawn from these papers states
years now-? After some success with one-dimensiofD)  that nonvanishing, small ring inductances lead to a small
arrayS~° simple estimates led to the conclusion that two-phase shift between the junctions oscillating within each cell
dimensional (2D) arrays should be able to provide even but there is a tendency of the junctions to align antiphase in
larger output powet-® However, up to now the radiation bias direction caused by the internal coupling of the cells.
output of 2D arrays observed in experimental setups has Here, we will extend these results to larger arrays of the
been generally below that obtained from 1D arfasd as a  ladder type exploiting an analytical approximation scheme
result, interest in this type of arrays has declined recently. developed earliel> Our approach takes into account finite
There may be several reasons responsible for this discregeven arbitraryring inductances, nonvanishing external flux,
ancy, ranging from constructional and technological detailsan external shunt and, at least concerning the general result,
to an insufficient theoretical understanding of phase lockinga nonvanishing junction capacitan¢nite McCumber pa-
in 2D Josephson-junction arrays. Our paper is devoted to theametey as well. A short note on some strong-coupling re-
second aspect. We perform an analytical investigation ofults was published befdfewhich is extended here bg)
phase locking in 2D-Josephson junction arrays supported bgiving a more explicit description of the methdid) includ-
numerical simulations carried out in parallel. ing longitudinal inductances as well as some results on non-
A good review on early theoretical work on 2D arrays canvanishing junction capacitandgi) including the technically
be found in Ref. 8. This is one of the rather few papersmore involved case of large inductances.
providing a more systematical approach to phase locking in We start by writing down the basic dynamical equations
2D JJ arrays. Based on an analytical treatment of linearizetbr the array and explaining the approximation scheme in
equations Wiesenfeldt al. investigated the stability of the Sec. Il. The lowest and first-order results presented in Sec.
in-phase state with all junctions oscillating in phase. As all give already a complete description of the dynamics
main result, they did not find any internal mechanism re-within the cells while still containing a free phase parameter
sponsible for phase locking which seems rather plausibléor each cell yet to be determined. While we are able to
from our point of view, as ring inductances were neglected irformulate reduced equations for these oscillation phases in
their approach. In a more recent paper by Filatrella andec. IV taking into account all the parameters named above
Wiesenfeld® these inductances were taken into account withwe were not abléand we doubt that it is possible at)alb
a corresponding coupling being observed, although the limitpresent a general solution to it up to now.
of the two-row coupling approximation exploited there have Accordingly, we decided to restrict to some experimen-
not been fully worked out. tally relevant limiting cases rendering the equations solvable:
There is another treatment of 2D arrays involving fabri- (i) small ring inductances without an external shi8¢c. V,
cation and simulation as well as an analytical apprdach. (ii) mall ring inductances with an external shuSec. VI,
Contrary to our work this investigation is mainly aimed to- (iii) large ring inductances without an external sh(®éc.
wards modeling extended junctions, though. As a result, th&/I1l). Our treatment is completed by a summary of the results
authors choose a bias regime different from ours as well asnd some more general conclusions being presented in Sec.
weakly damped, hysteretic junctions. VIIl. As a general observation, the behavior in the large-
Looking for a more consistent approach we developed @nductance case turns out to be quite different from the one
systematic framework for studying these types of arrays durebserved for small ring inductances: While for small ring
ing the last year$?>~1° Our main goal was looking towards inductances the internal coupling gives rise to an antiphase
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20, P =2mlo(LstNL/2+L,/2)/Dy, and shunt resistance ag
EPVSNL (PSS =Rg/Ry with Cg,Lg,Rg being the shunt's capacitance, in-
Li/2 Li/2 ductance, and resistance, respectively. Finally,
11 o) 12 =27L, lo/®y are the normalized inductances
?L“ & §L|| perpendicular/parallel to the bias direction with , being
Ly = % the corresponding inductances itself ape 27m®/ D is the
normalized external flux witllb being the external flux and
" o 99 Ls ®, the magnetic flux quantum. A prime denotes the normal-
§L“ @ %L“ ized time derivative with respect ® In addition, we intro-
Ly duce the expansion parameter |/l ,= 1/ .
The array will be described within the resistively capaci-
l::l Rs tively shunted junctiofRCSJ model. As in previous work it
proves convenient to combine the Josephson phase differ-

ences within each cell as,=(pyo+ dy1)/2 and A= (i

— da)l2.
Based on these assumptions the array can be described by

the following set of N+ 1 equations:

is

B+, +b sinEkcosAkzl—E, 1)
BAL+A+b sinAcosS =iy, 2
| |
¢ . 1. .
FIG. 1. A scheme of the two-dimensional ladder array under Ay— §+(|”+|L)IE— 3(|ﬁ+1+|(k’_1)=0, (3
consideration. B, is the bias current,., andL, are the transverse
and longitudinal, respectively, inductances of the arraydenotes N
the external flux] g is the current through the shunt aéd,Lg,Rg 2 ST il nai— ii -0 )
are the capacitive, inductive, and resistive, respectively, contribu- =1 k 'S's S's Cs ST

tion to the shunt impedance.

with k=1...N. While Egs. (1), (2) are a direct conse-
(nonradiating alignment of the voltage oscillations of neigh- quence of the RCSJ model, E) follows from the flux
boring junctions in the bias direction, large-inductance cellfuantization condition and Ed4) from Kirchhoff's mesh
may cause in-phase oscillations of these junctions. Howevefule for the loop involving the external shunt. o
trasted with the fact observed earfiéfthat large-inductance ©f two perturbation expansions. First, we perform a srball
cells lead to a relatively large phase shift in the presence of & 1/ig expansion along the lines described in Refs. 15,18.
nonvanishing external flux, while this shift is suppressed forThis is achieved by writing
smaller inductances. As a result, building 2D arrays provid-
ing a large radiation output will require a very special tuning =Tt by, ®
of the junction as well as array parameters.

A=At bAy,, (6)

II. BASIC EQUATIONS AND APPROXIMATION SCHEME iﬁ=iﬁ,o+ biﬁyl, 7)

The 2D JJ ladder array under consideration is shown in o .
Fig. 1. It has two junctions within each cell and no junctions Is=igotbis;. ®
transverse to the bias directidsometimes being called a afier inserting expansiongs)—(8) into the system(1)—(4),

hybrid array”). All junctions and inductances are consideredje powers ofb are compared to give zeroth- and first-order
as being identical with junctions being characterized by theigqyations.

critical currentl -, normal resistanc®y and capacitance.

For applying our perturbation scheme it proves convenient to
normalize all quantities with respect to the bias current per
junctionl instead of the critical current. Thus, we introduce  Evaluating the lowest-order equations is almost trivial
normalized time as=2eRylot/% (differing from usual Jo-  giving the Josephson phase differenagy= ¢/2, Ohm’s
sephson physics normalization by a factgflc), normal-  |aw for the sumsS o= m/2— §,+s and vanishing currents
ized junction capacitance g8=2eR{l,C/%, and normal- jg.=0, ipo=0. Taking into account these lowest-order re-
ized ring currents asy=(l,—1x1)/2lo With I,; being the sults, the first-order equations fa ;,A, ; are inhomoge-
ring currents through junctiokj as indicated in Fig. 1. Fur- neous oscillation equations with the inhomogeneity sinusoi-
thermore, we define a normalized shunt currentigs dally oscillating with period 1. As our interest is focused on
=1/l with | 5 being the shunt current, shunt capacitance ashe stationary state the first-order solutions are supposed to
Cs= 2eR§,I0CS/ﬁ, effective shunt inductance as\g  be harmonic with the same period.

IIl. LOWEST- AND FIRST-ORDER RESULTS
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This way, a tedious but straightforward calculation leadsand corresponding expressions ffris being omitted here.

to |Z4 andyg are the amount and the phase angle, respectively,

of the external shunt impedance as
T cog ¢/2)

M= ST ATb s 80— B coss— a0 128 = V(rs+N/2)%+ (s~ 1lce)? (11
N and
coq ¢/2)
b—z coqs—6;— ¢s) ) rs+N/2 llcg— A
2(1+B3)|z4i=1 : i~ Vs sin z,//szslz—s|, cos zpszﬁs. (12
+ B sin(s—6;— )], ©)

At this point the oscillations within each cell are already
completely determined up to the phas@&s However, the
coss problem is essentially complicated by the fact that the vec-
tors a, and b, have to be determined from the linear alge-
braic system

I,
5(ak+l+ A1) — (I +1)ax

Ak:§+b sin¢/2)

sin s,

I
+b sin<go/2>(§<bk+1+bk_1>—<l+u>bk PasOboc  —OasPbod 3

(10 where the tridiagonal matricd® and Q read

Bl+1)-1 - Bl 12
—BL2  BUHI)-1 =Bl 0
P= —pl./2 Bly+1)-1 —pl./2 , (14
=gz ply+l)-1
=(hy+1y) 1,12

L2 (1)1 12 0
Q= 1,12 —(l+1) 1,12 , (15

0 . - .

1,72 —(y+1y)

while the vectors on the right hand sides of the sys(@8)  To proceed, we take the time derivative of E¢S), (10),
are insert the resulting expressions together with those fairg
into the full system(1)—(2) and average over one period of
Cy=—Sin 8, dy=cossy. (16)  oscillations regarding Eq17) (for details, see Ref. 35This
way we end up with so-called reduced equations for the
Although this is a genuine algebraical problem we are noPhasessy,
able to write down the general solution of this system; in-
stead, we will have to restrict ourselves to several physically . . 1 co(¢l2) cos(el2)
relevant special cases later. Bcokt k:m

N

Sir?(@/2) &
| IV. SLOWLY VARYING PHASE N | B 2(i¢> )Zl (d4Qa— Qb)) 18)
For working out the unknown phases characterizing oscil- o
lations of junctions adjacent in the bias direction, we exploitHere, and in the following dots denote derivatives with re-
a procedure differing from the one described in Ref. 18. In- L= .
stead of investigating the second order of the sia@kpan- _spe_ct o times=s/i, In the conventional Josephson norm_al-
sion we perform a slowly varying phase analysis which haézat'on (cf. Sec, ID.' The second term on the n_ght-hanq side
proven successful in investigating 1D arrays beforé? Ac- describes the action of the external shunt while the third one
cordingly, we allow for an adiabatic ime dependence of th characterizes interaction of the cells via internal ring cur-

e
phases, rents. N . . .
In principle, the synchronization regimes of junctions ad-

) jacent in the bias direction can be worked out by solving the
S=6u(s), |&l<1. (170 system(18). However, this is complicated by the circum-
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stance that the coefficiends andb; depending o, of their  of which only the strictly antiphase oscillations
own are not explicitly known but have to be determined from
the system(13) which we are unable to solve in general. A Ok+1— k=T (24)

possible strategy which we will pursue in the following startsof neighboring junctions are stable against small fluctuations.
by solving Eq.(13) imposing certain additional restrictions, accordingly, the natural oscillation state of an unloaded

inserting the resulting vectoesandb together withc andd  smajl-inductance array is practically a nonradiating one.
into Eq.(18) and evaluating fod, . In general, there will be

more than one _solution_ _of this_syste_m and one has to chgck VI. STRONGLY COUPLED CELLS
the corresponding stability regions via a Lyapunov analysis. WITH EXTERNAL LOAD

V. STRONGLY COUPLED CELLS The second example being at least partly solvable up to
WITHOUT EXTERNAL LOAD the end concerns strongly coupled cells with an external
load. In this case the systef@0) gets an additional term

Generally, we are able to solve the algebraic syste8"  resulting from the external load as
only for =0 having the consequence that the following

explicit results are applicable to overdamped junctions only. .1 2 |, Sinf(¢/2)
(Concerning some effects to be expected Set 0 we refer 5'<_70C0 (¢l2)= 4i,
to Ref. 15; for an earlier note on strongly coupled cells, see ] )
Ref. 16) In the following we will additionally request, | X[SIN(Sk—1~ 6k) +SIN(Sk+1— 6k) ]
<1 corresponding to strong inductive coupling within the 202y N
cells. LSRG s s
. . . S|n(5k 5| l//S)y

The strongly coupled ladder array without external load diglZd =1
can be solved rather easily. Fg=0 the matrixP in Eq.
(13) becomes proportional to unity. In addition, the matgix (k=2...N=1), (25

being proportional tol, and |, , respectively, can be ne-
glected in comparison t®. In this limit the system(13)
admits the simple solution

and analogous equations for the boundary cells,

. 1 I

51=5—coS(el2) + ﬁsinz(go/Z)sin( 8,—5,)

a,=sin 8, b,=—cosd. (19 0 0
N

Inserting Eq.(19) into Eq.(18) leads to the reduced system cos (‘P/Z)E SiN(8,— 8, — rg) 26)

i ]

4iolZ4l =1

Sk:;co§(¢/2) + Lll—-LSinz(@/Z) .1 '
o o 5= 5008 (/) + ZSin(@l2)sin( oy~ 6y 1)
X[SIN( 8= Sy 1) +SiN( = i 1)1, ° °

coZ(pl2)

(k=2...N—1). (20 + > Sin(Sy— 8~ Prs). (27)
4ig|Z4 =
The boundary cells do only have one neighbor and thus are ) ) ) )
described by different equations as Subtracting the phases of neighboring cells gives the sys-
tem
5= o2 (0l2)+ si?(gl2)sin 5~ & 21 I
1= 57, COS (¢/2)F 77 Sim(¢/2)siN(8, = 52), - (21) Sy=— ﬁosinz(QDIZ)(sin S 1— 2 Sin D+ SiN Iy 1)
By = GO 612) + S @l2)SIN Sy— ). (22) cos’ WZ)% Oni, Ty - Uk
2ig 4i * 2io|Zd =1 co T+ 2 ~ s s
This way we were able to reduce the problem to the cor- (28

responding one-dimensional one being characterized by Xhere we introduced difference variables as

actly the same system of equatiosee, e.g. Ref. 19 This

one has been solved long ago based on a Lyapunov function S i=Or1— 5, (29)

analysis, a matter of fact enabling us to write down the so- ’

lution immediately[The only difference from Ref. 19 is of a and especially for neighboring junctions

technical nature and results from the fact that we put the

first-order frequency correction inté,(s) instead of writing D= Diek= Ocr 1™ - (30

it down explicitly as{— o.] It is a nontrivial result that the system can be reduced in such
We will not go into the details of the stability analysis a way that it contains difference variablé9) only. Evi-

being identical to the one described in Ref. 19. It results indently the systen(28) allows for the homogeneous mode as

the fact that the only possible solutions are of the type a static solution,

5k+1_5k:O! T, k=1.. .N_l, (23) ﬂk=5k=O, Vk, (31)
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and a more detailed investigation shows that antiphase osciWwhere the first-order expansion ternas )i, (b;), have to be
lations are among the possible static solutions as well, adetermined from the algebraic system
least as long as the number of céMlgs even. Of course, this
does not exclude the existence of more solutions.

In the following we will concentrate on the stability of (al)J —2d;,
this uniform moded,=0. For this purpose we consider (36)
small perturbations exploiting the Lyapunov ansatz

||'M =

N
SN () —
=0+ s, |e<l. (32) 121 Qjj (by)j=2c;,

This way we arrive at a linear algebraic system for the per-
turbation amplitudes, admitting nontrivial solutions only
for

whereQ™ s the N-dimensional tridiagonal matrix

-2 1 0 0
x 100 _ 1 -2 10 ...
(N) —
1 x 10 Q o 1 -21 .| ©
0 1 x 1 =0 (33 0
0 0 1 x __ . .
For finding the general solution of the syst€B6) we exploit
N—1 Cramers’s rule, e. g.,
with
(B =R (38)
ZON N cos g DN '
=— —2-4 7 cot(@/2).
|, sir(¢/2) 11z with the N-dimensional determinant
As k runs from 1 toN—1 there areN—1 Lyapunov coeffi- ) — N
cients D'V=detQ (39
ka\ 1, N COS s and
—(1—cosW Tosmz((P/ZH mcos’-(go/Z) '
34 RY=3 Qi\"*-2d)) (40)

corresponding to theN—1 possible relative oscillation

modes of the cells. The largeGhost positive of these co- and an analogous expression . Q(N)adj denotes the ad-
efficients limits the stability of the coherent oscillation mode oint of QN

of junctions adjacent in the bias direction. L (N)

The first term resulting from the internal interaction is For evaluating>™ we make use of the formula
positive definite this way trying to destabilize the coherent
mode. On the other hand, according to EtR) the sign of DM=(N+1)(= D" (42)
the second term depends on the character of the externghsaq on the recursion relation
load. Moreover, it is interesting to note that not the ring
inductances, but only their horizontal contributions deter- DN = _op(N-1)_p(N-2). (42)
mine the weight of the first term. Furthermore, because of
the second term being proportional d the sign of the Exploiting a procedure in which the dimensions of the ma-
Lyapunov coefficients is essentially determined by the chartrices are reduced step by step and making repeated use of
acter of the external load alone for sufficiently lafge Eq. (41) we arrive at

VII. WEAKLY COUPLED CELLS !

WITHOUT EXTERNAL LOAD RV =(—1N? Zl di(N=k+1)i +dy(N=k+1)k
Treatment of weakly coupled cells is essentially more N
complicated than that of strongly coupled cells even in ab- + 2 d(N=i+1)k|. (43)
sence of an external load. Based on Eiy}) the following i=k+1

considerations can be shown to hold true even for nonvan- o ] )
ishing longitudinal inductancels as long ad <I, . In this ~ Combining Eq.(38) with Egs. (41) and (43) we obtain

case the systerfil3) is solved by expanding and b with

respect to 1/ . This leads to the reduced equations ()= 2 2 Nkt 1) 0088+ (N K+ 1)k 6085,
1 si(ef2)
5k:7 il E [di(by)+ck(a)k], k=1...N, N |
0 oL =1 + > (N—i+1)k coss|, (44)
(39 E
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k-1
(b =71 2 (N—Kk+1)i sin 8+ (N—k+1)k sin &
N
+ > (N—i+1)ksin5i}, (45)
i=k+1

and finally the compact reduced equations
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1 sirf(el2) | — o
5k—2|0 TNFD Z (N—Kk+1)i sin(8,—4))
N
+ > (N—i+1)k sin(ék—éi)}, (46)
i=k+1
(k=1...N). Again it is recommended to combine neigh-

boring phases according to E@3) leading to

sirt(¢/2)
K= E [(N=K)i(sin Oy_q1j—sin Oy ;) +i sin d_1;] —2(N—K)k sin ¥
iol (N+1)
N
+ 2 [(N_|+1)k(S|n ’l?k_lyi_Sin ’l?k’i)_(N_i'f‘l)Sin’Bk’i] , k=1...N—-1. (47)
i=k+2
|
A general solution of this system lies beyond the scope of the (j(j+1)
present article. However, the stationary in-phase solution 5 k>],
5k=0, k=1...N being the most important one for prac-
tical purposes obvious exists. Okj = § 0, k=j, (53
The pure existence of this solution alone does say little ) .

regarding its actual realization; instead, Lyapunov stability (N=))(N—j+1) K<
has to be taken into account. As all possible combinations of L 2 ' '

phases enter Eq47), we are forced to adopt the Lyapunov

ansatz Combining Egs(52) and(53) into

Oi= ki1~ 6=0— € 1€, |ei1;<1]. (49

M= Fidjk— ik » (54)

Expanding the sines and defining Eq. (51) can be rewritten as

— gl [ (N+1)A
= (49 =
Sire(¢/2) 2 e iy, (N, T
1---IN-1
we obtain the following linear system,k=1...N—1): — —
X(N i, +ra) - (Non—1iy_, T In-1iy ) =0, (59
k=1
(N+2N k—2k2)ek,k+1—21 (N—k+1)iey 4 wheree; . ;  is the N—1-dimensional completely anti-
=
symmetricale symbol.
Kt . N . There is one particular term in this sum with
_21 (N_k)'eiyk+l+i:%2 (N=i+1)e; =1,...in-1=N-=1 in which all\x are present,
N — _ _ _
— > (N=i+1)(k+1)eg,;=0. (50) (N+T1)(NFT)(N+T33) - - (N+Ty-—g n-1).  (56)
i=k+2

] o ] In all of the other terms, as for instance in
After some tedious algebra the characteristic equation of this

system can be written as

(AT g 32 - (N + N1 n-1), (57
de'N_l[(YJrfk) Okj—9kj]1=0 (51 there are at least two indices interchanged. One can easily
. see that all these terms are small in comparison to the first
with one if
fi=k(N=k)| 1+ 5 (52 fifi>0k0ik,  Vik (58)

Via an estimate based on E¢52), (53) it can be proven that
and Eq. (58) is indeed fulfilled as long abl>1. However, ex-
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plicit evaluation for a three- and four-cell array prove condi-

tion (58) being valid in this case already. Our earlier inves- lo & 19| 2.0 1.8 1.5 L3

tigation for a double celP confirmed this result, too. 10.0 | 1t ~ T T
Given condition(58) being fulfilled the determinan(s1) 5.0 ~ M M|~
can be approximately substituted by H§6). However, as 3.0 | 1M | Tt ~r ~
the r; reduce tof, for j=k expression56) can be further 2.0 | M ~ S
collapsed as L5 | ~ [ [T RN

_ _ _ _ 1.0 ~
A+fD)N+T)(N+TFg)---(N+Tfy_1)=0. (59 0.5 Tl_)\‘ zl:r;/{{ /l:l\ll?\l:l/ 1i1i

This way we get a factorization to be easily solved by

FIG. 2. Phase-locked states of a 2D array consisting of four cells

Sirt(¢/2) in the bias direction. Plotted here are the results from a numerical
=————f,, k=1...N—1. (60) simulation.ig=14/1¢ is the bias current anig=2xLI- /P is the
iol(N+1) ring inductance both being normalized in conventional Josephson

As by definition(52) all the f, are positive definite, all the Units.
Lyapunov coefficients turn out to be negative definite. This o )
way we have shown that any two junctions adjacent in the/olves L as well, the longitudinal inductances have a ten-

bias direction, i.e., all junctions in the bias direction admit adency of driving the cells in phase, too. _
stable in-phase oscillation regime. While we were able to derive reduced equations for the

oscillation phases, including non-vanishing McCumber pa-
rameters, a detailed treatment of junction capacitance effects
was beyond the scope of the present investigation. However,
Concerning the use of ladder arrays as microwave locaprevious investigations of a two-cell arfdyhave already
oscillators several general conclusions can be drawn frorindicated the tendency of inductanggs=0.8 driving junc-
our results. Concerning “pure” ladder arrays without any tions adjacent in the bias direction in phase while still avoid-
external feedback we observed a strange and unexpectétp hysteresis.
kind of duality. While junctions adjacent in the bias direction ~To summarize, our results suggest the following design
oscillate in phase as long as the perpendicular inductancesiteria for realizing the in-phase oscillation mode in 2D
(denoted byl | ) are large, they oscillate antiphase for small- Josephson-junction arrays of the ladder tyfglt is recom-
inductance loops. On the other hand, it has been known benended to make ring inductances smalj=27LIc/®,
fore that the oscillation phases of junctions adjacent within a0.5, foraligning oscillations within the cells in phasd.)
cell perpendicular to the bias current will spread as soon aghe external load required for decoupling radiation from the
an external flux enters the cells. This effect becomes morarray must be inductive in charactercd«\g. (iii) The lad-
dangerous the larger the cell inductance is. Unfortunatelyder should be sufficiently long for the external load dominat-
raising the perpendicular inductances enhances the total cédfig the Lyapunov coefficients and driving junctions in the
inductance as well. Thus, there seems to be only a littldias direction in phaseiv) Junctions should have a small,
chance to build local oscillators based on the scheme showbut nonvanishing McCumber paramejgy<0.8.
in Fig. 1 without the shunt, at least as long as flux cannot be Another possible design can only be guessed from the
completely expelled from the array. Moreover, the oscilla-current results but needs further investigation. If it is possible
tion state of junctions adjacent in the bias direction is alway4o expel external flux completely from the cell, junctions
marginally stable in a flux-free environment, as can alreadywithin each cell will oscillate in phase in any case. In an
be deduced from Eq18). A similar finding has been re- unloaded array the “natural” oscillation state of the junc-
ported in Ref. 8. tions in the bias direction was found to be in phase. Accord-
However, decoupling radiation out of the array requiresing to our small-inductance results and having in mind that
an external load anyway. We obtained detailed and rigorouthe internal/external contributions to Lyapunov coefficients
results for arrays with an external shunt. While for suffi- do not mix up, addition of an inductive external load can be
ciently small inductances phase splitting within the cells will expected to improve this alignment, at best. Thus, in a com-
remain small, Eq(34) shows several parameters to adjlist  pletely shielded environment weakly coupled cells with an
a way coupling junctions adjacent in the bias direction in inductive external load might work as well.
phase as well. The most important fact to notice is that a Finally, we would like to mention that a numerical simu-
sufficiently inductively dominated external load €d/&<A\ ) lation of the problem was performed in parallel. The results
will render any ladder array oscillating in-phase as long ador a four-cell array can be seen in Fig. 2. For sufficiently
¢+ . This fact has not found much attention in most ex-largeiy>1 (being the prerequisite for our approximation in
periments performed with 2D arrays so far. Moreover, forgeneral as well as sufficiently large ring inductancés
sufficiently long arrays l>1) the second term in Eq34) =2(l,+1,)>1, all four junctions adjacent in the bias direc-
will always dominate over the first one. Thus, for sufficiently tion are found to oscillate strictly in phase. On the other
long arrays it is actually not required that the inductive con-hand, for small ring inductancdg<<1 with at leasti;>1,
tribution of the impedance of the external load must be venadjacent junctions are observed to oscillate antiphase. One
large compared to the capacitive one, as long as the first orsdditional conclusion to be drawn from this figure says that
dominates over the second one at all. In addition\as-  outside of these limiting cases the behavior turns out to be

VIll. SUMMARY AND CONCLUSIONS
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quite involved. There are also additional oscillation regimes ACKNOWLEDGMENTS
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