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Five-loop additive renormalization in the ¢* theory and amplitude functions of the minimally
renormalized specific heat in three dimensions
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We present an analytic five-loop calculation for the additive renormalization con&fant) and the
associated renormalization-group functiBfu) of the specific heat of th®(n) symmetricg* theory within
the minimal subtraction scheme. We show that this calculation does not require new five-loop integrations but
can be performed on the basis of the previous five-loop calculation of the four-point vertex function combined
with an appropriate identification of symmetry factors of vacuum diagrams. We also determine the amplitude
functionF , (u) of the specific heat in three dimensions for 1,2,3 aboveTl . andF _(u) for n=1 belowT,
up to five-loop order, without using the=4—d expansion. Accurate results are obtained from Borel resum-
mations ofB(u) for n=1,2,3 and of the amplitude functions far=1. Previous conjectures regarding the
smallness of the resummed higher-order contributions are confirmed. Combining our rest{a Yoand
F . (u) for n=1,2,3 with those of a recent three-loop calculatiori-af(u) for generaln in d=3 dimensions
we calculate Borel resummed universal amplitude rafié$A~ for n=1,2,3. Our result foA"/A~=1.056
+0.004 forn=2 is significantly more accurate than the previous result obtained frona ¢x@ansion up to
O(€?) and agrees well with the high-precision experimental readltA~=1.054+0.001 for“He near the
superfluid transition obtained from a recent experiment in sg&3163-1828)07229-4

[. INTRODUCTION determine the critical exponents but also the less well-known
amplitude function§*?which contain the information about
One of the fundamental achievements of the renoruniversal ratios of leading and subleading amplitubes.
malization-group(RG) theory of critical phenomena is the  The existing theoretical predictions on the critical
identification of universality classes in terms of the dimen-exponentS within the minimal subtraction scherfe® are
sionalityd of the system and the numberof components of based on field-theoretic calculations to five-loop oter
the order parametérSpecifically, RG theory predicts that and Borel resummation. By contrast, the present theoretical
the critical exponents, certain amplitude ratios, and scalinggnowledge of the amplitude ratios far>1 below T, is
functions are universal quantities that do not depend, e.g., dbased only on low-ordefmainly one- and two-logpcalcu-
the strength of the interaction or on thermodynamic variablesations which imply an uncertainty at the level of at least
(such as the pressureThe superfluid transition ofHe be-  10-30%! It has therefore been propo$8do significantly
longs to thed=3, n=2 universality class and provides a reduce this uncertainty by performing new higher-order
unique opportunity for an experimental test of the universal{ield-theoretic calculations and Borel resummations of vari-
ity prediction by means of measurements of the critical be-ous amplitude functions in three dimensions.
havior at various pressurés along the\ line T, (P). Early Both conceptual and computational steps towards this
tests have been performed by Ahlers and collaborators angbal have already been performed. The conceptual progress
consistency with the universality prediction was foundincludes the demonstration that the=3 field theory sug-
within the experimental resolutidnAt a significantly higher gested by Pariét can well be realized within the minimal
level of accuracy, the superfluid density and the specific heatubtraction scheme dt=3 (Refs. 7—9 by incorporating Sy-
(or, equivalently, thermal expansion coefficleabove and manzik’'s nonvanishing mass shfftand that spurious Gold-
below T, (P) are planned to be measured in the Superfluidstone singularities fon>1 below T, can well be treated
Universality Experimeritunder microgravity conditions or within this approactt by using an appropriately defined
at reduced gravity in the low-gravity simulatbAs demon-  pseudocorrelation lengthThe computational steps include
strated recently,this would allow one to perform measure- the determination of the amplitude functiofs, (u) and
ments up to|t|=10"° in the reduced temperatute=[T  F_(u) of the specific heat in three dimensions abdyefor
—T,(P)]/T\(P). n=1,2,3(Ref. 10 and belowT, for n=1" respectively, up
On the theoretical side, the corresponding challenge is tto five-loop order, and their Borel resummation. These cal-
calculate as accurately as possible the properties dbfim¢  culations, however, were not yet complete because of an ap-
symmetric ¢* model in three dimensions. To extract the proximation regarding the additive renormalizatiéiu, €)
leading critical exponents from the experimental data and tof the specific heat and the associated RG funcBdn).
demonstrate their universality at a highly guantitative levelDue to the lack of knowledge in the literature about higher-
requires detailed knowledge on the ingredients of a nonlineaprder terms,A(u,e) and B(u) were approximated by their
RG analysi€ They include not only the well-known RG two-loop expressions. Although the good agreement between
exponent functions of theé* model whose fixed point values low-order d=3 perturbation result$*?* and accurate
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experiment$?>?®provided some indication for the smallness 1 1
of the effect of the higher-order terms B{u), no reliable H{¢o(x)}=j ddx<§ rog+ > > (V)2
estimate could be given for the remaining uncertainty of v '
F . (u) which could well be of relevance at the level of ac- -~
curacy anticipated in future experimeft§urthermore we +Uo( ) —h0'¢o) 21
recall that any inaccuracy oB(u) enters not only the
formulas for several universal amplitude ratios but also thefor the n-component field ¢O(x)=[¢01(x),...,d;on(x)]
formulas needed to determine the effective couplir(d) where
from the specific hedt?324
It is the purpose of the present paper to provide the miss- ro=roctaet, t=(T—-Ty)/Tg, (2.2

ing information on the higher-order terms é&f(u,e) and ; ; )
B(u) by means of a new five-loop calculation. We sha Ilﬁnmderz%lvf(;]eo(’j by.k.,%).isTheGlbbs free energy per unit vol
show that the analytic calculation 8{u, €) andB(u) can be B
directly related to the previous calculatidofis® of the four-

oint vertex function. This provides the crucial simplification _ -1
Fhat no new evaluations OF]: three-, four- and fiveFI)oop inte- Folfo.to.No) Vo J Depopxp(— 1) (23
grals are necessary but that only a new determination of sympe shall consider the bulk limi— . We are interested in
metry andO(n) group factors of vacuum diagrams is suffi- the specific heaC* per unit volume at vanishing external

cient.
. ' : : field hy=0 (divided by Boltzmann’s constarkg) where+
Using the five-I & the po- o
sing the five-loop expression &(u) we are in the po efers toT>T, and T<T,., respectively. Neail., c*

sition to determine the correct higher-order terms of the ;
minimally renormalized amplitude functions (u) for n determined b?/
=1,2,3 and:,(u)ﬁgorsonz 1 in three dimensions on the basis
of previous work' ™" where a different renormalization ¢ .
schre)zme was used. The new coefficients of the higher-ordep_:CB_Tg aT2 FO(rO’UO'O):CB_a(Z) aTg Fo(r0,U0,0),
terms ofF . (u) turn out to differ considerably from the pre- (2.9
vious approximate coefficiertfswhereas the coefficients of
::eFr(nus) oeflée(uc;ﬁly weakly affected by the new higher OrderHelmholtz free energy per unit vqumé‘o(ro,uQ,l\/lo)
We also perform new Borel resummationsBffu) forn = F(To:Uo,No) +hoMg with Mo=(¢o1) determinesC™ in
=1,2,3 as well as ofF _(u) and of F_(u)—F,(u) for n  theho—0 limit according to
=1. It turns out that the result of the Borel resummation for
B(u) including the new terms up to five-loop order differs o . ’
from the two-loop resulB(u)=n/2+0(u?) by only less C=Cg—ag d_rZFO(rO’UO’MO(rO’UO))' 29
than 1% at the fixed point. For the amplitude functions, our 0
new Borel resummation results differ from the previousThe perturbative expression fdiy(rq,ug,Mg) is obtained
ones®!! by about 1% forF_ and by less than 0.1% for from the negative sum of all one-particle irreducible vacuum
F_—F. atthe fixed point. This is a nontrivial and important diagrams:> The perturbative expression f@ is then de-
confirmation of the previous conjectures about the smallnesgrmined by the vertex functlorﬁi2 0=d?T,/dr3 which we

of resummed higher-order contributiohs: consider as functions of appropnately defined correlation
As a first application, we calculate the universal ratios|engthsé, and¢£_ above and below,

A*/A~ anda_/a_ of the leading and subleading amplitudes
of the speC|f|c heat above and below for n=1 andd ov 2.0
=3. In addition we calculate Borel resummation values of c=c —aol“< (& +Uo,d). (2.6
A*/A~ for n=2 and 3 by combining our present results for A description of the critical behavior requires to turn to the
B(u) andF, (u) for n=2 and 3 with those of a recent three- renormalized vertex functions
loop calculation ofF _(u) for generaln.®! All of our calcu-
lations are performed at=3 dimensions, without using the
€ expansion. Our resulA*/A~=1.056+0.004 forn=2 is
more accurate than the previous re¥ult 0294+ 0.0134 ob- 1
tained from thee=4—d expansion up t®(e?) and agrees 7 1 “AdA(Ue). 2.7
well with the high-precision experimental resull.054
+0.001 for*He near the superfluid transition obtained from We work at infinite cutoff using the prescriptions of dimen-
a recent experiment in space. sional regularization and minimal subtraction at fixed dimen-
sion 2<d<4 without employing thee=4—d expansior.™®
The Z factors are introduced as

2 2

whereCg is an analytic background term. Alternatively the

2

I29&, u,u,d) =220, 1uZ,Z,%A5 u,d)

Il. ADDITIVE RENORMALIZATION
OF THE SPEC”:IC HEAT r:Z;l(rO_rOC), u:M*eAdZJIZlZISUO, ¢= Zg;l/z(bo,

The O(n) symmetric $* model is defined by the usual 28

Landau-Ginzburg-Wilson functional where the geometric factor
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Ag=T(3—d/2)22 97 92(d—2)"* (2.9 1loop: O

becomesA;=(47)" ! for d=3 and A,=(87?)"! for d (1)
=4. TheseZ factors Z;(u,e) and the associated field-
theoretic functions

2 loops: %
gr(u):MaM In Zr(uif)_1|01 (2.10 @)
LoW=pd, In Z4(u, €)™ Yo, (2.11)

ADZ40 I0 Z4(0:9) o o OO0
Bu(U, €)= — eU+ B(U)=U[— e+ ud,(Zy *Z2)|o], e W
(2.12

renormalization constam(y,e) in Eq. (2.7) which absorbs
the additive poles of both®? and I'?9 . Previously®!!
A(u,€e) was employed only in its two-loop form

(
1 u
A(u,€)=—2n =—8n(n+2) - +0(u?). (2.13 % Q%g%
€ € 5loops: (X X X XD
(9)

are known up to five-loop ordéf*°
Th i tity of int t in th t is th
e main quantity of interest in the present paper is the | =~ 080 é @
(3 (6) (M 8)

Here we report on a calculation @f(u,e) up to five-loop
order. We would like to stress that this calculation does not
require new five-loop integrations but can be performed on
the basis of the previous five-loop calculafi6H® of the

four-point vertex function combined with an appropriate % @ @ @ @
identification of symmetry andO(n) group factors of
(14) (15) (16) (17) (18)

(10) (11) (12) (13)

vacuum diagrams which are shown in Fig. 1. Their negative
sum determines the Helmholtz free enelgyup to five-loop

order. Fpr the. present purpose of determining the pole terms FIG. 1. Vacuum diagrams up to five-loop order determining the
atd=4 it suffices to CO_nS'der _Only th? casg>0_andM0 Helmholtz free energy’y for My=0, r,>0. Diagrams(6), (10),

=0 Where_only four-point Vert'(,:es exist. The diagrams areand(ll) do not contribute taA(u,€). The pole terms derived from
labeled(1) in one-loop order(2) in two-loop order,(3), (4)  the vacuum diagrams are given in E¢s1)—(A54) of Appendix A.

in three-loop orden5)—(8) in four-loop order and9)-(18) in

five-loop order. The analytic expression of an-loop _ ) 0) )
tion of subdivergences. One obtaiﬁéﬁ by taking two de-

diagram () is given by the product of the coupling "~ : . :
(—Ug)™ L, the symmetry factos(", the O(n) group factor rivatives ofl" o with respect ta . The analytic calculation of
) ) 2,0)

GW(n) and the momentum integral expressiti(rq,e).  the poles of the diagrams férs%? is identical to that carried

Thus the structure of the diagrammatic expression of a typiout previously’~**for the four-point vertex functiod (.

cal diagram, e.g(16) is To see this, one should take into account that in the minimal
subtraction schent® the ultraviolet pole terms specified
above do not depend an,. Then by using the method of

@ _ 18— )48 (16) 21 infrared rearrangeme’ﬁto_r?e can nullifyr ; and introduce for

(—Uo) (Fo.€) (2.149 each diagram a new fictitious external momentum to regular-
ize infrared divergences. Then one can see that only a par-

4 3 2
:2592(_u0)4n *+8n7+32n"+40n ticular subset of those diagrams B@O"‘) are relevant in the
81 present context, namely those where the four external legs
are connected to each diagram through only two four-point
xf f f f j vertices (rather than three four-point vertices or four four-
P17 P27 P37 Psa’Ps point vertice$. The details of the calculation are presented in

XG1-G2G142-3-G3-G142-4'6G4 Gr42-5Gs Apgﬁgdrlésﬁit reads
(2.15

with  [,=(27) %d% and the propagators G

E(ro+|piipj|2)*1. The symmetry and group factors are >

listed in Table I. A(u,e)= 2 A™(u,e)+0(u), (2.16
To calculate the additive renormalization constad, ) m=1

one needs to calculate those ultravialet4 pole terms of

the diagrams contributing thz;o) that are left after subtrac- whereA(™ denotes the contribution @h-loop order,
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TABLE I. Symmetry and group factors of the vacuum diagrams shown in Fig. 1. Diag@m40), and
(12) do not contribute tdA(u,€).

Loop order Diagrami() Symmetry factorS®) Group factorG{)(n)
One loop 1) 1 n
Two loops ") 3 2(n?+2n)
Three loops ©) 36 $(n3+4n%+4n)
(4 12 2(n%+2n)
Four loops (5) 432 2 (n*+6n3+12n%+8n)
7 576 $(n3+4n%+4n)
® 288 2(n3+10n%+ 16n)
Five loops 9 5184 2 (n°+8n*+24n3+32n2+ 16n)
(12 10368 75(n*+6n%+12n%+8n)
13 6912 75(n*+6n%+12n%+8n)
(14 6912 2 (n*+6n%+12n%+8n)
(15 2304 $(n®+4n2+4n)
(16) 2592 a7 (n*+8n%+32n2+40n)
a7 20736 a5 (n*+12n3+36n%+32n)
(18 10368 2 (5n3+32n2+44n)
AB®)(u, s)——fn(n+2) §— 4O+24(n+4) (2.17)
2T | :

(n+8)(127(3)—25) N 96n+696_ 24+ 1024Jr 48n+4)(n+5) U3 (2.18
2 3 4 ’ .

8
(4) —
A (u,e) 3 n(n+2) . . p .

768n+4)(n+5)(5n+28) 128293+ 26241+ 5840
65 64
, 9216(3)(5n+22) +32(513%+ 846 + 25049

63

2
A®)(u,e)=— EN(n+2)

2 2
B 192£(3)(7n 28n+48)+4608§(4)(25n+22)+64(31n +2354+ 9306 1 [48(3)(3n%— 38— 1700

€

1
+288(4)(4n%+ 39+ 146) — 3072(5)(5n+ 22) — 3(31M>— 139681 — 64864 | < u?, (2.19

where{(s)=2; _1]*3 is the Riemann zeta function with(3)=1.202 056 90/(4)= w*90, and(5)=1.036 927 76. Most
important is thed -independenR G function B(u) which is determined by

A(u e)

4B(u)=[2Z,(u)—€]A(u,e)+ B,(u,e) (2.20

Using A(u,e) of Egs.(2.16—(2.19 and the perturbative expressions forand 3, of Refs. 17-19, we find

B(u)= ;+3n(n+2)u2— g n(n+2)(n+8)[25—127(3)Ju+ % n(n+2)[16¢(3)(3n%>—382n— 1700 — 1024(5)(5n+ 22)

+96((4)(4n%+ 39N+ 146) — 31N>+ 13 96% + 64 864 u*+ O(ud). (2.21

The terms ofO(u?) andO(u®) agree with those of Ref. 34. are given forn=0,1,2,3 up tom=4 corresponding to five-
In Table Il the coefficientgg,, of the power series loop order. Table Il also contains the coefficieh&'@’ of the
power series of the functions

B(u)=mE=0 Capu™ (2.22 fi(u)=mE:1 f(mym, (2.23
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TABLE 1. Coefficientsfi(m) of the functionsﬁ(u), £r(u), and g 4(u) for i=1,2,3, respectively, and
coefficientscg, of B(u), compare Egs(2.22 and(2.23, for n=0, 1, 2, 3 up to five-loop ordeim=6 for
B, m=5 for {, and{,, m=4 for B). For f("™ compare Table | of Ref. 8.

Bu ér Ly B
n=0 0 8 0 0
32 —80 —16 0
—672 3552 128 0
43989.9534 —223152.607 —8000 0
—4166409.19 18836823.8 500639.112 0
498653403.0
n=1 0 12 0 1/2
36 —120 —24 0
—816 6048 216 9
56245.8519 —413813.942 —14040 —761.422836
—5632017.54 37512804.7 958294.321 44244.7100
708814936.0
n=2 0 16 0 1
40 —160 —-32 0
—960 9024 320 24
69029.7505 —660870.017 —21120 —2256.06766
—7268274.40 63662497.1 1566676.69 141294.329
956636505.0
n=3 0 20 0 3/2
44 —200 —40 0
—1104 12480 440 45
82341.6490 —967074.371 —29000 —4653.13955
—9075019.76 98265069.9 2333667.84 310944.846
1243816220.0

wheref;(u) denotes the function}é(u), r(u), and ¢ ,4(u)

for i=1,2,3, respectively. These coefficients are taken fromtn/2 (Ref. 35 are
Refs. 17—-19. Up to four-loop order they agree with those in
Table | of Ref. 8.(Note thatf® in the table caption of Ref.

8 should readf{¥x107.) The five-loop coefficients{®,
£$), andf$® differ from those in Table | of Ref. 8 according

to the corrections in five-loop order in Ref. 19.

In Fig. 2 the partial sums dB(u) from two- to five-loop

222<a<341,
2.45= a<3.43,

2.71=a<3.43,

b=6.0 for n=1,
b=6.5 for n=2,

b=7.0 forn=3.

PRB 58

The corresponding resummation parameterand b=5.5

(2.27
(2.28
(2.29

order are shown for the exampie=2. As expected, the con-  The previous fixed-point valug&®2*are consistent with Egs.
tributions form=2 have alternating signs and increase CON<2.24—(2.26) within the previous error bars. The present er-
siderably in magnitude. Clearly a resummationB{u) is oy pars are smaller than the previous ofi¥&24(The range
necessary similar to that faf,(u), {,(u), and B(u) per-  of a determines our error bars, as described further b¢low.
formed previously’ We have performed Borel resummationsBfu) at the
First we reexamine the fixed-point value$, B,(u*,1)  fixed pointu* for the cases1=1,2,3. In addition, for the
=0, forn=1,2,3 obtained in Refs. 8 and 24 by means ofimportant casen=2 (superfluid*He), we have determined
Borel resummation on the basis of previous five-loopthe Borel resummed functioB(u) at various values ofi.
results”*® and in Ref. 16 on the basis of four-loop results. The results are given in E2.34—(2.36 and in Figs. 2 and
Here we employ the corrected five-loop coefficients for¢he 3.
expansion of the fixed-point value which we have derived A description of the Borel resummation metfoébr the
from Eq. (8) of Ref. 19. Employing the standard Borel re- present purpose has been given in Sec. V of RefIrBEq.
summation methdt® we have obtained the fixed-point val- (5.10) of Ref. 8a;, should readh; _, ] In the present work,
ues in three dimensions however, we use a different way of determining the param-
etersa and b of the summations. This implies a different

u*=0.0404-0.0003 forn=1, (2.2 determination of the error bars.
For B(u) the value of the parametéris not known from
u*=0.0362-0.0002 forn=2, (2259  an analysis of the large-order behavisee Eq(5.6) of Ref.
8, and references therdinHere we fix bothb and « by
u*=0.0327:0.0001 forn=3. (2.2 requiring fastest convergence of the series of the partial
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FIG. 2. Partial sum$,,(u)=3M_,cgmu™ of B(u), Eq.(2.22,
as a function ofu for n=2 from M=1 (two-loop ordey to M=4
(five-loop ordey. Also shown is the Borel resummed res(dblid
line) which deviates from the two-loop resiBt, =1 by only 0.5%
at the fixed poinu™=0.0362.

Borel sumsS™) =S (u, a,b) for B(u) defined in Eq(5.12)
of Ref. 8[hereL corresponds tol(+1)-loop ordet. To do
so we look for the minima oA and A®® with regard to
variations of bottb and « where

gb_gL-b

A(L)(U,a’b): W

(2.30

This yields five-loop values of the parametersb for each
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1.02

1.01

1.00

u

FIG. 3. Borel resummation result for the functi@(u), Eq.
(2.21), for n=2 (solid line) obtained by interpolation between the
resummed values &(u) atu,=ku*/10,k=1, ..., 10 of theenor-
malized couplings in the range 8<u<u*=0.0362, with error bars.
Also shown is the three-loop resiBb(u) =1+ 24u? (dashed ling
compare Fig. 2. The two-loop result B,=1. The Borel values
B(u,) are 1.000 233, 1.000 73, 1.0013, 1.0019, 1.0026, 1.0032,
1.0037, 1.0043, 1.0048, 1.0053 for-1, . . .,10, respectively.

Ill. AMPLITUDE FUNCTIONS F.
DIMENSIONS

IN THREE

A. Definition of F ..

By means of the renormalized vertex functions in Eq.
(2.7 we define the dimensionless amplitude functions

u. In order to define an error bar, we apply the same method

to the four-loop result oB(u), i.e., toA® and A, The

four-loop values ofe, b together with the five-loop values
provide the ranges of the best valuesxadindb as a result of

Fo(pée u,d)=—4p A TEO(E up,d). (3.1

They enter the critical behavior of the specific heat in three

the combined four- and five-loop analysis. Then we defingjimensions in the form of the functions

the error bar of the five-loop result f&(u) by the maxi-

mum and minimum of the resummed four- and five-loop

values forB(u) over the ranges of the best valuesagb. At
the fixed pointu*, Egs.(2.24—(2.26, we find the ranges

(2.3))
(2.32
8.18b<9.76 forn=3. (2.33

The corresponding Borel resummed resultsBfu*) are

0.95=a=<1.08, 5. &Kb<7.75 forn=1,

0.94<a<1.04, 7.6sb<8.59 forn=2,

0.94<a=<1.02,

B(u*)=0.5024+0.0011 forn=1, (2.34)
B(u*)=1.0053:0.0022 forn=2, (2.35
B(u*)=1.508Q+0.0034 forn=3. (2.36

We have also determined the functiBu) for n=2 (super-
fluid “He) in the range 8u<0.04 as shown in Fig. 3.

Most remarkable is the smallness of the deviation of the
resummed functioB(u) for n=1,2,3 from its two-loop ap-

proximationn/2. This confirms previous conjectufes! and
justifies earlier analyse€'s>24

F.(1u,3)=F.(u) 3.2
according t8
C*=Cg+ % a’u~tAgK L (u(l.))
X exp fuu('i) % du, 33
where
Ke(u)=F.(u)—A(u,1) (3.9

anda=Z,(u,1) tay. In Eq.(3.3), u(l) is the effective cou-
pling satisfying

du(l)

=g =Auu(),) (3.9

with u(1)=u. The flow parameterk, andl_ are chosen as
l,=(uéy) tandl_=(ué_ )t above and below .
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B. Power series ofF ..

The amplitude functions are expandable in integer powe
of u (Ref. 9 and have the power seri8s

Fo(w= 2 cenu™ (3.6

and*!

c|

F_(u)= mE:O Crmu™ (3.7)

We have determined ,, up to five-loop ordefi.e., up to
m=4) for n=1,2,3 andcy,,, up to five-loop ordefi.e., up to
m=5) for n=1 in two different ways.

(i) The coefficientscy,, andcq,,, can be calculated from
Egs.(3.1), (2.7) in three dimensions according to

F.(u)=— 167226 129 ¢, AmELZ,7,%u,3) +Au,),
(3.9

where thezZ factors have the argumerifs(u,1). The pertur-

bative expression foi' >® can be obtained fon=1,2,3
from

o 1
P26 U0 d)= 75225 V), (3.9

where the renormalization fact@g()\) and its relation to the
specific heat have been presented in numerical form by Be
villier and Godrehe’® and by Bagnuls and Bervilligf*°see
also Ref. 10. Fod=3 their renormalized coupling is re-
lated to ourug via the renormalization factdfs(\) accord-
ing to Upé, = — 27\ Z3(\) 2 as noted in Ref. 10. The per-
turbative expression of 29 for n=1 can be determined
according to

o (92 e
I29(¢ U3 =5 T (£ ,Up3)
arg

_(ar{,)‘l p
“log)  ee
[(aré)l J o
X[\ = =7 T_-(£-,u03)|,

9E_| 9k
(3.10

wherer (¢ ,Up) is given by Eq(3.8) of Ref. 11. The Helm-
holtz free energ¥™_ (&- ,u(,3) is given in numerical form by
Eq. (3.19 of Ref. 11 where ouf’_(§_ ,u,,3) is denoted by
I'_o(&_ ,up). Our numerical results fazz,,, up to nine digits
are presented in Table IlI.

(i) Alternatively the coefficientgs,, can be determined
via the relation

8A; P (W FEO(u)=[1-2¢,(u)]F.(u) +4B(u)
(3.12)

as done previousl$** For the definition ofP. and f&?
and for a derivation of Eq3.11) we refer to Refs. 8 and 9.

= Bu(W)dF L (u)/du

S. A. LARIN, M. MONNIGMANN, M. STROSSER, AND V. DOHM

PRB 58

TABLE |Ill. Coefficients cg,, of F,(u) and F_(u) for

r£|=1,2,3 defined in Eq9.3.6) and(3.7), respectively. FocEm, m

refers tou™ corresponding tori+1)-loop order whereas fargy,,
m refers tou™ ! corresponding tan-loop order. The coefficients
cf, andcg; (three-loop orderare taken from Ref. 31.

n=1 0 -1 1/2
1 -6 -4
2 —22.6976284 72
3 —722.742498 —5189.75474
4 34775.5861 433582.586
5 —47754702.5
n=2 0 -2 1/2
1 —16 -4
2 —92.5270090 64
3 —2430.86460 —5918.07320
4 102469.659
n=3 0 -3 1/2
1 —30 -4
2 —233.488142 56
3 —5742.02976 —6607.95641
4 204463.777

In the present context we need the contribution®toand
f(f'o) only up toO(u?) as given in Table IV of Ref. 10 and
Table Ill of Ref. 11, sincéB(u) is known only up toO(u?)
3s well.(We recall that the coefficients & _ are determined
by those of P, according to P_(u)=—3{1+2[1
—P.(u)]-3¢£,(u)}.% This calculation via Eq(3.11) yields
coefficientscy,, that agree with those obtained via E§.8)

up to eight digits forc,,, and up to seven digits farg,,,. The
slight differences between the results of the calcylati(tbhs
and (i) are due to the fact thaiz(\), Zs(\), andI'_ are
available up to five-loop order only in numerical form. We
consider the calculatiolti) via Eq. (3.8) as slightly more
reliable since fewer numerical operations are required than in
calculation(ii) using Eq.(3.11).

Since here we have used the perturbative contributions of
B(u) up to five-loop order, the resulting higher-order coef-
ficientscg,, given in Table Il differ from those determined
previously(see Table IV of Ref. 10 and Table Ill of Ref. 11
where the approximatioB(u) = n/2+ O(u?) was used. Only
our low-order coefficients’,, ¢f;, Crp, Cry, andceg,
agree with the previous oné$M The coefficientsc/,, with
m>1 differ considerably from the previous ones whereas the
coefficientscy,, with m>2 differ only by 0.2% =3),
0.1% (m=4), and 2% (h=5).

Very recently the coefficients;,, and c-,, have been
determined analytically for generah up to three-loop
order?* The corresponding three-loop values:, for
n=1,2,3 as well ag.; for n=1,2,3 are taken from Ref. 31
and are included in Table Il up to nine digits. No results for
Cg; Were available in the previous literature for-1. The
new information orc5 for n>1 enables us to perform the
first Borel resummations fdf _(u) andF_(u)—F_ (u) for
n=2 and 3 in Sec. Il D below.
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C. Borel resummation of five-loop results forn=1

In order to study the effect of the new higher-order terms UF_(u)

we have performed Borel resummations of the series fo
uF_(u) and foru[F_(u)—F ,(u)] at the fixed poinu* for
the casen=1. The method employed is the same asB¢u)

in Sec. Il. The parameter ranges turn out to be

l<a<17, 7.48b=<8.70 (3.12
for u*F_(u*), and
li4<a<17, 6.6sb<117 (3.13

for uU*[F_(u*)—F . (u*)].

We have found that our present method does not yield a

reliable estimate of the parameterandb for F . (u*) sepa-
rately; this may be related to the fact that, unlike,, the
coefficientsc,, (see Table 1) do not have alternating signs
for m=3 (this alternation is predicted for the asymptotic
large-order behavi8r®). F, (u) will be further studied else-

where. In the application to amplitude ratios given below we

shall not need, (u*) separately.
The resummation results are

u*F_(u*)=0.3687-0.0040 (3.19

and

u*[F_(u*)—F,(u*)]=0.4170-0.0036. (3.19H

The previous approximate resummation resBfts for n

=1 wereu*F_(u*)=0.3648 andu*[F_(u*)—F,(u*)]
=0.4170 with an error bar of about 1%. Thus our resumma
tion results differ from the previous ones only by about 1%
for F_ and by less than 0.1% fét _ —F, , confirming pre-
vious conjectured®!? The parameterd; in the effective
representatioft F_ (u)=(2u) *—4(1+dgu) now becomes
dr=—4.64(compared to—4.04 in Ref. 11. This leaves the
solid line in Fig. 4 of Ref. 11 essentially unchanged.

D. Borel resummation of three-loop results forn=2 and 3

While the previous two-loop restlfor F_(u) did not yet
provide sufficient information for a controlled resummation
procedure forn>1 and thus did not yet lead to an error
estimate, the new three-loop coefficiemis; have signifi-

cantly improved the situation. On the basis of these three-
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FIG. 4. Amplitude functiorF _(u), multiplied by the renormal-
ized couplingu, in three dimensions as a function ofin one-,
two-, and three-loop orddsolid lineg for n=1 (a) andn=2 (b)
and in four- and five-loop order far=1 (a) (dashed lines The dot
with error bars ati=0.04 indicates the result of the Borel resum-
mation on the basis of the three-loop seriesuér_(u). The small
error bar(a) indicates the Borel resummation result on the basis of
the five-loop series fouF_(u) at u=0.04 for n=1, the arrow
indicates the corresponding central valuaiat0.04.

loop results we have performed Borel resummations of the, 4

series foruF_(u) and foru[F_(u)—F ,.(u)] for the cases
n=2 and 3. The method employed is the same as in Sec. |
The parameter ranges turn out to be

—-1.70a<1.10, 15b<4.3, n=2, (3.1
—-1.90sa=<1.15, 15b<4.7, n=3 (3.17

for u*F_(u*), and
—0.80<a=<0.95, 0.65xb=<83, n=2, (3.18
—0.30<a<055, 1.16sh<7.5, n=3 (3.19
for u*[F_(u*)—F(u*)]. The resummation results are
u*F_(u*)=0.384+0.025, n=2, (3.20

U*F_(u*)=0.387-0.026, n=3, (3.21

I u*[F_(u*)—F,(u*)]=0.461+0.019, n=2,
(3.22

u*[F_(u*)—F,(u*)]=0.498:0.011, n=3.
(3.23

In order to substantiate the reliability of these resumma-
tions of three-loop results we have repeated our resummation
for n=1 but now on the basis of three-loop results. In Fig.
4(a) we show the Borel resummation value foF _(u) at
u=0.04 forn=1 together with the corresponding error bar.
For comparison, the smaller error bar resulting from the
Borel summation on the basis of the five-loop results is also
shown. We see that the central value of the three-loop Borel
resummation is not far from the central value of the five-loop
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ulF_(u) - F (u)] the basis of three-loop perturbation series are showmfor

. =2 at the same value=0.04 as fom=1 in Figs. 4a) and
5(a). They clearly demonstrate the significant improvement
over the previous situation at two-loop ord& where no
error bar could be determined in a convincing fashion.

IV. APPLICATIONS

We apply our results to the specific heat in the asymptotic

] critical region where it can be representedas
pd + Ai +
] C*ZT|t|’“(l+ag|t|A+---)+B 4.1
\ 8 loop with the Wegner exponeift A. We consider the universal
“r ) ‘\ T amplitude ratios A*/A~ anda;/a; . The former can be
\ 5loop expressed in terms &* =B(u*) andF* =F. (u*) in three
0.0 . \ . dimensions &
0.00 0.02 0.04
! At [by\® F*—F*
o8 ulF_(u) - F (u)] A b_ 4vB* + aF*
where
2 loop
] b 2vP*
! * 4.3

b (3/2-2vP%

Tloop 1 with P* =P_ (u*). This expression foA*/A~ has several

independent sources of inaccuraci@$:The values for the
- critical exponentsy and v, (ii) the values forP% , (iii) the
values forB*, (iv) the values forF* —F%, and F* . In
evaluating this expression fé&x* /A~ for n=1,2,3 we shall
take(i) the most reliable values fer and v that are presently

3loop available,(ii) the Borel resummed values f&% based on
0.1 1 five-loop results fom=1,2,3, (iii ) the Borel resummed val-
() ues forB* for n=1,2,3 as given by Eq$2.349—(2.36, and
(iv) the Borel resummed values féf* as given in Egs.
% 0.02 0.04 (3.19), (3.19, and(3.20—(3.23. For the critical exponents
u and v we take
FIG. 5. Amplitude functionF_(u) - F . (u), multiplied by the @=0.1070-0.0045, »=0.6310+0.0015, n=1,
renormalized coupling, in three dimensions as a function wfin (4.4

one-, two- and three-loop ordésolid lineg for n=1 (a) andn

=2 (b) and in four- and ﬁVe-lOOp order far=1 (a) (dashed Iineb a=—0.01285-0.000 38. »=0.67095-0.000 13. nh=2
The dot with error bars ai=0.04 indicates the result of the Borel ' ' ’ ' ' ’ (4_5’)

resummation on the basis of the three-loop seriesufdf_(u)
—F ,(u)]. The small error bafa) indicates the Borel resummation a=—0.1150+ 0.0090. »=0.7050+0.0030. n=3

result on the basis of the five-loop series t9F _(u)—F . (u)] at (4.6)
u=0.04 for n=1, the arrow indicates the corresponding central ) ]
value atu=0.04. according to Refs. 13, 5, and 37, respectively. Borel summa-

tion values forP* have been calculated previousRThese
resummation[arrow in Fig. 4a)]. Analogous results are calculations, however, were based on five-loop coefficients
shown in Fig. %a) for u[F_(u)—F.(u)] atu=0.04 forn  that were derived from the five-loop results of Refs. 17 and
=1. These results provide confidence in our resummationg which were corrected by Ref. 19. Taking into account the

procedure based on three-loop results. In particular thejatter corrections we have derived corrected five-loop coeffi-
demonstrate that Borel resummations of three-loop resultgientsc, of the power serie®_ (u)=25Cpmu™ Our new

yield reliable results with error bars that significantly reduceya|yes forcp5 are (compare Table IV of Ref. 10
the uncertainties of one- and two-loop calculations. Since the

n dependence beyond three-loop order is expected to be Cps=—1026 631.56, n=1, 4.7
smooth and weak in the rangesh<3 there is no reason to
expect that the reliability of our resummation procedure is Cps=—1763840.20, n=2, (4.8

significantly different fom=2 and 3. In Figs. &) and 5b)
the corresponding resummation resulsth error barg on Cps=—2767 879.03, n=3. (4.9
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TABLE IV. Universal amplitude rati’A*/A~ of the specific heat, Eq$4.1)—(4.3), for n=1,2,3 in three

dimensions.
Field theory ) ]
Lattice series
n Present work Previous work expansions Experiment
1 0.540+0.011 0.524 0.01¢ 0.523+0.009 0.56-0.68,0.53
0.541+0.014
2 1.056-0.004 1.02940.0134 1.08 1.054+0.001
1.08 1.058+0.004
1.067+0.003
1.088+0.007
3 1.51 +0.04 1.5210.022 1.52 1.40
1.58

8Reference 32.
bReference 30.
‘Reference 39.
dreference 40.
®Reference 41.

fReference 9.

For the corresponding Borel resummed valuesPdf we
have obtained

P* =0.7568-0.0044, n=1, (4.10

P% =0.7091+0.0045, n=2, (4.11

(4.12

The valuesP?* obtained from Eq(3.2) and Table | of Ref.
10 are by about 0.7% smaller than the values in E44.0-
(4.12.

If we use the central values of the critical exponents give
by Egs.(4.4—(4.6) and collect the results of Eq$2.24)—
(2.26, (2.34-(2.39, (3.14, (3.19, (3.20—(3.23, and
(4.10—(4.12 we arrive at the values foh* /A~ according
to Egs.(4.2) and(4.3) as given in Table IV fon=1,2,3. For

P% =0.6709:0.0039, n=3.

comparison this Table also contains the results of previou
calculations as well as experimental or numerical results. W
see that there is good agreement between the previous a

our results fom=1 andn= 3. Forn=2, however, our result
is significantly more accurate and agrees well with the high
precision experimental result fotHe near the superfluid
transition obtained from a recent experiment in space.
The smallness of our error bar f&" /A~ for n=2 is due
to the small value ofw for n=2 which, according to the
structure of Eq(4.2), suppresses the error Bf. . Exploiting
this structure, i.e., separating exponents from amplitud
functions, is a particular advantage of al# 3 formulation
of field theory. This structure was not explicitly taken into
account in the previous-expansion analysis far=2.32 The
previous result obtained from theexpansion up ta(e?)

9Reference 42.
hReference 5.

'Reference 43.
IReference 44.
kReference 45.
'Reference 46.

specified in Eqs(4.24), (5.19 and (5.21)—(5.24 of Ref. 9.
We have performed Borel resummations for these gquantities
on the basis of our new five-loop results far=1. For
aJ/a; we obtain the value 1:00.1. This is consistent with
the previous result 0.96+0.25 for n=1. Since forn>1
only three-loop results are availakl@hich would still yield
larger error bars for the derivatives of the various functions
mentioned abovyewe postpone corresponding calculations of
aZ/a_; for n>1 until four-loop results become available.
Finally we note that not only the fixed-point valugg
andF% but also the entire functiorB(u) andF. (u) are of
physical relevance. They are need@dfor determining the

reffective renormalized coupling from experimental data of

the specific hedt, and(ii) for representing the specific heat
in the entire nonasymptotic critical region well away frdm
according to Egs(3.3—(3.5). We also note thaB* andF*
enter various other important universal ratios, eRj.related
to the superfluid density, of “He.”

Note added.After completion of the present work we
Eeda\rned of Ref. 47, where the perturbative terms of a function
equivalent toB(u) have been calculated up to five-loop or-
der. These terms agree with ours in E2}21). At the end of
this work it is asserted that in our paper we use dlexpan-
sion. Our work does not use tleexpansion to calculate the
amplitude functions= . (u) and the amplitude ratio& /A~
anda_/a_ . Only the fixed-point valuai* has been deter-
mined via a Borel resummation of tkeexpansion series for
u*.
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9 for n=2 andn=3 are partly based on the one-loop form
of F_(u) for which no error bar was available in Ref. 9.
The expression ofi} /a; is more complicated and de-
pends on the derivatives of the functiofs (u), F_(u)
—F,(u), P,(u), B(u), and ¢,(u) at the fixed point, as

APPENDIX A: DERIVATION OF THE ADDITIVE
RENORMALIZATION A(u,e€)

The following equationgAl)—(A54) give the ultraviolet
d=4 poles of the diagrams shown in Fig. 1 defined by
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KR’ (%19 gr3) according to the standard notations, see e.g.,
Ref. 18. HereR’ denotes the incomplete ultraviolRtopera-
tion which subtracts subdivergences, dalenotes the op-
eration of taking pole parts. We use subscrisb] for the
pole terms on the right-hand sides of E¢s1)—(A8) that are
identical with the numbers associated with the three- and
four-loop diagrams of Ref. 1@the first numbera in the
brackets indicates the number of loops and the second num-
berb indicates the consecutive number of a diagram in Table
| of Ref. 16. The subscripts on the right-hand sides of Egs.
(A9)—(A18) correspond to the numbers of the five-loop dia-
grams of Ref. 18. We have multiplied the left-hand sides by
factors (167%™ in m-loop order because of the definition of
the bare four-point coupling 5gy/24 in Refs. 16-19.
The one- and two-loop expressions read
9? 1
16772KR’(—2 )=—|(1D_J<>
Jd O
(A1)

- fln(ro+p)

&2
(16w2>2KR'(—2 2>(ro,e>) 21,=3?, (A2)
O

the three-loop expressions read

(92
(16772)3KR’(W|(3)(ro,6))=2I(3,2)EJ<3>, (A3)
0

(92
(16W2)3KR’((}—rg |<4)(ro,€)) =8l(34+1239=3",

(1672)° KR’(ﬁ

d
(16772)5KR'(P 138 (rg,€)

2
(1672)°KR’

2
(16772)5KR’(
ar 0

(92
(1e‘>7T2)5|<R'<(9—rz

2

(16772)5KR’<5 139(rg, e))

O

PRB 58

d
P |<12>(r0,e))=2|1215J<12>, (A12)
0

|<13>(r0,e)) 415461 ,=I1,

(A13)

I(14)(r0,e))=2I85J(14), (A14)

=214+ 120 15+ 121 19+ 24 51+ 41 53+ 181 ;5= 19,

2

O

=8l 19+ 16l gg+ 32 g5+ 16l 1= 19,

2

0

(A15)

(A16)

(92
(16772)5KR’(W I(m(ro,e)) =21 g1+ 8l gyt 4l gg=I17,
0

(A17)

=8l 3o+ 320 47+ 4173+ 8l g3+ 8l gg+ 4l 105t 81 116=319.

(Ad) (A18)
the four-loop expressions read The pole terms up to four loops afe
2 2
(16’772)4KR,(_2 5)(r0,6)) 2|(45) J(5) (AS) I(l.l)_z (Alg)
O
2| & (6) 6) |(2.2)=—f2, (A20)
(1672)*KR &Tgl (rg,€) | =0=J3©), (AB) €
2 [ 8 (A21)
J 3.2~ 3
(16772)4KR'(I%|<7>(ro,e))=4|(4_9)+6|(4_1DEJ<7>, ( €
(A7) | _ 2 3 A22
7 34732 4e’ (A22)
2\4 rl _—1(8)
(1672) KR(&rgl (ro,e)> 8 8 2
(397~ 363 362 + @' (A23)
=24 4.1+ 6l (419112 (419=J®, (A8)
16
and the five-loop expressions read l(45=— et (A24)
4 (9) (9)
(16772)5KR’(—2I 9 (ro,e))=2I117EJ 9 (A9) 4 3
or -
0 l 4.9 33 T 22 (A25)
a 16 16 4
16772)5KR’( 110y ,e))zOEJ(lo), (A10) _
( or2 (o lan=—3a+33 32 (A26)
7 4 10 13 11-6¢(3)
1 2 5KR! _ I(ll) —0= 11D All __ T _ g
( 677 ) (arg (r016) O \] ’ ( ) |(4_12)— 364+ §§ §2+ —66 y (AZ?)
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8 8 4 2(3)-2
lww="gatzatzat— o (AW
2 1 7
|(4.19)=—¥+?—E, (A29)
and the five-loop pole terms dfe
8 3
|7=g—§, (A30)
8 3
|8:g—gg, (A31)
4 3 5

1147 7553 102 96 (A32)

o= 13 857 A33

1571563 2062 960€’ (A33)

8 7 .25 215 s

1571588 383 T 62 96e’ (A34)

. 16 7 11 157 At
27154 562 602 | 320¢’ (A35)
4 3 5
125~ 153 102 96 (A36)
487(3) 487(3)+24,(4)
I32= 5e3 52
14£(3)+9¢(4)— 16£(5
N 4£(3)+9(4)—164( ), (A37)
5¢
. 8 12 6 18(3)-45
477155 Bt T €3 52
146—90(3)— 9¢(4)

+ 30 , (A38)
16 8 28 6+4£(3)
3155 34 T 1583 T Be?

32— 12{(3)—18{(4)

B 30e : (A39)
| 16 16 8  4+4[(3) 7+6{(3)—12(4)
9 5SS 5eA 53 52 Se !

(A40)

16 16 8 4—43)
l=35 3a 328t 2+ (A4D

8 20 26 44-24£(3)
=35 3 38 2 (A2
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. 16 8 .\ 28 +6—12§(3) 16— 18¢(4)
887 1565 34 1563 5¢2  16e '
(A43)
. 52 .\ 34 +116—24{(3)
9B 55 156* T 1568 60€?
56—44¢(3)+67(4)
- 0c , (A44)
- 16 8 . 28 +6—12g(3) 16—18¢(4)
9571565 364 1563 5¢2 15¢ '
(A45)
- 14 .\ 19 386+ 768(3) 6
98 15¢* 1563 ' 1562 960 , (A46)
lgo= 42 + ! A4T
w3 36 (A47)
6 1 81-48,(3)
=5 a 53 52T a0 0 A9
| 64 32 8 16 2 40
106~ 155 54 T 53 T 152 18e’ A9
. 16 16 .\ 16 +52—108§(3)
10971565 56 ' B¢ 15¢2
202— 168(3)— 187(4)
- 20c , (A50)
- 8 4 32 250-96((3) A1
U T54 33 T 152 120 (ASD
32
|117:§a (A52)
32 32 8
120735 3t 3 (A53)
32 32 8
|121=§—Q+¥. (A54)

In Egs. (A37) and (A51) the corrections found in Ref. 19
have been taken into account. Note that in E§4.9)—(A54)
we have usecc=4—d whereas in Refs. 16, 18 denotes
(4—d)/2.

Equations(Al)—(A54) determine the additive renormal-
ization according to Eq(2.7) as
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_ n 8n(n+2)
A(u,e)=-2 P (—ul2)

4
+ >, SVGHIN(—u/2)2
=3

8
+> shGhyh(—u/2)3
1=5

18
+>, SGHIO(—u/2)4|. (A55)
i=9

The overall factor of 2 in Eq(A55) arises from thed=4
value of the factor Ay4/4) ~1/1672 which is needed to obtain
A(u,€) from Egs.(A1)—(A54) according to Eq(2.7). The
renormalized couplingi enters Eq(A55) in the formu/2;
the factor 1/2 takes into account that, nelar4, uy=A; 'u
+0(u?)=8m%u+0(u?)=1/4167°u+0O(u?)] [see Eq.
(2.89)].

APPENDIX B: Z FACTORS

In deriving the coefficients of the perturbation series of
the quantities . (u), P. (u), andf39(u) we needed th&
factorsZ,, Z,,, andZ, calculated previously*°up to five-
loop order. Since their explicit form is not available in the
literature we present them here explicitly. They read

5

Z.(u,e)=1+ 21 Z'M(e)u™+0(u®), (B1)
5
Z,(u,e)=1+ 21 ZM(e)um+0(u®), (B2)
5
Zy(u,©)=1+ X, Z{"(e)um+0O(u®), (B3)
m=1

with the following coefficients irm-loop order.
Coefficients ofZ,(u,e€):

4(n+2
2= 202 (B4)
4(n+5) 5
Z?(e)=4(n+2) o )3 (B5)
€ €
5 16 15n+111 —278-61n 12n%+132n+360
Z®3(e)== (n+2) + 5 + 3 , (B6)
3 € €
" _ 2 o 2887(4)(5n+22)+48,(3)(3n%+ 10n+ 68) + 31 060- n?>+ 757
r(6)=—3(n+2) .
1152(3)(22+5n) + 12362+ 23 580+ 74 616  16(245°+ 2498+ 6284
a 62 + 63
n+5)(2n+13)(n+6
B 92( )( - ) ( )' (87)

Z®(e)= 14—5 (n+2)[[960Q;(6)(55n+2n2+ 186) + 768/(5)( —

5n2+ 72+ 14n) +288(4)(29n%+ 2668— 3n>+ 816n)

+768(3)2(—2n2— 1450 —582) + 48(3) (8208 + 17n3+ 94?2+ 31 848 + 21n3+ 45 25h2+1 077 126

1
+3166 52§ - [30 72 (5)(2n?+ 186+ 55n]+576/(4)(5n+22)(n— 22) + 96¢(3)(27n°+ 12242+ 14 456

1
+45 449 —98n°+ 277 28017 + 3 073 3761+ 7 449 713 — +[2304,(3)(13n+74)(5n+22) +21 5761°

1 32(307 976+31 75112+ 172 1761+ 1933

+685 1972+5 017 312+ 10 459 360 =

N 384(5n+34)(n+6)(n+5)(2n+13)

65

Coefficients ofZ 4(u, €):

64

(B8)
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z=0, (B9)

) (B10)

z<3>—§(n+2)(n+8) e (B11)
¢ 3 e €

5(n%—18n—100) N 4(n%+234+53n) 16(n+8)?

€ e

, (B12)

zP=2(n+2)

1
[ —1152(4)(5n+22)+48;(3)(—6n?+ 184+ n3+64n) — 22 75h — 39n3— 296n%>— 77 056 p

8
5 — _
Z, 15(n+2)

. 2304(3)(5n+22)—60n3+ 135 488+ 42 440+ 1844% 16(n+8)(3n2+ 26N+ 1210 . 192n+8)3

62 63 64
(B13)
Coefficients ofZ,(u,e):
4(n+8
zgjnz(_), (B14)
€
(n+8)? 5n+22
Zf,z)=16[ = —|. (B15)
8 [96¢(3)(5n+22)+94n+2992+35n%2 16(n+8)(17n+76) 24(n+8)3
ZL3)=—[ 60(3)( ) & )(2 )+ A ! ) , (B16)
3 € € €
(4) 16 2 2 2 3
Z'=— = |[480(5)(2n*+55n+186) — 72(4)(n+8)(5n+22) + 24{(3)(63n” + 764n + 2332 + 20 621+ 1640”— 5n
1 480/(3)(5n+22)(n+8)+67 42h+153 088+ 7732+ 17n%  16(55n+248)(n+8)? 48 n+8)*
+49912 —— . + P & |

(B17)

4
z<5>:1—5 {[6911(7)(25 774+ 9261In+ 686n%) — 28 80 (6)(n+ 8)(2n?+ 55n+ 186) + 768/ (5)(165 084+ 74667+ 3051°

u

+ 66 9861) — 288/(4)(62 656+ 4084+ 28 08h + 18M°3) + 2304 (3)%(3264— 592 — 6n°+ 446n) + 487(3)(1264°
—13n*+1 312 864+ 551 03D+ 67 432°) + 20 429 248+ 2 518 86412+ 195n*+ 40 148 480- 39 23(°] %

—[99 84Q(5)(n+8)(2n%+55n+186)— 14 976 (4)(5n+22)(n+ 8)?+ 3456/(3)(91n3+ 15 4361+ 34 144+ 2196?)
+63 219 712—80*+ 420 800>+ 117 768 192-9 811 712?] 212

N 66 048(3)(5n+22)(n+8)2+32(n+8)(733n3+40 1862+ 353 397 +803 328 51219 +875(n+8)3

e e*

384Qn+8)°
2O (B18)
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