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Five-loop additive renormalization in the f4 theory and amplitude functions of the minimally
renormalized specific heat in three dimensions

S. A. Larin,* M. Mönnigmann, M. Stro¨sser, and V. Dohm
Institut für Theoretische Physik, Technische Hochschule Aachen, D-52056 Aachen, Germany

~Received 7 November 1997; revised manuscript received 13 March 1998!

We present an analytic five-loop calculation for the additive renormalization constantA(u,e) and the
associated renormalization-group functionB(u) of the specific heat of theO(n) symmetricf4 theory within
the minimal subtraction scheme. We show that this calculation does not require new five-loop integrations but
can be performed on the basis of the previous five-loop calculation of the four-point vertex function combined
with an appropriate identification of symmetry factors of vacuum diagrams. We also determine the amplitude
functionF1(u) of the specific heat in three dimensions forn51,2,3 aboveTc andF2(u) for n51 belowTc

up to five-loop order, without using thee542d expansion. Accurate results are obtained from Borel resum-
mations ofB(u) for n51,2,3 and of the amplitude functions forn51. Previous conjectures regarding the
smallness of the resummed higher-order contributions are confirmed. Combining our results forB(u) and
F1(u) for n51,2,3 with those of a recent three-loop calculation ofF2(u) for generaln in d53 dimensions
we calculate Borel resummed universal amplitude ratiosA1/A2 for n51,2,3. Our result forA1/A251.056
60.004 forn52 is significantly more accurate than the previous result obtained from thee expansion up to
O(e2) and agrees well with the high-precision experimental resultA1/A251.05460.001 for 4He near the
superfluid transition obtained from a recent experiment in space.@S0163-1829~98!07229-4#
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I. INTRODUCTION

One of the fundamental achievements of the ren
malization-group~RG! theory of critical phenomena is th
identification of universality classes in terms of the dime
sionalityd of the system and the numbern of components of
the order parameter.1 Specifically, RG theory predicts tha
the critical exponents, certain amplitude ratios, and sca
functions are universal quantities that do not depend, e.g
the strength of the interaction or on thermodynamic variab
~such as the pressure!. The superfluid transition of4He be-
longs to thed53, n52 universality class and provides
unique opportunity for an experimental test of the univers
ity prediction by means of measurements of the critical
havior at various pressuresP along thel line Tl(P). Early
tests have been performed by Ahlers and collaborators
consistency with the universality prediction was fou
within the experimental resolution.2 At a significantly higher
level of accuracy, the superfluid density and the specific h
~or, equivalently, thermal expansion coefficient! above and
below Tl(P) are planned to be measured in the Superfl
Universality Experiment3 under microgravity conditions o
at reduced gravity in the low-gravity simulator.4 As demon-
strated recently,5 this would allow one to perform measure
ments up toutu.1029 in the reduced temperaturet5@T
2Tl(P)#/Tl(P).

On the theoretical side, the corresponding challenge i
calculate as accurately as possible the properties of theO(n)
symmetric f4 model in three dimensions. To extract th
leading critical exponents from the experimental data and
demonstrate their universality at a highly quantitative le
requires detailed knowledge on the ingredients of a nonlin
RG analysis.6 They include not only the well-known RG
exponent functions of thef4 model whose fixed point value
PRB 580163-1829/98/58~6!/3394~15!/$15.00
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determine the critical exponents but also the less well-kno
amplitude functions7–12 which contain the information abou
universal ratios of leading and subleading amplitudes.1

The existing theoretical predictions on the critic
exponents13 within the minimal subtraction scheme14,15 are
based on field-theoretic calculations to five-loop order16–19

and Borel resummation. By contrast, the present theore
knowledge of the amplitude ratios forn.1 below Tc is
based only on low-order~mainly one- and two-loop! calcu-
lations which imply an uncertainty at the level of at lea
10–30%.1 It has therefore been proposed20 to significantly
reduce this uncertainty by performing new higher-ord
field-theoretic calculations and Borel resummations of va
ous amplitude functions in three dimensions.

Both conceptual and computational steps towards
goal have already been performed. The conceptual prog
includes the demonstration that thed53 field theory sug-
gested by Parisi21 can well be realized within the minima
subtraction scheme atd53 ~Refs. 7–9! by incorporating Sy-
manzik’s nonvanishing mass shift22 and that spurious Gold
stone singularities forn.1 below Tc can well be treated
within this approach12 by using an appropriately define
pseudocorrelation length.9 The computational steps includ
the determination of the amplitude functionsF1(u) and
F2(u) of the specific heat in three dimensions aboveTc for
n51,2,3 ~Ref. 10! and belowTc for n51,11 respectively, up
to five-loop order, and their Borel resummation. These c
culations, however, were not yet complete because of an
proximation regarding the additive renormalizationA(u,e)
of the specific heat and the associated RG functionB(u).
Due to the lack of knowledge in the literature about high
order terms,A(u,e) and B(u) were approximated by thei
two-loop expressions. Although the good agreement betw
low-order d53 perturbation results7,23,24 and accurate
3394 © 1998 The American Physical Society
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experiments2,25,26provided some indication for the smallne
of the effect of the higher-order terms ofB(u), no reliable
estimate could be given for the remaining uncertainty
F6(u) which could well be of relevance at the level of a
curacy anticipated in future experiments.3 Furthermore we
recall that any inaccuracy ofB(u) enters not only the
formulas9 for several universal amplitude ratios but also t
formulas needed to determine the effective couplingu( l )
from the specific heat.7,23,24

It is the purpose of the present paper to provide the m
ing information on the higher-order terms ofA(u,e) and
B(u) by means of a new five-loop calculation. We sh
show that the analytic calculation ofA(u,e) andB(u) can be
directly related to the previous calculations16–19 of the four-
point vertex function. This provides the crucial simplificatio
that no new evaluations of three-, four- and five-loop in
grals are necessary but that only a new determination of s
metry andO(n) group factors of vacuum diagrams is suf
cient.

Using the five-loop expression ofB(u) we are in the po-
sition to determine the correct higher-order terms of
minimally renormalized amplitude functionsF1(u) for n
51,2,3 andF2(u) for n51 in three dimensions on the bas
of previous work27–30 where a different renormalizatio
scheme was used. The new coefficients of the higher-o
terms ofF1(u) turn out to differ considerably from the pre
vious approximate coefficients10 whereas the coefficients o
F2(u) are only weakly affected by the new higher-ord
terms ofB(u).

We also perform new Borel resummations ofB(u) for n
51,2,3 as well as ofF2(u) and of F2(u)2F1(u) for n
51. It turns out that the result of the Borel resummation
B(u) including the new terms up to five-loop order diffe
from the two-loop resultB(u)5n/21O(u2) by only less
than 1% at the fixed point. For the amplitude functions, o
new Borel resummation results differ from the previo
ones10,11 by about 1% forF2 and by less than 0.1% fo
F22F1 at the fixed point. This is a nontrivial and importa
confirmation of the previous conjectures about the smalln
of resummed higher-order contributions.9–11

As a first application, we calculate the universal rat
A1/A2 andac

1/ac
2 of the leading and subleading amplitud

of the specific heat above and belowTc for n51 and d
53. In addition we calculate Borel resummation values
A1/A2 for n52 and 3 by combining our present results f
B(u) andF1(u) for n52 and 3 with those of a recent thre
loop calculation ofF2(u) for generaln.31 All of our calcu-
lations are performed atd53 dimensions, without using th
e expansion. Our resultA1/A251.05660.004 for n52 is
more accurate than the previous result32 1.029460.0134 ob-
tained from thee542d expansion up toO(e2) and agrees
well with the high-precision experimental result5 1.054
60.001 for 4He near the superfluid transition obtained fro
a recent experiment in space.

II. ADDITIVE RENORMALIZATION
OF THE SPECIFIC HEAT

The O(n) symmetricf4 model is defined by the usua
Landau-Ginzburg-Wilson functional
f
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H$f0~x!%5E
V
ddxS 1

2
r 0f0

21
1

2 (
i

~¹f0i !
2

1u0~f0
2!22h0•f0D ~2.1!

for the n-component field f0(x)5@f01(x),...,f0n
(x)#

where

r 05r 0c1a0t, t5~T2Tc!/Tc , ~2.2!

andh05(h0,0, . . .,0). TheGibbs free energy per unit vol
ume ~divided bykBT! is

F0~r 0 ,u0 ,h0!52V21 ln E Df0exp~2H!. ~2.3!

We shall consider the bulk limitV→`. We are interested in
the specific heatC̊6 per unit volume at vanishing externa
field h050 ~divided by Boltzmann’s constantkB! where6

refers toT.Tc and T,Tc , respectively. NearTc , C̊6 is
determined by9

C̊65CB2Tc
2 ]2

]T2 F0~r 0 ,u0,0!5CB2a0
2 ]2

]r 0
2 F0~r 0 ,u0,0!,

~2.4!

whereCB is an analytic background term. Alternatively th
Helmholtz free energy per unit volumeG0(r 0 ,u0 ,M0)
5F(r 0 ,u0 ,h0)1h0M0 with M0[^f01& determinesC̊6 in
the h0→0 limit according to

C̊65CB2a0
2 d2

dr0
2 G0„r 0 ,u0 ,M0~r 0 ,u0!…. ~2.5!

The perturbative expression forG0(r 0 ,u0 ,M0) is obtained
from the negative sum of all one-particle irreducible vacuu
diagrams.15 The perturbative expression forC̊6 is then de-
termined by the vertex functionsG̊6

(2,0)5d2G0 /dr0
2 which we

consider as functions of appropriately defined correlat
lengthsj1 andj2 above and belowTc ,9,12

C̊65CB2a0
2G̊6

~2,0!~j6 ,u0 ,d!. ~2.6!

A description of the critical behavior requires to turn to t
renormalized vertex functions

G6
~2,0!~j6 ,u,m,d!5Zr

2G̊6
~2,0!~j6 ,meZuZf

22Ad
21u,d!

2
1

4
m2eAdA~u,e!. ~2.7!

We work at infinite cutoff using the prescriptions of dime
sional regularization and minimal subtraction at fixed dime
sion 2,d,4 without employing thee542d expansion.7–9

The Z factors are introduced as

r 5Zr
21~r 02r 0c!, u5m2eAdZu

21Zf
2 u0 , f5Zf

21/2f0 ,
~2.8!

where the geometric factor
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Ad5G~32d/2!222dp2d/2~d22!21 ~2.9!

becomesA35(4p)21 for d53 and A45(8p2)21 for d
54. These Z factors Zi(u,e) and the associated field
theoretic functions8

z r~u!5m]m ln Zr~u,e!21u0 , ~2.10!

zf~u!5m]m ln Zf~u,e!21u0 , ~2.11!

bu~u,e!52eu1b̃~u!5u@2e1m]m~Zu
21Zf

2 !u0#,
~2.12!

are known up to five-loop order.17–19

The main quantity of interest in the present paper is
renormalization constantA(u,e) in Eq. ~2.7! which absorbs
the additive poles of bothG̊1

(2,0) and G̊2
(2,0) . Previously10,11

A(u,e) was employed only in its two-loop form7

A~u,e!522n
1

e
28n~n12!

u

e2 1O~u2!. ~2.13!

Here we report on a calculation ofA(u,e) up to five-loop
order. We would like to stress that this calculation does
require new five-loop integrations but can be performed
the basis of the previous five-loop calculation17–19 of the
four-point vertex function combined with an appropria
identification of symmetry andO(n) group factors of
vacuum diagrams which are shown in Fig. 1. Their nega
sum determines the Helmholtz free energyG0 up to five-loop
order. For the present purpose of determining the pole te
at d54 it suffices to consider only the caser 0.0 andM0
50 where only four-point vertices exist. The diagrams a
labeled~1! in one-loop order,~2! in two-loop order,~3!, ~4!
in three-loop order,~5!–~8! in four-loop order and~9!-~18! in
five-loop order. The analytic expression of anm-loop
diagram (i ) is given by the product of the couplin
(2u0)m21, the symmetry factorS( i ), theO(n) group factor
G( i )(n) and the momentum integral expressionI ( i )(r 0 ,e).
Thus the structure of the diagrammatic expression of a t
cal diagram, e.g.,~16! is

5S~16!~2u0!4G~16!I ~16!~r 0,e! ~2.14!

52592~2u0!4
n418n3132n2140n

81

3E
p1

E
p2

E
p3

E
p4

E
p5

3G1•G2•G11223•G3•G11224•G4•G11225•G5

~2.15!

with *p[(2p)2d*ddp and the propagators Gi 6 j
[(r 01upi6pj u2)21. The symmetry and group factors a
listed in Table I.

To calculate the additive renormalization constantA(u,e)
one needs to calculate those ultravioletd54 pole terms of
the diagrams contributing toG01

(2,0) that are left after subtrac
e

t
n

e

s

e

i-

tion of subdivergences. One obtainsG01
(2,0) by taking two de-

rivatives ofG0 with respect tor 0 . The analytic calculation of
the poles of the diagrams forG01

(2,0) is identical to that carried
out previously17–19 for the four-point vertex functionG0

(0,4) .
To see this, one should take into account that in the minim
subtraction scheme14 the ultraviolet pole terms specifie
above do not depend onr 0 . Then by using the method o
infrared rearrangement33 one can nullifyr 0 and introduce for
each diagram a new fictitious external momentum to regu
ize infrared divergences. Then one can see that only a
ticular subset of those diagrams ofG0

(0,4) are relevant in the
present context, namely those where the four external
are connected to each diagram through only two four-po
vertices~rather than three four-point vertices or four fou
point vertices!. The details of the calculation are presented
Appendix A.

The result reads

A~u,e!5 (
m51

5

A~m!~u,e!1O~u5!, ~2.16!

whereA(m) denotes the contribution ofm-loop order,

FIG. 1. Vacuum diagrams up to five-loop order determining
Helmholtz free energyG0 for M050, r 0.0. Diagrams~6!, ~10!,
and~11! do not contribute toA(u,e). The pole terms derived from
the vacuum diagrams are given in Eqs.~A1!–~A54! of Appendix A.
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A~3!~u,e!52
4

3
n~n12!F3

e
2

40

e2 1
24~n14!

e3 Gu2, ~2.17!

A~4!~u,e!52
8

3
n~n12!F ~n18!~12z~3!225!

e
1

96n1696

e2 2
248n11024

e3 1
48~n14!~n15!

e4 Gu3, ~2.18!

A~5!~u,e!52
2

15
n~n12!F768~n14!~n15!~5n128!

e5 2
128~293n212624n15840!

e4

1
9216z~3!~5n122!132~519n218462n125048!

e3

2
192z~3!~7n2228n148!14608z~4!~5n122!164~31n212354n19306!

e2 1@48z~3!~3n22382n21700!

1288z~4!~4n2139n1146!23072z~5!~5n122!23~319n2213968n264864!#
1

e Gu4, ~2.19!

wherez(s)5( j 51
` j 2s is the Riemann zeta function withz(3)51.202 056 90,z(4)5p4/90, andz(5)51.036 927 76. Most

important is thed-independentRG function B(u) which is determined by9

4B~u!5@2z r~u!2e#A~u,e!1bu~u,e!
]A~u,e!

]u
. ~2.20!

Using A(u,e) of Eqs.~2.16!–~2.19! and the perturbative expressions forz r andbu of Refs. 17–19, we find

B~u!5
n

2
13n~n12!u22

8

3
n~n12!~n18!@25212z~3!#u31

1

2
n~n12!@16z~3!~3n22382n21700!21024z~5!~5n122!

196z~4!~4n2139n1146!2319n2113 968n164 864#u41O~u5!. ~2.21!

TABLE I. Symmetry and group factors of the vacuum diagrams shown in Fig. 1. Diagrams~6!, ~10!, and
~11! do not contribute toA(u,e).

Loop order Diagram (i ) Symmetry factorS( i ) Group factorG( i )(n)

One loop ~1! 1 n
Two loops ~2! 3 1

3 (n212n)
Three loops ~3! 36 1

9 (n314n214n)
~4! 12 1

3 (n212n)
Four loops ~5! 432 1

27(n416n3112n218n)
~7! 576 1

9 (n314n214n)
~8! 288 1

27(n3110n2116n)
Five loops ~9! 5184 1

81(n518n4124n3132n2116n)
~12! 10368 1

27(n416n3112n218n)
~13! 6912 1

27(n416n3112n218n)
~14! 6912 1

27(n416n3112n218n)
~15! 2304 1

9 (n314n214n)
~16! 2592 1

81(n418n3132n2140n)
~17! 20736 1

81 (n4112n3136n2132n)
~18! 10368 1

81(5n3132n2144n)
.
The terms ofO(u2) andO(u3) agree with those of Ref. 34
In Table II the coefficientscBm of the power series

B~u!5 (
m50

`

cBmum ~2.22!
are given forn50,1,2,3 up tom54 corresponding to five-
loop order. Table II also contains the coefficientsf i

(m) of the
power series of the functions

f i~u!5 (
m51

`

f i
~m!um, ~2.23!
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TABLE II. Coefficients f i
(m) of the functionsb̃(u), z r(u), and zf(u) for i 51,2,3, respectively, and

coefficientscBm of B(u), compare Eqs.~2.22! and~2.23!, for n50, 1, 2, 3 up to five-loop order~m56 for
b̃, m55 for z r andzf , m54 for B!. For f i

(m) compare Table I of Ref. 8.

b̃u z r zw B

n50 0 8 0 0
32 280 216 0

2672 3552 128 0
43989.9534 2223152.607 28000 0

24166409.19 18836823.8 500639.112 0
498653403.0

n51 0 12 0 1/2
36 2120 224 0

2816 6048 216 9
56245.8519 2413813.942 214040 2761.422836

25632017.54 37512804.7 958294.321 44244.7100
708814936.0

n52 0 16 0 1
40 2160 232 0

2960 9024 320 24
69029.7505 2660870.017 221120 22256.06766

27268274.40 63662497.1 1566676.69 141294.329
956636505.0

n53 0 20 0 3/2
44 2200 240 0

21104 12480 440 45
82341.6490 2967074.371 229000 24653.13955

29075019.76 98265069.9 2333667.84 310944.846
1243816220.0
om
i

.

g

-
n

o
op
ts
e
e

e-
l-

.
r-

w.

m-
t

rtial
where f i(u) denotes the functionsb̃(u), z r(u), and zf(u)
for i 51,2,3, respectively. These coefficients are taken fr
Refs. 17–19. Up to four-loop order they agree with those
Table I of Ref. 8.~Note thatf i

(k) in the table caption of Ref
8 should readf i

(k)31024.! The five-loop coefficientsf 1
(6) ,

f 2
(5) , andf 3

(5) differ from those in Table I of Ref. 8 accordin
to the corrections in five-loop order in Ref. 19.

In Fig. 2 the partial sums ofB(u) from two- to five-loop
order are shown for the examplen52. As expected, the con
tributions form>2 have alternating signs and increase co
siderably in magnitude. Clearly a resummation ofB(u) is
necessary similar to that forz r(u), zf(u), and b̃(u) per-
formed previously.8

First we reexamine the fixed-point valuesu* , bu(u* ,1)
50, for n51,2,3 obtained in Refs. 8 and 24 by means
Borel resummation on the basis of previous five-lo
results17,18 and in Ref. 16 on the basis of four-loop resul
Here we employ the corrected five-loop coefficients for the
expansion of the fixed-point value which we have deriv
from Eq. ~8! of Ref. 19. Employing the standard Borel r
summation method8,35 we have obtained the fixed-point va
ues in three dimensions

u* 50.040460.0003 for n51, ~2.24!

u* 50.036260.0002 for n52, ~2.25!

u* 50.032760.0001 for n53. ~2.26!
n

-

f

.

d

The corresponding resummation parametersa and b55.5
1n/2 ~Ref. 35! are

2.22<a<3.41, b56.0 for n51, ~2.27!

2.45<a<3.43, b56.5 for n52, ~2.28!

2.71<a<3.43, b57.0 for n53. ~2.29!

The previous fixed-point values8,16,24are consistent with Eqs
~2.24!–~2.26! within the previous error bars. The present e
ror bars are smaller than the previous ones.8,16,24~The range
of a determines our error bars, as described further belo!

We have performed Borel resummations ofB(u) at the
fixed point u* for the casesn51,2,3. In addition, for the
important casen52 ~superfluid 4He!, we have determined
the Borel resummed functionB(u) at various values ofu.
The results are given in Eq.~2.34!–~2.36! and in Figs. 2 and
3.

A description of the Borel resummation method35 for the
present purpose has been given in Sec. V of Ref. 8.@In Eq.
~5.10! of Ref. 8ajk should readaj 2m,k .# In the present work,
however, we use a different way of determining the para
etersa and b of the summations. This implies a differen
determination of the error bars.

For B(u) the value of the parameterb is not known from
an analysis of the large-order behavior@see Eq.~5.6! of Ref.
8, and references therein#. Here we fix bothb and a by
requiring fastest convergence of the series of the pa
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Borel sumsS(L)5S(L)(u,a,b) for B(u) defined in Eq.~5.12!
of Ref. 8 @hereL corresponds to (L11)-loop order#. To do
so we look for the minima ofD (4) and D (3) with regard to
variations of bothb anda where

D~L !~u,a,b!5US~L !2S~L21!

S~L21! U. ~2.30!

This yields five-loop values of the parametersa, b for each
u. In order to define an error bar, we apply the same met
to the four-loop result ofB(u), i.e., to D (3) and D (2). The
four-loop values ofa, b together with the five-loop value
provide the ranges of the best values ofa andb as a result of
the combined four- and five-loop analysis. Then we defi
the error bar of the five-loop result forB(u) by the maxi-
mum and minimum of the resummed four- and five-lo
values forB(u) over the ranges of the best values ofa, b. At
the fixed pointu* , Eqs.~2.24!–~2.26!, we find the ranges

0.95<a<1.08, 5.7<b<7.75 for n51, ~2.31!

0.94<a<1.04, 7.0<b<8.59 for n52, ~2.32!

0.94<a<1.02, 8.18<b<9.76 for n53. ~2.33!

The corresponding Borel resummed results forB(u* ) are

B~u* !50.502460.0011 for n51, ~2.34!

B~u* !51.005360.0022 for n52, ~2.35!

B~u* !51.508060.0034 for n53. ~2.36!

We have also determined the functionB(u) for n52 ~super-
fluid 4He! in the range 0<u<0.04 as shown in Fig. 3.

Most remarkable is the smallness of the deviation of
resummed functionB(u) for n51,2,3 from its two-loop ap-
proximationn/2. This confirms previous conjectures9–11 and
justifies earlier analyses.7,23,24

FIG. 2. Partial sumsBM(u)5(m50
M cBmum of B(u), Eq. ~2.22!,

as a function ofu for n52 from M51 ~two-loop order! to M54
~five-loop order!. Also shown is the Borel resummed result~solid
line! which deviates from the two-loop resultB151 by only 0.5%
at the fixed pointu!50.0362.
d

e

e

III. AMPLITUDE FUNCTIONS F 6 IN THREE
DIMENSIONS

A. Definition of F 6

By means of the renormalized vertex functions in E
~2.7! we define the dimensionless amplitude functions

F6~mj6 ,u,d!524meAd
21G6

~2,0!~j6 ,u,m,d!. ~3.1!

They enter the critical behavior of the specific heat in th
dimensions in the form of the functions

F6~1,u,3![F6~u! ~3.2!

according to9

C̊65CB1
1

4
a2m21A3K6„u~ l 6!…

3exp E
u

u~ l 6! 2z r~u8!21

bu~u8,1!
du8, ~3.3!

where

K6~u!5F6~u!2A~u,1! ~3.4!

anda5Zr(u,1)21a0 . In Eq. ~3.3!, u( l ) is the effective cou-
pling satisfying

l
du~ l !

dl
5bu„u~ l !,1… ~3.5!

with u(1)5u. The flow parametersl 1 and l 2 are chosen as
l 15(mj1)21 and l 25(mj2)21 above and belowTc .

FIG. 3. Borel resummation result for the functionB(u), Eq.
~2.21!, for n52 ~solid line! obtained by interpolation between th
resummed values ofB(u) at uk5ku!/10,k51, . . . ,10 of therenor-
malized couplingu in the range 0,u<u!50.0362, with error bars.
Also shown is the three-loop resultB2(u)51124u2 ~dashed line!,
compare Fig. 2. The two-loop result isB151. The Borel values
B(uk) are 1.000 233, 1.000 73, 1.0013, 1.0019, 1.0026, 1.00
1.0037, 1.0043, 1.0048, 1.0053 fork51, . . .,10, respectively.
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B. Power series ofF 6

The amplitude functions are expandable in integer pow
of u ~Ref. 9! and have the power series10

F1~u!5 (
m50

`

cFm
1 um ~3.6!

and11

F2~u!5
1

u (
m50

`

cFm
2 um. ~3.7!

We have determinedcFm
1 up to five-loop order~i.e., up to

m54! for n51,2,3 andcFm
2 up to five-loop order~i.e., up to

m55! for n51 in two different ways.
~i! The coefficientscFm

1 and cFm
2 can be calculated from

Eqs.~3.1!, ~2.7! in three dimensions according to

F6~u!5216pZr
2j6

21G̊6
~2,0!~j6,4pj6

21ZuZf
22u,3!1A~u,1!,

~3.8!

where theZ factors have the argumentsZi(u,1). The pertur-
bative expression forG̊1

(2,0) can be obtained forn51,2,3
from

G̊1
~2,0!~j1 ,u0,3!5

1

4u0
Z5

21~l!, ~3.9!

where the renormalization factorZ5(l) and its relation to the
specific heat have been presented in numerical form by B
villier and Godrèche28 and by Bagnuls and Bervillier,29,36see
also Ref. 10. Ford53 their renormalized couplingl is re-
lated to ouru0 via the renormalization factorZ3(l) accord-
ing to u0j1522plZ3(l)21/2 as noted in Ref. 10. The per
turbative expression ofG̊2

(2,0) for n51 can be determined
according to

G̊2
~2,0!~j2 ,u0,3!5

]2

]r 08
2 G̊2~j2 ,u0,3!

5S ]r 08

]j2
D 21 ]

]j2

3F S ]r 08

]j2
D 21 ]

]j2
G̊2~j2 ,u0,3!G ,

~3.10!

wherer 08(j2 ,u0) is given by Eq.~3.8! of Ref. 11. The Helm-
holtz free energyG̊2(j2 ,u0,3) is given in numerical form by
Eq. ~3.15! of Ref. 11 where ourG̊2(j2 ,u0,3) is denoted by
G̃20(j2 ,u0). Our numerical results forcFm

6 up to nine digits
are presented in Table III.

~ii ! Alternatively the coefficientscFm
6 can be determined

via the relation

8A3
21P6~u! f 6

~3,0!~u!5@122z r~u!#F6~u!14B~u!

2bu~u!]F6~u!/]u ~3.11!

as done previously.10,11 For the definition ofP6 and f 6
(3,0)

and for a derivation of Eq.~3.11! we refer to Refs. 8 and 9
rs

r-

In the present context we need the contributions toP6 and
f 6

(3,0) only up toO(u4) as given in Table IV of Ref. 10 and
Table III of Ref. 11, sinceB(u) is known only up toO(u4)
as well.„We recall that the coefficients ofP2 are determined
by those of P1 according to P2(u)52 1

2 $112@1
2P1(u)#2 3

2 z r(u)%.9
… This calculation via Eq.~3.11! yields

coefficientscFm
6 that agree with those obtained via Eq.~3.8!

up to eight digits forcFm
2 and up to seven digits forcFm

1 . The
slight differences between the results of the calculations~i!
and ~ii ! are due to the fact thatZ3(l), Z5(l), and G̊2 are
available up to five-loop order only in numerical form. W
consider the calculation~i! via Eq. ~3.8! as slightly more
reliable since fewer numerical operations are required tha
calculation~ii ! using Eq.~3.11!.

Since here we have used the perturbative contribution
B(u) up to five-loop order, the resulting higher-order coe
ficientscFm

6 given in Table III differ from those determine
previously~see Table IV of Ref. 10 and Table III of Ref. 11!
where the approximationB(u)5n/21O(u2) was used. Only
our low-order coefficientscF0

1 , cF1
1 , cF0

2 , cF1
2 , and cF2

2

agree with the previous ones.10,11 The coefficientscFm
1 with

m.1 differ considerably from the previous ones whereas
coefficientscFm

2 with m.2 differ only by 0.2% (m53),
0.1% (m54), and 2% (m55).

Very recently the coefficientscFm
1 and cFm

2 have been
determined analytically for generaln up to three-loop
order.31 The corresponding three-loop valuescF2

1 for
n51,2,3 as well ascF3

2 for n51,2,3 are taken from Ref. 31
and are included in Table III up to nine digits. No results f
cF3

2 were available in the previous literature forn.1. The
new information oncF3

2 for n.1 enables us to perform th
first Borel resummations forF2(u) andF2(u)2F1(u) for
n52 and 3 in Sec. III D below.

TABLE III. Coefficients cFm
6 of F1(u) and F2(u) for

n51,2,3 defined in Eqs.~3.6! and ~3.7!, respectively. ForcFm
1 , m

refers toum corresponding to (m11)-loop order whereas forcFm
2 ,

m refers toum21 corresponding tom-loop order. The coefficients
cF2

1 andcF3
2 ~three-loop order! are taken from Ref. 31.

m cFm
1 cFm

2

n51 0 21 1/2
1 26 24
2 222.6976284 72
3 2722.742498 25189.75474
4 34775.5861 433582.586
5 247754702.5

n52 0 22 1/2
1 216 24
2 292.5270090 64
3 22430.86460 25918.07320
4 102469.659

n53 0 23 1/2
1 230 24
2 2233.488142 56
3 25742.02976 26607.95641
4 204463.777
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C. Borel resummation of five-loop results forn51

In order to study the effect of the new higher-order ter
we have performed Borel resummations of the series
uF2(u) and foru@F2(u)2F1(u)# at the fixed pointu* for
the casen51. The method employed is the same as forB(u)
in Sec. II. The parameter ranges turn out to be

1.6<a<1.7, 7.48<b<8.70 ~3.12!

for u* F2(u* ), and

1.4<a<1.7, 6.0<b<11.7 ~3.13!

for u* @F2(u* )2F1(u* )#.
We have found that our present method does not yie

reliable estimate of the parametersa andb for F1(u* ) sepa-
rately; this may be related to the fact that, unlikecFm

2 , the
coefficientscFm

1 ~see Table III! do not have alternating sign
for m<3 ~this alternation is predicted for the asympto
large-order behavior8,35!. F1(u) will be further studied else-
where. In the application to amplitude ratios given below
shall not needF1(u* ) separately.

The resummation results are

u* F2~u* !50.368760.0040 ~3.14!

and

u* @F2~u* !2F1~u* !#50.417060.0036. ~3.15!

The previous approximate resummation results10,11 for n
51 were u* F2(u* )50.3648 andu* @F2(u* )2F1(u* )#
50.4170 with an error bar of about 1%. Thus our resumm
tion results differ from the previous ones only by about 1
for F2 and by less than 0.1% forF22F1 , confirming pre-
vious conjectures.10,11 The parameterdF in the effective
representation11 F2(u)5(2u)2124(11dFu) now becomes
dF524.64 ~compared to24.04 in Ref. 11!. This leaves the
solid line in Fig. 4 of Ref. 11 essentially unchanged.

D. Borel resummation of three-loop results forn52 and 3

While the previous two-loop result9 for F2(u) did not yet
provide sufficient information for a controlled resummati
procedure forn.1 and thus did not yet lead to an err
estimate, the new three-loop coefficientscF3

2 have signifi-
cantly improved the situation. On the basis of these thr
loop results we have performed Borel resummations of
series foruF2(u) and for u@F2(u)2F1(u)# for the cases
n52 and 3. The method employed is the same as in Sec
The parameter ranges turn out to be

21.70<a<1.10, 1.5<b<4.3, n52, ~3.16!

21.90<a<1.15, 1.5<b<4.7, n53 ~3.17!

for u* F2(u* ), and

20.80<a<0.95, 0.65<b<8.3, n52, ~3.18!

20.30<a<0.55, 1.10<b<7.5, n53 ~3.19!

for u* @F2(u* )2F1(u* )#. The resummation results are

u* F2~u* !50.38460.025, n52, ~3.20!
s
r

a

e

-

e-
e

II.

u* F2~u* !50.38760.026, n53, ~3.21!

and

u* @F2~u* !2F1~u* !#50.46160.019, n52,
~3.22!

u* @F2~u* !2F1~u* !#50.49860.011, n53.
~3.23!

In order to substantiate the reliability of these resumm
tions of three-loop results we have repeated our resumma
for n51 but now on the basis of three-loop results. In F
4~a! we show the Borel resummation value foruF2(u) at
u50.04 forn51 together with the corresponding error ba
For comparison, the smaller error bar resulting from t
Borel summation on the basis of the five-loop results is a
shown. We see that the central value of the three-loop B
resummation is not far from the central value of the five-lo

FIG. 4. Amplitude functionF2(u), multiplied by the renormal-
ized couplingu, in three dimensions as a function ofu in one-,
two-, and three-loop order~solid lines! for n51 ~a! and n52 ~b!
and in four- and five-loop order forn51 ~a! ~dashed lines!. The dot
with error bars atu50.04 indicates the result of the Borel resum
mation on the basis of the three-loop series foruF2(u). The small
error bar~a! indicates the Borel resummation result on the basis
the five-loop series foruF2(u) at u50.04 for n51, the arrow
indicates the corresponding central value atu50.04.
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resummation@arrow in Fig. 4~a!#. Analogous results are
shown in Fig. 5~a! for u@F2(u)2F1(u)# at u50.04 for n
51. These results provide confidence in our resumma
procedure based on three-loop results. In particular t
demonstrate that Borel resummations of three-loop res
yield reliable results with error bars that significantly redu
the uncertainties of one- and two-loop calculations. Since
n dependence beyond three-loop order is expected to
smooth and weak in the range 1<n<3 there is no reason to
expect that the reliability of our resummation procedure
significantly different forn52 and 3. In Figs. 4~b! and 5~b!
the corresponding resummation results~with error bars! on

FIG. 5. Amplitude functionF2(u)2F1(u), multiplied by the
renormalized couplingu, in three dimensions as a function ofu in
one-, two- and three-loop order~solid lines! for n51 ~a! and n
52 ~b! and in four- and five-loop order forn51 ~a! ~dashed lines!.
The dot with error bars atu50.04 indicates the result of the Bore
resummation on the basis of the three-loop series foru@F2(u)
2F1(u)#. The small error bar~a! indicates the Borel resummatio
result on the basis of the five-loop series foru@F2(u)2F1(u)# at
u50.04 for n51, the arrow indicates the corresponding cent
value atu50.04.
n
y

lts

e
be

s

the basis of three-loop perturbation series are shown fon
52 at the same valueu50.04 as forn51 in Figs. 4~a! and
5~a!. They clearly demonstrate the significant improveme
over the previous situation at two-loop order9,12 where no
error bar could be determined in a convincing fashion.

IV. APPLICATIONS

We apply our results to the specific heat in the asympto
critical region where it can be represented as1,9

C̊65
A6

a
utu2a~11ac

6utuD1••• !1B ~4.1!

with the Wegner exponent38 D. We consider the universa
amplitude ratios1 A1/A2 and ac

1/ac
2 . The former can be

expressed in terms ofB* [B(u* ) andF6* [F6(u* ) in three
dimensions as9

A1

A2 5S b1

b2
D aF12a

F2* 2F1*

4nB* 1aF2*
G , ~4.2!

where

b1

b2
5

2nP1*

~3/2!22nP1*
~4.3!

with P1* [P1(u* ). This expression forA1/A2 has several
independent sources of inaccuracies:~i! The values for the
critical exponentsa and n, ~ii ! the values forP1* , ~iii ! the
values forB* , ~iv! the values forF2* 2F1* , and F2* . In
evaluating this expression forA1/A2 for n51,2,3 we shall
take~i! the most reliable values fora andn that are presently
available,~ii ! the Borel resummed values forP1* based on
five-loop results forn51,2,3,~iii ! the Borel resummed val
ues forB* for n51,2,3 as given by Eqs.~2.34!–~2.36!, and
~iv! the Borel resummed values forF6* as given in Eqs.
~3.14!, ~3.15!, and~3.20!–~3.23!. For the critical exponentsa
andn we take

a50.107060.0045, n50.631060.0015, n51,
~4.4!

a520.0128560.000 38, n50.6709560.000 13, n52,
~4.5!

a520.115060.0090, n50.705060.0030, n53,
~4.6!

according to Refs. 13, 5, and 37, respectively. Borel summ
tion values forP1* have been calculated previously.10 These
calculations, however, were based on five-loop coefficie
that were derived from the five-loop results of Refs. 17 a
18 which were corrected by Ref. 19. Taking into account
latter corrections we have derived corrected five-loop coe
cientscP5 of the power seriesP1(u)5(0

`cPmum. Our new
values forcP5 are ~compare Table IV of Ref. 10!

cp5521 026 631.56, n51, ~4.7!

cp5521 763 840.20, n52, ~4.8!

cp5522 767 879.03, n53. ~4.9!

l
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TABLE IV. Universal amplitude ratioA1/A2 of the specific heat, Eqs.~4.1!–~4.3!, for n51,2,3 in three
dimensions.

n

Field theory
Lattice series
expansions ExperimentPresent work Previous work

1 0.54060.011 0.52460.010a 0.52360.009c 0.56–0.63d,0.53e

0.54160.014b

2 1.05660.004 1.029460.0134a 1.08g 1.05460.001h

1.05f 1.05860.004i

1.06760.003j

1.08860.007k

3 1.51 60.04 1.52160.022a 1.52g 1.40l

1.58f

aReference 32.
bReference 30.
cReference 39.
dReference 40.
eReference 41.
fReference 9.

gReference 42.
hReference 5.
iReference 43.
jReference 44.
kReference 45.
lReference 46.
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For the corresponding Borel resummed values ofP1* we
have obtained

P1* 50.756860.0044, n51, ~4.10!

P1* 50.709160.0045, n52, ~4.11!

P1* 50.670960.0039, n53. ~4.12!

The valuesP1* obtained from Eq.~3.2! and Table I of Ref.
10 are by about 0.7% smaller than the values in Eqs.~4.10!–
~4.12!.

If we use the central values of the critical exponents giv
by Eqs. ~4.4!–~4.6! and collect the results of Eqs.~2.24!–
~2.26!, ~2.34!–~2.36!, ~3.14!, ~3.15!, ~3.20!–~3.23!, and
~4.10!–~4.12! we arrive at the values forA1/A2 according
to Eqs.~4.2! and~4.3! as given in Table IV forn51,2,3. For
comparison this Table also contains the results of previ
calculations as well as experimental or numerical results.
see that there is good agreement between the previous
our results forn51 andn53. Forn52, however, our resul
is significantly more accurate and agrees well with the hi
precision experimental result for4He near the superfluid
transition obtained from a recent experiment in space.5

The smallness of our error bar forA1/A2 for n52 is due
to the small value ofa for n52 which, according to the
structure of Eq.~4.2!, suppresses the error ofF6* . Exploiting
this structure, i.e., separating exponents from amplit
functions, is a particular advantage of ourd53 formulation
of field theory. This structure was not explicitly taken in
account in the previouse-expansion analysis forn52.32 The
previous result obtained from thee expansion up toO(e2)
~Ref. 32! does not agree with the experimental result
n52 within the error bars. The results 1.05 and 1.58 of R
9 for n52 andn53 are partly based on the one-loop for
of F2(u) for which no error bar was available in Ref. 9.

The expression ofac
1/ac

2 is more complicated and de
pends on the derivatives of the functionsF2(u), F2(u)
2F1(u), P1(u), B(u), and z r(u) at the fixed point, as
n

s
e
nd

-

e

r
f.

specified in Eqs.~4.24!, ~5.19! and ~5.21!–~5.24! of Ref. 9.
We have performed Borel resummations for these quant
on the basis of our new five-loop results forn51. For
ac

1/ac
2 we obtain the value 1.060.1. This is consistent with

the previous result30 0.9660.25 for n51. Since forn.1
only three-loop results are available~which would still yield
larger error bars for the derivatives of the various functio
mentioned above! we postpone corresponding calculations
ac

1/ac
2 for n.1 until four-loop results become available.

Finally we note that not only the fixed-point valuesB*
andF6* but also the entire functionsB(u) andF6(u) are of
physical relevance. They are needed~i! for determining the
effective renormalized coupling from experimental data
the specific heat,6,7 and~ii ! for representing the specific hea
in the entire nonasymptotic critical region well away fromTc
according to Eqs.~3.3!–~3.5!. We also note thatB* andF6*
enter various other important universal ratios, e.g.,Rj

T related
to the superfluid densityrs of 4He.9

Note added.After completion of the present work w
learned of Ref. 47, where the perturbative terms of a funct
equivalent toB(u) have been calculated up to five-loop o
der. These terms agree with ours in Eq.~2.21!. At the end of
this work it is asserted that in our paper we use thee expan-
sion. Our work does not use thee expansion to calculate th
amplitude functionsF6(u) and the amplitude ratiosA1/A2

and ac
1/ac

2 . Only the fixed-point valueu* has been deter
mined via a Borel resummation of thee expansion series fo
u* .
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APPENDIX A: DERIVATION OF THE ADDITIVE
RENORMALIZATION A„u,e…

The following equations~A1!–~A54! give the ultraviolet
d54 poles of the diagrams shown in Fig. 1 defined
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KR8(]2I ( i )/]r 0
2) according to the standard notations, see e

Ref. 18. HereR8 denotes the incomplete ultravioletR opera-
tion which subtracts subdivergences, andK denotes the op-
eration of taking pole parts. We use subscripts (a.b) for the
pole terms on the right-hand sides of Eqs.~A1!–~A8! that are
identical with the numbers associated with the three-
four-loop diagrams of Ref. 16~the first numbera in the
brackets indicates the number of loops and the second n
berb indicates the consecutive number of a diagram in Ta
I of Ref. 16!. The subscripts on the right-hand sides of E
~A9!–~A18! correspond to the numbers of the five-loop d
grams of Ref. 18. We have multiplied the left-hand sides
factors (16p2)m in m-loop order because of the definition o
the bare four-point coupling 16p2g0/24 in Refs. 16–19.

The one- and two-loop expressions read

16p2KR8S ]2

]r 0
2 F2

1

2 E
p

ln~r 01p2!G D 5
1

2
I ~1.1![J~1!,

~A1!

~16p2!2KR8S ]2

]r 0
2 I ~2!~r 0 ,e! D 52I ~2.2![J~2!, ~A2!

the three-loop expressions read

~16p2!3KR8S ]2

]r 0
2 I ~3!~r 0 ,e! D 52I ~3.2![J~3!, ~A3!

~16p2!3KR8S ]2

]r 0
2 I ~4!~r 0 ,e! D 58I ~3.4!112I ~3.9![J~4!,

~A4!

the four-loop expressions read

~16p2!4KR8S ]2

]r 0
2 I ~5!~r 0 ,e! D 52I ~4.5![J~5!, ~A5!

~16p2!4KR8S ]2

]r 0
2 I ~6!~r 0 ,e! D 50[J~6!, ~A6!

~16p2!4KR8S ]2

]r 0
2 I ~7!~r 0 ,e! D 54I ~4.9!16I ~4.11![J~7!,

~A7!

~16p2!4KR8S ]2

]r 0
2 I ~8!~r 0 ,e! D

524I ~4.12!16I ~4.18!112I ~4.19![J~8!, ~A8!

and the five-loop expressions read

~16p2!5KR8S ]2

]r 0
2 I ~9!~r 0 ,e! D 52I 117[J~9!, ~A9!

~16p2!5KR8S ]2

]r 0
2 I ~10!~r 0 ,e! D 50[J~10!, ~A10!

~16p2!5KR8S ]2

]r 0
2 I ~11!~r 0 ,e! D 50[J~11!, ~A11!
.,

d

m-
le
.
-
y

~16p2!5KR8S ]2

]r 0
2 I ~12!~r 0 ,e! D 52I 121[J~12!, ~A12!

~16p2!5KR8S ]2

]r 0
2 I ~13!~r 0 ,e! D 54I 716I 120[J~13!,

~A13!

~16p2!5KR8S ]2

]r 0
2 I ~14!~r 0 ,e! D 52I 8[J~14!, ~A14!

~16p2!5KR8S ]2

]r 0
2 I ~15!~r 0 ,e! D

52I 14112I 15112I 19124I 2114I 23118I 106[J~15!,

~A15!

~16p2!5KR8S ]2

]r 0
2 I ~16!~r 0 ,e! D

58I 79116I 88132I 95116I 100[J~16!, ~A16!

~16p2!5KR8S ]2

]r 0
2 I ~17!~r 0 ,e! D 52I 8118I 8414I 99[J~17!,

~A17!

~16p2!5KR8S ]2

]r 0
2 I ~18!~r 0 ,e! D

58I 32132I 4714I 7318I 9318I 9814I 10918I 116[J~18!.
~A18!

The pole terms up to four loops are16

I ~1.1!5
2

e
, ~A19!

I ~2.2!52
4

e2 , ~A20!

I ~3.2!5
8

e3 , ~A21!

I ~3.4!5
2

3e22
3

4e
, ~A22!

I ~3.9!5
8

3e32
8

3e2 1
2

3e
, ~A23!

I ~4.5!52
16

e4 , ~A24!

I ~4.9!52
4

3e3 1
3

2e2 , ~A25!

I ~4.11!52
16

3e4 1
16

3e32
4

3e2 , ~A26!

I ~4.12!52
4

3e4 1
10

3e32
13

3e2 1
1126z~3!

6e
, ~A27!
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I ~4.18!52
8

3e4 1
8

3e3 1
4

3e2 1
2z~3!22

e
, ~A28!

I ~4.19!52
2

3e3 1
1

e22
7

12e
, ~A29!

and the five-loop pole terms are18

I 75
8

3e42
3

e3 , ~A30!

I 85
8

3e42
3

e3 , ~A31!

I 145
4

15e32
3

10e22
5

96e
, ~A32!

I 155
2

15e32
13

20e2 1
857

960e
, ~A33!

I 195
8

15e42
7

3e3 1
25

6e22
215

96e
, ~A34!

I 215
16

15e42
7

5e32
11

60e2 1
157

320e
, ~A35!

I 235
4

15e32
3

10e22
5

96e
, ~A36!

I 325
48z~3!

5e3 2
48z~3!124z~4!

5e2

1
14z~3!19z~4!216z~5!

5e
, ~A37!

I 475
8

15e52
12

5e4 1
6

e3 1
18z~3!245

5e2

1
146290z~3!29z~4!

30e
, ~A38!

I 735
16

15e52
8

3e4 1
28

15e3 1
614z~3!

5e2

2
32212z~3!218z~4!

30e
, ~A39!

I 795
16

5e52
16

5e42
8

5e3 1
414z~3!

5e2 1
716z~3!212z~4!

5e
,

~A40!

I 815
16

3e52
16

3e42
8

3e3 1
424z~3!

e2 , ~A41!

I 845
8

3e52
20

3e4 1
26

3e32
44224z~3!

12e2 , ~A42!
I 885
16

15e52
8

3e4 1
28

15e3 1
6212z~3!

5e2 2
16218z~4!

15e
,

~A43!

I 935
8

5e52
52

15e4 1
34

15e3 1
116224z~3!

60e2

2
56244z~3!16z~4!

20e
, ~A44!

I 955
16

15e52
8

3e4 1
28

15e3 1
6212z~3!

5e2 2
16218z~4!

15e
,

~A45!

I 985
4

15e42
14

15e3 1
19

15e22
3861768z~3!

960e
, ~A46!

I 995
4

3e42
2

e3 1
7

6e2 , ~A47!

I 1005
4

5e42
6

5e3 1
1

5e2 1
81248z~3!

160e
, ~A48!

I 1065
64

15e52
32

5e4 1
8

5e3 1
16

15e22
2

15e
, ~A49!

I 1095
16

15e52
16

5e4 1
16

5e3 1
522108z~3!

15e2

2
2022168z~3!218z~4!

30e
, ~A50!

I 1165
8

15e42
4

3e3 1
32

15e22
250296z~3!

120e
, ~A51!

I 1175
32

e5 , ~A52!

I 1205
32

3e52
32

3e4 1
8

3e3 , ~A53!

I 1215
32

3e52
32

3e4 1
8

3e3 . ~A54!

In Eqs. ~A37! and ~A51! the corrections found in Ref. 19
have been taken into account. Note that in Eqs.~A19!–~A54!
we have usede542d whereas in Refs. 16, 18e denotes
(42d)/2.

Equations~A1!–~A54! determine the additive renorma
ization according to Eq.~2.7! as
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A~u,e!522Fn

e
2

8n~n12!

e2 ~2u/2!

1(
i 53

4

S~ i !G~ i !J~ i !~2u/2!2

1(
i 55

8

S~ i !G~ i !J~ i !~2u/2!3

1(
i 59

18

S~ i !G~ i !J~ i !~2u/2!4G . ~A55!

The overall factor of 2 in Eq.~A55! arises from thed54
value of the factor (Ad/4)21/16p2 which is needed to obtain
A(u,e) from Eqs.~A1!–~A54! according to Eq.~2.7!. The
renormalized couplingu enters Eq.~A55! in the form u/2;
the factor 1/2 takes into account that, neard54, u05Ad

21u
1O(u2)58p2u1O(u2)51/2@16p2u1O(u2)# @see Eq.
~2.8!#.
APPENDIX B: Z FACTORS

In deriving the coefficients of the perturbation series
the quantitiesF6(u), P6(u), and f 6

(3,0)(u) we needed theZ
factorsZr , Zf , andZu calculated previously17–19up to five-
loop order. Since their explicit form is not available in th
literature we present them here explicitly. They read

Zr~u,e!511 (
m51

5

Zr
~m!~e !um1O~u6!, ~B1!

Zu~u,e!511 (
m51

5

Zu
~m!~e !um1O~u6!, ~B2!

Zf~u,e!511 (
m51

5

Zf
~m!~e !um1O~u6!, ~B3!

with the following coefficients inm-loop order.
Coefficients ofZr(u,e):
Zr
~1!~e !5

4~n12!

e
, ~B4!

Zr
~2!~e !54~n12!F4~n15!

e2 2
5

e G , ~B5!

Zr
~3!~e !5

16

3
~n12!F15n1111

e
1

2278261n

e2 1
12n21132n1360

e3 G , ~B6!

Zr
~4!~e !52

2

3
~n12!F288z~4!~5n122!148z~3!~3n2110n168!131 0602n217578n

e

2
1152z~3!~2215n!11236n2123 580n174 616

e2 1
16~245n212498n16284!

e3

2192
~n15!~2n113!~n16!

e4 G , ~B7!

Zr
~5!~e !5

4

15
~n12!F @9600z~6!~55n12n21186!1768z~5!~25n2172114n!1288z~4!~29n21266823n31816n!

1768z~3!2~22n22145n2582!148z~3!~8208n117n31940n2131 848!121n3145 254n211 077 120n

13 166 528#
1

e
2@30 720z~5!~2n21186155n#1576z~4!~5n122!~n222!196z~3!~27n311224n2114 456n

145 448!298n31277 280n213 073 376n17 449 712!
1

e2 1@2304z~3!~13n174!~5n122!121 576n3

1685 192n215 017 312n110 459 360#
1

e32
32~307 976131 752n21172 176n11933n3

e4

1
384~5n134!~n16!~n15!~2n113!

e5 G . ~B8!

Coefficients ofZf(u,e):
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Zf
~1!50, ~B9!

Zf
~2!52

4~n12!

e
, ~B10!

Zf
~3!5

8

3
~n12!~n18!F1

e
2

4

e2G , ~B11!

Zf
~4!52~n12!F5~n2218n2100!

e
1

4~n21234153n!

e2 2
16~n18!2

e3 G , ~B12!

Zf
~5!52

8

15
~n12!F @21152z~4!~5n122!148z~3!~26n211841n3164n!222 752n239n32296n2277 056#

1

e

1
2304z~3!~5n122!260n31135 488142 440n11844n2

e2 2
16~n18!~3n21269n11210!

e3 1
192~n18!3

e4 G .
~B13!

Coefficients ofZu(u,e):

Zu
~1!5

4~n18!

e
, ~B14!

Zu
~2!516F ~n18!2

e2 2
5n122

e G , ~B15!

Zu
~3!5

8

3 F96z~3!~5n122!1942n12992135n2

e
2

16~n18!~17n176!

e2 1
24~n18!3

e3 G , ~B16!

Zu
~4!52

16

3 F @480z~5!~2n2155n1186!272z~4!~n18!~5n122!124z~3!~63n21764n12332!120 624n11640n225n3

149 912#
1

e
2

480z~3!~5n122!~n18!167 424n1153 08817736n21172n3

e2 1
16~55n1248!~n18!2

e3 2
48~n18!4

e4 G ,
~B17!

Zu
~5!5

4

15 F @6912z~7!~25 77419261n1686n2!228 800z~6!~n18!~2n2155n1186!1768z~5!~165 08417466n21305n3

166 986n!2288z~4!~62 65614084n2128 084n1189n3!12304z~3!2~3264259n226n31446n!148z~3!~1264n3

213n411 312 8641551 032n167 432n2!120 429 248n12 518 864n21195n4140 148 480139 230n3#
1

e

2@99 840z~5!~n18!~2n2155n1186!214 976z~4!~5n122!~n18!213456z~3!~91n3115 436n134 14412196n2!

163 219 712n2800n41420 800n31117 768 19219 811 712n2#
1

e2

1
66 048z~3!~5n122!~n18!2132~n18!~733n3140 186n21353 392n1803 328!

e3 2
512~193n1875!~n18!3

e4

1
3840~n18!5

e5 G . ~B18!
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