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Knight-shift anomalies in heavy-electron materials
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We have studied the Knight shiftK(rW,T) and magnetic susceptibilityx(T) of heavy-electron materials,
modeled by the infinite-U Anderson model with the noncrossing approximation method. A systematic study of
K(rW,T) andx(T) for different Kondo temperaturesT0 ~which depends on the hybridization widthG) shows a
low-temperature anomaly~nonlinear relation betweenK andx) which increases as the Kondo temperatureT0

and distancer increase. We carried out an incoherent lattice sum by adding theK(rW) of a few hundred shells
of rare-earth atoms around a nucleus and compare the numerically calculated results with the experimental
results. For CeSn3, which is a concentrated heavy-electron material, both the119Sn NMR Knight shift and
positive muon Knight shift are studied. Also, lattice coherence effects by conduction-electron scattering at
every rare-earth site are included using the average-T-matrix approximation. The calculated magnetic suscep-
tibility and 119Sn NMR Knight shift show excellent agreement with experimental results for both incoherent
and coherent calculations. The positive muon Knight shifts are calculated for both possible positions of muon
~center of the cubic unit cell and middle of Ce-Ce bond axis!. Our numerical results show a low-temperature
anomaly for the muons of the correct magnitude but we can only find agreement with experiment if we take a
weighted average of the two sites in a calculation with lattice coherence present. For YbCuAl, the measured
27Al NMR Knight shift shows an anomaly with opposite sign to the CeSn3 compound. Our calculations agree
very well with the experiments. For the proposed quadrupolar Kondo alloy Y0.8U0.2Pd3, our 89Y NMR Knight-
shift calculation do not show the observed Knight-shift anomaly.@S0163-1829~98!03817-X#
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I. INTRODUCTION

Many heavy-electron materials show Knight-shift anom
lies, which are a deviation from a linear relation of th
Knight shift K(T) to the magnetic susceptibilityx(T) below
the Kondo temperatureT0. The origin of the Knight-shift
anomalies has been a subject of great interest in
condensed-matter community over a period of nearly
years.1–10 If the impurities in metals have local magnet
moments, they display interesting properties compared
metals with nonmagnetic impurities, such as a resistiv
minimum and anomalies in specific heat and susceptibi
This Kondo effect is a consequence of interaction betw
the magnetic ion and conduction electron. The central ph
cal concept is that the many-body screening cloud surrou
ing a Kondo impurity site should give rise to an anomalo
temperature-dependent Knight shift at nuclear sites du
the coupling of the local moment to the nuclear spin throu
the screening cloud.1,3,4,8,9 Such a ‘‘nonlinear Knight-shift
anomaly’’ is to be distinguished from the nonlinear susc
tibility related to the field dependence ofx. Another way to
describe this effect is to say that in the absence of
anomaly, the contributionK(rW,T) from a local moment at
distancerW from the nucleus can be written asf (rW)x(T). This
factorization does not hold if there is an anomaly@instead
K(rW,T)5 f (rW,T)x(T) due to the temperature-dependent p
larization cloud#. After Heeger1 suggested that the anom
lous spin cloud was detected at low temperatures, the ce
question has been whether a conduction-electron spin c
with huge coherence lengthjK5\vF /kBT0, wherevF is the
Fermi velocity andT0 is the Kondo temperature, exists. Th
PRB 580163-1829/98/58~6!/3313~28!/$15.00
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main motivation of this paper is to help clear up this confli
The Knight-shift calculations presented here are the first p
formed using a realistic impurity model.

This paper is organized as follows. In Sec. II, the Kon
effect and the Knight-shift anomaly in heavy-electron ma
rials will be reviewed. First, general characteristics of t
Kondo effect are discussed. We will then review the histo
of Knight-shift anomalies in heavy-electron systems. In S
III, the model Hamiltonian is introduced for both Ce and
compound. Also we review the methods we have used
evaluate the Knight shift@the noncrossing approximatio
~NCA! and average-T-matrix approximation~ATA !#. Our
formalisms for numerical calculations are explained, an
detailed derivation of the Knight-shift Feynman diagram w
be given in the appendixes. In the next section, the numer
results for Ce and Yb ions, which are single-channel Kon
materials and for U ions in a proposed quadrupolar Kon
alloy, will be examined and compared with the experimen
results. The calculated NMR Knight shift of Ce and Yb com
pounds shows low-temperature anomalies and agree
with the experimental results. But, there is no calcula
Knight-shift anomaly for the proposed quadrupolar Kondo
compound, in contrast to experiment. The last section
cludes conclusions and directions for future work.

II. REVIEW

A. Kondo effect

The existence of localized moments in dilute alloys th
couple to conduction electrons has important conseque
for the electrical properties. It has been known since 19311
3313 © 1998 The American Physical Society
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3314 PRB 58E. KIM AND D. L. COX
that the resistivity has a rather shallow minimum occurring
a low temperature that depends weakly on the concentra
of magnetic impurities instead of dropping monotonica
with decreasing temperature like metals with nonmagn
impurities. In 1963, Kondo12 explained that this minimum
arises from some unexpected features of the scatterin
conduction electrons off a local magnetic moment, with
simplified model Hamiltonian

H5(
kWa

ekWckWa
†

ckWa2
J

2N(
kWkW8

ckWa
†

sW abckW8a•SW I , ~1!

whereckWa is the annihilation operator of the conduction ele
tron, a is the spin index,sW are Pauli matrices,SW I is the spin
operator of the impurity, andJ,0 is the exchange coupling
Kondo discovered that the magnetic scattering cross sec
is divergent in perturbation theory. The anomalously h
scattering probability of magnetic ions at low temperature
a consequence of the dynamic nature of the scattering
duced by the exchange coupling and the sharpness o
Fermi surface at low temperatures. Subsequent analysi
Kondo and others has shown that a nonperturbative tr
ment removes the divergence, yielding instead a term in
impurity contribution to the resistivity that increases wi
decreasing temperature. In spite of the simple model Ha
tonian, a magneticSI51/2 local moment interacting with th
conduction-electron gas, this result is an indication that
problem is explicitly a many-body problem, meaning that t
electron in statekW which is being scattered is sensitive to t
occupation of all other electron statesqW .

For this single-channel Kondo model, there is only o
characteristic energy scale, the Kondo temperatureT0, pro-
vided that the temperatureT is much smaller than the
conduction-electron bandwidthD, and corrections of orde
T/D are neglected. The Kondo temperature is given by

kBT05D@N~0!J#1/2exp„21/N~0!J…, ~2!

where N(0) is the conduction-electron density of states
the Fermi level. Any physical quantities are universal fun
tions of T/T0, at low temperature, with all material prope
ties buried inT0.

This Kondo model can explain the anomalies in the tra
port coefficients, specific heat, and magnetic susceptib
for some alloys with magnetic impurities. The Kondo effe
is characterized by the development of the Kondo resona
peak with width of order ofT0. At high temperaturesT
.T0, the impurity resistivity increases logarithmically as t
temperature decreases, and saturates to a finite value a
temperatures belowT,T0. The magnetic susceptibility has
Curie-Weiss form at high temperatures and shows P
paramagnetism at low temperatures withx(T50);1/T0,
concomitantly C/T(T50);1/T0. The x behavior is ex-
plained by the fact that the magnetic moments which e
at high temperatures are screened out by the conduc
electron spin clouds at low temperatures with the format
of a singlet ground state. This conduction spin cloud and
Knight-shift anomaly will be discussed more in the ne
subsection.
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B. Review of the Knight-shift anomalies
of heavy-electron materials

There have been many theoretical and experime
works about the Knight-shift anomaly for the heavy-electr
materials. Whether there is an observable conducti
electron spin cloud with huge coherence length has bee
issue in condensed-matter physics for more than 25 y
and this is our main motivation to carry out this paper.

In the simplest approximation, the added electron
bound into a singlet with the impurity.13 Because of the fall-
off the amplitude of wave function with the energyek , only
states within roughlydk;(kBT0 /EF)kF of the Fermi surface
are involved in the singlet. As a result, in coordinate spa
the singlet wave function extends to a very large distance
order (dk)21. Heegeret al.14 calculated the susceptibility a
T50 K using the Appelbaum-Kondo theory15,16 and found

x5xPauli1xL1xQ , ~3!

where

xL5xQ5uJur@m2/~9/8!kBT0#. ~4!

Equations~3! and ~4! give the very interesting result tha
one-half the excess susceptibility is localized on the impu
site (xL) and one-half is associated with the partially pola
ized quasiparticle (xQ). The associated spin polarizatio
around the partially magnetized impurity is given by

s~r !5s01sRKKY~r !1sQ~r ! ~5!

where s0 is the uniform polarization due to the extern
field, sRKKY(r ) is the usual Ruderman-Kittel-Kasuya-Yosid
~RKKY ! term17–21 which r dependence is given by

~1/r 3!cos~2kFr !, ~6!

andsQ(0) is the quasiparticle term with

^sQ~r !&5^SZ&
3

2
N

kBT0

EF
S sinkFr

kFr D 2

ln2~r /j!, ~7!

wherejK5(2EF /kBT0)kF
21 . This expression is valid forr

,jK , and at greater distancessQ(r ) rapidly approaches
zero. In both the RKKY term andsQ(r ) term the valuêSZ&
is not the free-spin value but is determined by the local s
ceptibility xL . The existence of the RKKY term forT,T0
was shown by Suhl.22

The technique of nuclear magnetic resonance has bee
primary importance in the development of our current und
standing of the localized moment problem. The reasons
twofold. First, the nuclei in the host metal in the vicinity o
the impurity are sensitive to local perturbations in the s
density~via the hyperfine interaction! and the charge densit
~via the nuclear quadrupolar interaction!. Moreover, the nu-
clei themselves are only weakly coupled to the electro
system and therefore act as passive ‘‘spies’’ into the p
nomena of interest. Secondly, the nuclear relaxation is s
sitive to the low-lying excitations of the electronic syste
and consequently can provide information on the dynam
aspects of the impurity problem. For the most part NM
experiments in heavy-electron compounds are carried ou
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PRB 58 3315KNIGHT-SHIFT ANOMALIES IN HEAVY-ELECTRON . . .
the nuclei of the non-f ions, so that coupling to thef mo-
ments occurs via indirect interactions such as transferred
perfine and dipolar fields.

The NMR experiment of Boyce and Slichter2 on Fe im-
purities in Cu metals showed no evidence for a Knight-s
anomaly at low temperature and was interpreted to indic
the absence of this screening cloud or at least a scree
cloud of size of the order of a lattice spacing. These mix
results have led to theoretical discussions about the siz
any screening conduction-electron spin cloud or ev
whether it exists.4,8,9,23–25

In contrast, pronounced Knight-shift anomalies have b
observed in the concentrated heavy-electron materials C3
~Refs. 5 and 7! and YbCuAl,6,7 which have been described a
Kondo lattice systems withT0>400 K. In view of the
Boyce-Slichter result, the question is raised whether th
anomalies represent a coherent effect of the periodic la
rather than a single-ion effect. However, recent experime
on the proposed quadrupolar Kondo alloy26,27 Y12xUxPd3
demonstrate that for concentrations of 0.1–0.2 there are
nounced nonlinearities in the Y Knight shift for sufficient
large distances away from the U ion.10

Ishii4 calculated the field-induced spin polarization for t
degenerated Anderson model and confirmed that an ano
lous spin cloud is formed outside of the Kondo screen
lengthjK at T→0. The spin polarizations(r ) for electron-
hole symmetry case (ed52U/2) is given by

s~r !5
xH

gmB

cos2kFr

4pr 3 F12
2EF

kFrD
ḡ G , ~8!

where ḡ5x↑↑ for U→0 and 3/2(2l 13)x↑↑ for U→`,
wherel is the orbital angular momentum.x↑↑ changes from
(gmB)2/2pG for U50 to (gmB)2S(S11)/3kBT0 for thes-d
exchange model (U5`). Therefore the coherence leng
jK52EF /kFDḡ varies from 2\vF /G at U50 to
2p\vF/3kBT0 in the s-d limit. Also, for the strongU/pG
limit, the spin polarization is calculated forr ,jK . It is given
by

s~r !5
4G

pU

xH

gmB

cos2kFr

4pr 3
. ~9!

By the relation 4V2/U52J/2N,28 the above spin polariza
tion is just the RKKY contribution. Comparing Eqs.~8! and
~9!, the conduction-electron spin cloud which is formed o
side the Kondo coherence length has the RKKY form
with 2N/N(0)J times bigger amplitude than the spin clou
inside the Kondo coherence length.

Chenet al.8 calculated the zero-frequency response fu
tion C(rW,T) around a magnetic impurity, using a perturbati
thermodynamic scaling procedure and nonperturba
renormalization-group method forS51/2 Kondo model. The
host nuclei near magnetic impurities at positionsrW displays
satellite resonances in the tail of the main magnetic re
nance signal, with a Knight shift given byK1DK(rW), where
K5r0ge/2 is the Knight shift of the pure host. ThenDK is

DK5C~rW,T!2K. ~10!

Chenet al.8 showed that this Knight shift is factorized into
product of temperature and spatial-dependent functions,
cifically
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DK5F~rW !x~T!, ~11!

where x(T) is the magnetic susceptibility. The compute
F(r ) has the RKKY form.

The conduction-electron spin polarization in the Anders
model has been studied with the NCA previously by Po
wein et al.9 However, this study was carried out only for th
spin-1/2 model with infinite Coulomb repulsion, and for
limited parameter regime@only results for very lowT0 val-
ues and short distances (r !jK) have been numerically cal
culated#. In consequence, no strong evidence was found fo
Knight-shift anomaly in this previous work.

Recently, So”rensen and Affleck23–25 showed that the
Kondo coherence lengthjK5\vF /kBT0, varies when tem-
perature changes by combining a finite-size scaling an
with density matrix renormalization-group calculation
They write the scaling hypothesis for three-dimensional s
ceptibility is

x imp~r !5x2r/25
cos~2kFr !

8p2vFr 2
f ~rT/vF ,T/T0!

~ for r @1/kF ;T,T0!EF!, ~12!
where f is a real universal scaling function.r/2 is the stan-
dard Pauli bulk susceptibility withr the density of states pe
spin. At higher temperaturesT.T0, the local susceptibility
shows RKKY behavior and at lower temperaturesT,T0 it
has a local Fermi-liquid form. So the Knight shift has long
range at low temperatures where the conduction-elec
screening cloud has formed than at high temperatures w
it has not. So”rensen and Affleck tried to explain the expe
ment by Boyce and Slichter2 by the possible factorization o
the scaling functions deep inside the screening cloud wh
the experiment was done.

III. MODEL AND FORMALISM

A. Model Hamiltonian

In our work, we use the on-site Coulomb interactio
U5` single impurity Anderson model.29 The Anderson
model can be canonically transformed by the Schrieff
Wolff transformation to the Kondo model atU5` limit,28

and is a good model Hamiltonian to describe heavy-elect

FIG. 1. Schematics of theU5` single-impurity Anderson
model for Ce ions.D is the conduction bandwidth andV is the
single-particle hybridization strength. The on-site Coulomb inter
tion U is infinity in our model.
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3316 PRB 58E. KIM AND D. L. COX
materials with f electrons. Schematics of this model a
shown in Fig. 1 for Ce ions. ThisU5` model can be a good
approximation in the limit when the ratio of the virtual 4f
level width G to the on-site Coulomb repulsionU is small.
For real materials this interaction energy is of the order
U55 eV,30,31 and the hybridization width is of the order o
G50.1 eV. For Ce~Yb! ions, we keepf 0 and f 1( f 14 and f 13)
configurations, and for U ions, which are proposed tw
channel quadrupolar Kondo alloys, we keepf 2 and f 3 con-
figurations. For Ce and Yb ions, spin-orbit coupling is i
cluded and for U ions, spin-orbit coupling and also cryst
field splittings are included. The crystal electric field~CEF!
will split the spin-orbit multiplet and can mix two differen
angular momentum multiplets (j , j 8). But the correction of
the mixing term between two differentj ’s by CEF is small,
we only consider the splitting effect. These crystal electr
field effects in the Anderson model were considered
Hirst32 based on group theory and it will be discussed m
in Appendix B.

We shall first discuss the situation for Ce31 and Yb31

ions, and write down the model only for the Ce case~the
Yb31 ion has a lone 4f hole and our procedure describes th
with a simple particle hole transformation!.

For a single Ce site at the origin, the model is

H5Hc1Hf1Hc f1Hz ~13!

with

Hc5(
kWs

ekckWs
†

ckWs . ~14!

The conduction band term for electrons with a broad featu
less density of states of widthD, taken to be Lorentzian her
for convenience, with

Hf5(
jmj

e f j u f 1 jmj&^ f 1 jmj u, ~15!

where j 55/2,7/2 indexes the angular momentum multiple
of the Ce ion having azimuthal quantum numbersm, with
e f 5/2522 eV, e f 7/25e f 5/21Dso521.71 eV~we take thef 0

configuration at zero energy!, with

Hc f5 (
kW jms

@VkW j smj
ckWs

† u f 00&^ f 1 jmi j u1H.c.#, ~16!

whereVkW j smj
5VY3mj 2s( k̂)^3mj2s,1/2su jmj&/ANs, V be-

ing the one-particle hybridization strength andNs the num-
ber of sites. We can rewrite the hybridization Hamiltonian

Hc f5 (
k jmj

@VkckW jmj

† u f 00&^ f 1 jmj u1H.c.#, ~17!

where

ck jmj

† 5(
ms

K 3m
1

2
sU jmj L ckms

† ~18!

with ckms5k*dk̂Y3m* ( k̂)ckWs . For the Yb case, the hybridiza
tion Hamiltonian is given by

Hc f5 (
k jmj

@Vkck jmj

† u f 13j 2mj&^ f 140u1H.c.#. ~19!
f

-

-

-
y
e

-

s

s

Hz , the Zeeman energy of the electronic system for a m
netic fieldHz applied along thez axis is given by

Hz52mBHzF2(
kWs

snkW ,s2(
jm

gjmu f 1 jm&^ f 1 jmuG .

~20!

In addition to this, we must add a term coupling the nucle
spin system to the conduction electrons, which we take to
of a simple contact form; IW(rW)•SW (rW) for each nuclear spin
IW(rW) at positionrW with SW (rW) the conduction spin density a
the nuclear site, and a nuclear Zeeman term. In terms of
parameters, the Kondo scale characterizing the low-ene
physics is given by

kBT05DS G

pue f u
D 1/NgS D

Dso
D Nex /Ng

expS pe f

NgG D , ~21!

where the single-particle hybridization widthG5pN(0)V2

with N(0) which is the density of the states at the Fer
energy. Other parameters are defined in Table I.

For the Y12xUxPd3 which has the cubic AuCu3 structure,
the crystal-field effect~CEF! must be included. This crysta
electric-field effects lift the angular momentum degenera
of U ions and their spin-orbit multiplet decomposes into
reducible representation of the cubic field. Thef 2, j 54
Hund’s rule ground state of U compound is split into aG3
nonmagnetic doublet,G5 and G4 magnetic triplet, andG1
singlet states.33 And f 3, the j 59/2 spin-orbit multiplet is
split into G7 doublet and twoG8 quartets. In our calculation
we choosej 54 G3 for the ground state forf 2 configuration
and j 59/2 G6 for the ground state of thef 3 configuration.
Figure 2 shows the schematic configuration diagram. All
rameter values are listed in Table II in the unit ofD. For an
explicit derivation of Hamiltonian for U ions, see Append
A.

B. Noncrossing approximation

We treat the Anderson Hamiltonian with the noncross
approximation~NCA!, a self-consistent diagrammatic pertu
bation theory discussed at length in the paper of Bick

TABLE I. Ground states and parameter values for Ce and
ions model.j g is the ground-state spin-orbit multiplet angular m
mentum andj ex is the excited-state multiplet angular momentu
Ng(Nex) is the degeneracy of the ground~first excited! state mul-
tiplet. e f is the energy of the ground configuration, andDso is the
energy difference between thej g and j ex multiplets. Apart from a
fine tuning to fit the susceptibility, we hold the bandwidthD fixed
at 3 eV.

Ce Yb

Configuration 4f 1 4 f 13

4 f 0 4 f 14

j g 5/2 7/2
j ex 7/2 5/2
Ng 6 8
Nex 8 6
e f 22 eV 21 eV
G 0.152 eV 0.060 99 eV
Dso 0.29 eV 1.3 eV
T0 430 K 64 K
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et al.34 This is useful because this method provides ways
calculating the dynamic response functions, such as the
electron Green’s functions and dynamic susceptibility an
makes possible a more extensive comparison between
theoretical predictions and experimental results.35

In the NCA, we do the 1/N expansions with the new
variableN, the large orbital degeneracy of the ground st
of f electrons. These simple approximation schemes w
very well for values ofN that are of interest in application
to rare-earth impurities. For example, the lowest spin-o
split multiplet for Ce 4f 1 has j 55/2, corresponding toN
56, and for Yb 4f 13, j 57/2, corresponding toN58. Even
for N52 one can get good semiquantitative results, wh
can be accurate to within a few percent for some quantit

In order to avoid the failure of finite-order perturbatio
theory at the Kondo scaleT0.D exp(pef /NG), the self-
consistent 1/N approximation presented by the NCA offe
an alternative in that a subset of diagrams is summed to
orders. This has the effect of pushing any singular beha
to zero frequency. However, because not all diagrams

FIG. 2. Schematic configuration diagram for the uranium co
pound. f 2, j 54 and f 3, j 59/2 spin-orbit states are split by th
crystal electric field. All the notations are explained in the text a
all the values are listed in Table II.

TABLE II. Parameter values for Y0.8U0.2Pd3 in units of the con-
duction electron band widthD53 eV. e f is the energy ofj 54
multiplet andD i j is the energy difference between crystal-field sp
G i andG j states.G is the single impurity hybridization width. Fo
the definition ofx and W, see Appendix B.x2 and W2 are for f 2

configuration andx3 andW3 are for f 3 configuration.

e f 20.333

D35 0.003
D34 0.008175
D31 0.019621
D68a 0.000136
D68b 0.013190
G 0.15

x2 20.648
W2 23.9531024

x3 0.3693
W3 2.74631024
f
e-
it
he

e
rk

it

h
s.

ll
or
re

included, pathological features can appear at a tempera
scaleTp!T0. For details on the NCA, see Refs. 34,36–4

In the NCA, our starting basis is the conduction band p
the atomic Hamiltonian projected to the atomic electr
Fock space and we treat the hybridization between the c
duction band and the atomic orbital as a perturbation. T
strength of this approach is that the strong on-site Coulo
interaction for atomic electrons is included at the outset. T
conventional Feynman diagram technique which u
Wick’s theorem cannot be applied for strongly correlat
problems with restricted Hilbert spaces. Pseudopart
Green’s functions are introduced for each atomic elect
occupation state which is neither fermionic nor bosonic~i.e.,
f 1 j 55/2, 7/2 andf 0 in the present model for Ce ions!. The
pseudofermion Green’s functions forf 1 j 55/2, 7/2 angular
momentum multiplets are

Gjm~z!5
1

z2e f j2S jm~z!
~22!

and the pseudoboson Green’s function for thef 0 is

G0~z!5
1

z2S0~z!
. ~23!

Then we insert a self-energy into the propagators
pseudoparticles. This gives coupled integral equations for
ionic propagator self-energies,S0(z), S jm(z). From the
leading-order diagrams of Fig. 3, the coupled equations
the self-energies are

-

d

FIG. 3. Leading-order Feynman diagrams for self-energies.~a!
pseudoboson self-energy,S0(z)r , ~b! pseudofermion (f 1,j multi-
plet! self-energyS jm(z).
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3318 PRB 58E. KIM AND D. L. COX
S0~z!5V2(
j

Nj(
k

f k

z1ek2e f jm2S jm~z1ek!

5V2(
j

Nj(
k

f kGjm~z1ek!, ~24!

S jm~z!5V2(
k

12 f k

z2ek2S0~z2ek!

5V2(
k

~12 f k!G0~z2ek!, ~25!

whereV is the hybridization strength between the conduct
band and the atomic orbitals andNj is the degeneracy of th
spin-orbit multipletj . It is convenient to introduce the spe
tral functionsAjm(v), andA0(v) for pseudoparticle Green’
functions.

Gjm~ iv!5E dr

p

Ajm~r!

iv2r
,

Ajm~v!52Im Gjm~v!, ~26!

G0~ in!5E dz

p

A0~z!

in2z
,

A0~n!52Im G0~n!. ~27!

In addition to spectral functionsAjm(r) andA0(z), it is nec-
essary to introduce negative frequency spectral functi
Ajm

(2)(r) andA0
(2)(z). These spectra are given by

Ajm
~2 !~r,T!5Ajm~r,T!e2b~r2E0!, ~28!

A0
~2 !~z,T!5A0~z,T!e2b~z2E0!, ~29!

where E0 is the ground-state energy relative to the Fer
energy. The impurity partition functionZ4 f is given by

Z4 f~T!5E dz

p F(
jm

Ajm~z,T!1A0~z,T!Ge2bz

5e2bE0E dz

p F(
jm

Ajm
~2 !~z,T!1A0

~2 !~z,T!G .
~30!

At T→0, Z4 f(T) becomes

Z4 f~0!5e2bE0. ~31!

The iteration of these coupled equations for the s
energies generates a set of diagrams which includes all
crossing diagrams, but does not correspond to any spe
order in the 1/N expansion by treatingNV2 asO(1), where
V is the hybridization strength between the conduction e
tron and the atomic orbitals. The set of diagrams summed
these equations includes all the terms of orderO(1) and
O(1/N) and a subset of contributions from the higher-ord
terms. The lowest-order skeleton diagrams which are no
cluded are of orderO(1/N2). All the diagrams that enter a
O(1) andO(1/N) have noncrossing conduction lines. Sp
n

s

i

-
n-
fic

c-
y

r
n-

-

cifically, the leading-order vertex corrections, which a
O(1/N2), are not included in the NCA.

These self-consistent integral equations are solved to
ond order in the hybridization for the ionic propagator se
energies. Then physical properties, such as the resistivity
magnetic susceptibilityx, are calculated as convolutions o
these propagators. Figure 4 shows a leading-order Feyn
diagram for the static magnetic susceptibility and its con
lution integral is given by Eq.~32!. This is discussed more in
Sec. III C.

The NCA shows a pathological behavior~due to the trun-
cation of the diagrammatic expansion! for a temperature
scaleTp!T0 in this conventional Anderson model. How
ever, provided thef 1 occupancynf>0.7, andN>4, this is
not a problem, as shown in Ref. 34, in that comparison
NCA results with exact thermodynamics from the Bethe a
satz shows agreement at a few percent level aboveTp .
Hence, this is a reliable method for our purposes.

Our numerical procedure, briefly, consists of solving t
NCA integral equations for the Anderson Hamiltonian spe
fied above on a logarithmic mesh with an order of 600 poi
chosen to be centered about the singular structures nea
ground-state energyE0;e f 5/2. We then feed the self-
consistent propagators for the empty and singly occup
orbitals into the convolution integrals obtained from the d
gram of Fig. 5, which allows for evaluation of the Knigh
shift at arbitrary angle and distance from the nuclear s
This will be explained more in Sec. III D. It is convenient
take the nuclear site as the origin in this case leading to ph
factorse2 ikW•R in the hybridization HamiltonianHc f , whererW
is the nuclear-Ce site separation. These factors give the
cillations and position space angular dependence in
Knight shift K.

C. Magnetic susceptibility

The static magnetic susceptibility is a direct indicator
the nature of the ground state for the Kondo and Ander
model. Near room temperature, the susceptibilityx(T) dis-
plays a Curie-Weiss temperature dependence for m
heavy-electron materials.x is linearly related to the Knight
shift K(T). At low temperature,x(T) does not follow the
Curie-Weiss law and for some systems, a linear relation
the Knight shiftK(T) to the magnetic susceptibility break
down and hence shows a Knight-shift anomaly.

FIG. 4. Leading-order Feynman diagram for static magnetic s
ceptibility. In this diagram, onlyf electrons are coupled to the field
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In general the magnetic susceptibility includes contrib
tions from the conduction band (xcc), the f electrons (x f f),
and the mutual correlation off and band components (xc f).
Because the barexcc;1/D!x f f;1/T0, we can safely ne-
glect the first contribution to the bulk susceptibility@though
there can bef -modified contributions of orderx f f(G/d)2#.
Also, xc f.(G/D)x f f , so providedG!D as we have as
sumed here (G'0.1D), we may neglect this as well.~For a
detailed estimation of the magnitudes ofxcc ,xc f , see Ap-
pendix E of Ref. 34.! We also note that diagrams whic
include t-matrix insertions on conduction lines may be n
glected in the lattice and for highly concentrated alloy s
tems, because these simply represent self-energy dressin
the conduction susceptibility contribution which will actual
have the effect of reducing the Pauli contribution to t
Knight shift slightly. For further discussion, see Sec. III D

The leading diagram thus comes from the second t
where the onlyf electrons are coupled to the field and th
gives a good approximation to the overall susceptibility. T
diagram for magnetic susceptibility is in Fig. 4. Then, in t
NCA, the magnetic susceptibility in the zero-field limit ca
be written34

x~T!5(
j

2m j
2Nj

Z4 f~T!
E dz

p
Ajm

~2 !~z,T!Re Gjm~z,T!, ~32!

FIG. 5. Feynman diagram for the Knight-shift calculation for C
ions. This is the lowest-order diagram of coupling between Ce lo
moment and nuclear spin in the infinite-U Anderson model. All the
propagators are explained in the figure. For the incoherent calc
tion the conduction electron propagator is a bare-electron prop
tor and when the coherence effect for conduction electron is
cluded ~multiple scattering off off sites!, it becomes a dresse
propagator.
-

-
-
s to

m

s

wherem j is the effective magnetic moment which is defin
asm j

25(gjmB)2 j ( j 11)/3 wheregj is the Lande´ g factor for
the j multiplet andZ4 f(T) is the impurity partition function.

Also we can get the van Vleck magnetic susceptibil
betweenj and j 8 angular momentum multiplets:

xmjmj 8
9 ~v!5mB

2 u^ jmj uJz1Szu j 8mj 8&u
2

Z4 f~T!
~12e2bv!

3E dz

p
Ajmj

~z1v!Aj 8mj 8

~2 !
~z !. ~33!

With ^ 5
2 ,muJz1Szu

7
2 ,m8&52(A4924m2/14)dmm8, the total

Van Vleck susceptibility forj 55/2 andj 857/2 is

xvv9 ~v!5 (
mj ,mj 8

xmjmj 8
9 ~v!

5
8

7
mB

2 ~12e2bv!

Z4 f~T!
E dz

p
Ajm~z1v!Aj 8m

~2 !
~z !.

~34!

The susceptibility sum rule is derived from the zer
frequency limit of the Hilbert transform ofxvv9 (v,T),

xvv~T!5xvv8 ~0,T!5E dv

p

xvv9 ~v,T!

v
. ~35!

In our calculation, both thej 55/2, 7/2 contributions to
the static magnetic susceptibility and the Van Vleck susc
tibility are considered for Ce ions. For Yb ions, only th
static susceptibility of thej 57/2 ground spin-orbit multiplet
is calculated because the energy gap between two spin-
multiplets (j 57/2 and j 55/2) is large~about 1.2 eV!. For
Y12xUxPd3, only the Van Vleck susceptibility between dif
ferentG states is calculated because the assumedG3 ground
state is a non-magnetic doublet.

D. Knight shift

Knight-shift measurements on the nuclear spins of nof
ions in Kondo or heavy-electron materials can probe the
cal induced magnetic fields. The additional fields come fr
all the possible polarization sources, such as conduct
electron spin polarization. Forf electrons, the radius of the
wave function is small and they are well screened, so ther
little possibility of direct overlap interactions between th
nuclear spins and local moments on different sites. In p
ticular, the polarization of conduction electrons by the pol
ized local Kondo impurities, i.e., the transferredf -electron
polarization, is usually expected to have the most signific
temperature-dependent contribution.

The Knight shift of heavy-electron materials is induced
the indirect interactions of the magnetic impurity and ho
nuclear spin mediated by the conduction electrons. With
the charge fluctuations introduced by the hybridization int
action between conduction electron andf electron, this indi-
rect interaction has the RKKY interaction form. So at hig
temperatures, the Knight shift follows the RKKY interactio
and at low temperatures where the Kondo effect appears
Knight shift can show deviation from the RKKY form.

al

la-
a-
-
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To calculate the Knight shift we need to evaluate t
Feynman diagram in Fig. 5 which is the lowest-order d
gram coupling the nuclear spin to, say, Ce magnetic m
ments, ignoring direct Coulomb exchange coupling. All t
propagator symbols are explained in the figure. For the in
herent calculation, the conduction electrons are assume
belong to a broad, featureless, and symmetric band of
width D. The conduction-electron propagator is taken to b
bare electron propagator, i.e., it includes no self-energy
fects reflecting multiple scattering off thef sites. When the
lattice coherence effects of conduction electrons are
cluded, the self-energy arising from the scattering of cond
tion electron at everyf site is included in the conduction
electron propagator in an approximate way.

The Knight shift for a nuclear spin or muon atrW is ap-
proximated as

K~r ,u!52
8pV2

3Ns

gemB
2

V ( f j j 8~a,u!

3E k2dkE k82dk8I j j 8~ek ,ek8!, ~36!

wherege is the electrong factor andmB is the Bohr magne-
ton. Hereu is the angle between thez axis and the bond
directionrW which connects the nucleus or muon to a givenf
ion in the crystal anda is the angle between the field ax
and bond axis.I j j 8(ek ,ek8) is given by

I j j 8~ek ,ek8!5 j 3~kr ! j 3~k8r !
1

Z4 f

3(
v,n

Gc~ks,iv!Gc~k8s8,iv!

3G0~ in!Gjm@ i ~v1n!#Gj 8m8@ i ~v1n!#

52
j 3~kr ! j 3~k8r !

ek2ek8

$ f ~ek!I 1 j j 8~ek!

1@12 f ~ek!#I 2 j j 8~ek!%, ~37!

where

I 1 j j 8~ek!5
2

Z4 f
E dz

p E dr

p

A0
~2 !~z !Ajm~r!Re Gj 8m8~r!

ek1z2r

5
1

Z4 f
E dz

p
A0

~2 !~z !Re Gjm~z1ek!

3Re Gj 8m8~z1ek!, ~38!

I 2 j j 8~ek!5
22

Z4 f
E dr

p E dz

p

A0~z!Ajm
~2 !~r!ReGj 8m8~r!

ek1z2r

5
2

Z4 f
E dr

p
Ajm

~2 !~r!Re Gj 8m8~r!Re G0~r2ek!.

~39!

The derivation is explained in detail in Appendix C.
We can analytically evaluate the innerk8 integral as
-
-

o-
to
lf
a
f-

-
c-

E
0

`

k82dk8
j 3~k8r !

k22k82
, ~40!

and the results are presented in Appendix D.
For a magnetic field in thez direction~i.e.,u5a), and for

I 51/2, the angular-dependent function in the Knight sh
f j j 8(a,u), is given by

f j j 8~u!5cos2u f j j 8
z

1
sin2u

4
~ f j j 8

12
1 f j j 8

22
1 f j j 8

11
1 f j j 8

21
!.

~41!

Here f j j 8
z (u) is

f j j 8
z

~u!5 (
mj ,mj 8

^ jmj uJz1Szu j 8mj 8&saa
z ^ j 8mj 8u r̂ &^ r̂ u jmj&

5 (
mj ,a,m3

a^ jmj uJz1Szu j 8mj 8&K j 8mj 8U3m3 ;
1

2
a L

3K 3m3 ;
1

2
aU jmj L uY3m3

~ r̂ !u2, ~42!

and f j j 8
16(u) and f j j 8

26(u) are

f j j 8
16

~u!5 (
mjmj 8a,b

^ j ,mj uJ6u j 8,mj 8&^ j 8mj 8u r̂ &sab
7 ^ r̂ u j ,mj&

5 (
mj ,mj 8,m3 ,m38 ,a,b

^ j ,mj uJ6u j 8,mj 8&

3K j 8mj 8U3m38 ;
1

2
a L K 3m38 ;

1

2
aUsa,b

7 U3m3 ;
1

2
b L

3K 3m3 ;
1

2
bU jmj L Y3m3

* ~ r̂ !Y3m
38
~ r̂ !, ~43!

f j j 8
26

~u!5 (
mjmj 8ab

^ jmj uS6u j 8,mj 8&^ j 8mj 8u r̂ &sab
7 ^ r̂ u j ,mj&

5 (
mj ,mj 8,m3 ,m38 ,a,b

^ j ,mj uS6u j 8,mj 8&

3K j 8mj 8U3m38 ;
1

2
a L K 3m38 ;

1

2
aUsa,b

7 U3m3 ;
1

2
b L

3K 3m3 ;
1

2
bU jmj L Y3m3

* ~ r̂ !Y3m
38
~ r̂ !. ~44!

The explicit values forf j j 8(u) are

f ~5/2!~5/2!~u!5
9

28p
~128sin2u16sin4u!, ~45!

f ~7/2!~7/2!~u!5
2

7p
@2112sin2u29sin4u#, ~46!

f ~5/2!~7/2!~u!5
3

28p
@424sin2u13sin4u#. ~47!
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To assess the relevance of this single-site physics to
periodic compound CeSn3, we also carried out incoheren
lattice sums over a few hundred radial shells of Ce ato
around the Sn nucleus. For each atom in a shell the dista
r and angleu of Ce ion is calculated and the Knight shift o
each ion is evaluated for given position. Then the contri
tion from each ion is added to get the total Knight shift. F
the Y12xUxPd3, impurity configuration averaging is also ca
ried out. This single-site physics is known to be a good
proximation at high temperatures where the ions are inco
ent with one other, and known to provide a very accur
description of the thermodynamics in many cases.
CeSn3, given the tetragonal symmetry at the Sn site~see Fig.
6!, we fixed the field in thez direction and averaged over th
xz, xy and yz host planes for the Sn nucleus. Note thatyz
plane is equivalent toxz.

For YbCuAl, which has hexagonal symmetry, we have
consider three possible field directions, along thex, y, andz
axes. Al has anI 55/2 nuclear spin and the NMR shift wa
obtained from derivative spectra of the central (1/2↔
21/2) NMR transition. Then

f j j 8~a,u!5A cosa f j j 8
z

~u!1
B

4
sina@ f j j 8

1
~u!1 f j j 8

2
~u!#,

~48!

where f j j 8
6

5 f j j 8
16

1 f j j 8
26 . Also A andB are given by

A5
1

4
~25 cos5u226 cos3u15 cosu!,

B5
1

4
sinu~25 cos4u214 cos2u11!. ~49!

Then,

f ~7/2!~7/2!~a,u!5
2

7p
@2A cosa~113 sin2u!

1B sin a~513 cos2u!#, ~50!

f ~5/2!~5/2!~a,u!5
9

28p
@A cosa~124 sin2u!

2B sin a~322 sin2u!#. ~51!

FIG. 6. Crystal structure of CeSn3. The Sn nuclei occupy the
faces of the fcc structure, and the Ce atoms occupy the corners
averaging referred to below consists of weighing the contributi
from Sn atoms on faces including the field direction by a factor
2 relative to the face which is perpendicular to the field directio
he

s
ce

-
r

-
r-
e
r

For a detailed derivation, see Appendix E.
To the extent that the dynamics of the empty orbital c

be neglected, the Knight-shift expression@Eq. ~36!# factor-
izes into a nearly temperature-independent RKKY inter
tion ~modified due to the spin-orbit coupling and anisotrop
hybridization from the original form! times the f -electron
susceptibility. Thus, no anomaly results from the diagram
this limit. In this limit, the susceptibility in the diagram cor
responds to the leading-order estimate used in Ref. 34
compare with exact Bethe ansatz results.

We can gauge the effects of charge fluctuations with
simple approximation.9,48 For T50, the empty orbital propa-
gator may be written in an approximate two-pole form, o
with amplitude 12Z, Z5pkBT0 /NG, centered near zero en
ergy, and one with amplitudeZ centered ateg;e f2kBT0
which reflects the anomalous ground-state mixing due to
Kondo effect. The singly occupied propagator has a sim
pole structure:

A0~v!5~12Z!d~v!1Zd~v2eg!,

Am~v!5d~v2e f !,
~52!

A0
~2 !~v!5Zd~v2eg!,

Am
~2 !~v!5

12Z

2
d~v2eg!.

Then

I 1~ek!5Z/~kBT02ek!
2,

I 2~ek!5
12Z

kBT0
S 12Z

ek2e f
1

Z

ek
D . ~53!

Now, we can perform thek integral setting the above equa
tions in Eq.~37!. At low temperatures only conduction elec
trons which have momentum close tokF participate in the
interaction. We can rewrite the radial momentumk as

k5kF1~k2kF!'kF1
ek

\vF
. ~54!

Then we can write

eikr5eikFrei ekr /\vF. ~55!

From this we see that smallek gives a large contribution to
the Knight shift. The contribution from the integralI 1 de-
pends on whetherr @\v f /kBT0. For r @\v f /kBT0 only very
smallek,kBT0 contribute thek integral and we can approxi
mate 1/(kBT02ek)'1/kBT0 and this contribution has the
amplitude Z/kBT05p/NG. For r !\v f /kBT0, the Knight
shift has contributions fromek.kBT0 and this term has the
amplitudeZ/D. The amplitude of the Knight shift outside o
the coherence lengthjk5\vF /kBT0 is D/kBT0 times bigger
than that at inside the Kondo screening cloud. This term
give the Knight-shift anomaly. Becausee f is much bigger
than theek , the first term ofI 2 gives conventional RKKY
oscillations modulo the anisotropy and altered range dep
dence induced by them,k̂ dependence of the hybridization
The amplitude of the second term goes to zero above
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Kondo temperature. This term also may contribute to
anticipated anomalous Knight shift, and within such a tw
pole approximation may be seen to be finite withinjK and
have a stronger distance dependence in that regime, but
sess an amplitude of orderZ only within this distance re-
gime. BeyondjK , the amplitude is of order 1/N and the
shape of the spin oscillations is the same as that found f
the high-frequency pole of the empty orbital propagator.

So”rensen and Affleck23–25 have noted that for a singl
impurity an additional contribution is present below t
Kondo screening cloud which is not present in this calcu
tion. This corresponds to the diagrams shown in Fig. 7
which scattering occurs off of the impurity for one or anoth
conduction legs. This process will occur forany impurity in
a metal, and at a fundamental level corresponds to the
tribution induced by the field dependence ofkF for the two
different spin branches. The contribution then goes as 1R2,
but only outside the Kondo coherence length where the l
temperature screening cloud can be regarded as a pote
scatterer.~The 1/R2 follows trivially from differentiating the
Friedel oscillation with respect tokF .) This contribution is
of potential importance for any dilute system, but we arg
that it is not important in our lattice context~or, for that
matter, for any system with an appreciable concentration

FIG. 7. Feynman diagram for the additional contribution to t
Knight shift which was noted by So”rensen and Affleck~Refs. 23–
25!. This is significant in magnitude for distances beyond
Kondo screening cloud radius and not included in our calculat
This contribution is of potential importance for any dilute syste
but is not important in our lattice calculation~see, Sec. III D for
discussion!. All the propagators are explained in Fig. 5.
e
-

os-

m

-
n
r

n-

-
tial

e

of

impurities!. The reason is that theT-matrix insertions of Fig.
7 will go over to self-energy insertions in the lattice, as w
sum over all possible sites. These self-energy insertions
simply provide the renormalized Pauli susceptibility cont
bution to the Knight shift, which is not the dominant contr
bution.

E. Coherent lattice effects

Coherent lattice effects are included within the local a
proximation (d5` limit ! to the lattice model. In this ap
proximation a conduction-electron self-energy is includ
using the average-T-matrix approximation49 which assumes
that the conduction electron scatters off everyf -electron site.
This corresponds to a first iteration of the local approxim
tion. In contrast, these multiple-scattering processes are
nored in the incoherent limit. The NCA approximation trea
intrasite interactions to all orders. In this calculation we co
sider intersite coupling which involves simple hopping pr
cess in perturbation theory~ATA ! and ignore intersite inter-
actions which involve transfer of particle-hole pairs betwe
sites. This coherent lattice effect may reduce the Kon
screening length.50

The Anderson lattice model for spin-1/2 has a conducti
electron Green’s function given by51

Gc~kW ,v,T!5@v2ek2Sc~v,T!#21

5S v2ek2
V2

v2e f2S f
int~kW ,v,T!

D 21

. ~56!

WhereS f
int(kW ,v,T) is the f -electron self-energy arising from

f -f interactions. The same results follow for theN-fold de-
generate model. We remove the wave-vector dependenc
the self-energy by neglecting the intersite interactions. T
f -electron self-energy comes from thef -f interaction (S f

int)
and hybridization with the conduction electrons. This hybr
ization energy is given by

V2D~v!5
V2

Ns
(

kW

1

v2ek
. ~57!

For a featureless symmetric bandD(v)V2 becomes, forv
→0, iG, whereG5pN(0)V2 is the single-particle hybrid-
ization width@N(0) the density of state at the Fermi energy#.
Here the conduction electron cannot be scattered at the s
f -electron site twice and this site restriction gives the canc
lation of the hybridization self-energy term (2 iG) in the full
4 f Green’s function.52

Specifically, the band electron self-energy is writt
within this approximation as53,54

Sc~v,T!5V2$@G4 f~v,T!#~21!1V2D~v!%~21!

5V2G4 f
~ int!~v,T!, ~58!

whereG4 f is the the full 4f on-site Green’s function given
by34

G4 f jm~v!5
1

Z4 f
E dj

p
@A0

~2 !~j !Gjm~v1j1 id!

2Ajm
~2 !~j !G0~j2v2 id!# ~59!

within the NCA.

.
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Since vertex corrections are neglected in the NCA,
conduction-electron Green’s function is determined co
pletely throughS f by hybridization and any resistance sole
arises from the damping of band states due to the imagin
part of thef -electron self-energy. A realistic estimate ofS f

is important to study lattice coherence effects. By the st
dard Fermi-liquid phase space argument,35 the imaginary
part of the exact, on-sitef -electron self-energy is given, fo
low frequencies and temperatures, by

2Im S4 f~v,T!;v21~pkBT!21G. ~60!

In the NCA calculation, due to the approximation involve
the minimum value in2Im S4 f(v,T) does not occur pre
cisely at the Fermi energy~though it differs only by a smal
fraction of T0) and is not equal toG.52 So in our numerical
calculations, ImS4 f(v,T) is extrapolated tov,T→0 and
2Im S4 f(0,0) is replaced byG.

In our calculation, thef electrons havej 55/2 and j
57/2 states by spin-orbit coupling. Thus the conductio
electron self-energy has two terms from eachj state, viz.,

Sc~v,a,T!5(
j ,mj

u^ j ,mj uV~k!ukW ,a&u2G4 f j
~ int!~v!

54pV2(
jmj

U K j ,mjU3m3 ;
1

2
a L U2

3uY3m3
~ k̂!u2G4 f j

~ int!~v!

5V2~3G4 f 5/2
~ int! 14G4 f 7/2

~ int! !, ~61!

where the one-particle hybridization strengthV(KW )5V is,
taken to be independent ofukW u in this calculation, and we
used

(
m

U K 5

2
mU3m3 ;

1

2
a L U2

uY3m3
~ k̂!u25

3

4p
,

(
m

U K 7

2
,mU3m3 ;

1

2
a L U2

uY3m3
~ k̂!u25

1

p
. ~62!

With the inclusion of lattice coherence effects, t
I j j 8(ek ,ek8) term in the Knight-shift calculation is change
from the incoherent form, Eq.~37!, to

E k2dkE k82dk8I j j 8~ek ,ek8!

52E dj

p
Im J~j!Re J~j!

3@ f ~j!I 1 j j 8~j!1„12 f ~j!…I 2 j j 8~j!#, ~63!

where

J~j!5E dk
k2 j 3~kr !

j2ek2Sc~j!
, ~64!
e
-

ry

-

,

-

I 1 j j 8~j!5
2

Z4 f
E dz

p E dr

p

A0
~2 !~z !Ajm~r!Re Gj 8m8~r!

j1z2r

5
1

Z4 f
E dz

p
A0

~2 !~z !Re Gjm~z1j!Re Gj 8m8~z1j!,

~65!

I 2 j j 8~j!5
22

Z4 f
E dz

p E dr

p

A0~z!Ajm
~2 !~r!Re Gj 8m8~r!

j1z2r

5
2

Z4 f
E dr

p
Ajm

~2 !~r!Re Gj 8m8~r!Re G0~r2j!.

~66!

IV. RESULTS

In this section, the numerically calculated results for t
Knight shift K(T) and magnetic susceptibilityx(T) of
heavy-electron materials such as CeSn3, YbCuAl, and
U0.2Y0.8Pd3 will be presented. CeSn3 and YbCuAl are con-
centrated heavy-electron materials and U0.2Y0.8Pd3 is a pro-
posed two-channel quadrupolar Kondo heavy-electron al

First, the Knight shiftsK(rW,T) are systematically calcu
lated for different values of the Kondo temperatureT0 which
is controlled by the hybridization widthG5pN(0)V2, where
N(0) is the conduction-electron density of states at the Fe
energy andV is the one-particle hybridization strength, fo
Ce and Yb compounds. These results show that the ma
tude of the Knight-shift anomaly depends upon the distancrW
between the local magnetic moment and the nucleus and
Kondo temperatureT0. There is an anomaly even for sma
distancerW. The magnitude of deviation between a linearK vs
x relation is systematically increased when the distances
increased and the Kondo temperatures are increased. T
results are shown in Figs. 8 and 9. These calculations sup
Ishii’s idea of an anomalous conduction-electron sp
density cloud4 which sets in beyond the Kondo screenin
lengthjK5\vF /kBT0, wherevF is the Fermi velocity.

The lattice sum is carried out over a few hundred she
In Sec. IV B the results for CeSn3 are compared with experi
ments. Both the119Sn NMR Knight shift andmsr Knight
shift are studied. Also the influence of lattice coherence
the conduction electrons on both the NMR and posit
muon Knight shift is investigated using the average-T-matrix
approximation and the numerically calculated results
CeSn3 are compared with the experiments and also the
culated incoherent Knight shift. The calculated119Sn NMR
Knight shift agrees well with the experiment. The incohere
msr Knight shift shows an anomaly but has opposite si
For the coherent case, the Knight shift from a different mu
site gives an anomaly with opposite sign. We may fit t
experimental results by averaging out twomsr Knight shifts.

For YbCuAl, because of its complicated crystal structu
the incoherent lattice sum is carried out over several th
sand atoms. The calculated27Al NMR Knight-shift results
are mentioned in Sec. IV F. These results show excel
agreement with the experiments.

In the last subsection, the Knight shift and the magne
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susceptibility of U0.2Y0.8Pd3 are discussed. We do a full in
coherent lattice sum and impurity configuration averag
for U0.2Y0.8Pd3. Our study does not show the low
temperature Knight-shift anomaly like the experiments.

A. Systematic calculations

To see the systematic behavior of the magnetic susce
bility and the Knight shift, we have calculatedx(T) and
K(rW,T) for different Kondo temperaturesT0. For spin-orbit
coupling and zero crystal-field splitting,T0 is given by

kBT05DS G

pue f u
D 1/NgS D

Dso
D Nex /Ng

expS pe f

NgG D , ~67!

whereNg is the degeneracy of the ground spin-orbit mu
plet, Nex is the degeneracy of the excited multiplet,e f is the
energy level position of the ground multiplet,Dso is the en-
ergy gap between two spin-orbit multiplets, andG
5pN(0)V2 is the hybridization width (D is the physical
Lorentzian bandwidth of the conduction electron!. The val-
ues of the parameters we used for Ce and Yb ions are li
in Table I.

For several different hybridization widthsG, the Knight
shift was studied as a function of temperatures and distanrW
between the local impurity spin and nucleus at fixed anglu

betweenrW and quantization axiskW2kW8. In these calculations
all other variables such ase f , and Dso were fixed to the
values which give the best magnetic susceptibilityx(T) fit to
experimental results of CeSn3 for Ce ions and YbCuAl for

FIG. 8. Calculated Knight shiftK(T) for a single Ce site vs
susceptibility x(T) for varying separation with the Kondo sca
used to fit the CeSn3 x(T) ~see Fig. 14!. For each plot the angle is
held atu50 with respect to the nuclear moment-Ce axis, andkFr
values are chosen to be at minima of the oscillatory function.
CeSn3, with T05430 K, we estimatekFr 5320 at the coherence
scale\vF /kBT0, so we can see that the qualitative trend both ins
and outside the coherence scale are similar, though the magn
of the anomaly is more pronounced outside the coherence s
The diagram of Fig. 5 is used to calculateK(T). The magnitude of
the nonlinearity diminishes askFr is reduced. The theoretica
Knight shifts have been shifted by offset and scale factors to m
the high-temperature susceptibility; this does not affect the rela
size of the anomaly.
g

ti-

ed

Yb ions ~see Secs. IV B and IV F for the parameter value!.
The Knight shift is scaled to the susceptibility by matching
high temperatures. For all the calculations the conducti
electron band widthD was assumed to be 3 eV. Because
the small gap betweenj 55/2 and j 57/2 states of Ce com
pound (Dso50.29 eV for Ce ions andDso51.30 eV for Yb
ions!, the Van Vleck term is included for only Ce compoun
studies.

Figures 10 and 11 show the calculated Knight sh

FIG. 9. Calculated Knight shiftK(T) vs susceptibilityx(T) for
a single Ce site atkFr 53.33 from a nuclear moment and angleQ
50. Fixing the f -level energye5/2522 eV, and the spin-orbit
splitting Dso50.29 eV, the hybridization is varied to illustrate th
dependence of the nonlinearity on the magnitude ofT0 ~which
ranges from 750 to 130 K in these calculations asG varies from
0.165 to 0.130 eV!. The diagram of Fig. 5 is used to calculateK(T).
The magnitude of the nonlinearity diminishes asT0 is reduced. The
theoretical Knight shift has been shifted by a common offset a
scale factor to match the susceptibility.

r

e
de
le.

h
e

FIG. 10. Knight shiftK(r ,T) at fixed angleu50 and Kondo
temperatureT05430 K for Ce ions on a fine scale. We use th
dimensionless variablekFr with the Fermi wave vectorkF50.65
Å21 instead ofr . Around kFr 53.2 the lines ofT5104 and 52 K
are crossed. This can be explained that the Knight-shift summa
converges faster at higher temperatures and it has longer ran
lower temperatures as mentioned by So”rensen and Affleck~Refs.
23–25!.
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K(rW,T) on a fine scale and a coarse scale as a functio
separationr and temperaturesT at fixed angleu50 and
hybridization width G50.050 667D (T05430 K! for Ce
ions. We use a dimensionless variablekFr with the Fermi
wave vectorkF50.65 Å21 instead ofr . The Knight shift
shows an oscillatory RKKY-like behavior and the total ma
nitude decreases when distance is increased.uK(T)u at fixed
distancer is first increased and then decreased~it becomes
almost constant!, when the temperature is lowered. In Fi
10, we can see that the curves forT5104 and 52 K cross
around kFr 53.2. The temperature whereK(rW,T) has the
maximum value is a function of separationr and has lower
value with larger separationr . The Knight shift has different
r dependence depending upon whether the temperatu
above the Kondo temperature or below the Kondo temp
ture as mentioned by So”rensen and Affleck.23–25The Knight
shift converges faster at higher temperatures~above the
Kondo temperature! and it has longer range at lower tem
peratures. Changing the angle can change the sign of
Knight shift contribution from a particular site, as shown
Fig. 12 on a finer scale and Fig. 13 on a coarse scale. H
ever, the behavior of the magnitude ofK(rW,T) as a function
of temperature is unchanged, qualitatively. The Knight sh
of Yb ions at fixed angles show similar behavior.

For a fixed Kondo temperatureT0 and distancer , the
Knight shift K(T) shows a linear relation with the magnet
susceptibilityx(T) at high temperature and it starts to dev
ate from the linear relation and shows an anomaly wh
temperature is lower thanTmax wherex(T) reaches its maxi-
mum value. Figure 8 shows the Knight shift atu50, T0
5380 K as a function of the magnetic susceptibility for d
ferent separations, with temperature as an implicit varia
for Ce ions. These curves show a linearK vs x relation at
high temperatures~in this figure, high temperatures corre
spond to the lower left corner! and show nonlinearK-vs-x
relations at low temperatures. The anomaly, i.e., the ma
tude of the nonlinearity, diminishes as the separationr is

FIG. 11. Knight shiftK(r ,T) at fixed angleu50 and Kondo
temperatureT05430 K for Ce ions. We use dimensionless variab
kFr with the Fermi wave vectorkF50.65 Å21 instead ofr . This
shows an oscillatory RKKY-like behavior. The amplitude is d
creased as the temperature is increased and the distancer is in-
creased. The calculations are done at the same temperatur
Fig 10.
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decreased. In Fig. 9, the Knight shift is investigated atkFr
53.3, andu50 for different Kondo temperatures. As in Fig
8, temperature is an implicit variable and high temperatu
correspond to the lower left corner. The magnitude of dev
tion from the linear relation is decreased when the Kon
temperature is reduced. For CeSn3, kFjk'25 where jK
5\vF /kBT0 is the Kondo screening length with the Ferm
velocity vF . So our calculation is done well inside the co
duction electron screening spin cloud. Very similar resu
are obtained for Yb compounds.

These results qualitatively confirm Ishii’s argument4 that
when the radiusr is bigger than Kondo screening leng
jK5\vF /kBT0, wherevF is the Fermi velocity, the anoma
lous conduction spin density cloud sets in. Far inside t
radius, conventional temperature independent RKKY os

in

FIG. 12. Knight shiftK(r ,T) at fixed angleu5p/2 and Kondo
temperatureT05430 K for Ce ions on a fine scale. We use dime
sionless variablekFr ~with the Fermi wave vectorkF50.65 Å21).
The Knight shift has maximum amplitude aroundT5104 K.
Around kFr 52.8 the lines ofT5174 and 52 K are crossed.

FIG. 13. Knight shiftK(r ,T) at fixed angleu5p/2 and Kondo
temperatureT05430 K for Ce ions. We use dimensionless variab
kFr ~with the Fermi wave vectorkF50.65 Å21). This shows an
oscillatory behavior like the RKKY interaction form and the amp
tude is decreased as the temperature is increased and the dis
r is increased. The calculations are done at the temperature
Fig 10.
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lations dominate of the kind observed by Boyce and Slich
Outside the screening length, atT50, the anomalous term
will dominate also with an RKKY form but an amplitude o
order D, the conduction bandwidth, compared wi
D„N(0)J…2 for the Ruderman-Kittel term, whereN(0) is the
conduction-electron density of states at the Fermi energy
J is the conduction-electron local-moment exchange c
pling. Ishii did not calculate the explicit temperature depe
dence of this structure, but did anticipate that it would van
above the Kondo scale. Scaling analysis confirmed
asymptotic factorization of the Knight shift for short distan
and low temperature.8 A possible understanding of the Boyc
and Slichter results, then, is that the Cu nuclei they samp
were at distancesr !jK from the Fe ions. But, in our calcu
lation, the anomaly is still present and the magnitude is s
prisingly large for a short distance providedT0 is large. A
heuristic basis for understanding this is the two-pole appro
mation, as discussed in Sec. III D.

B. CeSn3

The compound CeSn3 has the AuCu3 crystal structure
~see Fig. 6!. The local symmetry at every cerium site is c
bic. With decreasing temperature, the magnetic susceptib
x(T) of CeSn3 shows first typical Curie-Weiss-like behav
ior, followed by a maximum atTmax'40 K and tending to a
constant value atT50.5,7 CeSn3 has positive amplitude o
Knight shift for the 119Sn nuclei. However, our calculate
amplitude of the Knight shift before scaling it tox is actually
negative. This implies that the fit is sensible only if the a
sumed contact coupling between conduction and nuc
spins is negative. This actually makes sense because th
nucleus should dominantly couple through core polarizati
which produces a negative effective contact coupling. T
NMR Knight shift K(T) andx(T) are related linearly above
Tmax. But the Knight shift does not follow the magnet
susceptibility belowTmax and has weaker temperature depe
dence. The119Sn NMR Knight shift has a positive anomaly
i.e., it has larger magnitude than that of magnetic susce
bility below Tmax. The positive muon spin rotation (msr)
measurement shows that the positive muon Knight shift a
exhibits an anomaly belowTmax, but it has a different sign
with respect to the susceptibility as compared to the NM
Knight shift.7

C. NMR Knight shift

To study the Knight shift for CeSn3, first the hybridization
width G for CeSn3 is decided by comparing the calculate
magnetic susceptibility and experimental magnetic susce
bility, assuming a conduction-electron density of states h
width D53 eV. As in the systematic calculation, a fixe
value for parametere f 5/2522 eV520.6667D is assumed,
andDso50.29 eV50.096 667D is used. ThenD is varied a
little to fine tune the results. The Knight shift is calculat
with the fixed Kondo temperature~specified by G
50.050 666D) and conduction bandwidthD52.655 eV.
The best fit Kondo temperature which is given by Eq.~67! is
T050.0123, in units ofD, i.e., T05380 K.

For the Knight shift, an incoherent lattice sum is carri
over several hundred shells of surrounding Ce ions abo
r.
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given 119Sn nucleus. We assume the Knight-shift contrib
tion of each ion to be described by this single impur
model, known to be a good approximation at high tempe
tures where the ions are incoherent with one another,
known to provide a very accurate description of the therm
dynamics in many cases.

Because Sn is on the face of each unit cell, we also a
age the Knight shift over the reference frame determined
whether119Sn is on thexy plane, or thexz plane~for HW i ẑ).
Note thatyz is equivalent toxz. Like the systematic calcu
lation, a Van Vleck term is included for both magnetic su
ceptibility x(T) and the Knight-shiftK(T) calculation. The
Knight shift is scaled by an intermediate range temperat
match to the susceptibility, because the experimental da
measured only up to room temperatures.

As shown in Fig. 14 the results agree well with the e
periments in spite of the oversimplified conduction-electr
band structure. Experimentally the119Sn NMR Knight shift
has a positive sign and is linearly related to Ce magn
susceptibility x(T) at high temperatures.K(T) shows an
anomalous deviation from Cex(T) at low temperatures and
the magnitude is bigger thanx. At high temperatures abov
400 K, K(T) is reduced slowly with increasing temperatu
and shows deviation fromx. Experiment measures th
Knight shift only up to 300 K, so we are not sure wheth
this behavior appears in experiment. The magnitude of
anomalous contribution goes down with distance from the
nucleus and the theoretical data at a fixed distance wh
most closely match those of experiment are takenkFr 52.1
and u50. Note that this distance is an order of magnitu
smaller than the Kondo screening lengthjK5\vF /kBT0
'25/kF .

D. Lattice coherence effects

We study lattice coherence effects within a local appro
mation (d5` expansion! to the lattice model. The

FIG. 14. Temperature dependence of119Sn Knight shiftK(T)
and Cex(T) @both calculated and experimental results~Refs. 5 and
7!# for CeSn3. The theoreticalK(T) is calculated using the diagram
of Fig. 5 and withT0 chosen to fit the experimentalx(T) data. A
full ~incoherent! lattice sum is carried out over several hundr
shells of atoms.
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conduction-electron propagator in Fig. 5 becomes dres
and the conduction-electron self-energy is calculated us
the average-T-matrix approximation, which is exact for
Lorentzian density of states within the loc
approximation,55,56 and otherwise corresponds to the first
eration of thed5` self-consistency. The same paramet
for the incoherent Knight-shift calculation are used for t
coherent lattice calculation.

The calculated results fit experimental data well in t
region of temperatures between 100 and 250 K where
experimental data exist. At low temperature, the Knight s
with coherent lattice effects also shows an anomaly, wit
little discrepancy with the experiment. At higher tempe
tures it shows tails which have bigger values than the exp
mental susceptibility~see Fig. 15!. If we fit the results to this
high-temperature magnetic susceptibility, then the Kni
shift has bigger values at the maximum temperature
shows sharp changes with temperature changes. We ar
sure which is the best way to fit the result with the expe
ment. The calculated magnitudes~before the scaling to fit the
experimental results! of both incoherent and coherent Knig
shift have similar values at high temperatures where cohe
lattice effects are small. Explicit values are shown in Ta
III.

The average magnitude and amplitude of the oscillation
the Knight shift is decreased from that of the incoherent
tice sum; we believe because of the damping effects brou
in by the imaginary part of conduction-electron self-ener
To test this idea, we added a phenomenological cons
damping to the incoherent lattice sum. Figure 16 shows
result for small damping,2Im S f50.01D and Fig. 17
shows the results for large damping,2Im S f51D. In these
figuresK(T)5(kFr ,kFr 0

K(r ,T). This study shows that the
amplitude of oscillation is reduced when the damping is
creased. And the amplitude of the Knight shift converges
faster when the damping is the bigger when distance is
creased. An impurity at large distance does not contribut

FIG. 15. Temperature dependence of119Sn Knight shiftK(T)
with coherence effect and Cex(T) @both calculated and experimen
tal results~Refs. 5 and 7!# for CeSn3. The theoreticalK(T) is cal-
culated using the diagram of Fig. 5 and withT0 chosen to fit the
experimentalx(T) data. A full lattice sum is carried out over sev
eral hundred shells of atoms using the average-T-matrix approxi-
mation to approximate the coherent conduction self-energy.
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the total Knight shift because of the large damping, i.e., sh
lifetime of the conduction electrons. Also Fig. 18 shows t
Knight shift calculated with the coherent lattice sum.
shows a behavior intermediate between small and la
damping calculations.

E. µsr Knight shift

Positive muons, stopped in a solid, come to rest at in
stitial sites where the muon spin performs a Larmor prec
sion in the local magnetic field. The muon Knight shift
then a measure of the local magnetic susceptibility. F
CeSn3, from volume considerations it is most likely that th
muon preferentially occupies the octahedral interstices of
AuCu3 structure~as it does in metals with the closely relate
fcc structure!, rather than the tetrahedral sites. There a
however, two inequivalent octahedral sites, one at the ce
of the cubic unit cell and the other at the middle of the
atoms which has a noncubic symmetry. So, in principle, t
resonances are expected. In the experiment by Wehret al.,57

only one resonance was observed because either the m
performs a site average by fast diffusion or the frequen

TABLE III. Explicit values of both incoherent and coheren
Knight shift at high temperatures. They have similar values beca
coherent lattice effects are small at high temperatures. These
unadjusted data.

Knight shift
Temperature Incoherent Coherent

925 K 20.3579 20.44855
615 K 22.4078 22.42525
555 K 23.0157 22.84562
490 K 23.7184 23.34231
430 24.5380 23.95714

FIG. 16. Temperature dependence of Knight shiftK(T) with
small constant damping2Im S f50.01 in incoherent lattice sum. In
this figure K(T)5(kFr ,kFr 0

K(r ,T). The calculations are done a
the same temperatures in Fig. 10. The small absolute magni
corresponds to the high temperature and it increases as the tem
tures goes down. The convergence is slower than the coher
lattice sum.
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3328 PRB 58E. KIM AND D. L. COX
difference is small with respect to the apparent width of
signal which is given by the muon lifetime and the intrins
width g.

In the Curie-Weiss regime of CeSn3 above 200 K, the
temperature dependence of the positive muon Knight shi
linearly related to the bulk magnetic susceptibility. In t
intermediate valence regime of CeSn3 the local magnetiza-
tion as experienced by the muon decreases more stro
below 200 K than the magnetization of the 4f state as de-
duced from the bulk susceptibility. This behavior reflects
ther a modification of the transferred hyperfine fields b
tween the 4f moments and the muon or signals the influen

FIG. 17. Temperature dependence of Knight shiftK(T) with
large constant damping2Im S f51 in incoherent lattice sum. In
this figure K(T)5(kFr ,kFr 0

K(r ,T). The calculations are done a
the same temperatures in Fig. 10. The small absolute magn
corresponds to the high temperature and it increases as the tem
tures goes down. They converge very fast. An impurity at la
distance does not contribute to the total Knight shift because of
large damping, i.e., short lifetime of the conduction electrons.

FIG. 18. Temperature dependence of Knight shiftK(T) with
coherent lattice sum. In this figureK(T)5(kFr ,kFr 0

K(r ,T). The
calculations are done at the same temperatures in Fig. 10. The
absolute magnitude corresponds to the high temperature and
creases as the temperatures goes down. The convergence is
than the small damping case but slower than larger damping c
e

is

ly

-
-
e

of an additional negative Knight-shift contribution whic
was absent or small in the high-temperature ranges. Com
ing with the NMR Knight shift, themsr Knight shift has a
maximum at higher temperature and the sign of anomal
opposite. This anomalous reduction of positive muon Knig
shift might be regarded as an indication for an additio
negatived-electron Knight-shift contribution.57 In terms of a
band picture, the increase ofd character at the Fermi leve
can be understood as a 4f -5d hybridization effect. It is sup-
ported by de Haas–van Alphen measurements.58 Positive
muons sitting between Ce atoms should be particularly s
sitive to variations in the 5d states from the symmetry o
these orbitals.

We have calculated them1 Knight shift for both possible
muon sites. Both incoherent and coherent lattice sums
carried out over several hundred shells of Ce atoms.
other parameters for the calculations are same as for
119Sn NMR Knight-shift calculations. Figure 19 shows th
results assuming that muon sits at the center of the cubic
cell. At high temperatures, the calculatedmsr Knight shift
agrees well with the experimental data and shows a lin
relation with the bulk magnetic susceptibility. Both incohe
ent and coherent lattice sum studies give the correct ma
tude for the low-temperature Knight-shift anomaly but t
wrong sign. Also the maxima occur at lower temperatu
than the data and the magnitude is bigger than the exp
ment.

Results are shown in Fig. 20 for the case where that m
sits at the middle of the Ce-Ce band axis. In this case, res
with the incoherent lattice sum show similar behavior to t
previous calculations~assuming the muon sits at the cent
of the unit cell!. But the result of the calculation shows ve
interesting behavior even though it does not agree with
periment. The Knight shift starts to deviate from the line
relation at higher temperature and the magnitude of
anomaly is larger than the experimental result. Note that
sign of the anomaly agrees with experiment. There is a p
sibility to fit the experimental data by averaging themsr
Knight shift from both positions. Because there is no expe

de
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e
e

all
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FIG. 19. Temperature dependence of positive muon Knight s
K(T) and Cex(T) @both calculated and experimental results~Refs.
7 and 57!# for CeSn3. The theoreticalK(T) is calculated assuming
that muon sits at the center of cubic unit cell. Other parameters
same as for the119Sn NMR Knight-shift calculation.
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mental data which gives information about the fractional s
occupancy we just averaged two Knight shifts with seve
fractional occupancy ratiof which is defined as

K total5 f Kcenter1~12 f !Kbond-axis. ~68!

Figure 21 shows the result forf 52/3. Our calculation misse
the maximum point, but the low temperature anomaly agr
with the experimental result.

Also, if the muon is not situated at a site of cubic sym
metry, dipolar fields from the induced local moments m
give the dominant contribution to the positive muon Knig
shift. The magnetic dipole which is inversely related to t
mass, can give comparable contribution to the positive m
Knight shift in contrast to the119Sn NMR Knight shift.48 The
direct dipolar interaction energy of two magnetic dipolesmW 1
andmW 2, separated byrW is given

FIG. 20. Temperature dependence of positive muon Knight s
K(T) and Cex(T) @both calculated and experimental results~Refs.
7 and 57!# for CeSn3. The theoreticalK(T) is calculated assuming
that muon sits at the middle of the axis between the Ce atoms. O
parameters are same as for the119Sn NMR Knight-shift calculation.

FIG. 21. Temperature dependence of positive muon Knight s
K(T) and Cex(T) @both calculated and experimental results~Refs.
7 and 57!# for CeSn3. The theoreticalK(T) is calculated averaging
the msr Knight shift from both positions with fractional occupanc
ratio f 52/3 ~2/3 of the muon is at the center of CeSn3 unit cell!.
e
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U5
1

r 3
@mW 1•mW 223~mW 1• r̂ !~mW 2• r̂ !#. ~69!

The dipolar part of the Knight shift tracks directly the atom
susceptibility of the nearest-neighborf -electron ions, while
the contact hyperfine contribution is what we are interes
in. In our calculation the dipolar field effect is of cours
exactly cancelled out when we average over the refere
frame.

F. YbCuAl

The ternary intermetallic compound YbCuAl has the he
agonal Fe2P-type crystal structure,59,60 in which each Yb
atom has the same local environment. At low temperatu
the magnetic susceptibilityx(T) has a large constant valu
@x(0)525.531023 e.m.u./mole Yb atoms# and a maximum
value atTmax'27 K. There is a Curie-Weiss like behavio
aboveTmax.

6,7,61 27Al NMR shift data were obtained from
derivative spectra of the central (1/2↔21/2) NMR transi-
tion. AboveTmax, x andK track each other, as expected
only one mechanism is appreciably temperature depend
Here the Yb magnetization is the obvious candidate for
temperature-dependent contributions to bothx(T) andK(T).
This linearK-vs-x relation has been used to determine t
relative scales of thex(T) and shift coordinate axes in Fig
22. The linear relation breaks down belowTmax.

The 27Al NMR Knight shift has negative sign and th
absolute magnitude of the low-temperature Knight shift
smaller than the magnetic susceptibility, opposite to the c
of CeSn3. For YbCuAl, the ground-state energy for thef
state is taken ase f 7/2521 eV520.333D and Dso
51.3 eV50.4333D. Because of the large value ofDso, we
can neglect the interaction betweenj 57/2 ground state and
j 55/2 excited state. Without this Van Vleck term, we c
estimate the conduction-electron band half-widthD using the
zero-temperature magnetic susceptibilityx(0) value:

ft

er

ft

FIG. 22. Temperature dependence of27Al Knight shift K(T)
and Ybx(T) @both calculated and experimental results~Refs. 6, 7,
and 61!# for YbCuAl. The theoreticalK(T) is calculated using the
diagram of Fig. 5 and withT0 chosen to fit the experimentalx(T)
data. A full ~incoherent! lattice sum is carried out over 24 000 a
oms.
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x~0!5
gj

2 j ~ j 11!uB
2N0

3kBT0
. ~70!

With x(0)525.531023, we getkBT058.797431023 eV.
Also with the relation

S T0

D D
exp

5S T0

D D
the

, ~71!

where D the53 eV, and (T0 /D) the50.001 84, we getDexp
54.7812 eV. But, we get the best magnetic susceptibility
with D53.5 eV andG50.020 33D. The incoherent lattice
sum is carried out for over 8000 shells of atoms, larger th
for CeSn3. Because of the complicated crystal structure, e
shell only includes a few atoms.

Calculated results are shown in Fig. 22. Both the m
netic susceptibility and the Knight shift agree well with e
perimental results and can explain both the magnitude
sign of Knight-shift anomaly in spite of the oversimplifie
conduction-electron band structure. We note that the sig
the anomaly is opposite to that of Ce in this case, and ind
we find that these contributions go in opposite directio
numerically.

G. Y0.8U0.2Pd3

The Y12xUxPd3
3 system has aroused great interest, f

lowing the discovery of non-Fermi-liquid behavior for ur
nium concentrations aroundx50.2.27,62,63 This discrepancy
has been interpreted as possibly arising from a two-cha
quadrupolar Kondo effect26,27 or from critical effects of a
new kind of second-order phase transition at z
temperature.64 We will mainly discuss the compositionx
50.2.

Y0.8U0.2Pd3 has a cubic AuCu3 crystal structure. Thej
54 ground state of U41 is split to G1 singlet,G3 nonmag-
netic doublet, andG4 andG5 magnetic triplet. Knowledge o
the crystal-field ground state is a crucial test for the valid
of the quadrupolar Kondo model and there are sev
neutron-scattering experiments to decide the ground sta
Y0.8U0.2Pd3.33,65,66 Mook et al.33 interpreted their results in
terms of a crystal-field level scheme with aG3 doublet
ground state andG5 andG4 excited triplet states at 5 and 1
meV, respectively, and thus support the two-channel qua
polar Kondo effect interpretation. In this case,x(T) origi-
nates in the Van Vleck susceptibility associated with tran
tion from a G3 nonmagnetic ground doublet into excite
state G5 and G4 triplets. The G3 is described by a
quadrupolar pseudospin. This couples to pseudospin v
ables of a conductionG8 quartet in time-reversed channe
with the antiferromagnetic pseudospin coupling mediated
virtual charge fluctuations to magnetic doublets in excit
state configurations.

McEwenet al.65 saw a peak of magnetic origin at 36 me
and another peak around 4 meV and explained this with
transition betweenG3 ground state with excited statesG4, G1
andG5. They couldn’t find a peak at 16 meV.

Dai et al.66 reported aG5 magnetic ground state with po
larized inelastic neutron-scattering experiment andG3 and
G4 excited states at 5, 39 meV. We note, however, in c
trast to this interpretation, that there is no quasielastic s
t
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tering around\v53.6 meV (;42 K5kBT0), expected for
a conventional magnetic Kondo effect.

For x50.1 and 0.2, a breakdown of the expected linear
between the NMR Knight shift and the bulk susceptibili
x is found below ;50 K.10 The magnetic susceptibility
exhibited an upturn at low temperatures~Curie tail!, indi-
cating the presence of magnetic impurities~see Fig. 23!. The
impurity magnetic susceptibility was subtracted.67 The tem-
perature dependence ofx(T) ~Ref. 33! suggests that the
mechanism for the two-channel behavior is the quadrup
Kondo effect:26

x~T!

x~0!
'12AS T

T0
D ~1/2!

. ~72!

In our study, we considerf 2 and f 3 configurations for U
ions and only the Hund’s rule ground states, i.e.,f 2, j 54
and f 3, j 59/2 spin-orbit states are kept for the calculatio
j 54 states is split toG3 ground doublet,G5, G4, and G1
excited states andj 59/2 multiplet is split toG6 doublet and
two G8 quartets. The conduction-electron bandwidthD is
assumed to be 3 eV. All parameter values are listed in Ta
II in the unit of D. The incoherent lattice sum is carried o
over 300 shells with impurity configuration averaging.

Figure 23 shows both the experimental and calcula
magnetic susceptibility and the89Y NMR Knight shift. In
our calculation, both the bulk magnetic susceptibility and
Knight shift become constant when the temperature goe
zero and thus a Knight-shift anomaly does not arise. O
calculated magnetic susceptibility saturates when the t
perature goes to zero and does not show the low-tempera
singularity like experiment. This may arise from the nume
cal calculation or from intrinsic properties such that re
ground state may be magnetic as discussed earlier. A s
rate possibility is that the weak admixture of excitedf 3 mag-

FIG. 23. Temperature dependence of89Y Knight shift K(T) and
U x(T) @both calculated and experimental results~Refs. 10 and 67!#
for Y0.8U0.2Pd3. The theoreticalK(T) is calculated using the dia
gram of Fig. 5 and withT0 chosen to fit the experimentalx(T) data.
A full ~incoherent! lattice sum and impurity configuration averagin
is carried out over several shells.
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netic states contributes a weakly log divergent contribut
to x; this possibility may be explored elsewhere. Regardle
the calculated Knight shift agrees well with the experimen
data in magnitude and temperature dependence.

V. SUMMARY

In this paper, we have calculated the magnetic susce
bility and the Knight shift for the heavy-electron materia
within the infinite-U single-impurity Anderson model usin
the NCA method. In our calculations we can explain that
Knight-shift anomaly in heavy-electron materials with t
simplified single-impurity Kondo effect. There exists
Knight-shift anomaly at short distancer ,jK , with ampli-
tude proportional toT0 /G.

Our calculations show generally good agreement
experimental results in spite of the oversimplified band str
ture. Especially, the short distance Knight shift depends
the detailed structure on the conduction-electron b
and our calculation shows large contributions from the sh
distance Knight shift. For future work, we can includ
more realistic conduction-electron band structure wh
can be calculated with the linearized muffin-tin orbit
method.
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APPENDIX A: U 41 IONS

For the U compound, the crystal field effect~CEF!, which
lifts the angular momentum degeneracy of U ions and th
spin-orbit multiplet decomposes into irreducible represen
tion of the cubic field needs to be included. The distincti
from the CeSn3 and YbCuAl cases is that the appare
crystal-field splittingDCEF*T0 for CeSn3 and YbCuAl. The
f 2, j 54 Hund’s rule ground state of the U ion is split to aG3
nonmagnetic doublet,G5 and G4 magnetic triplet andG1
singlet states.33 The f 3, j 59/2 spin-orbit multiplet is split to
G7 doublet and twoG8 quartets. For an explicit derivation
see Appendix B and the articles by Lea, Leask, and Wo69

and by Hutchings.70 The eigenstates ofG i CEF states for
j 54 and j 59/2 multiplets are in Tables IV and V.69,70 In
cubic symmetry, the coefficients of CEF states depend u
the parameterx which is fixed by the ratio of the fourth an
sixth degree terms in a short distance expansion of the c
field in the Hamiltonian of the crystal electric field, and up
the parameterW which is an overall scale factor fixed by th
crystal-field strength. In this calculation, we usex350.3693
andW352.74631024 to havej 59/2 G6 for the ground state
of the f 3 configuration andx2520.648 andW2523.95
31024 to havej 54 G3 for the ground state forf 2 configu-
ration. For further details, see Appendix B. The choice of
overall phase is arbitrary in defining the CEF eigenstates

A brief description of the different irrep labels of the c
bic group is as follows:~1! G1 andG2 are orbital singlets.~2!
n
s,
l

ti-

e

it
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n
d
rt

h

.
f
.

ir
-
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n

ic

e

G3 is an orbital~nonmagnetic, or non-Kramers’! doublet and
usually labeled by6. ~3! G4 andG5 are magnetic triplets and
labeled by 0,61. ~4! G6 andG7 are magnetic Kramers’ dou
blets and labeled with pseudospin↑ or ↓. That is, theG6 and
G7 CEF states are similar to thej 51/2 angular momentum
manifold. ~5! G8 is a magnetic quartet (G85G3^ G7) and
labeled by6↑/↓.

In the Anderson model picture, the conduction electro
can hop on and off the atomic orbitals at the impurity si
The l 53 conduction-electron partial waves are mo
strongly coupled to thef electrons in U ions~for the isotro-
pic hybridization, only thel 53 components can hybridiz
with the f orbitals!. In the presence of the spin-orbit cou

TABLE IV. Crystal electric-field energy eigenstates forj 54
multiplet in the cubic symmetry. The coefficient is independe
of x.

j 54 multiplet States

uG1& A 5
24 u4&1A 7

12 u0&1A 5
24 u24&

uG3 ;1&
1

A2
~ u2&1u22&)

uG3 ;2& 2A 5
24 u4&1A 7

12 u0&2A 5
24 u24&

uG4 ;0&
1

A2
~ u4&2u24&)

uG4 ;61&
1

A8
u73&1A7

8 u61&

uG5 ;0&
1

A2
~ u2&2u22&)

uG5 ;61&
1

A8
u73&2A7

8 u61&

TABLE V. Crystal electric-field energy eigenstate forj 59/2
multiplet in the cubic symmetry, the coefficientai ’s and bj ’s de-
pend on thex which is the parameter which depends on the ratio
the fourth and sixth degree cubic field in the Hamiltonian of t
crystal electric field. In this calculation, we usex350.3693 and
W352.74631024 to havej 59/2 G6 for the ground state of thef 3

configuration andx2520.648 andW2523.9531024 to have j
54 G3 for the ground state forf 2 configuration.

j 59/2 multiplet States

uG6 ;6& A 9
24 u6 9

2 &1A 1
24 u7 7

2 &1A 7
12 u6 1

2 &

uG8a ;1,6& a1
au6 9

2&1a2u7
7
2&1a3u6

1
2&)

uG8a ;2,6& b1u6
5
2&1b2u7

3
2&

uG8b ;1,6& a6u6
9
2&1a7u7

7
2&1a8u6

1
2&)

uG8b ;2,6& b3u6
5
2&1b4u7

3
2&

aFor x50.3693, a1520.1290, a2520.1582, a350.9789, b1

50.7361,b2520.6769,a650.7800,a7520.6358,a850.0016,
b350.6769, andb450.7361.
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pling, the l 53 conduction-electron state splits into th
j 55/2,7/2 conduction-electron multiplets. Thesej multiplets
further split into the CEF irreducible representations,G6, G7,
doublets andG8 quartet in crystal environment. The CE
eigenstates forj 55/2, and j 57/2 multiplets are listed in
Tables VI and VII.

The hybridization Hamiltonian of our model U compoun
in the absence of the CEF is given by

Hc f5 (
k jcmc

(
m2m3

FVkLS j cmc ; f 2 j 254m2U f 3 j 35
9

2
m3D

3ck jcmc

† u f 2 j 254m2&K f 3 j 35
9

2
m3U1H.c.G . ~A1!

Here the reduced matrix elements are

LS j cmc ; f 2 j 254m2U f 3 j 35
9

2
m3D

[^ f 2 j 254m2u f j cmc
U f 3 j 35

9

2
m3L

5K~ j c j 2u j 3!^ j cmc ; j 2m2u j 3m3&, ~A2!

where j c55/2,7/2. The Wigner-Eckart theorem is used f
the last line and the prefactorK( j c j 2u j 3) is the fractional
parentage coefficient. In our calculation wherej 254 and
j 359/2, K( j c j 2u j 3)5A7/9 for both j c55/2 and j c57/2.
^ j cmc ; j 2m2u j 3m3& are the Clebsch-Gordan coefficients.
there is a crystal electric field, the Anderson hybridizati
between the CEF statesGs needs to be re-evaluated in th
basis appropriate to the crystal-field split states. We hav

TABLE VI. Crystal electric-field energy eigenstates forj 55/2
multiplet in the cubic symmetry.

j 55/2 Multiplet States

uG7
(5/2) ;↑/↓& 2A 1

6 u65/2&1A5
6 u73/2&

uG8
(5/2) ;1,↑/↓& u61/2&

uG8
(5/2) ;2,↑/↓& A 5

6 u65/2&1A1
6 u73/2&

TABLE VII. Crystal electric-field energy eigenstates forj
57/2 multiplet in the cubic symmetry.

j 57/2 Multiplet States

uG6
(7/2) ;↑/↓& 6A 5

12 u77/2&6A 7
12 u61/2&

uG7
(7/2) ;↑/↓& 6A 3

2 u65/2&7
1
2 u73/2&

uG8
(7/2) ;1,↑/↓& 6A 7

12 u77/2&7A 5
12 u61/2&

uG8
(7/2) ;2,↑/↓& 6

1
2 u65/2&6A3

2 u73/2&
Hc f5 (
k jcGcac

(
GaGb

FVkck jcGcac

† L

3S j cGcac ;4GaU 9

2
Gb D u f 24Ga&K f 3

9

2
GbU1H.c.G ,

5 (
k jcGcac

(
GaGb

FVkKS j c ;4U 9

2D
3K j cGcac ;4GaU92 Gb L ck jcGcac

† u f 24Ga&

3 K f 3
9

2
GbU1H.c.G . ~A3!

The reduced matrixL( j cGcac ;4Gau 9
2 Gb) is implicitly de-

fined in the above equation. All the possible selection ru
for the hybridization are listed in Table VIII.

APPENDIX B: CRYSTAL ELECTRIC-FIELD EFFECT

In the crystal lattice, magnetic ions feel an electrosta
field produced by the neighboring ions. This crystal field li
the degeneracy of the angular momentum of the magn
ions. The most common method to calculate the effect of
crystal electric field is the operator equivalent technique68

which exploit the Wigner-Eckart theorem to replace the el
trostatic potential terms in the Hamiltonian by operators
the angular momentum space of the ground multiplet. It
pends on the symmetry of the crystal and the orbital ang
momentumj of the magnetic electrons. The most gene
Hamiltonian with cubic symmetry69,70 can be written as

Hcef5B4~O4
015O4

4!1B6~O6
0221O6

4!, ~B1!

where

O4
0535Jz

42@30J~J11!225#Jz
226J~J11!13J2~J11!2,

O4
45

1

2
~J1

4 1J2
4 !, ~B2!

TABLE VIII. Selection rules for the Anderson hybridizatio
betweenf 2 G and f 3 G CEF states. The meaning, for example,
that aG6 conduction-electron doublet can combine with thef 2 G3

doublet to make anf 3 G8 quartet.

Gc^ f 2G f 3G CEF states

Gc^ G1 Gc

G6^ G3 G8

G7^ G3 G8

G8^ G3 G6% G7% G8

G6^ G4 G6% G8

G7^ G4 G7% G8

G8^ G4 G6% G7% 2G8

G6^ G5 G7% G8

G7^ G5 G6% G8

G8^ G5 G6% G7% 2G8
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O6
05231Jz

62105@3J~J11!27#Jz
425J3~J11!3

1@105J2~J11!22525J~J11!1294#Jz
2

25J3~J11!3140J2~J11!2260J~J11!,

O6
45

1

4
@11Jz

22J~J11!238#~J1
4 1J2

4 !

1
1

4
~J1

4 1J2
4 !@11Jz

22J~J11!238#.

The coefficientsB4 and B6 are the factors which deter
mine the scale of the crystal-field splittings. In a simp
point-charge model, they are linear functions of^r 4& and
^r 6&, the mean fourth and sixth powers of the radii of t
magnetic electrons, and thus depend on the detailed natu
the magnetic ion wave functions. We treat these as phen
enological parameters because these are very difficult to
culate quantitatively.

Following Ref. 69, we rewrite the Hamiltonian as

Hcef5B4F~4!
O4

F~4!
1B6F~6!

O6

F~6!
, ~B3!

where O45@(O4
015O4

4#, and O65@O6
0221O6

4# and F(4)
andF(6) are the common factors to all the matrix eleme
of fourth and sixth degree terms. In order to cover all t
possible values of the ratio between the fourth and sixth
gree terms, we set

B4F~4!5Wx, ~B4!

B6F~6!5W~12uxu!, ~B5!

where21,x,11. It follows that

B4

B6
5

x

12uxu
F~6!

F~4!
, ~B6!

so thatB4 /B650 for x50 andB4 /B656` for x561.
Rewriting Eq.~B3! we have

Hcef5WFxS 04

F~4! D1~12uxu!S O6

F~6! D G . ~B7!

Here, the eigenvalue is related to the crystal electric ene
by the scale factorW.

In our calculations, we need the relations between par
etersx2 and W2 for f 2 configuration andx3 and W3 for f 3

configuration of U ions. To getj 54 G3 and j 59/2 G6 dou-
blets as the ground states off 2 and f 3 configuration, we
choosex2,0 andx3.0 andW2,0. W2 is decided by the
energy splitting betweenG3 andG5 states,D35:

W252D35/~841114x2!. ~B8!

From Eqs.~B4!, ~B5!, and~B6!, and factors which are given
in Table I of Ref. 69 we get the relations of paramete
betweenf 2 and f 3 configurations,
of
m-
al-

s
e
e-

y

-

s

23.143x3~12ux2u!5x2~12ux3u!, ~B9!

W350.3963W2

x2

x3
. ~B10!

From the above equations we getx350.3693 andW3
52.74631024 for x2520.648 andW2523.9531024.

APPENDIX C: EVALUATION OF KNIGHT SHIFT K SUM

In this appendix, the form ofI (ek ,ek8) expressed in Eq.
~36! is derived. We define

I j j 8~ek ,ek8!5 j 3~kr ! j 3~k8r !
1

b2(v,n
Gc~ks,iv!

3Gc~k8s8,iv!G0~ in!Gjm@ i ~v1n!#

3Gj 8m8@ i ~v1n!#, ~C1!

wherev@n#5(2n11)p i /b@2np i /b# and the usual fermion
~boson! Matsubara frequencies.Gc is the bare conduction
electron propagator,Gjm is a pseudofermion propagator fo
spin-orbit multiplet j , andG0 is a pseudoboson propagato
For the coherent calculation the bare conduction propag
is replaced by the dressed electron propagator. This co
ence effect will be considered in Appendix F.

Then Eq.~C1! can be rewritten as

I j j 8~ek ,ek8!5
1

Z4 f
j 3~kr ! j 3~k8r !

1

b2

3(
v,n

1

iv2ek

1

iv2ek8
E dz

p

A0~z!

in2z

3E dr

p

Ajm~r!

i ~v1n!2rE dr8

p

Aj 8m8~r8!

i ~v1n!2r8
.

~C2!

Let us first do then summation:

~A!5
1

b(
n

1

in2z

1

i ~v1n!2r

1

i ~v1n!2r8

5
2 f ~r!22N~z!

~r2r8!~r2 iv2z!
, ~C3!

where f (r)@N(z)#5(ebr11)21@(ebz21)21#. In Eq. ~C3!,
only the (r2z2 iv) term is dependent onv. Let us do the
v sum. We get

~B!5
1

b(
v

1

iv2ek

1

iv2ek8

1

~r2 iv2z!

5
2 f ~ek!22 f ~r2z!

~ek2ek8!~ek1z2r!
. ~C4!

Now taking thel→2` projection

e2bl@N~z!2 f ~r!#5e2blS 1

eb~z2l!21
1

1

eb~r2l!11
D

5e2bz1e2br. ~C5!

Also, with the relations
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E dr8

p

Aj 8m8~r8!

r2r8
5Re Gj 8m8~r! ~C6!

and f (r2z)(e2bz1e2br)5e2br,

I j j 8~ek ,ek8!5
4

Z4 f

j 3~kr ! j 3~k8r !

ek2ek8
E dz

p E dr

p

3FA0
~2 !~z !Ajm~r!Re Gj 8m8~r! f ~ek!

ek1z2r

1
A0~z!Ajm

~2 !~r!Re Gj 8m8~r!@ f ~ek!21#

ek1z2r G .
~C7!

The above equation can be rewritten

I j j 8~ek ,ek8!52
j 3~kr ! j 3~k8r !

ek2ek8

$ f ~ek!I 1 j j 8~ek!

1@12 f ~ek!#I 2 j j 8~ek!%, ~C8!

where

I 1 j j 8~ek!5
2

Z4 f
E dz

p E dr

p

A0
~2 !~z !Ajm~r!Re Gj 8m8~r!

ek1z2r

5
1

Z4 f
E dz

p
A0

~2 !~z !Re Gjm~z1ek!

3Re Gj 8m8~z1ek!, ~C9!

I 2 j j 8~ek!5
22

Z4 f
E dz

p E dr

p

A0~z!Ajm
~2 !~r!Re Gj 8m8~r!

ek1z2r

5
2

Z4 f
E dr

p
Ajm

~2 !~r!Re Gj 8m8~r!Re G0~r2ek!.

~C10!

APPENDIX D: ANALYTIC CALCULATIONS OF INNER k8
INTEGRAL IN THE KNIGHT SHIFT

We can calculate the innerk8 integral analytically. This is
given by

E
0

`

k82dk8
j 3~k8r !

k22k82
, ~D1!

wherej n is the spherical Bessel function. The above integ
tion is broken into four terms which may be expressed
terms of sine and cosine integrals. The first term is

E
0

`

dk8
k82

k22k82

cosk8r

k8r

5
1

r FCi~kr !coskr1si~kr !sin kr1
p

2
sin krG , ~D2!

where the sine and cosine integrals are
-
n

Si~z!5E
0

zsint

t
dt, ~D3!

si~z!5Si~z!2
p

2
, ~D4!

Ci~z!5g1 ln z1E
0

zcos t21

t
dt. ~D5!

For more explicit formalism of sine and cosine integrals s
Ref. 71. The second term in our integration is

E
0

`

dk8
k82

k22k82

26 sin k8r

~k8r !2

5
26

kr2FCi~kr !sin kr2si~kr !coskr1
p

2
coskrG . ~D6!

The third term is

E
0

`

dk8
k82

k22k82

215 cosk8r

~k8r !3

5
215

k2r 3F2Ci~0!1Ci~kr !coskr

1si~kr !sin kr1
p

2
sin krG . ~D7!

Ci(0) is divergent logarithmically, but is exactly cancele
by a term from next integral. Our fourth term in the integr
is given by

E
0

`

dk8
k82

k22k82

15 sink8r

~k8r !4

5
15

k3r 4FCi~kr !sin kr2si~kr !coskr1
p

2
coskrG

1
15

k2r 3
@12Ci~0!#. ~D8!

Note the explicit cancellation ofCi(0) between Eqs.~D7!
and ~D8!. Setting Eqs.~D2!–~D8! together, we have our in
ner momentum integral in our Knight-shift expression d
fined in Eq.~D1! given by

E
0

`

k82dk8
j 3~k8r !

k22k82

5
1

r FCi~kr !coskr1si~kr !sin kr1
p

2
sin krG

2
6

kr2FCi~kr !sin kr2si~kr !coskr1
p

2
coskrG

2
15

k2r 3FCi~kr !coskr1si~kr !sin kr1
p

2
sin kr21G

1
15

k3r 4FCi~kr !sin kr2si~kr !coskr1
p

2
coskrG .

~D9!
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APPENDIX E: ANGULAR DEPENDENCE
OF THE KNIGHT SHIFT

In this appendix the derivation off j j 8(a,u), the angular
dependence of the Knight shift, will be discussed. First,
need to calculate the expectation value of the magnetic
ment operator in thez direction

^ jmj uJz1Szu j 8mj 8&5mjd j j 81^ jmj uSzu j 8mj 8&. ~E1!

Then for j 5 j 8, by Wigner-Eckart theorem gives

^ jmj uJz1Szu jmj 8&5dmjmj 8
gjmj , ~E2!

wheregj is the Lande´ g factor andg5/256/7 andg7/258/7
for l 53 ands51/2 which is the case for 4f 1 and 4f 13 con-
figuration. And for j Þ j 8

^ jmj uJz1Szu j 8mj 8&5^ jmj uSzu j 8mj 8&

5dmjmj 8(mla
a^ jmj u lml ;sa&

3^ lml ;sau j 8mj 8&, ~E3!

wherea561/2. For l 53, s51/2, j 55/2 andj 857/2

K 5

2
mjUSzU72 mj 8L 5dmjmj 8(m3a

aK 5

2
mjU3m3 ;saL

3K 3m3 ;saU72 mj L
52

A4924mj
2

14
dmjmj 8

, ~E4!

given

K j 1m2a;
1

2
aU j ,mL 5S j 16m/2

2 j 111 D 1/2

for j 5 j 111/2 ~E5!

57S j 17m/2

2 j 111 D 1/2

for j 5 j 121/2,

~E6!

where

K 3m3 ;
1

2
6

1

2U72 mL 5S 762m

14 D 1/2

for j 57/2, ~E7!

K 3m3 ;
1

2
6

1

2U52 mL 57S 772m

14 D 1/2

for j 55/2,

~E8!

Then

K 5

2
mjUSzU72 mj 8L 52

A12

7
for mj561/2

52
A10

7
for mj563/2

52
A6

7
for mj565/2. ~E9!
e
o-

In the Knight-shift calculation the angular dependen
comes from the Zeeman term in the Hamiltonian:

Hz52mBHz~Lz12Sz!52mBHz~Jz1Sz!, ~E10!

where external magnetic fieldHW 5Hzẑ.
Now we calculate the angular part of the Knight shi

To do the lattice sum, we have to consider the differen
of the field axis and the bond directionrW which connects
the nucleus or muon to a givenf ion. Let the angle be-
tween the field axis andrW be a, and the angle between th
z axis and bond axis beu. First when the field is along the
z direction, i.e.,u5a and nuclear spinI 51/2, the angular
momentum operatorJz , which is quantized in the bond
direction, becomes cosuJz2sinuJx5cosuJz2sinu(J1

1J2)/2 in the new reference frame when the mater
has the cubic symmetry. Also, the nuclear-spin opera
sz becomes cosusz2sinusx5cosusz2sinu(s11s2)/2.
Then the surviving terms in the Knight-shift calculatio
are

cos2usz~Jz1Sz!1sin2usx~Jx1Sx!

5cos2usz~Jz1Sz!1
sin2u

4
@s1~J21S2!

1s2~J1S1!#. ~E11!

Then the total angular part is

f j j 8~u!5cos2u f j j 8
z

1
sin2u

4
~ f j j 8

12
1 f j j 8

22
1 f j j 8

11
1 f j j 8

21
!.

~E12!

Here f j j 8
z is

f j j 8
z

~u!5 (
mjmj 8a

^ jmj uJZ1sZu j 8mj 8&saa
z ^ j 8mj 8u r̂ &^ r̂ u jmj&

5 (
mjam3

a^ jmj uJz1Szu j 8mj 8&K j 8mj 8U3m3 ;
1

2
a L

3K 3m3 ;
1

2
aU jmj L uY3m3

~ r̂ !u2, ~E13!

wherea561/2 andYlm( r̂ ) is the spherical harmonics.
Then for ~1! j 5 j 8

f j j
z ~u!5 (

mjmj8am3

a^ jmj uJz1Szu jmj8&K jmj8U3m3 ;
1

2
a L

3 K 3m3 ;
1

2
aU jmj L uY3m3

~ r̂ !u2

5(
mja

gjmjaU K jmjU3mj2a;
1

2
a L U2

Y3mj 2a~ r̂ !u2.

~E14!
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With the above equation and Eqs.~E7! and ~E8!

f ~5/2!~5/2!
z ~u!5

9

28p
~124 sin2u!, ~E15!

f ~7/2!~7/2!
z ~u!5

4

7p
~113 sin2u!. ~E16!

~2! j Þ j 8, i.e., j 55/2 andj 857/2
~this term gives the Van Vleck Knight shift!
f ~5/2!~7/2!
z ~u!5 (

mjam3

a^ jmj uJz1Szu j 8mj 8&

3K j 8mj 8U3m3 ;
1

2
a L K 3m3 ;

1

2
aU jmj L

3uY3m3
~ r̂ !u2

5
3

14p
~22sin2u!. ~E17!

Now we derivef j j 8
i 6 , the angular part of the Knight shif

from the second term of Eq.~E11!, where j 5 j 8
f j j 8
16

~u!5 (
mjmj 8ab

^ j ,mj uJ6u j 8,mj 8&^ j 8mj 8u r̂ &sab
7 ^ r̂ u j ,mj&

5 (
mjmj 8m3m38ab

^ j ,mj uJ6u j 8,mj 8&K j 8mj 8U3m38 ;
1

2
a L K 3m38 ;

1

2
aUsa,b

7 U3m3 ;
1

2
b L K 3m3 ;

1

2
bU jmj L Y3m3

* ~ r̂ !Y3m
38
~ r̂ !

~E18!

with ^ j ,mj uJ6u j 8,mj 8&5A( j 6mj )( j 7mj11)d j j 8dmj 8mj 71 and ^3m38 ; 1
2 ausa,b

7 u3m3 ; 1
2 b&5A3

4 2b(b71)dab71dm3m38

5dm3m
38
da,2b .

The above equation gives

f j j
16~u!5(

mj

A~ j 6mj !~ j 7mj71!K jmj71U3m38 ;
1

2
7

1

2L K 3m3 :
1

2
6

1

2 U jmj L uY3mj 7
1
2
~ r̂ !u2. ~E19!

Hence

f j j 8
26

~u!5 (
mjmj 8ab

^ jmj uS6u j 8,mj 8&^ j 8mj 8u r̂ &sab
7 ^ r̂ u j ,mj&

5 (
mjmj 8m3m38ab

^ j ,mj uS6u j 8,mj 8&K j 8mj 8U3m38 ;
1

2
a L K 3m38 ;

1

2
aUsa,b

7 U3m3 ;
1

2
b L K 3m3 ;

1

2
bU jmj L Y3m3

* ~ r̂ !Y3m
38
~ r̂ !,

~E20!

where

^ jmj uS6u jmj8&5 (
m3m38ab

K jmjU3m3 ;
1

2
a L K 3m38 ;

1

2
bU jmj8L K 3m3 ;

1

2
aUS6U3m38 ;

1

2
b L

for j 55/2;52
A~772m!~562m!

14
dm

j8mj 71

for j 57/2;5
A~762m!~972m!

14
dm

j8mj 71 . ~E21!

Then

f j j
26~u!5(

mj

^ jmj uS6u jmj71&K jmj71U3m38 ;
1

2
7

1

2L K 3m3 :
1

2
6

1

2 U jmj L uY3mj 7
1
2
~ r̂ !u2

5U K jmj71U3m38 ;
1

2
7

1

2L U2U K 3m3 :
1

2
6

1

2 U jmj L U2

uY3mj 7
1
2
~ r̂ !u2. ~E22!

~1! Contribution fromj 55/2. Define
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f ~5/2!~5/2!
6 ~u!5 f ~5/2!~5/2!

16 1 f ~5/2!~5/2!
26

5(
mj

AS 5

2
6mj D S 5

2
7mj11D ~7 !A772mj

14
~6 !A762~mj71!

14
uY3mj 7

1
2
~ r̂ !u2

1(
mj

762~mj71!

14

772mj

14
uY3mj 7

1
2
~ r̂ !u2

52
9

14p
@112cos2u#5gj 5 5/2f ~5/2!~5/2!

16 . ~E23!

Then

f ~5/2!~5/2!~u!5
9

28p
~128sin2u16sin4u!. ~E24!

~2! Contribution fromj 57/2. Define

f ~7/2!~7/2!
6 ~u!5 f ~7/2!~7/2!

16 1 f ~7/2!~7/2!
26 5

8

14p
@513cos2u#5gj 57/2 f ~7/2!~7/2!

16 . ~E25!

Then

f ~7/2!~7/2!~u!5
2

7p
@2112sin2u29sin4u#. ~E26!

~3! Contribution from Van Vleck terms. Define

f ~5/2!~7/2!
6 ~u!5 (

mjmj 8ab
^ j ,mj uS6u j 8mj 8u&^ j 8mj 8u r̂ &sa,b

7 ^ r̂ u j ,mj&

5 (
mjmj 8m3m38ab

^ j ,mj uS6u j 8,mj 8&K j 8mj 8U3m38 ;
1

2
a L K 3m38 ;

1

2
aUsa,b

7 U3m3 ;
1

2
b L

3K 3m3 :
1

2
bU jmj L Y3m3

* ~ r̂ !Y3m
38
~ r̂ ! ~E27!

with

K j 5
5

2
,mjUS6U j 85

7

2
,mj 8L 5 (

m3m38ab
K 5

2
m8U3m3 ;

1

2
a L K 3m3 ;

1

2
aUS6U3m38 ;

1

2
b L K 3m38 ;

1

2
bU72 mL

57
1

14
A~572m!~772m!, ~E28!

wherem85m61.
Inserting Eq.~E28! into Eq. ~E27! gives

f ~5/2!~7/2!
6 ~u!5(

m
7

A~712m!~512m!

14 K 7

2
mU3m6

1

2
;
1

2
7

1

2L K 3m6
1

2
;
1

2
6

1

2U52 m61L uY3m61/2~ r̂ !u2

5
3

14p
@21sin2u#. ~E29!

Then

f ~5/2!~7/2!~u!5
3

28p
@424sin2u13sin4u#. ~E30!

For the cubic crystal CeSn3, we fix the field in thez direction and do the reference frame averaging over the cases of th
atom in thexz plane or thexy plane. Note that theyz plane is equivalent to thexz plane.

For the YbCuAl case which has the hexagonal symmetry, we have to consider three possible field directions, alonx,
y, andz axis. ThenJz5cosaJz2sinaJx andsz5Asz2Bsx , where
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A5
1

4
~25 cos5u226 cos3u15 cosu!

B5
1

4
sin u~25 cos4u214 cos2u11!, ~E31!

which is derived below. The explicit form of the rotation matrices is given by

dm8m
~ j !

~u!5(
k

~21!k2m1m8A~ j 1m!! ~ j 2m!! ~ j 1m8!! ~ j 2m8!!

~ j 1m2k!! ~ j 2k2m8!! ~k2m1m8!!k!
S cos

u

2D 2 j 22k1m2m8S sin
u

2D 2k2m1m8
, ~E32!

where we take the sum overk whenever none of the arguments of factorials in the denominator are negative. Al haI
55/2 nuclear spin and the NMR shift was obtained from derivative spectra of the central (1/2↔21/2) NMR transition.

d~1/2!~1/2!
~5/2! ~u!5d2~1/2!2~1/2!

~5/2! ~u!5(
k

~21!k 3! 2!

~32k!! ~22k!!k!k! S cos
u

2D 522kS sin
u

2D 2k

5
1

2
cos

u

2
@5cos2u22cosu21#5a, ~E33!

d~1/2!2~1/2!
~5/2! ~u!52d2~1/2!~1/2!

~5/2! ~u!5(
k

~21!k11 2! 3!

~22k!! ~22k!! ~k11!!k! S cos
u

2D 422kS sin
u

2D 2k11

52
1

2
sin

u

2
@5cos2u12cosu21#52b. ~E34!
n
e

ion
y
ing

the
ThenA andB are defined as

A5a22b25
1

4
~25 cos5u226 cos3u15 cosu!,

B52ab5
1

4
sin u~25 cos4u214 cos2u11!.

~E35!

Then

f j j 8~a,u!5A cosa f j j 8
z

~u!1
B

4
sin a@ f j j 8

1
~u!1 f j j 8

2
~u!#.

~E36!

The explicit values forj 55/2 andj 57/2 are given by

f ~5/2!~5/2!~a,u!5
9

28p
@A cosa~124 sin2u!

2B sin a~322 sin2u!#, ~E37!

f ~7/2!~7/2!~a,u!5
2

7p
@2A cosa~113 sin2u!

1B sin a~513 cos2u!#. ~E38!

For YbCuAl, we do not include the Van Vleck contributio
because of the large spin-orbit splitting as discussed in S
IV F.
c.

APPENDIX F: INCLUSION OF COHERENCE

When multiple scattering is accounted for, the conduct
electron Green’s function in Eq.~C1! becomes dressed b
self-energy corrections which account for multiple scatter
off at 4f sites. As a result,I (ek ,ek8) in Eq. ~C2! is general-
ized to

I j j 8~ek ,ek8!5
1

Z4 f
j 3~kr ! j 3~k8r !

1

b2 (
v,n

E dj

p

Ac~ek ,j!

iv2j

3E dj8

p

Ac~ek8,j8!

iv2ek8

3E dz

p

A0~z!

in2zE dr

p

Ajm~r!

i ~v1n!2r

3E dr8

p

Aj 8m8~r8!

i ~v1n!2r8
. ~F1!

We can define the conduction-electron self-energySc by

Gc~k,j!5
1

j2ek2Sc~j!
. ~F2!

Then

Ac~ek ,j!52Im Gc~k,j!52Im
1

j2ek2Sc~j!
. ~F3!

The conduction-electron self-energy is calculated using
average-T-matrix ~ATA ! approximation.

Then summation is the same as Eq.~C3!. Let us do thev
sum,
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~B!5
1

b(
v

1

iv2j

1

iv2j

1

~r2 iv2z!

5
2 f ~j!22 f ~r2z!

~j2j8!~j1z2r!
. ~F4!

With Eq. ~F4!, the I j j 8(ek ,ek8) is written

I j j 8~ek ,ek8!5 j 3~kr ! j 3~k8r !E dj

p
Ac~ek ,j!

3E dj8

p
Ac~ek8,j8!E dz

p
A0~z!

3E dr

p
Ajm~r!E dr8

p
Aj 8m8~r8!

3
@2 f ~r!22N~z!#@2 f ~j!22 f ~r2z!#

~j2j8!~r2r8!~j1z2r!
. ~F5!

In the above equation thej8 integration is given by

E dj8

p

Ac~ek8,j8!

j2j8
5Re Gc~k8s8,j!. ~F6!

Setting Eq.~F6!, Eqs.~C5! and ~C6! together withf (r2z)
3(e2bz1e2br)5e2br, I j j 8(ek ,ek8) becomes

I j j 8~ek ,ek8!5 j 3~kr ! j 3~k8r !
4

Z4 f
E dj

p
Ac~ek ,j!

3Re Gc~k8s8,j!E dz

p E dr

p

n
h

te

e

n

3FA0
~2 !~z !Ajm~r!Re Gjm8~r! f ~j!

j1z2r

1
A0~z!Ajm

~2 !~r!Re Gj 8m8~r!@ f ~j!21#

j1z2r G . ~F7!

WhereJ(j) is defined by

J~j!5E dk
k2 j 3~kr !

j2ek2Sc~j!
. ~F8!

We can write

E k2dkE k82dk8I j j 8~ek ,ek8!

52E dj

p
Im J~j!Re J~j!$ f ~j!I 1 j j 8~j!

1@12 f ~j!#I 2 j j 8~j!%, ~F9!

where

I 1 j j 8~j!5
2

Z4 f
E dz

p E dr

p

A0
~2 !~z !Ajm~r!Re Gj 8m8~r!

j1z2r

5
1

Z4 f
E dz

p
A0

~2 !~z !Re Gjm~z1j!Re Gj 8m8~z1j!,

~F10!

I 2 j j 8~j!5
22

Z4 f
E dz

p E dr

p

A0~z!Ajm
~2 !~r!Re Gj 8m8~r!

j1z2r

5
2

Z4 f
E dr

p
Ajm

~2 !~r!Re Gj 8m8~r!Re G0~r2j!.

~F11!
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