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We have studied the Knight shik(r,T) and magnetic susceptibility(T) of heavy-electron materials,
modeled by the infinitdd Anderson model with the noncrossing approximation method. A systematic study of
K(r,T) andy(T) for different Kondo temperaturél, (which depends on the hybridization widff) shows a
low-temperature anomalinonlinear relation betweeld andx) which increases as the Kondo temperaflige
and distance increase. We carried out an incoherent lattice sum by adding ¢hg of a few hundred shells
of rare-earth atoms around a nucleus and compare the numerically calculated results with the experimental
results. For CeSp which is a concentrated heavy-electron material, both'#8n NMR Knight shift and
positive muon Knight shift are studied. Also, lattice coherence effects by conduction-electron scattering at
every rare-earth site are included using the avefageatrix approximation. The calculated magnetic suscep-
tibility and 1*°Sn NMR Knight shift show excellent agreement with experimental results for both incoherent
and coherent calculations. The positive muon Knight shifts are calculated for both possible positions of muon
(center of the cubic unit cell and middle of Ce-Ce bond ax@ur numerical results show a low-temperature
anomaly for the muons of the correct magnitude but we can only find agreement with experiment if we take a
weighted average of the two sites in a calculation with lattice coherence present. For YbCuAl, the measured
27l NMR Knight shift shows an anomaly with opposite sign to the CeSsmpound. Our calculations agree
very well with the experiments. For the proposed quadrupolar Kondo aleWy,Pd;, our %Y NMR Knight-
shift calculation do not show the observed Knight-shift anom@®163-18208)03817-X]

[. INTRODUCTION main motivation of this paper is to help clear up this conflict.
The Knight-shift calculations presented here are the first per-
Many heavy-electron materials show Knight-shift anoma-formed using a realistic impurity model.
lies, which are a deviation from a linear relation of the This paper is organized as follows. In Sec. II, the Kondo
Knight shift K(T) to the magnetic susceptibility(T) below effect and the Knight-shift anomaly in heavy-electron mate-
the Kondo temperatur@,. The origin of the Knight-shift rials will be reviewed. First, general characteristics of the
anomalies has been a subject of great interest in thKondo effect are discussed. We will then review the history

condensed-matter Community over a period of near|y 25)f Kn|ght-sh|ft anomalies in heavy-e|eCtI’0n SyStemS. In Sec.
years]_-_lo If the impurities in metals have local magnetic ”l, the model Hamiltonian is introduced for both Ce and U
moments, they display interesting properties compared t§ompound. Also we review the methods we have used to
metals with nonmagnetic impurities, such as a resistivityevaluate the Knight shiffthe noncrossing approximation
minimum and anomalies in specific heat and susceptibility(NCA) and averagd-matrix approximation(ATA)]. Our
This Kondo effect is a consequence of interaction betweefPrmalisms for numerical calculations are explained, and a
the magnetic ion and conduction electron. The central physidetailed derivation of the Knight-shift Feynman diagram will
cal concept is that the many-body screening cloud surround?€ given in the appendixes. In the next section, the numerical
ing a Kondo impurity site should give rise to an anoma|0usreSU|tS for Ce and Yb ions, which are single-channel Kondo
temperature-dependent Knight shift at nuclear sites due tg1aterials and for U ions in a proposed quadrupolar Kondo
the coupling of the local moment to the nuclear spin througtlloy, will be examined and compared with the experimental
the Screening C|oua_3'4l8'9 Such a “nonlinear Kn|ght_sh|ft results. The calculated NMR Knlght shift of Ce and Yb com-
anomaly” is to be distinguished from the nonlinear suscepounds shows low-temperature anomalies and agree well
t|b|||ty related to the field dependence ,Qf Another way to with the experimental results. But, there is no calculated
describe this effect is to say that in the absence of affnight-shift anomaly for the proposed quadrupolar Kondo U
anomaly, the contributios(F,T) from a local moment at compound, in contrast to experiment. The last section in-
distance’ from the nucleus can be written &) x(T). This cludes conclusions and directions for future work.
factorization does not hold if there is an anoméilystead

K(r,T)=1(r,T)x(T) due to the temperature-dependent po- Il. REVIEW

larization cloud. After Heeget suggested that the anoma-
lous spin cloud was detected at low temperatures, the central
guestion has been whether a conduction-electron spin cloud The existence of localized moments in dilute alloys that
with huge coherence lengfx=%uvr/kgTo, Wherevg is the  couple to conduction electrons has important consequences
Fermi velocity andT, is the Kondo temperature, exists. The for the electrical properties. It has been known since 1930

A. Kondo effect
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that the resistivity has a rather shallow minimum occurring at B. Review of the Knight-shift anomalies
a low temperature that depends weakly on the concentration of heavy-electron materials

of magnetic impurities instead of dropping monotonically  There have been many theoretical and experimental

with decreasing temperature like metals with nonmagnetiGy s ahout the Knight-shift anomaly for the heavy-electron
impurities. In 1963, Kondd' explained that this minimum aterials. Whether there is an observable conduction-

arises from some unexpected features of the scattering Qfiactron spin cloud with huge coherence length has been an

conduction electrons off a local magnetic moment, with theigg e in condensed-matter physics for more than 25 years
simplified model Hamiltonian and this is our main motivation to carry out this paper.
In the simplest approximation, the added electron is
J - - bound into a singlet with the impurit}?. Because of the fall-
H—E O _2 1 - .8 1 . . .
= 2 €kCi, Cka IN= CraTasCk a™ s () off the amplitude of wave function with the energy, only
ka Kk states within roughlysk~ (kg To/Eg)kg of the Fermi surface
. N . are involved in the singlet. As a result, in coordinate space,
wherec, is the ann|h|IatLon operator of the c9nduct|on elec'the singlet wave function extends to a very large distance of
tron, « is the spin indexg- are Pauli matricesS, is the spin  order (k) 1. Heegeret alX* calculated the susceptibility at

operator of the impurity, and<0 is the exchange coupling. T=0 K using the Appelbaum-Kondo thedy*® and found
Kondo discovered that the magnetic scattering cross section

is divergent in perturbation theory. The anomalously high X= Xpauit XL+ X0 3
scattering probability of magnetic ions at low temperatures is

a consequence of the dynamic nature of the scattering irwhere

duced by the exchange coupling and the sharpness of the

Fermi surface at low temperatures. Subsequent analysis by xL=xo= I p[ u?(918)kgTo]. (4)

Kondo and others has shown that a nonperturbative treat-

ment removes the divergence, yielding instead a term in thgquations(?a) and (4) give thg Very inter'esting resu'lt tha’g
impurity contribution to the resistivity that increases with ©Ne-half the excess susceptibility is localized on the impurity

decreasing temperature. In spite of the simple model HamilSI€ (x.) and one-half is associated with the partially polar-

tonian, a magneti§, = 1/2 local moment interacting with the 12€d quasiparticle Xo). The associated spin polarization

conduction-electron gas, this result is an indication that th@round the partially magnetized impurity is given by

problem is explicitly a many-body problem, meaning that the

electron in stat& which is being scattered is sensitive to the o(r) =00+ Triy (1) + 7o(r) ©

occupation of all other electron statgs where o is the uniform polarization due to the external
For this single-channel Kondo model, there is only onefield, orkky(r) is the usual Ruderman-Kittel-Kasuya-Yosida

characteristic energy scale, the Kondo temperalgiepro-  (RKKY) term’~?*which r dependence is given by

vided that the temperatur@ is much smaller than the

conduction-electron bandwidth, and corrections of order (1/r®)cog 2ker), (6)

T/D are neglected. The Kondo temperature is given b
g P g 4 andoq(0) is the quasiparticle term with

kBTOZD[N(O)J]lIZeX[X_1/N(O)J)l (2) 3 kBTO Sil’]k,:l‘
<UQ(r)>:<SZ>§N EF (

2

In?(r/¢), (7)

Ker

where N(0) is the conduction-electron density of states at
the Fermi level. Any physical quantities are universal func-where §K=(2EF/kBTO)k;1. This expression is valid for
tions of /Ty, at low temperature, with all material proper- <¢¢, and at greater distancesg(r) rapidly approaches
ties buried inT,. zero. In both the RKKY term and(r) term the value S;)

This Kondo model can explain the anomalies in the transis not the free-spin value but is determined by the local sus-
port coefficients, specific heat, and magnetic susceptibilityeptibility y, . The existence of the RKKY term foF<T,
for some alloys with magnetic impurities. The Kondo effectwas shown by Sutf?
is characterized by the development of the Kondo resonance The technique of nuclear magnetic resonance has been of
peak with width of order ofT,. At high temperatured  primary importance in the development of our current under-
>T,, the impurity resistivity increases logarithmically as the standing of the localized moment problem. The reasons are
temperature decreases, and saturates to a finite value at lawofold. First, the nuclei in the host metal in the vicinity of
temperatures beloW< T,. The magnetic susceptibility has a the impurity are sensitive to local perturbations in the spin
Curie-Weiss form at high temperatures and shows Paulilensity(via the hyperfine interactiorand the charge density
paramagnetism at low temperatures wiiT=0)~1/T, (via the nuclear quadrupolar interactjoiMoreover, the nu-
concomitantly C/T(T=0)~1/T,. The xy behavior is ex- clei themselves are only weakly coupled to the electronic
plained by the fact that the magnetic moments which exissystem and therefore act as passive “spies” into the phe-
at high temperatures are screened out by the conductiomomena of interest. Secondly, the nuclear relaxation is sen-
electron spin clouds at low temperatures with the formatiorsitive to the low-lying excitations of the electronic system
of a singlet ground state. This conduction spin cloud and thend consequently can provide information on the dynamical
Knight-shift anomaly will be discussed more in the nextaspects of the impurity problem. For the most part NMR
subsection. experiments in heavy-electron compounds are carried out on
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the nuclei of the norf-ions, so that coupling to thé mo-
ments occurs via indirect interactions such as transferred hy-
perfine and dipolar fields.

The NMR experiment of Boyce and Slichtesn Fe im-
purities in Cu metals showed no evidence for a Knight-shift
anomaly at low temperature and was interpreted to indicate Eg
the absence of this screening cloud or at least a screening
cloud of size of the order of a lattice spacing. These mixed
results have led to theoretical discussions about the size of
any screening conduction-electron spin cloud or even energy
whether it existg:2923-2

In contrast, pronounced Knight-shift anomalies have been density of states
observed in the concentrated heavy-electron materials £eSn conduction band impurity states
(Refs. 5 and Yand YbCuAI®’ which have been described as
Kondo lattice systems withT,=400 K. In view of the FIG. 1. Schematics of théJ=c single-impurity Anderson

Boyce-Slichter result, the question is raised whether thesgodel for Ce ionsD is the conduction bandwidth ard is the
anomalies represent a coherent effect of the periodic latticéingle-particle hybridization strength. The on-site Coulomb interac-
rather than a single-ion effect. However, recent experimentdon U is infinity in our model.
on the proposed quadrupolar Kondo aff®§’ Y,_,U,Pd; )
demonstrate that for concentrations of 0.1-0.2 there are pro- AK=F(r)x(T), (11)
nounced nonlinearities in the Y Kréi??ht shift for sufficiently
large distances away from the U ion.

?shii4 calculated thye field-induced spin polarization for theF(r) has the RKKY form.

degenerated Anderson model and confirmed that an anoma- The conduction-electron spin polarization in the Anderson
9 model has been studied with the NCA previously by Poll-

lous spin cloud is formeql outsid_e O.f the Kondo screeninquin et al® However, this study was carried out only for the
length £ at T—0. The spin polarizatiow(r) for electron- spin-1/2 model with infinite Coulomb repulsion, and for a

hole symmetry caseel=—U/2) is given by limited parameter regimgonly results for very lowT val-

where x(T) is the magnetic susceptibility. The computed

xH cos2kFr[ 2Eg ues and short distances<€£y) have been numerically cal-
o(r)= 3 [1_ ker A (®  culated. In consequence, no strong evidence was found for a
gue 4Aqr F : . T )
— Knight-shift anomaly in this previous work.
where y=x;; for U—0 and 3/2(2+3)x;; for U—c, Recently, $censen and Affleck=2° showed that the

wherel is the orbital angular momentuny, ; changes from  Kondo coherence lengty =#vg/kgTo, varies when tem-
(gup)?/2wT for U=0 to (gup)’S(S+1)/3kgT, for thes-d  perature changes by combining a finite-size scaling ansatz
exchange modell{==). Therefore the coherence length with density matrix renormalization-group calculations.
£«=2Er/kgAy varies from Zivg/I’ at U=0 to  They write the scaling hypothesis for three-dimensional sus-
2m7hve/3kgTq in the s-d limit. Also, for the strongU/=T" ceptibility is

limit, the spin polarization is calculated for< & . It is given cos 2K )

by Ximp(F) = X — pl2= 82—F2f(rT/vF TIT,)

4T xyH cosXkgr TRl

mU Qupg 4413
By the relation 4/%/U= —J/2N,?8 the above spin polariza-
tion is just the RKKY contribution. Comparing Eg&8) and
(9), the conduction-electron spin cloud which is formed out-

o(r)= ©) (for r>1/kg T, To<Egp), (12
wheref is a real universal scaling functiop/2 is the stan-
dard Pauli bulk susceptibility with the density of states per
spin. At higher temperatures>T,, the local susceptibility
shows RKKY behavior and at lower temperatuiies T it

) : i ) . tas a local Fermi-liquid form. So the Knight shift has longer
with 2N/N(0)J times bigger amplitude than the spin cloud a6 ot Jow temperatures where the conduction-electron

inside the Kondo coherence length. screening cloud has formed than at high temperatures where
Chenet al”® calculated the zero-frequency response funcs

) . 8 X ; -1t has not. Scensen and Affleck tried to explain the experi-
tion C(r, T) around a magnetic impurity, using a perturbative o nt by Boyce and Slichteby the possible factorization of

thermodynamic  scaling procedure and nonperturbative,s gcaling functions deep inside the screening cloud where
renormalization-group method f&= 1/2 Kondo model. The 4 experiment was done.

host nuclei near magnetic impurities at positiandisplays
satellite resonances in the tail of the main magnetic reso-
nance signal, with a Knight shift given by+ AK(r), where

K=po0e/2 is the Knight shift of the pure host. TheéXK is A. Model Hamiltonian

Ill. MODEL AND FORMALISM

~7 In our work, we use the on-site Coulomb interaction
AK=C(.T)—K. (10 U=o single impurity Anderson modé?. The Anderson
Chenet al® showed that this Knight shift is factorized into a model can be canonically transformed by the Schrieffer-
product of temperature and spatial-dependent functions, sp&Volff transformation to the Kondo model &t=oo limit,?3
cifically and is a good model Hamiltonian to describe heavy-electron
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materials withf electrons. Schematics of this model are TABLE I. Ground states and parameter values for Ce and Yb
shown in Fig. 1 for Ce ions. Thid =2 model can be a good ions model.jg is_the groun_d-state spin-orbit multiplet angular mo-
approximation in the limit when the ratio of the virtuaf 4 mentum andj, is the excited-state multiplet angular momentum.
level width " to the on-site Coulomb repulsidd is small. ~ Ng(Ned is the degeneracy of the grourifirst excited state mul-
For real materials this interaction energy is of the order offiPIel. € is the energy of the ground configuration, afigh is the
U=5 eV33land the hybridization width is of the order of energy difference between thg and j, multiplets. Apart from a
r=0.1 e\,/ For CéYb) ions, we keeﬁo andfl(fl“ andf13) fine tuning to fit the susceptibility, we hold the bandwidhfixed
configurations, and for U ions, which are proposed two 2t 3 eV

channel quadrupolar Kondo alloys, we kepand 2 con-

figurations. For Ce and Yb ions, spin-orbit coupling is in- ce b
cluded and for U ions, spin-orbit coupling and also crystal-Configuration 41 4f13
field splittings are included. The crystal electric fi€ldEP 410 4f14
will split the spin-orbit multiplet and can mix two different iy 5/2 7/2
angular momentum multipletg (j’). But the correction of j_ 7/2 5/2
the mixing term between two differefts by CEF is small, N, 6 )
we only consider the splitting effect. These crystal eIectric-Nex ) 6
field effects in the Anderson model were considered by, —2 eV —1 eV
!—hrst32 bas.ed on group theory and it will be discussed moreg- 0.152 eV 0.060 99 eV
in Appendix B. o Ay 0.29 eV 13eV
We shall first discuss the situation for Ceand YB*  © 430 K 64 K
ions, and write down the model only for the Ce catee 0
Yb®* ion has a lone # hole and our procedure describes this
with a simple particle hole transformatipn 'H,, the Zeeman energy of the electronic system for a mag-
For a single Ce site at the origin, the model is netic fieldH, applied along the axis is given by
R Het et Hert He B MM, 23 ong— > g,-mlfljm><fljm|}.
with ko Im
(20)
HC:Z ekCEUCIZ(r- (14 In addition to this, we must add a term coupling the nuclear
ko spin system to the conduction electrons, which we take to be

The conduction band term for electrons with a broad feature-

less density of states of widfD, taken to be Lorentzian here 9f 9a S|mple_ c_:onEact. forém:l (r)-S(r) for _each r_1uclear ;pln
for convenience, with I(r) at positionr with S(r) the conduction spin density at

the nuclear site, and a nuclear Zeeman term. In terms of the
parameters, the Kondo scale characterizing the low-energy

Hf:% eq|FHimp)(fHimyl, (15  physics is given by
. ] : ) I \INg/ D \Nex/Ng e
where j=5/2,7/2 indexes the angular momentum multiplets kBTO:D<_) <_) exp( _f) (21)
of the Ce ion having azimuthal quantum numberswith 7| €] Ao Ngl’
€r52= —2 8V, €r7p= €rspt Ago=—1.71 eV(we take thef®  yhere the single-particle hybridization widih=7N(0)V?
configuration at zero energywith with N(0) which is the density of the states at the Fermi
energy. Other parameters are defined in Table I.
_ N T 40 Limi. For the Y; _,U,Pd; which has the cubic AuGustructure,
Hei= ViigmCe |T70)(f*jmi,| +H.c], 16 1—x =X . .
of gjzm:(,[ kj om; ol FPOXFEjmi| ! (16 the crystal-field effectCEP) must be included. This crystal

N ) electric-field effects lift the angular momentum degeneracy
WhefeVlenmjIVYsmjw(k)<3mj_011/20|ij>/\/N_s, V be-  of U ions and their spin-orbit multiplet decomposes into ir-
ing the one-particle hybridization strength aNd the num-  reducible representation of the cubic field. Ti&j=4
ber of sites. We can rewrite the hybridization Hamiltonian asHund’s rule ground state of U compound is split intd"a

nonmagnetic doubletl’s and I'y magnetic triplet, and";
singlet states® And f3, the j=9/2 spin-orbit multiplet is

= T 1% fiim. 2 .
HCf_k%, [chkimj“ O)(fijmj[+H.c], (17 gplitinto I', doublet and twd's quartets. In our calculation
: we choosg =4 T'; for the ground state fof? configuration
where andj=9/2 T4 for the ground state of thé&* configuration.
1 Figure 2 shows the schematic configuration diagram. All pa-
T ; t rameter values are listed in Table Il in the unit®f For an
= = i 1 = o= RO . .
C"Jmi %:‘, <3m2 7 ij>ckm0 (18 explicit derivation of Hamiltonian for U ions, see Appendix

with cm,= k[ dkY%..(k)cg, . For the Yb case, the hybridiza-
tion Hamiltonian is given by B. Noncrossing approximation
We treat the Anderson Hamiltonian with the noncrossing
Hep= Z [chljml £18 — mj><f140| +H.c]. (19 approximation(NCA), a self-consistent diagrammatic pertur-
Kim ! bation theory discussed at length in the paper of Bickers
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FIG. 2. Schematic configuration diagram for the uranium com- (b)
pound. f?, j=4 andf3, j=9/2 spin-orbit states are split by the
crystal electric field. All the notations are explained in the text and
all the values are listed in Table II.

et al3* This is useful because this method provides ways of
calculating the dynamic response functions, such as the one-
electron Green’s functions and dynamic susceptibility and it
makes possible a more extensive comparison between the . conduction electron propagator
theoretical predictions and experimental restts.
In the NCA, we do the M expansions with the new PRy empty orbital (f°) state propagator
variableN, the large orbital degeneracy of the ground state
of f electrons. These simple approximation schemes work — - _ g —— singly occupied (f') state propagator
very well for values ofN that are of interest in applications
to rare-earth impurities. For example, the lowest spin-orbit FIG. 3. Leading-order Feynman diagrams for self-enerdas.
split multiplet for Ce 4* hasj=5/2, corresponding td\  Pseudoboson self-energ¥q(2)r, (b) pseudofermion f*,j multi-
=6, and for Yb 413, j=7/2, corresponding tdi=8. Even  Pled self-energyXn(2).
for N=2 one can get good semiquantitative results, which .
can be accurate to within a few percent for some quantitiedncluded, pathological features can appear at a temperature
In order to avoid the failure of finite-order perturbation SC@€Tp<To. For details on the NCA, see Refs. 34,36-47.

theory at the Kondo scal@,=D exp(me/NI), the self- In the NCA, our starting basis is the conduction band plus

consistent I approximation presented by the NCA offers the atomic Hamiltonian projected to the atomic electron
an alternative in that a subset of diagrams is summed to affoCk Space and we treat the hybridization between the con-
orders. This has the effect of pushing any singular behaviofuction band and the atomic orbital as a perturbation. The

to zero frequency. However, because not all diagrams ar_@trength of this app_roach is tha_t t_he strong on-site Coulomb
interaction for atomic electrons is included at the outset. The

) ) conventional Feynman diagram technique which uses

TABLE Il. Parameter values for ofgUo ;Pds in units of the con-  \yjick’s theorem cannot be applied for strongly correlated
duction electron band widt =3 eV. & is the energy ol =4  oplems with restricted Hilbert spaces. Pseudoparticle
multiplet andA;; is the energy difference between crystal-field split 5005 functions are introduced for each atomic electron
T andri. .Statesr Is the single Impurity hybridization width. For occupation state which is neither fermionic nor bosdni&
the definition ofx and W, see Appegdlx Bx, andW, are for 2 f1j=5/2, 7/2 andf® in the present model for Ce ionsThe

fi ti & dw. forf fi tion. P ; .
contiguration andt, and s are fort” contiguration pseudofermion Green’s functions fét j=5/2, 7/2 angular

€ —0.333 momentum multiplets are
Ass 0.003 _
Az 0.008175 L . ) (22
A 0.019621 . .
Asl 0.000136 and the pseudoboson Green’s function for thés
68a .
Agep 0.013190 1
r 1 Go(2)= —<——. 23
0.15 0( ) 2_20(2) ( )
Xy —0.648 Then we insert a self-energy into the propagators of
W, —3.95x10* pseudoparticles. This gives coupled integral equations for the
X3 0.3693 ionic propagator self-energieso(z), %jn(z). From the
W, 2746104 leading-order diagrams of Fig. 3, the coupled equations for

the self-energies are
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So(2)=V22 N> L A
° T T 2t e €rjm— Zjm(zt &) P Tl
:VZEI: szk: kajm(Z+ Gk), (24) /// \\\\
g N
’ N\
1_fk \\ //
(Z2)=V? AN .
2im(2) ; z— € 2o(Z2— &) A Il
=V22 (1= Go(z- &), (25 el " -
jlml

whereV is the hybridization strength between the conduction
band and the atomic orbitals ahY is the degeneracy of the
spin-orbit multipletj. It is convenient to introduce the spec-
tral functionsA;,(w), andAy(w) for pseudoparticle Green’s
functions.

FIG. 4. Leading-order Feynman diagram for static magnetic sus-
ceptibility. In this diagram, only electrons are coupled to the field.

cifically, the leading-order vertex corrections, which are
O(1/N?), are not included in the NCA.
dp Ajm(p) These self-consistent integral equations are solved to sec-
— ond order in the hybridization for the ionic propagator self-
energies. Then physical properties, such as the resistivity and
Ajm(®) = — 1M Gjm(), (26) magnetic susceptibiliyy(, are calculated as.convolutions of
these propagators. Figure 4 shows a leading-order Feynman
diagram for the static magnetic susceptibility and its convo-

G,-m<iw>=f

T iw—p’

Gy(iv)= f % M, lution integral is given by Eq(32). This is discussed more in
miv={ Sec. Il C.

The NCA shows a pathological behaviglue to the trun-

Ao(v)=—1m Go(v). 27 cation of the diagrammatic expansjofor a temperature

In addition to spectral functions;,(p) andAq(¢), it is nec- scaIeTp<T0 in thi? conventional Anderson model._ H.OW-

essary to introduce negative frequency spectral function§Ver, provided the~ occupancyn;=0.7, andN=4, this is

A,(rﬁ)(P) andAg’)(g). These spectra are given by not a problem,_ as shown in Ref. 34,_|n that comparison of
NCA results with exact thermodynamics from the Bethe an-

Al (p,T)=An(p,T)e Blr—Eo), (28)  satz shows agreement at a few percent level abhye
! ! Hence, this is a reliable method for our purposes.
Af{)(g,T)=Ao(§,T)e‘ﬁ(5‘E0), (29) Our numerical procedure, briefly, consists of solving the

NCA integral equations for the Anderson Hamiltonian speci-
where E, is the ground-state energy relative to the Fermified above on a logarithmic mesh with an order of 600 points
energy. The impurity partition functiod,; is given by chosen to be centered about the singular structures near the
ground-state energyEq~ €5,. We then feed the self-
consistent propagators for the empty and singly occupied
orbitals into the convolution integrals obtained from the dia-

g gram of Fig. 5, which allows for evaluation of the Knight

_ 4 _ _ shift at arbitrary angle and distance from the nuclear site.
-€ BEOJ ?[JEm 'A‘J(m)(g'-r)jﬂa‘(0 )(g’T)} This will be explained more in Sec. Il D. It is convenient to
take the nuclear site as the origin in this case leading to phase

e_Bg

d
Z4(T)= f ?g[;m Aim(.T)+Ag(£,T)

B0 factorse ¥ Rin the hybridization Hamiltoniaft{.;, wherer
At T—0, Z4:(T) becomes is the nuclear-Ce site separation. These factors give the os-
cillations and position space angular dependence in the
Z,41(0)=e" %o, (3)  Knight shiftK.

The iteration of these coupled equations for the self-
energies generates a set of diagrams which includes all non-
crossing diagrams, but does not correspond to any specific The static magnetic susceptibility is a direct indicator of
order in the 1IN expansion by treatindl V> asO(1), where  the nature of the ground state for the Kondo and Anderson
V is the hybridization strength between the conduction elecmodel. Near room temperature, the susceptibiiity’) dis-
tron and the atomic orbitals. The set of diagrams summed bplays a Curie-Weiss temperature dependence for most
these equations includes all the terms of or@rl) and heavy-electron materialg is linearly related to the Knight
O(1/N) and a subset of contributions from the higher-ordershift K(T). At low temperaturex(T) does not follow the
terms. The lowest-order skeleton diagrams which are not in€urie-Weiss law and for some systems, a linear relation of
cluded are of orde®(1/N?). All the diagrams that enter at the Knight shiftK(T) to the magnetic susceptibility breaks
0O(1) andO(1/N) have noncrossing conduction lines. Spe-down and hence shows a Knight-shift anomaly.

C. Magnetic susceptibility
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wherey; is the effective magnetic moment which is defined
as,uJ-2= (gj,uB)zj (J+1)/3 whereg; is the Landey factor for

- . v - _ the j multiplet andZ,¢(T) is the impurity partition function.
§ ko \\Jm Also we can get the van Vleck magnetic susceptibility
N betweenj andj’ angular momentum multiplets:
> imj|3,+S.]j"'m; )
I J}V\M/\_(V\/\/ " _ 2|<]mj|\]z j AP
. /// H ijmj,(w) IU’B Z4f(T) (1 e )
» d¢ -
‘,‘ ];'10_/ ——”a’ i XJ?Ajmj(§+w)A§,%j,(§). (33)
' V
With (2,m|J,+S,|5,m')= — (/49— 4m?/14) 8y, the total
|7 Van Vleck susceptibility fofj =5/2 andj’=7/2 is
----- - nuclear or muon spin propagator X” (w)= 2 X:;'] m (o)
vv mian
—_— duction elect t
condauction electron propaga or - § , (1_e_ﬂw) %A (§+ )A(i)(g)
A empty orbital (f°) state propagator et Z4:(T) g m WA 6
—— - singly occupied (f!) state propagator (34)
) The susceptibility sum rule is derived from the zero-
WWWWW external magnetic field frequency limit of the Hilbert transform of}, (w,T),
|7 distance between nucleus and impurity spin
, do x,,(»,T)
FIG. 5. Feynman diagram for the Knight-shift calculation for Ce Xoo(T) =X, (0,T)= e (39

ions. This is the lowest-order diagram of coupling between Ce local
moment and nuclear spin in the infinite-Anderson model. All the
propagators are explained in the figure. For the incoherent calculg; . . -

tion the conduction electron propagator is a bare-electron propagjl.he..StatIC magn_etlc Susceptlblll_ty and the Var_1 Vieck suscep-
tor and when the coherence effect for conduction electron is in-t'b'“,ty are congdered f‘,’r Ce ions. For Yb lons, on!y the
cluded (multiple scattering off off siteg, it becomes a dressed _StatIC susceptibility of th¢=7/2 ground spin-orbit mUIt'p_IEt .
propagator. is calculated because the energy gap between two spin-orbit

multiplets (=7/2 andj=5/2) is large(about 1.2 eV. For
Y, «U,Pd;, only the Van Vleck susceptibility between dif-
ferentI states is calculated because the assufgdround
state is a non-magnetic doublet.

In our calculation, both thg=5/2, 7/2 contributions to

In general the magnetic susceptibility includes contribu
tions from the conduction band{.), the f electrons ),
and the mutual correlation df and band componentg{;).
Because the barg..~1/D<yx¢;~1/T,, we can safely ne-
glect the first contribution to the bulk susceptibil{tthough
there can bef-modified contributions of ordey¢(I'/d)?]. Knight-shift measurements on the nuclear spins of fion-
Also, x.r=(I'/D)x;, so provided['<D as we have as- ions in Kondo or heavy-electron materials can probe the lo-
sumed herel(~0.1D), we may neglect this as wellFor a  cal induced magnetic fields. The additional fields come from
detailed estimation of the magnitudes xf.,x.s, see Ap- all the possible polarization sources, such as conduction-
pendix E of Ref. 34. We also note that diagrams which electron spin polarization. Fdr electrons, the radius of the
include t-matrix insertions on conduction lines may be ne-wave function is small and they are well screened, so there is
glected in the lattice and for highly concentrated alloy sysHittle possibility of direct overlap interactions between the
tems, because these simply represent self-energy dressingsitaclear spins and local moments on different sites. In par-
the conduction susceptibility contribution which will actually ticular, the polarization of conduction electrons by the polar-
have the effect of reducing the Pauli contribution to theized local Kondo impurities, i.e., the transferréeklectron
Knight shift slightly. For further discussion, see Sec. Ill D. polarization, is usually expected to have the most significant

The leading diagram thus comes from the second terntemperature-dependent contribution.
where the onlyf electrons are coupled to the field and this  The Knight shift of heavy-electron materials is induced by
gives a good approximation to the overall susceptibility. Thisthe indirect interactions of the magnetic impurity and host
diagram for magnetic susceptibility is in Fig. 4. Then, in thenuclear spin mediated by the conduction electrons. Without
NCA, the magnetic susceptibility in the zero-field limit can the charge fluctuations introduced by the hybridization inter-
be writtert* action between conduction electron andlectron, this indi-

rect interaction has the RKKY interaction form. So at high
202N; [ d¢ temperatures, the Knight shift follows the RKKY interaction
— N BN ‘ and at low temperatures where the Kondo effect appears, the
xT) ; Z4f(T)f 7 Aim (L TIRE Gl £,T), - (32) Knight shift can show deviation from the RKKY form.

D. Knight shift
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Feynman diagram in Fig. 5 which is the lowest-order dia-
gram coupling the nuclear spin to, say, Ce magnetic mo-
T o CouP g, A neand the resuls ae resented n Appendi D

bropag y P 9 For a magnetic field in the direction(i.e., 6= «), and for

herent calculation, the conduction electrons are assumed
belong to a broad, featureless, and symmetric band of ha[J 1/2, the angular-dependent function in the Knight shit,
ij’(a,0), is given by

width D. The conduction-electron propagator is taken to be a
bare electron propagator, i.e., it includes no self-energy ef- R
fects reflecting multiple scattering off thesites. When the fi;(0)=coOf’, + ——(fi +f5, +f +27)
lattice coherence effects of conduction electrons are in-
cluded, the self-energy arising from the scattering of conduc- (41)
tion electron at every site is included in the conduction- Heref (0) is
electron propagator in an approximate way.

The Knight shift for a nuclear spin or muon atis ap-

To calculate the Knight shift we need to evaluate the 13( r)
f klde! (40)

k/2’

proximated as f,-z,-/(ﬂ):mzm (imy[3z+ Sjmy o 5 my[r)(r]jmy)
j My
_ geMB ) _ _ 1
K(r,&)—— 3N, = fij(a,0) =m2am3 a(ij|Jz+Sz|J,mj’><J,mj’ 3m3;§a>
s
xJ kzdkf K" 2dK' 1/ (€, €cr) (36) 1
i (€€, x( 3mg; Sl im; ) [Yany (DI, (42)

whereg, is the electrorg factor andug is the Bohr magne-
ton. Hered is the angle between the axis and the bond
directionr which connects the nucleus or muon to a gifen
M M H T H lt . =y = ~ I .

ion in the crystal andx is the angle between the field axis fjj,(g): E <],mj|3i|1 M) mj,|r>gaﬁ<r|1,mj>

andf7(6) andf27(6) are

and bond axisl jj (e, €c') is given by mjm;r e, 8
R | = 2 (G,myld=lj" .m0
lij (e, €)= ja(kr)ja(k r)Z_4f My mg . m} . 8
, o1 1
X >, Ge(ka,iw)Ge(k' o' iw) x{j'my 3m3 S\ 3Mg; S ajo, 5 3Ms; 5
XGo(iv)Gjp[ 1 (w+ Gipli(w+
0(|V) ]m[l(w V)] ]m[l(w v)] ><<3m3, B‘JmJ>Y3m3(r)Y3m (r) (43
Ja(kr)js(k'r)
:2%{f(ek)lljj'(fk) , o
< € =3 (miISeli’m)m ozl m)
F[1—-F(e) 1255/ (€0)}, (37) m
where = > (il Slj"m;)
mj,mjr,m3,mé,a,ﬁ
| - fdé“f dp Ay (§)Ajm(P)ReGj/m/(P) 1 1 1
1jj (€k e+i—p <1 m; 3m§;§a><3m§;§a o B3m3;§/3>
:if %A(f)(g)ReG- ({+ &) 1 A N
Zy) w0 m k ><<3m3;§,8jmj> §m3(r)Y3mé(r)- (44
XR ! ’ +
eGjm (£ €, B8 The explicit values forf;;.(6) are
| =2 dp [ dZ Ag(O)Aln (p)REG) i (p) 9 _ ,
2jj (ek 7 S L Ek+§_p f(5,2)(5,2)(9)=E(l—BSIFFG-i—GSII’f‘H), (45)

~ | L A IR Gy (IR Gol o~ .

(39

2 . .
f712712(0) =ﬁ[2+ 12sirf—9sirf' 6], (46)

The derivation is explained in detail in Appendix C.

, . . f 0 4—4sirf 9+ 3sirf'g 4
We can analytically evaluate the innlet integral as (s12)(712)(0) = [ St sité]. (@7
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For a detailed derivation, see Appendix E.
To the extent that the dynamics of the empty orbital can

® Ceatom be neglected, the Knight-shift expressideq. (36)] factor-
izes into a nearly temperature-independent RKKY interac-
© Snatom tion (modified due to the spin-orbit coupling and anisotropic

hybridization from the original forontimes thef-electron
susceptibility. Thus, no anomaly results from the diagram in

this limit. In this limit, the susceptibility in the diagram cor-
z y & responds to the leading-order estimate used in Ref. 34 to
compare with exact Bethe ansatz results.
We can gauge the effects of charge fluctuations with a
FIG. 6. Crystal structure of Ce§nThe Sn nuclei occupy the simple approximatiofi*® For T=0, the empty orbital propa-
faces of the fcc structure, and the Ce atoms occupy the corners. Thgstor may be written in an approximate two-pole form, one
averaging referred to below consists of weighing the contributionsyity, amplitude 1- Z, Z= wkgTo/NT, centered near zero en-
from Sn atoms on faces including the field direction by a factor Ofergy, and one with amplitud& centered ate,~ e;—kgT
2 relative to the face which is perpendicular to the field direction. which reflects the anomalous ground-state r?lixing due to the

Kondo effect. The singly occupied propagator has a simple
Sole structure:

To assess the relevance of this single-site physics to th
periodic compound CeSnwe also carried out incoherent

lattice sums over a few hundred radial shells of Ce atoms Ag(w)=(1-2)8(w)+Z8(w— €g),

around the Sn nucleus. For each atom in a shell the distance

r and angleg of Ce ion is calculated and the Knight shift of An(w)=06(w—¢€;),

each ion is evaluated for given position. Then the contribu- (52)
tion from each ion is added to get the total Knight shift. For

the Y, _,U,Pd;, impurity configuration averaging is also car- Ay (0)=Z8(w—¢y),

ried out. This single-site physics is known to be a good ap-
proximation at high temperatures where the ions are incoher-
ent with one other, and known to provide a very accurate
description of the thermodynamics in many cases. For
CeSn, given the tetragonal symmetry at the Sn ¢itee Fig.  1hen

=) 1-z
A (w)= T&(w—eg).

6), we fixed the field in the direction and averaged over the () =Z/(KeTo— &)
xz, Xy andyz host planes for the Sn nucleus. Note that 15k BIO Sk
plane is equivalent taz. 1-7(1-7 z

For YbCuAl, which has hexagonal symmetry, we have to IZ(GK):F( p— 6—)_ (53
B'0o\ €k €f k

consider three possible field directions, alongxhg, andz
axes. Al has ah=5/2 nuclear spin and the NMR shift was Now, we can perform thé integral setting the above equa-
obtained from derivative spectra of the central (/2 tions in Eq.(37). At low temperatures only conduction elec-
—1/2) NMR transition. Then trons which have momentum close ke participate in the
interaction. We can rewrite the radial momentiras

B
fij(a,0)=A cosafl,(6)+ Zsina[f;,(a)ﬂj;,(a)], .
(48) k=ket (k=ke)~ke+ 7. (59)

wheref ;= fjlji,+fj2].i, . Also A andB are given by Then we can write

1 eikr — eik,:l’ei ekr/ﬁvF. (55)
A= (25 co$9—26 cos6+5 cod), _ _ o
From this we see that smad|, gives a large contribution to
the Knight shift. The contribution from the integrl) de-

B= 1sin0(25 codf—14 cogh+1). (49) pends on whethar>#uv¢ /kgTo. Forr>fiv/kgTy only very

4 small e, <kgT, contribute thek integral and we can approxi-
mate 1/kgTo— €)~1/kgTy and this contribution has the

Then, amplitude Z/kgTo=#/NI". For r<#v;/kgTy, the Knight
2 shift has contributions frone,>kgT, and this term has the
f 71272 (@,0) = 7—[2A cosa(1+3 sirfe) amplitudeZ/D. The amplitude of the Knight shift outside of
m the coherence lengtf=#vg kg Tq is D/kgT, times bigger
+B sin a(5+ 3 co26)], (50) thanthat at inside the Kondo screening cloud. This term can

give the Knight-shift anomaly. Becausg is much bigger
9 than thee,, the first term ofl, gives conventional RKKY
f(s12)(52)(,0)= E[A cos a(1—4 sirf6) oscillations modulo theAanisotropy and altered range depen-
dence induced by them,k dependence of the hybridization.
—B sin a(3—2 sirf6)]. (51) The amplitude of the second term goes to zero above the
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impurities. The reason is that thE-matrix insertions of Fig.

7 will go over to self-energy insertions in the lattice, as we

sum over all possible sites. These self-energy insertions will
o simply provide the renormalized Pauli susceptibility contri-

- bution to the Knight shift, which is not the dominant contri-

bution.

E. Coherent lattice effects

Coherent lattice effects are included within the local ap-
proximation @=c limit) to the lattice model. In this ap-
proximation a conduction-electron self-energy is included
using the averag@-matrix approximatiof® which assumes
that the conduction electron scatters off evemglectron site.
This corresponds to a first iteration of the local approxima-
tion. In contrast, these multiple-scattering processes are ig-
nored in the incoherent limit. The NCA approximation treats
intrasite interactions to all orders. In this calculation we con-
sider intersite coupling which involves simple hopping pro-
cess in perturbation theofATA) and ignore intersite inter-
actions which involve transfer of particle-hole pairs between
sites. This coherent lattice effect may reduce the Kondo
screening lengtR°

The Anderson lattice model for spin-1/2 has a conduction-
electron Green’s function given By

Gek,o,T)=[w—e—3(0w,T)]t

-1

. (56)

V2
w— ef—Eifm(lz,w,T)

=| w— €

FIG. 7. Feynman diagram for the additional contribution to theWhere3 I™(k,w,T) is the f-electron self-energy arising from
Knight shift which was noted by Bensen and AffleckRefs. 23—  {-f interactions. The same results follow for thefold de-
25). This is significant in magnitude for distances beyond thegenerate model. We remove the wave-vector dependence of

Kondo screening cloud radius and not included in our calculationihe self-energy by neglecting the intersite interactions. The
This contribution is of potential importance for any dilute system, ¢_alectron self- int

but i Ci ant i lat loulat Sec. D f energy comes from tlief interaction &}
ut 1S not important in our fattice calcula |o(|s_ee, €c. " and hybridization with the conduction electrons. This hybrid-
discussion All the propagators are explained in Fig. 5.

ization energy is given by

Kondo temperature. This term also may contribute to the V2 1

anticipated anomalous Knight shift, and within such a two- V2D (w)= —2 . (57)

pole approximation may be seen to be finite witlfip and Ns'e o~ e

have a stronger distance dependence in that regime, but pdSer a featureless symmetric baf(w)V? becomes, forw

sess an amplitude of ordér only within this distance re- —0, iT", whereI'==7N(0)V? is the single-particle hybrid-

gime. Beyondéy, the amplitude is of order W and the ization width[N(0) the density of state at the Fermi enelgy

shape of the spin oscillations is the same as that found frorRiere the conduction electron cannot be scattered at the same

the high-frequency pole of the empty orbital propagator.  f-electron site twice and this site restriction gives the cancel-
Strensen and Affled® > have noted that for a single [ation of the hybridization self-energy term-(T") in the full

impurity an additional contribution is present below the 4f Green’s functiorr?

Kondo screening cloud which is not present in this calcula-  Specifically, the band electron self-energy is written

tion. This corresponds to the diagrams shown in Fig. 7, inwithin this approximation &5:>*

which scattering occurs off of the impurity for one or another

conduction legs. This process will occur fany impurity in 3 (0, T)=VH[Gu(w,T)] P+ V2D ()} "V

a metal, and at a fundamental level corresponds to the con- =VZG("“)( T) (59)

tribution induced by the field dependencelgf for the two at 1@ 1),

different spin branches. The contribution then goes 82,1/ whereGy; is the the full 4 on-site Green’s function given

but only outside the Kondo coherence length where the lowby**

temperature screzening cloud can be regarded as a potential 1 [ de

scatterer(The 1R* follows trivially from differentiating the Gutjm(®)= _j —[Aé_)(g)Gjm(wwL E+i0)

Friedel oscillation with respect th:.) This contribution is Zy)

of potential importance for any dilute system, but we argue _ .

that it is not important in our lattice contexor, for that ~Ain (O)Go(¢~w=19)]

matter, for any system with an appreciable concentration ofvithin the NCA.

(59
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Since vertex corrections are neglected in the NCA, the dz [ dp AS(2) )Aim(p)REGj 1 (p)
conduction-electron Green’s function is determined com-Iqj;/(§)= j J Py

pletely through® ¢ by hybridization and any resistance solely p
arises from the damping of band states due to the imaginary 1 14 =)

part of thef-electron self-energy. A realistic estimate Df = Z_zlff - R0 (OREGjn({+ERECjrm (L),
is important to study lattice coherence effects. By the stan-

dard Fermi-liquid phase space argum&nthe imaginary (69
part of the exact, on-sité-electron self-energy is given, for
low frequencies and temperatures, by

dg dp Ao({)Ajm (p)Re Gjroy (p)
|2“/(§) §+§_P
—Im 3 4(w,T)~ w?+ (mkgT)?+T . (60)
2 (dp _
In the NCA calculation, due to the approximation involved, = Z—f —A}m)(p)Re Gjrm(p)ReGo(p—§).
. . at) T
the minimum value in—Im 3 4;(w,T) does not occur pre-
cisely at the Fermi energithough it differs only by a small (66)

fraction of Ty) and is not equal td".>? So in our numerical
calculations, Im2 4¢(w,T) is extrapolated taw,T—0 and
—Im 2 ,4¢(0,0) is replaced by'. IV. RESULTS
In our calculation, thef electrons havej=5/2 and j
=7/2 states by spin-orbit coupling. Thus the conduction-
electron self-energy has two terms from egcstate, viz.,

>

m

%

In this section, the numerically calculated results for the
Knight shift K(T) and magnetic susceptibility(T) of
heavy-electron materials such as CgSfiYbCuAl, and
Up oY 0 gPd; will be presented. CeSrand YbCuUAI are con-
S (w,a,T)= 2 i, mJ|V(k)|k a>|2G(|nt) ®) centrated heavy-electron materials anghb,, gPd; is a pro-
posed two-channel quadrupolar Kondo heavy-electron alloy.
1 ) First, the Knight shiftsK(r,T) are systematically calcu-
— LT lated for different values of the Kondo temperatiiggwhich
<j,mJ 3m3,2a> . e S 2
is controlled by the hybridization widthi = 7N(0)V~, where
N(0) is the conduction-electron density of states at the Fermi
><|Y3m k)|2651'?1t w) energy andV is the one-particle hybridization strength, for
o (int) (int) Ce and Yb compounds. These results show that the magni-
=V*(3G{f5,+ 4G4, (61)  tude of the Knight-shift anomaly depends upon the distance
. between the local magnetic moment and the nucleus and the
where the one-particle hybridization strengK)=V is,  Kondo temperaturd,. There is an anomaly even for small
taken to be independent ¢k| in this calculation, and we distancer. The magnitude of deviation between a lin&avs
used x relation is systematically increased when the distances are
increased and the Kondo temperatures are increased. These
5 1 \]2 . 3 results are shown in Figs. 8 and 9. These calculations support
<§m’3m3; §a> |Y3m3(k)|2= ypr Ishii's idea of an anomalous conduction-electron spin-
density cloud which sets in beyond the Kondo screening
length éx=%hvE /kgTy, Wherevg is the Fermi velocity.
7 1 2 o, 1 The lattice sum is carried out over a few hundred shells.
<§,m 3mg; §a> [Yamy(K)I*=—. (620 |n Sec. IV B the results for CeSrare compared with experi-
ments. Both the'’®Sn NMR Knight shift andusr Knight
shift are studied. Also the influence of lattice coherence of
With the inclusion of lattice coherence effects, they,q conguction electrons on both the NMR and positive
ljj-(ec, &) term in the Knight-shift calculation is changed 1 ,0n Knight shift is investigated using the averagenatrix
from the incoherent form, E437), to approximation and the numerically calculated results for
CeSn are compared with the experiments and also the cal-

J’ kzdkj K2dK' 1 (eererr) culated incoherent Knight shift. The calculatétsSn NMR
AR S Knight shift agrees well with the experiment. The incoherent
msr Knight shift shows an anomaly but has opposite sign.
f —Im J(&)Re (&) For the coherent case, the Knight shift from a different muon
site gives an anomaly with opposite sign. We may fit the

experimental results by averaging out twsr Knight shifts.

For YbCuAI, because of its complicated crystal structure,
the incoherent lattice sum is carried out over several thou-
sand atoms. The calculatédAl NMR Knight-shift results
5 are mentioned in Sec. IV F. These results show excellent
J(g):f k7ja(kr) (64) agreement with the experiments.

E—e—2.(8)’ In the last subsection, the Knight shift and the magnetic

X[E(E)1 4 (6) + A =F(EN (5], (63

where
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FIG. 9. Calculated Knight shifiK(T) vs susceptibilityy(T) for
a single Ce site ater =3.33 from a nuclear moment and angbe
=0. Fixing the f-level energyes,=—2 eV, and the spin-orbit
splitting A;,=0.29 eV, the hybridization is varied to illustrate the

values are chosen to be at minima of the oscillatory function. Fodependence of the nonlinearity on the magnitudeTgf(which

CeSn, with T;=430 K, we estimatek.r =320 at the coherence

ranges from 750 to 130 K in these calculationslavaries from

scalefivg /kgTg, SO we can see that the qualitative trend both inside0.165 to 0.130 eY The diagram of Fig. 5 is used to calcul#€T).
and outside the coherence scale are similar, though the magnitudée magnitude of the nonlinearity diminishesTasis reduced. The
of the anomaly is more pronounced outside the coherence scaltheoretical Knight shift has been shifted by a common offset and

The diagram of Fig. 5 is used to calculdéT). The magnitude of

the nonlinearity diminishes aggr is reduced. The theoretical
Knight shifts have been shifted by offset and scale factors to matclYb ions (see Secs. IV B and IV F for the parameter vajues
the high-temperature susceptibility; this does not affect the relativéThe Knight shift is scaled to the susceptibility by matching at
high temperatures. For all the calculations the conduction-
electron band widtlD was assumed to be 3 eV. Because of
susceptibility of 1§ ,YygPd; are discussed. We do a full in- the small gap betweej=5/2 andj=7/2 states of Ce com-
coherent lattice sum and impurity configuration averagingoound A,,=0.29 eV for Ce ions and,=1.30 eV for Yb

for Up,YogPdh. Our study does not show the low- iong), the Van Vleck term is included for only Ce compound

size of the anomaly.

temperature Knight-shift anomaly like the experiments.

A. Systematic calculations

studies.

scale factor to match the susceptibility.

Figures 10 and 11 show the calculated Knight shift

To see the systematic behavior of the magnetic suscepti-
bility and the Knight shift, we have calculateg(T) and
K(r,T) for different Kondo temperaturek,. For spin-orbit
coupling and zero crystal-field splittind,, is given by

1" 1/Ng
"BT°:D(w|ef|) (

D
Ay

Nex/Ng
O/

TEf

Ngl

whereNg is the degeneracy of the ground spin-orbit multi-
plet, N, is the degeneracy of the excited multiplet,is the
energy level position of the ground multiplet, is the en-

ergy gap between two spin-orbit multiplets,

=mN(0)V? is the hybridization width D is the physical
Lorentzian bandwidth of the conduction electroihe val-
ues of the parameters we used for Ce and Yb ions are listed

in Table I.

For several different hybridization widtHs, the Knight
shift was studied as a function of temperatures and distance
between the local impurity spin and nucleus at fixed argle
betweenr and quantization axi&—k’. In these calculations
all other variables such as;, and Ay, were fixed to the
values which give the best magnetic susceptibji¢y) fit to
experimental results of CeStior Ce ions and YbCuAI for
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FIG. 10. Knight shiftK(r,T) at fixed angle#=0 and Kondo
temperatureT ;=430 K for Ce ions on a fine scale. We use the
dimensionless variableer with the Fermi wave vectok:=0.65
A~1instead ofr. Aroundker =3.2 the lines ofT =104 and 52 K
are crossed. This can be explained that the Knight-shift summation
converges faster at higher temperatures and it has longer range at
lower temperatures as mentioned byr&wmsen and AffleckRefs.
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FIG. 11. Knight shiftk(r,T) at fixed angled=0 and Kondo FIG. 12. Knight shiftk(r,T) at fixed angled= /2 and Kondo

temperaturd ,=430 K for Ce ions. We use dimensionless variable temperaturélo=430 K for Ce ions on a fine scale. We useidlimen-
ker with the Fermi wave vectoke=0.65 A~! instead ofr. This sionless variablder (with the Fermi wave vectokz=0.65 A1),

shows an oscillatory RKKY-like behavior. The amplitude is de- The Knight shift has maximum amplitude arourid=104 K.
creased as the temperature is increased and the distaiscen- ~ Aroundker=2.8 the lines off =174 and 52 K are crossed.

creased. The calculations are done at the same temperatures in ) ) o ]
Fig 10. decreased. In Fig. 9, the Knight shift is investigatedkgat

=3.3, and#=0 for different Kondo temperatures. As in Fig.
K(r,T) on a fine scale and a coarse scale as a function d, temperature is an implicit variable and high temperatures
separationr and temperature$ at fixed angled=0 and correspond to the lower left corner. The magnitude of devia-
hybridization width '=0.050 66D (T,=430 K) for Ce tion from the linear relation is decreased when the Kondo
ions. We use a dimensionless variakla with the Fermi  temperature is reduced. For CgSikg£~25 where &¢
wave vectorke=0.65 A™! instead ofr. The Knight shift =#Ave/kgTy is the Kondo screening length with the Fermi
shows an oscillatory RKKY-like behavior and the total mag-velocity v . So our calculation is done well inside the con-
nitude decreases when distance is increase(I)| at fixed  duction electron screening spin cloud. Very similar results
distancer is first increased and then decreasidecomes are obtained for Yb compounds.
almost constant when the temperature is lowered. In Fig.  These results qualitatively confirm Ishii’s argunfetitat
10, we can see that the curves fb+=104 and 52 K cross Wwhen the radiug is bigger than Kondo screening length
aroundker =3.2. The temperature whedé(r,T) has the éx=7vge/kgTo, Wherev is the Fermi velocity, the anoma-
maximum value is a function of separatiorand has lower lous conduction spin density cloud sets in. Far inside this
value with larger separatian The Knight shift has different radius, conventional temperature independent RKKY oscil-
r dependence depending upon whether the temperature is
above the Kondo temperature or below the Kondo tempera- 2.0 \ |
ture as mentioned by/8ensen and Affleck>~**The Knight
shift converges faster at higher temperatufabove the
Kondo temperatupeand it has longer range at lower tem-
peratures. Changing the angle can change the sign of the
Knight shift contribution from a particular site, as shown in
Fig. 12 on a finer scale and Fig. 13 on a coarse scale. How-
ever, the behavior of the magnitude ¢r,T) as a function
of temperature is unchanged, qualitatively. The Knight shifts
of Yb ions at fixed angles show similar behavior.

For a fixed Kondo temperatur€, and distancer, the
Knight shift K(T) shows a linear relation with the magnetic
susceptibilityx(T) at high temperature and it starts to devi- 40 \ \ l ‘ ‘
ate from the linear relation and shows an anomaly when
temperature is lower thah,,,, wherey(T) reaches its maxi-
mum value. Figure 8 shows the Knight shift &0, T,

=380 K as a function of the magnetic susceptibility for dif- g5 13 Knight shiftk (r,T) at fixed angled= /2 and Kondo
ferent separations, with temperature as an implicit variablgemperaturer,= 430 K for Ce ions. We use dimensionless variable
for Ce ions. These curves show a lindarvs X relation at ker (with the Fermi wave vectokg=0.65 A_l). This shows an

high temperaturegin this figure, high temperatures corre- oscillatory behavior like the RKKY interaction form and the ampli-
spond to the lower left cornpand show nonlineaK-vs-y  tude is decreased as the temperature is increased and the distance
relations at low temperatures. The anomaly, i.e., the magnk is increased. The calculations are done at the temperatures in
tude of the nonlinearity, diminishes as the separatiois  Fig 10.

K(r,T)

0.0 20 40 6.0 80 100 1.0
krr
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lations dominate of the kind observed by Boyce and Slichter.
Outside the screening length, &0, the anomalous term
will dominate also with an RKKY form but an amplitude of
order D, the conduction bandwidth, compared with
D(N(0)J)? for the Ruderman-Kittel term, wheig(0) is the

E. KIM AND D. L. COX

3.00

i
)
le)

PRB 58

X 0O @ D> <

susceptibility y(the)
susceptibility x(exp)
NMR Knight shift{exp) |_|
K(T) with lattice sum
K(T) at ker=2.1, 6=0

conduction-electron density of states at the Fermi energy and
J is the conduction-electron local-moment exchange cou-
pling. Ishii did not calculate the explicit temperature depen-
dence of this structure, but did anticipate that it would vanish
above the Kondo scale. Scaling analysis confirmed the
asymptotic factorization of the Knight shift for short distance
and low temperaturgA possible understanding of the Boyce o
and Slichter results, then, is that the Cu nuclei they sampled
were at distances< ¢y from the Fe ions. But, in our calcu-
lation, the anomaly is still present and the magnitude is sur- 0
prisingly large for a short distance providdq is large. A
heuristic basis for understanding this is the two-pole approxi-
mation, as discussed in Sec. Il D.
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FIG. 14. Temperature dependence’disn Knight shiftK(T)
and Cey(T) [both calculated and experimental resRefs. 5 and
7)] for CeSn. The theoreticaK(T) is calculated using the diagram
of Fig. 5 and withT, chosen to fit the experimentg(T) data. A
full (incoherent lattice sum is carried out over several hundred
shells of atoms.

B. CeSn

The compound CeSnhas the AuCy crystal structure
(see Fig. 6. The local symmetry at every cerium site is cu-
bic. With decreasing temperature, the magnetic susceptibility
x(T) of CeSn shows first typical Curie-Weiss-like behav- given 11%Sn nucleus. We assume the Knight-shift contribu-
ior, followed by a maximum aT ,,,~40 K and tending to a tion of each ion to be described by this single impurity
constant value aT =0’ CeSn has positive amplitude of model, known to be a good approximation at high tempera-
Knight shift for the *'%n nuclei. However, our calculated tures where the ions are incoherent with one another, and
amplitude of the Knight shift before scaling it fois actually ~ known to provide a very accurate description of the thermo-
negative. This implies that the fit is sensible only if the as-dynamics in many cases.
sumed contact coupling between conduction and nuclear Because Sn is on the face of each unit cell, we also aver-
spins is negative. This actually makes sense because the 8@ie the Knight shift over the reference frame determined by
nucleus should dominantly couple through core polarizationwhether1%Sn is on thexy plane, or thexz plane(for H|z).
which produces a negative effective contact coupling. TheNote thatyz is equivalent taxz. Like the systematic calcu-
NMR Knight shift K(T) and x(T) are related linearly above lation, a Van Vleck term is included for both magnetic sus-
Tmax- But the Knight shift does not follow the magnetic ceptibility (T) and the Knight-shiftK(T) calculation. The
susceptibility belowT ., and has weaker temperature depen-Knight shift is scaled by an intermediate range temperature
dence. The!'®%n NMR Knight shift has a positive anomaly, match to the susceptibility, because the experimental data is
i.e., it has larger magnitude than that of magnetic susceptimeasured only up to room temperatures.
bility below T,,.x. The positive muon spin rotationusr) As shown in Fig. 14 the results agree well with the ex-
measurement shows that the positive muon Knight shift alsperiments in spite of the oversimplified conduction-electron
exhibits an anomaly below,,,, but it has a different sign band structure. Experimentally thé°Sn NMR Knight shift
with respect to the susceptibility as compared to the NMRhas a positive sign and is linearly related to Ce magnetic
Knight shift. susceptibility x(T) at high temperatureK(T) shows an
anomalous deviation from Cg(T) at low temperatures and
. . the magnitude is bigger thap At high temperatures above

C. NMR Knight shift 400 K, K(T) is reduced slowly with increasing temperature

To study the Knight shift for CeSnfirst the hybridization and shows deviation fromy. Experiment measures the
width I' for CeSn is decided by comparing the calculated Knight shift only up to 300 K, so we are not sure whether
magnetic susceptibility and experimental magnetic susceptihis behavior appears in experiment. The magnitude of the
bility, assuming a conduction-electron density of states halhlnomalous contribution goes down with distance from the Sn
width D=3 eV. As in the systematic calculation, a fixed nucleus and the theoretical data at a fixed distance which
value for parameteg;s;,= —2 eV=—-0.666D is assumed, most closely match those of experiment are taken=2.1
andA,,=0.29 e\=0.096 66D is used. The is varied a and §=0. Note that this distance is an order of magnitude
little to fine tune the results. The Knight shift is calculatedsmaller than the Kondo screening length=#Auvg/kgTq
with the fixed Kondo temperature(specified by I' ~ 25K .
=0.050 66®) and conduction bandwidtib =2.655 eV.

The best fit Kondo temperature which is given by EY) is
To=0.0123, in units oD, i.e., T;=380 K.

For the Knight shift, an incoherent lattice sum is carried We study lattice coherence effects within a local approxi-

over several hundred shells of surrounding Ce ions about mation (d=< expansion to the lattice model. The

D. Lattice coherence effects
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3.00 I I I I I TABLE lIl. Explicit values of both incoherent and coherent
— Knight shift at high temperatures. They have similar values because
— CeSns . Ziiiiitiﬁig iétet;)) coherent lattice effects are small at high temperatures. These are
2 550 L e NMR Knight shift(exp) | | unadjusted data.
O < . o K(T) with lattice sum
E Wx:.;':%e x K(T)} with coherence Knight shift
R oo o0 ¢
é 5 00 O%OO ¢ “;k,‘ | Temperature Incoherent Coherent
L %%A o 925 K —0.3579 —0.44855
< i o 615 K —2.4078 —2.42525
cco: 1.50 |- 0t o < 555 K —3.0157 —2.84562
= R 490 K —-3.7184 —3.34231
M 430 —4.5380 —3.95714
1.00 | | | | |

0 100 200 300 400 500 600 _ , o
T(K) the total Knight shift because of the large damping, i.e., short

lifetime of the conduction electrons. Also Fig. 18 shows the

FIG. 15. Temperature dependence’dSn Knight shiftK(T) Knight shift calculated with the coherent lattice sum. It
with coherence effect and GET) [both calculated and experimen- Shows a behavior intermediate between small and large
tal results(Refs. 5 and ¥] for CeSn. The theoreticak(T) is cal-  damping calculations.
culated using the diagram of Fig. 5 and willy chosen to fit the
experimentaly(T) data. A full lattice sum is carried out over sev- ) .
eral hundred shells of atoms using the aver@igeatrix approxi- E. usr Knight shift
mation to approximate the coherent conduction self-energy. Positive muons, stopped in a solid, come to rest at inter-
e%titial sites where the muon spin performs a Larmor preces-
ion in the local magnetic field. The muon Knight shift is
en a measure of the local magnetic susceptibility. For

conduction-electron propagator in Fig. 5 becomes dress
and the conduction-electron self-energy is calculated usin

the averagé--matrix approximation, which is exact for a : . L X
Lorentzian density of states within the local CeSn, from volume considerations it is most likely that the

approximatior?®®® and otherwise corresponds to the first it- muon preferentially occupies the octahedral interstices of the

eration of thed= self-consistency. The same parametersAUCLb structure(as it does in metals with the.closely related

for the incoherent Knight-shift calculation are used for thefCC structurg, _ra‘heF than the tetrahed_ral sites. There are,

coherent lattice calculation. however, t_wo m_equwalent octahedral sites, one at the center
The calculated results fit experimental data well in theOf the cubic unit cell and the other at the middle of the Ce

region of temperatures between 100 and 250 K where th@toms which has a noncubic symmetry. So, in principle, two

; 57
experimental data exist. At low temperature, the Knight Shiftreslonances are expected. IE the egpbenment byt\fea:'r’]

with coherent lattice effects also shows an anomaly, with fmf/ one resqtnance Wast? sfer\t/ed_ﬁ ecause ?PI] efr € muon
little discrepancy with the experiment. At higher tempera-per orms a site average by fast diifusion or the irequency

tures it shows tails which have bigger values than the experi-

mental susceptibilitysee Fig. 15 If we fit the results to this 0.0
high-temperature magnetic susceptibility, then the Knight
shift has bigger values at the maximum temperature and -5.0
shows sharp changes with temperature changes. We are not
sure which is the best way to fit the result with the experi- -10.0
ment. The calculated magnituddmfore the scaling to fit the —
experimental resuliof both incoherent and coherent Knight E 450
shift have similar values at high temperatures where coherent <
lattice effects are small. Explicit values are shown in Table —200
Il

The average magnitude and amplitude of the oscillation of 050
the Knight shift is decreased from that of the incoherent lat-
tice sum; we believe because of the damping effects brought 300 | | | | |

in by the imaginary part of conduction-electron self-energy. 00 25 50 75 100 125 150
To test this idea, we added a phenomenological constant ' ' ' ' ‘ ‘ ‘
damping to the incoherent lattice sum. Figure 16 shows the Krro

result for small damping,—Im E_fZO.OlD_and Fig. 17 FIG. 16. Temperature dependence of Knight sHIffT) with
shows the results for large dampingjm %= 1D. In these small constant damping Im 3;=0.01 in incoherent lattice sum. In

figuresK(T) =X r<k.r K(r,T). This study shows that the s figure K(T)=Sr<kr K(r,T). The calculations are done at
amplitude of oscillation is reduced when the damping is in-the same temperatures in Fig. 10. The small absolute magnitude
creased. And the amplitude of the Knight shift converges theorresponds to the high temperature and it increases as the tempera-
faster when the damping is the bigger when distance is intures goes down. The convergence is slower than the coherence
creased. An impurity at large distance does not contribute tattice sum.
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FIG. 17. Temperature dependence of Knight sKffr) with FIG. 19. Temperature dependence of positive muon Knight shift
Iarge.constant damping Im ;=1 in |ncoheren.t lattice sum. In K(T) and Cey(T) [both calculated and experimental res(Refs.
this figure K(T) =2y <k K(r,T). The calculations are done at 7 5nq 57] for CeSn. The theoreticak (T) is calculated assuming
the same temperatures in Fig. 10. The small absolute magnitud@at muon sits at the center of cubic unit cell. Other parameters are
corresponds to the high temperature and it increases as the tempe&ame as for thé'%Sn NMR Knight-shift calculation.
tures goes down. They converge very fast. An impurity at large
distance does not contribute to the total Knight shift because of theéf an additional negative Knight-shift contribution which
large damping, i.e., short lifetime of the conduction electrons. ~ was absent or small in the high-temperature ranges. Compar-

ing with the NMR Knight shift, theusr Knight shift has a

difference is small with respect to the apparent width of the@ximum at higher temperature and the sign of anomaly is
signal which is given by the muon lifetime and the intrinsic °PPOSite. This anomalous reduction of positive muon Knight
width . shift r_nlght be regard_ed as an |nd|pat|9n for an additional
In the Curie-Weiss regime of Ce$mbove 200 K, the negatived-electron Knight-shift contributior’ In terms of a
temperature dependence of the positive muon Knight shift i9and picture, the increase dfcharacter at the Fermi level
linearly related to the bulk magnetic susceptibility. In the ¢an be understood as d-&d hybridization effect. It is sup-
intermediate valence regime of CeSthe local magnetiza- Ported by de Haas-van Alphen measureméghﬂ_éosmve
tion as experienced by the muon decreases more strongfjuons sitting between Ce atoms should be particularly sen-
below 200 K than the magnetization of thé &tate as de- sitive to yarlatlons in the 8 states from the symmetry of
duced from the bulk susceptibility. This behavior reflects ei-these orbitals. . _ _
ther a modification of the transferred hyperfine fields be- We have calculated the™ Knight shift for both possible

tween the 4 moments and the muon or signals the influencgmuon sites. Both incoherent and coherent lattice sums are
carried out over several hundred shells of Ce atoms. All

other parameters for the calculations are same as for the
11%n NMR Knight-shift calculations. Figure 19 shows the
results assuming that muon sits at the center of the cubic unit

0.0 :

=20 cell. At high temperatures, the calculatggr Knight shift

agrees well with the experimental data and shows a linear

—10.0 relation with the bulk magnetic susceptibility. Both incoher-
o ent and coherent lattice sum studies give the correct magni-

~— =150 = u tude for the low-temperature Knight-shift anomaly but the
< wrong sign. Also the maxima occur at lower temperature
—-20.0 F - than the data and the magnitude is bigger than the experi-

ment.

—250 - Results are shown in Fig. 20 for the case where that muon
sits at the middle of the Ce-Ce band axis. In this case, results

~30.0 \ \ \ I I with the incoherent lattice sum show similar behavior to the

00 25 50 75 100 12.5 150 previous calculationgassuming the muon sits at the center

KFr'o of the unit cel). But the result of the calculation shows very

interesting behavior even though it does not agree with ex-
FIG. 18. Temperature dependence of Knight sKifff) with ~ periment. The Knight shift starts to deviate from the linear

coherent lattice sum. In this figuié(T)=32_ <\ K(r,T). The relation at higher temperature _and the magnitude of the

calculations are done at the same temperatures in Fig. 10. The smanomaly is larger than the experimental result. Note that the

absolute magnitude corresponds to the high temperature and it igign of the anomaly agrees with experiment. There is a pos-

creases as the temperatures goes down. The convergence is fashility to fit the experimental data by averaging tjesr

than the small damping case but slower than larger damping casd&night shift from both positions. Because there is no experi-
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K(T) and Cex(T) [both calculated and experimental resRefs.

KNIGHT-SHIFT ANOMALIES IN HEAVY-ELECTRON ...

T(K)

3329
40.0 I \ \ \ I
YbCuAl |+ susceptibility x(the)
" ® x(exp)
—~ 300 - a NMR Knight shift(exp) | |
g e Mot o K(T) with lattice sum
o
2 e .
:j yeal N +
g 20.0 p * ‘ —
L s,
> .,
% 10.0 = % . bos —
— e
0.0 | | | | |
0 50 100 150 200 250 300

T(K)

FIG. 22. Temperature dependence %Al Knight shift K(T)
and Ybx(T) [both calculated and experimental resuRefs. 6, 7,

7 and 57] for CeSn. The theoreticaK(T) is calculated assuming and 63] for YbCuAl. The theoreticaK (T) is calculated using the
that muon sits at the middle of the axis between the Ce atoms. Otheliagram of Fig. 5 and witfT, chosen to fit the experimentg(T)

parameters are same as for f8n NMR Knight-shift calculation.

data. A full (incoherent lattice sum is carried out over 24 000 at-
oms.

mental data which gives information about the fractional site
occupancy we just averaged two Knight shifts with several
fractional occupancy ratié which is defined as

Kiota= fKcentert (1= f)Kpond-axis

Figure 21 shows the result fé= 2/3. Our calculation misses
the maximum point, but the low temperature anomaly agree

u:r_s[rﬁl-rﬁz—s(rﬁl-?)(rﬁzf)]- (69)

The dipolar part of the Knight shift tracks directly the atomic
usceptibility of the nearest-neighbbielectron ions, while
the contact hyperfine contribution is what we are interested

with the experimental result.

in. In our calculation the dipolar field effect is of course

Also, if the muon is not situated at a site of cubic sym-
metry, dipolar fields from the induced local moments mayexactly cancelled out when we average over the reference
give the dominant contribution to the positive muon Knightframe'
shift. The magnetic dipole which is inversely related to the
mass, can give comparable contribution to the positive muon
Knight shift in contrast to thé'®Sn NMR Knight shift*® The
direct dipolar interaction energy of two magnetic dipafes

F. YbCuAl

The ternary intermetallic compound YbCuAl has the hex-
agonal FeP-type crystal structur€® in which each Yb

andm,, separated by is given
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atom has the same local environment. At low temperatures,
the magnetic susceptibility(T) has a large constant value
[x(0)=25.5x10 2 e.m.u./mole Yb atomsand a maximum
value atT,,,~27 K. There is a Curie-Weiss like behavior
aboveT .. > % 27Al NMR shift data were obtained from
derivative spectra of the central (#2—1/2) NMR transi-
tion. Above T, x andK track each other, as expected if
only one mechanism is appreciably temperature dependent.
Here the Yb magnetization is the obvious candidate for the
temperature-dependent contributions to bpffi) andK(T).

This linearK-vs-y relation has been used to determine the
relative scales of thg(T) and shift coordinate axes in Fig.
22. The linear relation breaks down beldw,,.

The ?’Al NMR Knight shift has negative sign and the
absolute magnitude of the low-temperature Knight shift is
smaller than the magnetic susceptibility, opposite to the case
of CeSn. For YbCuUAI, the ground-state energy for tlie
state is taken asef;,=—1 eV=-0.33D and A

FIG. 21. Temperature dependence of positive muon Knight shift 1.3 €V=0.433D. Because of the large value af,, we

K(T) and Cex(T) [both calculated and experimental res(Refs.
7 and 57] for CeSn. The theoreticaK(T) is calculated averaging

can neglect the interaction betwepn 7/2 ground state and
j=5/2 excited state. Without this Van Vleck term, we can

the wsr Knight shift from both positions with fractional occupancy estimate the conduction-electron band half-wibtlusing the

ratio f =2/3 (2/3 of the muon is at the center of Ce3mit cell).

zero-temperature magnetic susceptibijt0) value:
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gjzi(i+1)uéNo 6.00 \ \ \ |
X(O)_ 3kBTO (70) % * suscepti‘bili.ty x{exp)
’55.00 e [ susceptl.bihty x(the) L
With y(0)=25.5x10"3, we getkgTo==8.7974x 1073 eV. S o A
Also with the relation E "o
} 4.00 B o .
T T ot %o e?
) - (71) g I o tw,
D exp D/ e L300 .
P 2
where D=3 €V, and T/D)ne=0.001 84, we geDe,, 2 $
=4.7812 eV. But, we get the best magnetic susceptibility fit = 200 oy
with D=3.5 eV andI’=0.020 3®. The incoherent lattice Uos¥osPds
sum is carried out for over 8000 shells of atoms, larger than 100 R ! ! !

for CeSn. Because of the complicated crystal structure, each 0 50 100 150 200 250 300
shell only includes a few atoms. T(K)
Calculated results are shown in Fig. 22. Both the mag-

netic susceptibility and the Knight shift agree well with ex- ¢ 55 Temperature dependence®® Knight shift K(T) and
p_erlmentall results_ and can e?(plallj both the mag!‘““‘?"? angd x(T) [both calculated and experimental res(Refs. 10 and 6)4
sign of Knight-shift anomaly in spite of the oversimplified ¢y v "1, Pd,. The theoreticak (T) is calculated using the dia-
conduction-electron band structure. We note that the sign Qfram of Fig. 5 and witiT, chosen to fit the experimentg(T) data.
the anomaly is opposite to that of Ce in this case, and indeefl full (incoherentlattice sum and impurity configuration averaging
we find that these contributions go in opposite directionss carried out over several shells.

numerically.

tering aroundh w=3.6 meV (~42 K=KkgTy), expected for
a conventional magnetic Kondo effect.

The Y;_,UsPd;® system has aroused great interest, fol- Forx=0.1 and 0.2, a breakdown of the expected linearity
lowing the discovery of non-Fermi-liquid behavior for ura- petween the NMR Knight shift and the bulk susceptibility
nium concentrations around=0.22"%%%This discrepancy y is found below ~50 K1° The magnetic susceptibility
has been interpreted as possibly arising from a two-channelxhibited an upturn at low temperatur@Surie tail, indi-
quadrupolar Kondo effe®t?’ or from critical effects of a cating the presence of magnetic impuritiese Fig. 23 The
new kind of second-order phase transition at zerdmpurity magnetic susceptibility was subtractédrhe tem-
temperaturé We will mainly discuss the compositior perature dependence af(T) (Ref. 33 suggests that the
=0.2. mechanism for the two-channel behavior is the quadrupolar

Yo8UoPcs has a cubic AuCy crystal structure. Thé  Kondo effect?®
=4 ground state of & is split toI'; singlet,I"; nonmag-
netic doublet, and’, andI's magnetic triplet. Knowledge of
the crystal-field ground state is a crucial test for the validity x(T) T\
of the quadrupolar Kondo model and there are several W”l_ To
neutron-scattering experiments to decide the ground state of
Y 0.8Uo P .33 Mook et al®® interpreted their results in
terms of a crystal-field level scheme with I& doublet In our study, we considef? and f3 configurations for U
ground state anfl; andI", excited triplet states at 5 and 16 ions and only the Hund’s rule ground states, ifé,, j=4
meV, respectively, and thus support the two-channel quadruand f3, j=9/2 spin-orbit states are kept for the calculation.
polar Kondo effect interpretation. In this casg,T) origi- j=4 states is split td"; ground doublet['s, T'y, and T’y
nates in the Van Vleck susceptibility associated with transiexcited states anp=9/2 multiplet is split tol'g doublet and
tion from aI'; nonmagnetic ground doublet into excited- two I'g quartets. The conduction-electron bandwid@his
state I's and I', triplets. The I'; is described by a assumed to be 3 eV. All parameter values are listed in Table
guadrupolar pseudospin. This couples to pseudospin varlt in the unit of D. The incoherent lattice sum is carried out
ables of a conductiol’g quartet in time-reversed channels over 300 shells with impurity configuration averaging.
with the antiferromagnetic pseudospin coupling mediated by Figure 23 shows both the experimental and calculated
virtual charge fluctuations to magnetic doublets in excited-magnetic susceptibility and th&Y NMR Knight shift. In
state configurations. our calculation, both the bulk magnetic susceptibility and the

McEwenet al®® saw a peak of magnetic origin at 36 meV Knight shift become constant when the temperature goes to
and another peak around 4 meV and explained this with theero and thus a Knight-shift anomaly does not arise. Our
transition betweeth' ; ground state with excited statEg, I';y  calculated magnetic susceptibility saturates when the tem-
andI's. They couldn't find a peak at 16 meV. perature goes to zero and does not show the low-temperature

Dai et al®® reported a5 magnetic ground state with po- singularity like experiment. This may arise from the numeri-
larized inelastic neutron-scattering experiment dhdand  cal calculation or from intrinsic properties such that real
I', excited states at 5, 39 meV. We note, however, in conground state may be magnetic as discussed earlier. A sepa-
trast to this interpretation, that there is no quasielastic scatate possibility is that the weak admixture of excifédnag-

(72
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netic states contributes a weakly log divergent contribution TABLE IV. Crystal electric-field energy eigenstates fpr4

to x; this possibility may be explored elsewhere. Regardlesgnultiplet in the cubic symmetry. The coefficient is independent
the calculated Knight shift agrees well with the experimentalof x.

data in magnitude and temperature dependence.

j=4 multiplet States
V. SUMMARY Ir2) VA9 VB0 + V-4

In this paper, we have calculated the magnetic suscepti- 1
bility and the Knight shift for the heavy-electron materials ~ 13i+) ﬁ(|2>+|—2>)
within the infiniteU single-impurity Anderson model using
the NCA method. In our calculations we can explain that the IT'3:—=) —\/§|4>+ @|o>— \/§|—4>
Knight-shift anomaly in heavy-electron materials with the 1
simplified single-impurity Kondo effect. There exists a [I'4;0) ﬁ(|4>_|_4>)

Knight-shift anomaly at short distanae<éy, with ampli-
tude proportional tary/T". . 1

Our calculations show generally good agreement wit ITai=1) ﬁ|+3>+\/§|il>
experimental results in spite of the oversimplified band struc-
ture. Especially, the short distance Knight shift depends on |r;:0)
the detailed structure on the conduction-electron band
and our calculation shows large contributions from the short 1
distance Knight shift. For future work, we can include ITs;=1) T|:3>—\/§|¢1>
more realistic conduction-electron band structure which ' 8
can be calculated with the linearized muffin-tin orbital
method.

1
$(|2>—|_2>)

I'; is an orbital(nonmagnetic, or non-Kramejsioublet and
usually labeled byt . (3) I', andI" 5 are magnetic triplets and
labeled by 0+ 1. (4) I'g andI'; are magnetic Kramers’ dou-
This research was supported by a grant from the U.Sblets and labeled with pseudosgiror |. That is, thel'g and
Dept. of Energy, Office of Basic Energy Science Division of I'; CEF states are similar to thje=1/2 angular momentum
Material Research. We thank H. R. Krishna-murthy, D. E.manifold. (5) I'g is a magnetic quartetlg=I"3®1I';) and
MacLaughlin, M. Steiner, and J. W. Wilkins for useful con- labeled by=1/].
versations on this work and related topics. In the Anderson model picture, the conduction electrons
can hop on and off the atomic orbitals at the impurity site.
The 1=3 conduction-electron partial waves are most
strongly coupled to thé electrons in U iongfor the isotro-
For the U compound, the crystal field effd@EF, which  pic hybridization, only the =3 components can hybridize
lifts the angular momentum degeneracy of U ions and theiwith the f orbitalg. In the presence of the spin-orbit cou-
spin-orbit multiplet decomposes into irreducible representa-
tion of the cubic field needs to be included. The distinction TABLE V. Crystal electric-field energy eigenstate fpr=9/2
from the CeSg and YbCUAI cases is that the apparentmultiplet in the cubic symmetry, the coefficieat's and b;’s de-
crystal-field splittingA cg= T, for CeSni and YbCUAIL. The  pend on thex which is the parameter which depends on the ratio of
f2,j=4 Hund’s rule ground state of the U ion is splittd’a  the fourth and sixth degree cubic field in the Hamiltonian of the
nonmagnetic doubletl’s and I'y magnetic triplet and’;  crystal electric field. In this calculation, we usg=0.3693 and
singlet state$® The f2,j=9/2 spin-orbit multiplet is split to  W;=2.746<10 * to havej=9/2 T, for the ground state of th&?
I'; doublet and twd'g quartets. For an explicit derivation, configuration and,=—0.648 andW,=—3.95<10"* to havej
see Appendix B and the articles by Lea, Leask, and folf =4 I's for the ground state fof? configuration.
and by Hutchingg® The eigenstates of; CEF states for
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APPENDIX A: U4t IONS

j=4 andj=9/2 multiplets are in Tables IV and %70 In =92 multiplet States

cubic symmetry, the coefficients of CEF states depend upon )

the parametex which is fixed by the ratio of the fourth and ITei %) V=D VEIFD V=D
sixth degree terms in a short distance expansion of the cubic ITan: L, a9 . L
field in the Hamiltonian of the crystal electric field, and upon far ™ 2= 2)+a+2)t 8| 2))
the parameteW which is an overall scale factor fixed by the ITgai2.%) E WY
crystal-field strength. In this calculation, we usg=0.3693 H=ei e
andW;=2.746x 10 * to havej =9/2T ¢ for the ground state [Tgp;l,%) agl+ D+a| T D +ag+ 1)

of the f3 configuration andx,=—0.648 andW,=—3.95

X 10™* to havej =4 TI'; for the ground state fof? configu- ITepi2,% bal = 2)+by| 7 3)

ration. For further details, see Appendix B. The choice of the
overall phase is arbitrary in defining the CEF eigenstates. % or x=0.3693, a;=—0.1290, a,=—0.1582, a;=0.9789, b,

A brief description of the different irrep labels of the cu- =0.7361,b,=—0.6769,a5=0.7800,a,= — 0.6358,a3=0.0016,
bic group is as follows(1) I"; andI", are orbital singlets(2) b;=0.6769, and,=0.7361.
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TABLE VI. Crystal electric-field energy eigenstates for 5/2 TABLE VIII. Selection rules for the Anderson hybridization

multiplet in the cubic symmetry. betweenf? I" andf3 I" CEF states. The meaning, for example, is
that al'g conduction-electron doublet can combine with el

j=5/2 Multiplet States doublet to make anm® I'g quartet.

/2) .
IT62:771) — i =52+ 2732 T.®f2r 3T CEF states
IT§2;+,111) |=1/2) Il r.

Ig®T r

(5/12). _ _ 6 3 8
ITE2;—,111) V2252 +\E 5372 Ier, T
pling, the =3 conduction-electron state splits into the r,el, el
j=5/2,7/2 conduction-electron multiplets. Thgsmultiplets gl | ) V)
further split into the CEF .|rredUC|bIe representatloﬂ§, r,, = r,oly
doublets andl’g quartet in crystal environment. The CEF el Ieoly
eigenstates foj=5/2, andj=7/2 multiplets are listed in Ig®ls Teol,®20

Tables VI and VII.
The hybridization Hamiltonian of our model U compound

in the absence of the CEF is given by
Her= 2 2 | Vil r e A
kjcI'cae Tal’'B ¢ cre
9
_ Do f2i 3 7 9 9
Hes kam %3 [VKA<J°m°’f J2=4m; 2m3> X | joToarg ;4T a Er,3>|f24ra><f3§r,e +H.c.,

+H.c.

. (A1) _2 2

kjcI'cac Tal’'B

) 9
Xcljcmc|f212:4m2>< f3]3:§m3

) 9
VK| jc:4 >

matri m , 9
Here the reduced matrix elements are ><<1ch 4 : >Cljcl"cac|f24 >
Al jem =4m _—_gm X f391 +H 3
(jc o F2j,=4m, 3], 5 3) > B .C.|. (A3)

The reduced matrix\ (jI'cac ;4T | 3T B) is implicitly de-
f3' =—m . . . . .
I3 23 fined in the above equation. All the possible selection rules
for the hybridization are listed in Table VIII.

=(f2jp=4my|f} m

=K(jeializ){jcMe:iamy|jsms), (A2)

APPENDIX B: CRYSTAL ELECTRIC-FIELD EFFECT
where j.=5/2,7/2. The Wigner-Eckart theorem is used for
the last line and the prefactd€(j.j,|js) is the fractional
parentage coefficient. In our calculation whgre=4 and
j3=9/2, K(jcioljz)=7/9 for both j.=5/2 and j.=7/2.

In the crystal lattice, magnetic ions feel an electrostatic
field produced by the neighboring ions. This crystal field lifts
the degeneracy of the angular momentum of the magnetic
: X ! C™ ions. The most common method to calculate the effect of the
(Jemc:j2my|jsms) are the Clebsch-Gordan coefficients. If ¢y qia| electric field is the operator equivalent technidies,
there is a crystal electric field, the Anderson hybr|d|_zat|onwhich exploit the Wigner-Eckart theorem to replace the elec-
between the CEF statdss needs to be re-evaluated in the y,qiatic potential terms in the Hamiltonian by operators in
basis appropriate to the crystal-field split states. We have 4 angular momentum space of the ground multiplet. It de-

pends on the symmetry of the crystal and the orbital angular

TABLE VII. Crystal electric-field energy eigenstates fgr ~momentumj of the magnetic electrons. The most general

=7/2 multiplet in the cubic symmetry. Hamiltonian with cubic symmetfy"°can be written as

j=7/2 Multiplet States Heer=B4(05+50%) + Bg(08— 210%), (B1)
5. _

1SSV |2 72) = 5| £ 1/2) where

T§"25111) =3 =525 L7302

09=3507-[30J(J+1)—25]32-6J(J+1)+3J%(J+1)?,
IT§™2 ;5 +,111) L5727 VS| £ 1/2) ’ ’

@2._ _ 1
ITg™;—.111) i%|i5/2>i\/§|+3/2) OjIE(Ji+Ji)’ (B2)
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02=23115-1093J(J+1)—7]32-53%(3+1)3 —3.1435(1— |xa]) =x2(1—X3|), (B9)

+[10502(J+1)2—525)(J+ 1) + 294] 32 W 0.396a, 2 (810
3_ . 2_.
X3

—533(J+1)3+400%(J+1)°—-603(J+1),
From the above equations we ggt=0.3693 andW;
=2.746x 10 * for x,= —0.648 andW,= —3.95x 10~ 4.

1
=-[1132-3(J+1)—38](J* +J%)
4 APPENDIX C: EVALUATION OF KNIGHT SHIFT K SUM

1 In this appendix, the form of(e.,e./) expressed in Eq.
+ Z(J1+Jf)[1lJ§_J(J+1)—38]- (36) is derived. We define
The coefficientsB, and B¢ are the factors which deter- I”/(ek’ek/):js'(kr)jg(k,r)EwE,v Golkalw)
mine the scale of the crystal-field splittings. In a simple
point-charge model, they are linear functions (of) and XGe(k'o",iw)Go(iv)Gjmli(w+v)]

(r®, the mean fourth and sixth powers of the radii of the :
magnetic electrons, and thus depend on the detailed nature of XGjml[i(w+v)], (CY
the magnetic ion wave functions. We treat these as phenomvherew[ v]=(2n+1)i/B[2ni/B] and the usual fermion
enological parameters because these are very difficult to ca(poson Matsubara frequencie$, is the bare conduction-
culate quantitatively. electron propagatoiG;,, is a pseudofermion propagator for
Following Ref. 69, we rewrite the Hamiltonian as spin-orbit multipletj, andG, is a pseudoboson propagator.
For the coherent calculation the bare conduction propagator
O¢ is replaced by the dressed electron propagator. This coher-
+B F(6) (B3)  ence effect will be considered in Appendix F.
F(6)’ Then Eq.(C1) can be rewritten as

where 0,=[(09+50%], and Og=[02—210¢] and F(4) 1 _ 1
andF(6) are the common factors to all the matrix elements jj'(€x,€k)=5—ja(kr)js(k'r)—
of fourth and sixth degree terms. In order to cover all the 41 B

Oy
Hcef B4F(4) F(4)

possible values of the ratio between the fourth and sixth de- 1 1 dz Aq(2)
gree terms, we set x> - f—i ° 7
w,v 1O €y lw— €y m v
B4F(4)=Wx, (B4) fd_p Aim(p)  (dp" Ajm(p")
BeF(6)=W(1—|x]), (B5) 7 i(0+tv)=p) T j(w+v)—p’
C2
where—1<x<+1. It follows that ) . (€2
Let us first do thev summation:
B, X F(6)
B, - F@’ 6 (W=55 r .
6 x| F(4) BT iv={i(0tv)=pi(w+v)—p
so thatB,/Bg=0 for x=0 andB,/Bg=* for x=*1. _
Rewriting Eq.(B3) we have = 2f(p)=2N(9) (C3

(p=p")p—iw=—0'
wheref(p)[N({)]=(e??+ 1) [ (e#*—1)"1]. In Eq. (C3),

04
(F(4) (1= |X|)(F(6) only the (p—{—iw) term is dependent ow. Let us do the
o sum. We get

Here, the eigenvalue is related to the crystal electric energy

Heer= W, (B7)

by the scale factow. 1 1
In our calculations, we need the relations between - (B)= _E —iw—
: param o 0= € jp—¢, (p~io—{)

etersx, and W, for f2 configuration anckz; and Wj for f3
configuration of U ions. To get=4 I'; andj=9/2T g dou- 2f(e)—2f(p—2)
blets as the ground states &f and 3 configuration, we T e (et i—p) (C4
choosex,<0 andx;>0 andW,<0. W, is decided by the . G Lk g“- p
energy splitting betweeR ; andI'5 statesA;s: Now taking thex— —c° projection

W= — A5/ (84+ 114x,). (B8) e AIN(Z)—F(p)]= e~ P 1

eBll-M_1 * eBlp=M
From Eqgs.(B4), (B5), and(B6), and factors which are given Bl am
in Table | of Ref. 69 we get the relations of parameters =e flrefr, (€9
betweenf? and f3 configurations, Also, with the relations
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f dp’ Ajrar(p") s

T p—p
andf(p—¢)(e Pé+e Pry=e hr,

=Re Gj’m’(P)

(e e) = Jskr)la(k'r)fd§f
“ kosK Z4 €y

X{Ao (O)Aim(p)RE Gjrim(p)F (&)
et{—p
(p)Re G (p)[f(e)— 1]}
&ti—p

Ao AR
+

(C7)

The above equation can be rewritten

ja(kr)ja(k'r)

€ €y

+[1-f(e) ]l (e}

I (e, €)=2 {fe i (e

(C8

where

dZ [ dp A5 (O Am(pIRE Gy (p)
=z, T ST

=if%A”<z)ReG- (£+e&)
Za) w 0 jm €k

XReGjrmr(§+€k), (Cg)

—2 [ dZ [ dp Ag(OAL (p)RE Gjroy(p)
IZJj(ek):_f_f_ - ]€k+§—PJ

f _A (P)ReG| 'm(p)Re Go(p—€y).

(C10

APPENDIX D: ANALYTIC CALCULATIONS OF INNER k'’
INTEGRAL IN THE KNIGHT SHIFT

We can calculate the inn&f integral analytically. This is

given by

oo ia(k'r
f |<'2d|<'M (D1)
0

k2_k72’

wherej, is the spherical Bessel function. The above integra-
tion is broken into four terms which may be expressed in

terms of sine and cosine integrals. The first term is

fwdk’ k’'?2  cosk'r
0 k2—k'?2  K'r

1
- F[ci(kr)coskr+si(kr)sin kr+gsin krl,

(D2)

where the sine and cosine integrals are

E. KIM AND D. L. COX

PRB 58

zsint
Si(z)= | —dt, (D3)
ot
si(z)=Si(z)—g. (D4)
) zcost—1
Ci(z)=vy+In z+ jo (D5)

For more explicit formalism of sine and cosine integrals see

Ref. 71. The second term in our integration is
dek’ k'2 —6sink'r
0 k?—k'2  (k'r)?

-6
=—Z[Ci(kr)sinkr—si(kr)coskH—gcoskr. (D6)
r
The third term is
foodk, k’? —15cosk'r
0 k2 k/2 (k/r)3
-1
= k2 3 —Ci(0)+Ci(kr)coskr
o
+si(kr)sinkr+ =sinkr|. (D7)

2

Ci(0) is divergent logarithmically, but is exactly canceled
by a term from next integral. Our fourth term in the integral
is given by

o er
dk’
fo k?—k'?
15
k3 4

15 sink’r
(k'r)*

[Cl(kr)sm kr—si(kr)coskr+ Ecoskr

15 _
Note the explicit cancellation o€i(0) between Eqs(D7)
and(D8). Setting Eqs(D2)—(D8) together, we have our in-
ner momentum integral in our Knight-shift expression de-
fined in Eq.(D1) given by

* ja(k'r)
k/2dkr—
fo k?—k'?

1
- F[Ci(kr)cosk|r+si(kr)sin kr+ gsin Kr

2

6
- —Z[Ci(kr)sin kr—si(kr)coskr+ zcoskr
r

15] i(kr)coskr +si(kr)sin kr+ —sin kr—1

k2r3,C|( rycoskr+si(kr)sin kr+ Zsinkr
+—15>C'k inkr—si(k kr+ —cosk

k3| i(kr)sinkr—si(krjcoskr+ Zcoskr|.

(D9)
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APPENDIX E: ANGULAR DEPENDENCE

OF THE KNIGHT SHIFT

In the Knight-shift calculation the angular dependence
comes from the Zeeman term in the Hamiltonian:

In this appendix the derivation df;,(«,#), the angular
dependence of the Knight shift, will be discussed. First, we
need to calculate the expectation value of the magnetic mo-

H,=— upHy(L,+2S) =~ ugH,(J,+S), (E10

ment operator in the direction
Then forj=j’, by Wigner-Eckart theorem gives
<jmj|‘-]z+sz|jmj’>:5mjmj,gjmj ’ (EZ)

whereg; is the Landeg factor andgs,=6/7 andg,,,=8/7
for |=3 ands=1/2 which is the case forf4 and 4f** con-
figuration. And forj#j’

(imjl 3.+ Sl my ) =(jmyl S| m;.)
1]

:5m_m.,mz a(jmj|lm| ;Sar)
|a

X(Imy;salj'm;:),
wherea=*+1/2. Forl=3,s=1/2,j=5/2 and]'=7/2

5
2™

(E3)

7 5
Si5m; =mm, D @ >mj|3mg;sa

I hpa
7
2M

== T‘Smjmj, ) (E4)

><<3m3;3a

given

12

o

(jltm/Z

21,1 for j=j,+1/2 (E5

. 1
jlm—a,za

1/2

for j=j,—1/2,
(E6)

__[J1F¥m/2
~ Tl 2j,1

14

1 1|5 7F2m\? _
3mg; =tz m)=7F for j=5/2,

14
(E8)

am. Lo L7 ) _(7=2m 1’2f o &
Mg, 5 +55M) = or j=7/2, (E7)

for mj==1/2

for mj==3/2

for mj==5/2. (B9

where external magnetic field =H,z.

Now we calculate the angular part of the Knight shift.
To do the lattice sum, we have to consider the difference
of the field axis and the bond directianwhich connects
the nucleus or muon to a giveh ion. Let the angle be-
tween the field axis and be a, and the angle between the
z axis and bond axis bé. First when the field is along the
z direction, i.e.,0=«a and nuclear spin=1/2, the angular
momentum operatod,, which is quantized in the bond
direction, becomes  ca&l,—sin 6J,=cos6J,—sin 6(J,
+J_)/2 in the new reference frame when the material
has the cubic symmetry. Also, the nuclear-spin operator
o, becomes co$o,—sin fo,=cosbo,—sin o, +o_)I2.
Then the surviving terms in the Knight-shift calculation
are

coS00,(J,+S,) +silo(I+S,)
Sha
=coS0o,(J,+S,)+ T[o+(J_ +S.)

+o_(3,S)]. (E1D)

Then the total angular part is

_ , SO Lol e

4
(E12)
Heref?, is
(0= 3 (imyldz+sgli'my) ol (i my [Pl im))
jmjra
. Lo, 1
= > a(jm;|J,+S,|j ' mj ) j'm; 3m3;§a
mjam3
1 . R
><<3m3;§a ij>|Y3m3(r)|21 (E13

wherea=+1/2 andY,,(r) is the spherical harmonics.
Then for(1) j=j'

z , PN B 1
f5,(0)= Z a(jm;[J,+S|jm/){ jm; 3mg;5
mjm; amg

1 | <o

x| 3mg; 5 afjm,; |Yam, (1)
1 2 .

=2 gma <ij 3mi—a?§a> Yam - oD%
mja

(E14
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With the above equation and Eq&7) and (E8) , _ .
f(5/2)<7/2>(9):m2m a(jm;|3,+ S| m;)
jamg

2 9 , , 1 1
f(5/2)(5/2)(‘9)zﬁ(1_4 Slr]2t9), (E15 xX{ 1 m; 3m3;§a 3m3, jm]
X|Y3m3(F)|2
4 2 3
f Z12)712)(0)= (1+3 SirFe). (E16 _ m(z—sinze). (E17)

Now we derivef T , the angular part of the Knight shift

(2 j#j',i.e.,j=5/2 andj'=7/2
from the second term of EE1l), wherej=j’

(this term gives the Van Vleck Knight shift

1_ (0)= <j1mj|‘]i|j/1mj’><j/mj’|F>U§B<F|j'mj>

mjm;s a8

1 1 . .
P 3m3;§/8><3m3; Eﬁ‘jmj>Y§m3(r)Y3mé(r)

1 1
3mé;§a 3mé;§a o

= 3 Gmiaeditmo{im,

’
mj mj ’ m3m3a,8

(E18
with <i:mj|~]z|j’vmj'>:\/(jimj)(jimj+1)5jj'5mj,mj:1 and (3mg;zao, 413Mg;3B8)= Vi~ B(BF1)8,5710mgmy
:5m3mé5a,7,8

The above equation gives
1+ 1 1 11 L2
M (0= 2 G=m)GEm = 1) jm 7 1/3mgi5 55 )| 3ma 5 =5 jm, ) Vam =3I (E19

Hence

£2500)= > (myISelj’.mp ) mp o (r]j.m)
B

mjmjra

1 . .
p[3M3; 5 B><3m3, BJm,> 3my(1) Yamy (1),

1 1
3m§;§a><3mé; E

> <j,m,-|s+|j',mj/><j'mj/

!
m;m; mamsaB

(E20
where
. ., ) 1 R 1 1
(imjls-limH= 2 (jm 3mg; s a )| 3mg; 5 Blim] ){ 3mg; 5 S, |3myi5 B
mamga B
, V(7F2m)(5+2m)
for j=5/2;=— 1 5mj’mj11
7x2m)(9+2m
for j=7/2:= V 1{4( i )5m;mj:1- (E2D)
Then
pe 1.1 1.1 ,
f25(9)= E<1m|S+|Jm F1)(jm;F1 3m3, =5 {3mgi5 x5l jm; |Y3m+_(r)|
1.1 11 2 -
jm *1 3m3,§ z 3m3 E E mj |Y3mj¢%(r)|. (E22)

(1) Contribution fromj=5/2. Define
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752m; (=) 7+2(m;+1) L2
(+) IN—12—Yam=2(1)]

+ _ el 2+
f 51205120 ()= Fi512)512)F F512)502)

-3 V= (5emes

7X2(m;+1) 752m;

_1(r)|2
+% 14 14 |Y3mj+§(")|
9 14
:__1477[1+ 2C0§0]29J25/2f(572)(5/2) (E23)
Then
9 - .
f(5/2)(5/2)(0): E(l—SSInzﬂ-l— 6S|rf10) (E24)

(2) Contribution fromj =7/2. Define

8
2+ +
f 22 (0=t i@+ @ = _147T[5+ 3c0$01=0j_7/2 f 712772 - (E29

Then

2

(3) Contribution from Van Vleck terms. Define

f(i5/2)(7/2)(9)=m E p (i !mj|3t|j ,mj’|><j ,mj’|F>U§,ﬁ<F|jamj>

jmjra
H 1! L ! 1 ! 1 + 1
= > ’ (Jomy[Selj s my (" my) 3m3;§a 3m3;§a Tap 3m3;§,8
mjmjrm3m3a[3
1 . . n -
X\ 3Mgz: 5 B IM; | Y3m, (1) Yam(r) (E27)
with
_5 IS '/_7 _ 2 S "3 1 3 1 sS.13 /.1 3 /.1 ’
j—i,mj ] _E’mi' = 2 Em mg,ia m3,§a - m3,§/3 m3,§,8§m
maMgaf
1
=¥ V(67 2m)(752m), (E28

wherem’=m=1.
Inserting Eq.(E28) into Eq. (E27) gives

V(7+2m)(5+2m) [ 7 11 1 11 1|5
f5/2)(7/2)(9) 2 ¥ 14 2m 3mi§;§+§ 3mi§,§ §§m+1 Y 3 1/2(1) |2
m[ +sin‘6]. (E29
Then
f(512)(712)(0) = [4 4sirf 6+ 3sirf6]. (E30

For the cubic crystal Cegnwe fix the field in thez direction and do the reference frame averaging over the cases of the Sn
atom in thexz plane or thexy plane. Note that thgz plane is equivalent to thez plane.

For the YbCuAI case which has the hexagonal symmetry, we have to consider three possible field directions, along the
y, andz axis. ThenJ,=cosaJ,—sin aJ, ando,=Ao,—Bao,, where
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1
A=7(25 coS#—26 coSH+5 cosh)

1.
B=Zsin 0(25 cod6—14 cos6+1), (E31)

which is derived below. The explicit form of the rotation matrices is given by

d ()= (

z (G+m—Kk)1(j—k—m) (k=m+m' )ikl |

where we take the sum ové&rwhenever none of the arguments of factorials in the denominator are negative. Al has an
=5/2 nuclear spin and the NMR shift was obtained from derivative spectra of the centrat {1122) NMR transition.

Slni

—pkemem [Gm)t (G —m)(j+m)I(] —m’)!/co ‘9)21_2k+m_m/( 9) Ao (E32)

(—1)f3121 [ 915 g\
(5/2) (5/2)
1/2)(1/2 (‘9) df /2) (1/2)(‘9) 2 (3—K)!I(2—K)'K! k!\CO% sm§
1 6
=§co%[5co§0—20039— 1]=a, (E33
(_1)k+l 21 31 { 0 4—2k . 0 2k+1
(5/2) _ (512 —
4572 w2 0) = d*<1’2><1’2>(9)_; 2=K)!1(2—K)1 (k+ DTkl | ©°% sy
1.6

=—§sm§[500§0+2c039— 1]=-p. (E34)

ThenA andB are defined as APPENDIX F: INCLUSION OF COHERENCE
When multiple scattering is accounted for, the conduction
1 electron Green's function in EC1) becomes dressed by
A=a?— BZ=Z(25 coS6— 26 co$6+5 cod), self-energy corrections which account for multiple scattering
off at 4f sites. As a resulti(€g,€,/) in Eq.(C2) is general-
ized to
Ly 4 g
B—ZaB—Zsm 0(25 cosf—14 cosh+1). dg A€, )
€35 lirleo ek,>——13<kr>13<k r)— 2 Tof
Then de_glAc(fk’nf,)
™ |(,U_ €y
B .
fij(a,0)=A cosat],(6)+ Lsinalf,(6)+f,(0)]. y J’ ag Ao(é) d_p_ Ajn(p)
4 7 iv={) 7 i(wt+tv)—p

(E36)
y f dp’ Ajm(p')

T i(w+v)—p' D

The explicit values fofj=5/2 andj=7/2 are given by

9 We can define the conduction-electron self-eneXgyby
f (512 (512)(@, 0)= [A cosa(1—4sirte)

Ge(k,§)= (F2

—B sin «(3—2sirt6)], (E37) E—e—2(8)

Then

2 :
f(7/2)(7/2)(a, 0) = ﬁ[ZA Ccos a(1+ 3 Slr120)

A€, €)=—1Im G(k,§)=—1Im
+B sin a(5+3 cog6)]. (E38) ‘ £~ & 2c(§)

The conduction-electron self-energy is calculated using the
For YbCuAl, we do not include the Van Vleck contribution averageF-matrix (ATA) approximation.
because of the large spin-orbit splitting as discussed in Sec. The v summation is the same as E.3). Let us do thew
IV F. sum,

(F3
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1 1 1
ﬁ%lw §io—¢ (p—iow—Y)

_ 209 —2f(p= )
(£=&)E+E—p)
With Eq. (F4), thel ;. (e, ec) is written

(B)=

(F4)

d
ljj’(fkyfk'):js(kr)ja(k'r)j;Ac(fk,@
d¢’ d
XIéAC(Ek/,f')J'?gAO(g)

d dp’
% [ Lam(o) | Lm0
L [2f(p) —2N(D][2f(&) ~2f(p— )]
(E—€N(p—p ) (E+i—p)

In the above equation th€ integration is given by

(F5

f EM:ReGC(k’U’,f). (F6)

L

Setting Eq.(F6), Egs.(C5) and (C6) together withf (p—¢)
X(e Pt+e Pry=eP 1 (e, ) becomes

o 4 (dé
Inf<ek,ekf)=13<kr>13<k'r)Z—AJ % At

e [ %%

KNIGHT-SHIFT ANOMALIES IN HEAVY-ELECTRON ...
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[Aé‘mAjm(p)ReGjm&p)f(s)
X
E+i{—p
Ao( DAL (p)RE Gy (p)[ F(£) - 1]
" E+{—p )
WhereJ(¢) is defined by
k2j.(k
J(g)—J dk%. (F8)
We can write
J kdeJ‘ klzdklljjr(fk,fkr)
dé
—f?“”ﬂ J(HRe J(H{T(E)14;i: (&)
+[1-1(E) 15 (O}, (F9)
where
dZ [ dp A5 (OAm(PIREG) m(p)
|1” (5) f f Jg_’_g p &
=—f — A (OReGjn({+ EReGjim (L +€),
(F10
—2 (dZ ( dp A DAL (p)RE G (p)
255 (§)= f f ° Jg+§ p]

~ | LA (Re Gy (pIRe Golp— .

(F11)
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