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We have determined the ground-state phase diagram for the periodic Anderson model, which comprises both
metallic and insulating collinear magnetic phases with compensated magnetic moments. The compensation is
due to both the almost-localized charactef aioments and by an equally important Kondo-type polarization
of the conduction electrons; it is effective only close to half filling. In such a situation an antiferromagnetic
state with very heavy electrons is formed. Thus we introdutei@ Kondo-latticestate in a self-consistent
manner. The approach is based on the slave-boson method in the saddle-point approximation, in which a strong
nonlinear molecular field appears in a natural way. In the polarized state the effective masses are spin depen-
dent. At half filling theantiferromagnetic Kondo insulata@volves with increasing hybridization intopara-
magnetic Kondo insulatoiWe also predict the existence of a weakly ferromagnetic $teith an extremely
small net momentthat can be obtained from the antiferromagnetic heavy-fermion state by applying e.g.,
pressure[S0163-18208)07929-9

[. INTRODUCTION Kondo-insulating states. We also determine the gap in the
latter state. From this analysis the conditions of the Kondo-
The heavy-fermion state is modelled microscopically bycompensated state formation are specified. In this manner,
the periodic Anderson modéPAM), and was discussed in We extend the well established restittsvalid for the para-
both paramagneticand magnetit cases. The paramagnetic magnetic phase and determin&ae Kondo-lattice statén a
solution encompasses both the almost-localized naturd of 4S€lf-consistent mean-field approximation. Some of the results
or 5f electrons involved, as well as a very strong enhanceb@ve been briefly discussed r_ecer?tly.
ment of the density of staté®OS) that is independent of the The structure of th|s paper is a_s_follows. .In Secs. I a}nd i
detailed shape of DOS in the bare conduction band. Th¥/€ Present respectively a modified versicof the spin-

enhancement is related to an energy scale characterized B(gta_\tlonally Invariant slave bo_son approe‘t’c_:hnd define the .
the Kondo temperature .23 The explicit expression for various collinear-spin magnetic solutions in the saddle-point

this temperature resembles that appearing in the im uritapproximation. In Sec. IV we provide the detailed numerical
P 4 this i PP 9 P Yanalysis of magnetic phases and quasiparticle energies in the
Kondo effect; this is one of the reasons why the paramag-r_ limit, and comment on the results in physical terms.

netic_solution of PAM acquired the namiéondo lattice 1y in Sec. V we specify the features to be included in

3
state . ) ) . ) order to make the approach applicable to real systems.
A basic question arises: Can the paramagnetic solution of

the Kondo lattice be extended to include the Kondo compen-
sating cloud? A semiquantitative discussSiasf that point
involves a competition between the Ruderman-Kittel- \We start with the Anderson lattice Hamiltonian in a stan-
Kasuya-YosidaRKKY)) interaction leading to the magnetic dard form
state and the Kondo-cloud formation characterized by the
impurity expression fokgTx . In @ more sophisticated ap-
proach one determines the instability of paramagnetic KL H= "> tijci‘rUCjGJrsz al a,+V>Y, (cl aj,+H.c)

I,o i,o

IIl. MODEL AND FORMALISM

state(with itinerant electronsagainst the spin-density-wave ij.o

formation® We have calculated explicitly the mean-field

magnetic phase diagram of PAM, which includes separately n UE aiTTaiTaiTlaiL , 2.1)
I

the contributions coming from the negative conduction-

electron polarization and the self-screeningfoélectrons.

Our approach goes beyond one-boson approactu in- WhereciTU andaiTU are the creation operators of the conduc-
cludes a strong localsingle-sit¢ and nonlinear molecular tion (c) and localized {) electron states, respectively; is
field coming from thef-f correlations, which in general can- a conduction electrons hopping matrix elemanis the on-
not be simply related to that coming from RKKY interaction. site hybridization among and f electrons,s; is the bare
In construction of the magnetic phases we include thd-level position, andJ is the magnitude of intrasite Coulomb
conduction-electron polarization in both heavy-fermion andinteraction between twé electrons with opposite spins. In
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our model calculations we assume that the conduction elecuce to the latter only in the mean-field approximation, in
tron states form a ban@panning from— W/2 to W/2) with  which the dynamics 08" =S'*iS) disappears

a featureless density of states. This assumption is motivated A radial gauge transformatiotior details see Ref.)%al-

by the circumstance that the determination of the stable madews us to eliminate the path integration over the phase vari-
netic phases involves a comparison of ground state energiesles for the fields;, p;g, andp;, which are then trans-
for those phases, which in turn comprises an integration oveformed into real and nonnegative quantit&s q;o, andg; .

the filled part of the quasiparticle bands. Those bands contaignder these circumstances the Lagrange multiptiers ,
strong peaks in the density of states caused by hybridizatiop,,, and g, transform into time-dependent bosonic fields.
and hence the resultant energies should not depend signiffinally, the partition function of the system in the Lagrang-

cantly on details of the bare-band structure. ian formulation of the statistical field theory takes the form
In the largeU limit it is convenient to linearize the domi-

nant Coulomb term. It can be achieved by introducing the

slave-boson representation in the rotationally invariant form — ;{_ i) _ f
oroposed by Lit al® Z=exp| | = | [DCI DA Pel[Dall Pd][De]

1kgT
X[Dﬁ]exﬁ{ fo (LF+LB)dT y (25)

j0iy=ellv), lowi)=2 B, fl,.lv),

whereLg (Lg) is a fermionic(bosonig part of Lagrangian.
|2i)= fi‘foiTlde), (2.2 In wha‘g follpws we evaluat& explicitly in the saddle-point
approximation.
with the 2x2 matrix R,, = 3[Piol+pi- 4. - Here|0,i),

|o,i}, and|2.i) are the empty, singly, and doubly occupied IIl. MEAN EIELD SOLUTIONS

f-level stateqatith lattice sit, |v) is an abstract Bose and ) _

Fermi vacuum statd;, is a pseudofermion fiela , d;, and A. Paramagnetic, weak ferromagnetic, and strong
pio are slave-bosolispin S=0) scalar fieldsp; is a slave- ferromagnetic cases

boson §=1) vector field, andr denotes the Pauli matrices In the mean-fieldsaddle-point approximation we regard
(7%, 7y, 7). In this representation a spin-rotation invariancea|| the bosonic fields constant in space and time, {&),

of Hamiltonian(2.1) is conserved, but the Fock space is con-=g, (d;)=d, etc. The self-consistent saddle-point solution is
siderably enlarged. In order to maintain the physical matrixobtained by minimization of the free ener§ywith respect
elements unchanged it is necessary to impose constraings the averaged bosonic variables. Without a loss of gener-

which have been discussed befdre. ality, for the collinear magnetic phases we can assume that
As noticed by Spatek and Wik, one of the constraints, 01i=02=B1i=B2=0, and redefine the variables, q,;

namely, 3,f!,fi,=3[plpiot+pipi]+2did;, implies the = (1/2) (qo+ oqs), SO the results have a similar form to

equivalence between representation of the spin operat®pose discussed in Ref. 10.

of the physical f electron, SE*E,,,,,/aiT(,T(mrai,,/, and As noticed in Ref. 10 such an approximation does not

that of the pseudofermiorKiE%Emwff“{,f(ﬂ,/fia,. There-  lead to the correct results in thé=0 limit (as well as in the

fore it can be rewritten equivalently as totally spin-polarized limit A remedy for this in the Ander-

son lattice model is to renormalize the hybridizatlon.
Taking the space Fourier transform, the following

> 1 7o fior— PioPi— Pi Pio=0, (2.3 Lagrangians are obtained:
wherep;=(pi1,— Pi2.Piz). This form of the constraint pro- Lo= + (i_ 4 L (et n
vides a correct fermion quasiparticle energy in an applied © ;, Cko| g7 A €| Gt Vol CoFier T H-C)

field, and allows for the representation of the sirn terms
of new fermions. i[9

A brief comment on representatié®.2) is in order. First, + fkv((g_q- —ptertfot ‘7'83) ka] 3.9
the second of the states can be written in the spinor repre-

sentation as and

1
[1d=5Iplo1+pl- M), 2.4 Le=N{a(e?+d*+ai+a}-1)

— Bo(9?+q°+2d?)— B3(g—g5) +Ud?. (3.2
where the spinof{ = (f{,,f{). This is an explicitly rotation- Aolai+ai )~ Balai =) ). 32

ally covariant form in the spin space. Thus, any magnetically

polarized state can be regarded as breakin(B&ymmetry. The equationdF/da =0 reduces to a simple condition
Second, within this representation one can deffheas a e2+q%+qf+d2=1, which allows for the elimination oé
three-dimensional vector, the circumstance absent in the eaand «. Finally, for the rectangular DOS in the bare conduc-
lier Kotliar-Ruckenstein representatidrithe former will re-  tion band, the explicit expression for the free energy is



kgT W/2

fE;= In[1+e~ & ~#/keT]de

ags J—-W/2
— Bt + 07 +2d%) — B3(0 — g°) + Ud?+ une,
3.3

whereE'® denotes the hybridized subband enerdiesm-
bered bys==*1)

1
E§)=§[E+8f+ﬁo+ o83

+sV(e—ei—Bo—0Ba)?+4V2], (3.4

V, is the renormalized hybridization

v cwl d? q? 2+dq o 35
7 Va2 +qZy1-d?—g2

and ng=

field 85 and renormalization of the hybridizatidh.The re-
maining equations to be solved aref/dq, =df/dq,
= 9f 19d= 319, = 311383 = df | dp =O0.

A number of physical quantltles can be determined once

we know the correlation functiond ], fy,) and(c{,cy,). Of
special interest are: the filling of conduction bamg)( and

f-level states ), and their spontaneous magnetizations (
and my, respectively, all quantities per site. Under the as-
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N¢/N is the total density of electrons per site. In
this paper we varm, between 0 and 2. The spin dependence
of the quasiparticle energy originates from the molecular
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B. Antiferromagnetic case

In this case, a three-dimension@D) cubic lattice with
the lattice parameteA is divided into two interpenetrating
sublatticesA and B, shifted one from another by a vector
Rag=(a,a,a). In general, one can chooség;,)=q"
+0q; cosQ-R;, whereQ=(n/a, n/a, m/a), andq" and
g® are uniform and staggered parts, respectively. If one as-
sumes additionally that neither ferrimagnetism nor charge-
density wave are present, thén;,)=q"+oq° cosQ-R;.

The remaining mean fields are assumed tqd&g=e, (d;)
=d, (Boi)=Bo, (B5)=p5cosQ-R;, ie., the staggered
molecular fieldg3; is the source of the antiferromagnetism.
In this picture thef-level magnetization is staggeredny
=m; cosQ-R;) and thef-level filling is spatially uniform
(ng=ny).

The renormalized hybridization can be rewritten in the
form V,,=V'+ ¢V cosQR;, where

V| V1-d?-2(gq")%-2(q%)%(q"+ g% +d(q"—q°
2 VA2+ (g4 g5)2y1—d?— (qU+ )2

Jl d?—2(g%)%-2(q%%(q"—g°) +d(q"+q°
Va2 +(q'—g%)2V1-d?— (g"—g°)?

VU S_

(3.10

with the plus sign corresponding to the uniform peftand

the minus sign corresponding to the staggered arAfter
elimination of e and « the bosonic part of the Lagrangian
takes the form

sumption of the translational invariance of the system, they

are expressed as

1
ENkz O'<fl0.fk(,> qT ql! (36)
1 T
me= Nk O-<Cku'cku'>! (37)
1 2
”fENkE (Fiofho) = qT+ql+2d (3.9
1 T
Ne= Nk <Ck()'ck0'>! (39)

where the total magnetic moment ig=m;+m,, and the
fillings obey the relatiom;+n.=n,.

Four types of ground states can be determined, namel)(hah,ed

(1) paramagneti¢P) for anyng: qT qL, B3=0 andm=0,

(2) weak ferromagnetidWF) for 1<ng,<2: qﬂ&ql, B3
#0 and|m| 2—n,, (3) strong ferromagnetuﬁSF) for 1

<Ng=<2: qﬁ&ql,ﬁﬁﬁo and|m|>2— ne, (4) ferromagnetic
(F) for ne<1: g?=d?=0 and|m|=n,. They will be dis-
cussed numerlcally in the next sect|on.

Le=N{—2B0[(q")*+(g°)?+d?]—4B3q"q°+ Ud?}.
(3.1

The fermionic part can be written in a compact form as

Jd
LF: E Xla’(a__l'(’—'—gko' Xko’! (312
keRBZo T
where
[es+Bo VU oB3 Vo]
yu € aVs
5k(7: s - - (313
oB3  oV® etPy VU
Uvs 0 \7” - 6k_

The summation in Eq(3.12 is running over the reduced
Brillouin zone (RB2). Xi,
—(fkg,cko,fHQg,cHQU) is a four-component vector. In
order to obtain the matrix3.13, perfect nesting was as-
sumed, i.e.€x o= — €. For the sake of simplicity, it was
also assumed that the bare DOS within the RBZ is also rect-
angular and spans betweenW/2 and 0. Finally, the free
energy expression for the antiferromagnetic case is
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2ks T (O
= J In[1+e~ ¥~ m/keT]de
W 5 —-Wi2

f

—2B0[(q")2+(9%)?+d?]—4830"g°+ Ud?+ un,,
(3.14

whereE® (s=1,2,3,4) are the spin-independent eigenvalues

of the matrix(3.13 for givene (the reduced band is split into
four separate subbandsn effect, the mean-field equations
to be solved numerically are?f/aq" =aflag®=ofl/aod
=9flaBy=0fl9p3=0fldu =0.

As in the previous case, many interesting physical quan
tities can be drawn from the correlation functions. For ex-
ample,

1
— T T
M= Naay, [(Thofko) H(firaoficran]s (319
mi=5, S oLl f) +(fo fia], (316
1
— T T
n?=ﬁk6%10 [<fk+ngka>+<fkofk+Q0>]1 (3.17)
— T T
my= NkeREBZ,U ol{fk+qofka) T (fkofkro)], (3.18
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FIG. 1. The quasiparticle band structure for different phases of
the mean-field Anderson lattice model. Filled parts of the subbands
are shaded.

moment|m;+ m;| = 2—n, that is very small fom.—2. The
natural consequence of this band structure is the spin depen-
dence of many physical quantities, such as the effective mass
of electrons.

In contradistinction to the WFM case, the majority-spin
electrons of the strongly ferromagnetic me@FM) also fill
the higher hybridized subband, which results in a stronger

and analogically for the conduction electrons, but with thepolarization of the system; the magnetization is of the order

fields ¢ put in place off. One obtains easily than{=n?

=0, n{=2(q")%+2(g%)?+2d?, and mi=4q"qg®. The total
staggered moment is defined m$=mg+mg, and the total
density of electrons ia“=n}{+nl=n,. All these quantities
are determined numerically and discussed in the next sectio

IV. RESULTS OF NUMERICAL ANALYSIS
AND DISCUSSION

A. Quasiparticle states and magnetism

In the mean-field approximation we obtain the effective
Fermi-liquid picture, in which quasiparticles are of the mixed

character, i.e., contain both the itinerdot and the localized

(f) contributions. In Fig. 1 we plotted schematically the
shape of the quasiparticle DOS for each of the phases co
sidered, where the filled parts of the subbands are shaded.
the paramagnetic metdPM) the density of states, as well as

the occupancy of the quasiparticle bands, are the same f

both spin directions. The energy gap opens up as a result
the intra-atomic(c-f) hybridization and its magnitude is
strongly reduced by the electron correlations. In effect, fo
ne<2 the DOS is strongly enhanced in the vicinity of the
Fermi level. ForJ= 2V2U/|&¢|(g;+U) —0, thef electrons
approach the Mott-localization limiwith n;=1).

In the weakly ferromagnetic met&lVFM) the band struc-
ture is no more spin-symmetrié;the lower majority-spin
band is fully occupiedi.e., contains one electron per gjte
whereas the minority-spin band remains partially filledd
containsn,— 1 electrons per sije which results in a total

of unity for any 1<n.<2. SFM remains metallic also in the
Ne=2 limit.

Ferromagnetic metaFM) is the phase characteristic for
n.<1 region of the phase diagram. One can treat this phase
s a continuation of either WFM or SFM, because all these
phases are identical far,=1. In this limit they form a to-
tally polarized ferromagnetic insulator, which is unstable
with respect to the antiferromagnetism. In the FM case elec-
trons occupy only one spin subband.

In the antiferromagnetic metallic phasé8FM1 and
AFMZ2) the band structure is more complicated, as it involves
four magnetic subbands. As we excluded ferrimagnetism, the
subbands are filled to the same extent for both spin direc-
tions. We also visualized the basic feature distinguishing be-
tween AFM1 and AFM2: their second-lowest subbands are
ril};]verted with respect to each othér.

An analysis of the self-consistent fields as function/of
allows for a better understanding of the quasiparticle proper-
%]Ees and the subband configuration. In Fig. 2 we display the
%anel with the mean fields for the discussed phases.

. Consider first the PM phase, for whicfi=qf (i.e.,ny, is
spin independenand the molecular fiel@; vanishes. Thé
level is shifted to the positioa;= g¢+ Bo, and lies inside the
conduction bandthe renormalizatior, is of the order of
les—u|). With increasing hybridization the energy gap

opens up around,, as was discussed by many authors a
decade agd>*

In the considered limit=2—n.<1, the mean fields of
the WFM phase are quantitatively very similar to those of
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FIG. 3. Magnetic mean-field phase diagram fdr=2.5 and
e¢=—0.75(in units of W). Abbreviations are explained in the main
text.
00 0.1 02 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5 .
HYBRIDIZATION V creases, the second- and third-lowest subbands contract. For
. _ _ n.=2 this process is continuous and for certdithese sub-
FIG. 2. The mean fields in various phases 2.5, .=  bands reduce to the atomic levels. Upon further increagjng

—0.75, andn,=1.99. The AFM plot contains both AFM1 and they delocalize again, but the emerging subband structure is
AFM2 solutions. Dashed lines in the SFM plot represent the lowerinyerted with respect to the previous one: the states lying at
magnetization branch. Note that the fietifsandd? are dimension- the top of the subbands are now shifted to the bottom, which
less while the fields8 are energiesin units ofW). manifests itself as an exchange of the divergent parts in DOS

PM, since the moment is extremely smath€ 5). However, Sr::ol\\/’lvzn.'nd'.:'g' 1t.' Fome<2dtTr(]e tra.r:js(ﬁlon ftr)%m dAFMl to
the qualitative differences are essential; these are the spibhuce tolsthésg?c?n:?cu?elilselznln tk?en;IFMeazg Aglr\]/l shr;i\;ir trhee-
dependence aﬁ and the appearance of a nonzero moleculald . : ' . M P
field B5. This means that many features of the system. suc olecular fieldB; is very strong. In spite of thls,_the system

s 2 o e ay have a very small magnetic moment, as discussed next.
as thef-level occupancy if;,=q;+d?), its position

=g¢+ Bot+ 0 B3), the DOS at the Fermi level, the energy

gap, etc., become spin split. Note that the WFM solution B. Magnetic phase diagram
dogs not ex_tend V=0 (with two trivial exceptions, By comparing the ground-state energies of various
Ne=2 andne=1, as will be shown later in Fig. 11 phases, one can construct the magnetic phase diagram, which

The SFM phase is diametrically different: fof, lying  comprises the phases listed in Fig. 1. Such a representative
above the critical pointcf. point CP in Fig. 3 there exist diagram on the&/—n,, plane is displayed in Fig. 3. The oc-
two branches of solutions, generating substantially diﬁeren&upancies are@n.<2, and the hybridization is close to the
magnetizations of the system. For the higher-magnetizatiogtomiC limit (V substantially less thafe;|), as only then
brangh(marged by thez SOIiZd linethe system is completely joes one expect spectacular effects associated with the
polarized ;=1 andq(=d“=0) in theV=0 limit. More-  pheayy-fermion state and a nontrivial magnetism.
over, Bo=— B3 implying that the majority-spirf level re- The regions with different magnetic phases form a rather
mains unchanged, whereas minority-spitevel is pushed complicated map. Fon,>1 it contains both WFM and
above the Fermi Ieyell. With the growing hybridization,zthe SFM. Belown,=1 there also exists the entirely polarized
magnetic characteristics of tesubsystem, such as;=q;  FM phase. For not too high hybridization, two antiferromag-
—qf and|B;|, decrease. The lower-magnetization branchnetic metallic phases, AFM1 and AFM2, emerge in the vi-
(the dashed lingstends to the WFM in the small- cinity of n,=2, the former being also stable aroung=1.
hybridization limit. With the increasingV| the magnetiza- At the bottom of the phase diagram, in the regioq I,
tion grows and the two branches meet at certain “critical” <0.25, the PM phase becomes the most favorable energeti-
point. cally. There are also two insulating lines: one is the

The lower right picture in Fig. 2 describes the AFM antiferromagnetic-insulat@AFl) line for n,=1, and the sec-
phases. Thé-electron occupancies of the sublattiggsB}  ond is then,=2 line, along whichan antiferromagnetic
are nf*’=(q"+ 0g%)?+d? and n{"=(g"-0g%?+d? re-  Kondo insulator(AKI) transforms continuously inta para-
spectively. Therefore, it is more appropriate to display themagnetic Kondo insulatofPKI). The basic feature distin-
fields (@"+q®)? instead ofg"*. In theV=0 limit, only thef  guishing the AKI and AFI phases is the moment compensa-
level is renormalizedby the termB,+ 83), whereas the itin-  tion occurring in the former case only; this point is discussed
erant electrons remain intact. & >0 a new magnetic gap in the following subsections.
opens up in the conduction band. At the same time,fthe  Almost all quantum-phase-transition lines are of first or-
levels spread into narrow bands. As the hybridization in-der and are represented by the solid lines. Only at two points
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FIG. 4. The energies of all phases existing for=2.5, e;= E
—0.75, andn,=1.99, calculated with respect to PM. The dashed 1'
line represents the lower of two SFM branches and the dotted line

represents AFM2. 0.0 01 0.2 03 04 0.5
HYBRIDIZATION V
on n.=2 line (marked on Fig. B and along the line sepa-
rating SFM and WFM below the critical poiG€P), are they
continuous.
In order to illustrate the stability conditions of particular
phases, we have shown in Fig. 4 their energies calculated
with respect to the PM phase. This picture is a cut along théines merge to th =0 line. At the same time; converges
n.=1.99 line of the phase diagram from Fig. 3. Obviously,to unity, as shown by the thin-dotted lines drawn in the lower
only the phase with the lowest energy is the stable grounganel. However, in our approach PKI is not a stable phase in
state for given set of parameters.(V,e;,U, all energies in  this region. It must therefore be stressed that the energy gap
units of W). The energy of the WFM statenagnifiedx 10°%) obtained in our model is not smdBf. A in Fig. 5), contrary
is very close to that of PM. In tha,—2 limit these two to the previous discussion, which was limited to the para-
phases merge into the PKI state. magnetic case onfy.This is a drawback of our mean-field
The lower branch of the SFM phadenarked by the solution. It remains to be seen whether the quantum fluctua-
dashed lingis always less favorable energetically and is in-tions will stabilize the PKI state witth — 0.2
cluded only for the sake of completeness. Only in the symmetric case is; equal to unity in the
whole range for both paramagnetic and antiferromagnetic
phases. The situation is represented on the bottom panel of
o } ) ) Fig. 5 by the solid and dashed lines, respectively. However,
In then,=2 limit we obtain two insulating states denoted g5 can be seen from this figure, there are no dramatic changes
as AKl and PKI. In our picture they are the states with totallyuponu deviating from the symmetric-case value to infinity.
filled quasiparticle subbands and thus possessing an energy gther words, in the wide range of hybridization is still
gapA between the full and the empty subbands. This paramg|gse to unity.
eter is of great importance for the thermodynamic, magnetic, The most important and interesting feature of A§Usti-
and transport properties. We plottddas a function of hy- fying its name Kondo insulatoris the magnetic-moment
bridization at the top panel of Fig. 5, where the solid ””escompensation. This effect, obtained here already on the
are drawn for the AKI state and the dashed lines represenfean-field level of approximation, consists in the compensa-
the PKI state. The kinks appearing on the former lines are thgon of thef-electron staggered moment by that of conduction
signs of a changeover in the subband structure. Only in thgjectrons. This compensation is possible because fthe
symmetric case does the band narrowing proceed simultgsectron moment is already strongly reduced from its atomic
neously in the two middle subbandshich is a direct con- yajye by their itineracy induced by the hybridization. The
sequence of particle-hole symmetryand a single kink magnetic moments dfandc electrons are plotted on the top
shows up. In the nonsymmetric cases two separate kinks agynel of Fig. 6. It should be emphasized that the Kondo-like
obtained as the second- and third-lowest subbands are idompensation and the small value of the moments in the
verted for differentV values. At criticalV (marked by the  |imit close to the localizatior(as expressed by;—1) are
solid pointg, there is a continuous transition to PKl add  the fundamental characteristics of theagnetic Kondo-

FIG. 5. The hybridization energy gap in the quasiparticle spec-
trum (top) and thef-level occupancybottom for e;=—0.75,n,
=2, and varioudJ values. The dashed lines are for PKI phase.

C. Kondo-insulator states(n,=2)

increases again. lattice state
In the PKI case, it can be shown analytically that or The basic characteristic is alshe compensation ratio r
<1 the energy gap vanishes exponentially, iB=|e;  =|m3/m|. It grows with the increasing hybridization and

— | ~A~V?~d?~exp(=((1/2)J). This limit is clearly achieves the maximal valug,,~1/2 for the critical value
seen in the upper panel of Fig. 5, where the thin-dotted PKV,, where AKI transforms continuously into PKI, and where



PRB 58 MEAN-FIELD MAGNETIC PHASE DIAGRAM OF THE . .. 3299

1.2 : : 1.0 . . . .
2 oof f ELECTRONS e g _NLECTRONS
L o6l 2 s el U=2.5
Q - . =2, 9=6/7 g=—0.75
o 93} §
m =
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o B 9972~
':z N 9,=2, g=6/7
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i g=-0.75 Z 0.00 [-----mmmmmmmanooe v
% h =2.0 g """"""" e AFM2-WFM
8 0.0 , , , ° , = CONDUCTION ELECTRONS
~0.0 0.1 0.2 0.3 0.4 0.5 -0.01 . . . .
HYBRIDIZATION V 0.0 0.1 0.2 0.3 0.4 0.5

HYBRIDIZATION V

FIG. 6. The magnetic moments &fand conduction electrons o 1 s, 1. s
(top) and the compensation ratio=|m/mg| (bottor) for &;= FIG. 8. Staggered magne.tlzatlorm~°(=ggfmf.+zgcmlc) in
—0.75,n,=2, and varioudJ values. AFlMl and. AFM2 (top), and uniform magnetizationn{=3g;m;
+30.m;) in WFM (bottom for U=2.5, ¢;=—0.75, andn,
=1.99. The dotted lines represent the conduction faledel con-

S S _ 1/2
m¢ and m; approach zero ap/—V([™ Both Ve and 1 oy tributions.V agm2—wewm iS @ discontinuous transition point.

diminish with decreasing). This shows that the effect of
magnetic-moment compensation and the very existence @frowth reflects the narrowing of the magnetic subbands and
the AKI phase are a consequence of the electron correlatiot§€ growing contribution of thé states at the Fermi level.
present in the system. Contrary to the |mpur|ty case, thé\ﬁer the discontinuous transition to AFMZ, the denSity of
compensation is never complete. states drops sharply and, when the transition to WFM occurs,
it attains a value only a few times greater than that in the
bare conduction band. For smalln; is essentially the same
as in its insulating-state counterpart, presented at the bottom
We consider next the metallic phases with<2. In Fig. plot of Fig. 5. In contrast, the DOS enhancement for the
7 we display the DOS enhancement at the Fermi level foAFM phases is extremely sensitive to the electron concentra-
two values ofé=2—n,. The DOS enhancement is equal to tion in the system.
the effective mass of the quasiparticles. In the case of stable Let us stress that the maximal value of DOS is achieved
AFML1 state, the DOS grows with the increasing hybridiza-for intermediatevalues ofJ. In the AFM case the heavy-
tion through the orders of magnitude. This spectaculaférmion state is therefore formed only under specific condi-
tions, and should be relatively easily destroyed by applying,
10° — . . . e.g., external pressure.
\ In the PM casdthe thin-dashed linethe situation is quite
\ U=2.5 different. In the limitJ<1 the paramagnetic met@instable
£=-0.75 here has a highly enhanced DOS, which decreases rapidly
with the growing|V/|.
The moment compensation appears alsanfsr 2. In Fig.
8 we plotted the magnetization in three stable phases. In the
AFM phasedtop) the compensation is nearly the same as in
the AKI limit; the AFM1-AFM2 transition is now visible as
a discontinuity on the magnetization curve. The total stag-
gered magnetization is defined ag;mi+3g.m: and has
been plotted as solid lines for the two values of Larfale
tors; among them that fay;= 2 reflects the situation for the
. . . lowest crystal-field doublet of the &e ion. In the WFM
0.0 0.1 0.2 0.3 0.4 0.5 phase(bottom the compensation effect also exists. At the
HYBRIDIZATION V critical value Vagmo—wem, AFM2 transforms discontinu-
FIG. 7. The DOS enhancement at the Fermi levellioe2.5,  ously into WFM.
g¢=—0.75, and various dopingé=2—n,. The transitions from In Fig. 9 we characterize the AFM1 and AFM2 phases.
AFM1 to AFM2 and from AFM2 to WFM are discontinuous. The AFM1 exists only to the left of the dashed lines. At this
dashed line represents PM phase and is drawn for comparison. border, the second-lowest subband localizesthedDOS at

D. Heavy-fermion states

PM
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\
\
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-
o
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DOS ENHANCEMENT
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FIG. 9. Above the solid line: the compensaigé., with a sign FIG. 11. Above the solid line: the compensated region of WFM

of m? opposite to that ofnf) region of AFM1 fore;=—0.75 and  for ;= —0.75 and varioud). This type of mean-field solution ex-
various U. This phase exists to the left of the dashed lines. Theists only to the right of the dashed lines.
AFM2 phase(the shaded triangle at the top fdr=2.5) is compen-

sated everywhere. .
tion from SFM to WFM takes place 8Msep—wem - The mo-

ment compensation in the SFM case is far less pronounced

(at least by one order of magnitudihan that in the AFM

phases nean,=2. It should be also emphasized that the

DOS at the Fermi level is not substantially enhanced in SFM,

except forn, very close to unity. For these reasons, the SFM

£&mse cannot be regarded as a good candidate for the Kondo-
ttice ground state.

The moment compensation was also determined for the
ferromagnetic phases. In Fig. 11 the results for WFM are
shown. This type of the mean-field solution exists to the right
from the dashed lines. Foi,= 2 this phase merges into PKI,

E. Ferromagnetic region and forn,=1 it forms a completely polarized FM state. The

As we move away from the insulating limit, the AFM compensation effect exists only above the solid lines and
state destabilizes with respect to SFM. In Fig. 10 we displaystrengthens with increasing .
the magnetization in both SFM and WFM phases. As previ-
ously, the contributions front and f electrons are repre-
sented by the dotted lines. The thin-dashed lines represent V. CONCLUDING REMARKS
the lower of the two SFM branches. A discontinuous transi-

the Fermi level divergesThe partial moment compensation
occurs only above the solid lines. The AFM2 phasee
shaded argais compensated everywhere witks 1/2. The
compensation ratio attains the maximal valuerigr2.

AFM1 is stable in the vicinity oh,=2 andn,=1. In the
latter region the moment is not compensated and the ener
gap is relatively large. Hence the limit with,~1 cannot be
regarded as appropriate for the discussion ofmagnetic
Kondo-lattice state

Let us summarize briefly the detailed discussion of Secs.

-IVv:
1.0 . .
fELECTRONS (1) Our method of analysis introduces a strong local and
08| U=2.5 nonlinear molecular field #3), which is not obtained
£ £=-0.75 'i within the standard G_utzwiller approa(’:ht_also yields
g 06t nz=1.7 \ | the concept of the spin-dependent effective mass renor-
= b malization in the ferromagnetically polarized phases,
S ool A | which is the same for all quasiparticle states.
E A — (2) The Kondo compensation due to the conduction elec-
% 02 | 4o trons is as important as tfemoment autocompensation
‘Et 979 due to their itineracy induced by hybridization. These
00 CONDUCTION ELECTRONS compensations manifest themselves most spectacularly
) N B—— for ng—2, where the antiferromagnetic phases are
02 . . B . stable. Therefore, our picture involves a competition be-
0.0 0.1 0.2 0.3 0.4 0.5 tween itineracy of electrons and thef kinetic exchange
HYBRIDIZATION V on one side, and the concomitant Kondo compensation
FIG. 10. Uniform magnetization in SFM and WFM fad of staggered moments on the other.

=2.5,8,=—0.75, andn,=1.7. Dotted lines represent the conduc- (3) Both the antiferromagnetic and ferromagnetic states with
tion andf-level contributions, and dashed lines represent the lower ~ €xtremely small momentsu(es~ 10 ?ug) are po_ssible
(energetically unfavorablebranch of SFM. Discontinuous transi- for 6=2—ng<1. One can transform the former into the
tion takes place a¥sem-wem - latter by applying, e.g., pressure.
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(4) One should note that the heavy-fermion state with aris the crystal-field structure of, e.g., the Ce’ibin the (3
almost integer valencynt—1), small staggered mo- +)-valency statqwe have putg;=6/7 in anad hocman-
ment u.4<0.1lug, and a large DOS is possible at the nen. The second of them is tHedependence of the hybrid-
same time. It is much more difficult to obtain a stable ization matrix elemenY, which should be included in some
paramagnetic heavy-fermion state within the periodiccases. Nonetheless, one should emphasize that the true
Anderson model. The question of whether the quantuni<ondo insulating state is not possiblevf has zeros at some
fluctuations would stabilize the PM state on expense oPoints on the Fermi surface.
the magnetic states, remains open. Related to this is the
occurrence of a small gap in the paramagnetic Kondo
insulating state®

The present approach represents probably the most gen- The authors acknowledge the financial support of the
eral type of mean-field approach taking into account locaKBN grant No. 2P03B 129 12. Conversations with our col-
magnetic correlations amoriginerant (albeit almost local- leagues K. Byczuk, B. Cogblin, C. Lacroix, M. Lavagna, and
ized) f electrons if the Fermi-liquid state is stable. However,A. M. Oles have been very helpful during the work on this
two principal factors have been neglected. The first of thenpaper.
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