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Mean-field magnetic phase diagram of the periodic Anderson model
with the Kondo-compensated phases
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We have determined the ground-state phase diagram for the periodic Anderson model, which comprises both
metallic and insulating collinear magnetic phases with compensated magnetic moments. The compensation is
due to both the almost-localized character off moments and by an equally important Kondo-type polarization
of the conduction electrons; it is effective only close to half filling. In such a situation an antiferromagnetic
state with very heavy electrons is formed. Thus we introduce atrue Kondo-latticestate in a self-consistent
manner. The approach is based on the slave-boson method in the saddle-point approximation, in which a strong
nonlinear molecular field appears in a natural way. In the polarized state the effective masses are spin depen-
dent. At half filling theantiferromagnetic Kondo insulatorevolves with increasing hybridization into apara-
magnetic Kondo insulator. We also predict the existence of a weakly ferromagnetic state~with an extremely
small net moment! that can be obtained from the antiferromagnetic heavy-fermion state by applying e.g.,
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I. INTRODUCTION

The heavy-fermion state is modelled microscopically
the periodic Anderson model~PAM!, and was discussed i
both paramagnetic1 and magnetic2 cases. The paramagnet
solution encompasses both the almost-localized nature of
or 5f electrons involved, as well as a very strong enhan
ment of the density of states~DOS! that is independent of the
detailed shape of DOS in the bare conduction band.
enhancement is related to an energy scale characterize
the Kondo temperature TK .1–3 The explicit expression for
this temperature resembles that appearing in the impu
Kondo effect;4 this is one of the reasons why the parama
netic solution of PAM acquired the nameKondo lattice
state.3

A basic question arises: Can the paramagnetic solutio
the Kondo lattice be extended to include the Kondo comp
sating cloud? A semiquantitative discussion5 of that point
involves a competition between the Ruderman-Kitt
Kasuya-Yosida~RKKY ! interaction leading to the magnet
state and the Kondo-cloud formation characterized by
impurity expression forkBTK . In a more sophisticated ap
proach one determines the instability of paramagnetic
state~with itinerant electrons! against the spin-density-wav
formation.6 We have calculated explicitly the mean-fie
magnetic phase diagram of PAM, which includes separa
the contributions coming from the negative conductio
electron polarization and the self-screening off electrons.
Our approach goes beyond one-boson approach1 and in-
cludes a strong local~single-site! and nonlinear molecula
field coming from thef-f correlations, which in general can
not be simply related to that coming from RKKY interactio
In construction of the magnetic phases we include
conduction-electron polarization in both heavy-fermion a
PRB 580163-1829/98/58~6!/3293~9!/$15.00
4
-

e
by

ty
-

of
-

-

e

L

ly
-

e
d

Kondo-insulating states. We also determine the gap in
latter state. From this analysis the conditions of the Kon
compensated state formation are specified. In this man
we extend the well established results1–3 valid for the para-
magnetic phase and determine atrue Kondo-lattice statein a
self-consistent mean-field approximation. Some of the res
have been briefly discussed recently.7

The structure of this paper is as follows. In Secs. II and
we present respectively a modified version8 of the spin-
rotationally invariant slave boson approach,9 and define the
various collinear-spin magnetic solutions in the saddle-po
approximation. In Sec. IV we provide the detailed numeri
analysis of magnetic phases and quasiparticle energies in
T50 limit, and comment on the results in physical term
Finally, in Sec. V we specify the features to be included
order to make the approach applicable to real systems.

II. MODEL AND FORMALISM

We start with the Anderson lattice Hamiltonian in a sta
dard form

H5 (
i , j ,s

t i j cis
† cj s1« f(

i ,s
ais

† ais1V(
i ,s

~cis
† ais1H.c.!

1U(
i

ai↑
† ai↑ai↓

† ai↓ , ~2.1!

wherecis
† andais

† are the creation operators of the condu
tion (c) and localized (f ) electron states, respectively,t i j is
a conduction electrons hopping matrix element,V is the on-
site hybridization amongc and f electrons,« f is the bare
f-level position, andU is the magnitude of intrasite Coulom
interaction between twof electrons with opposite spins. I
3293 © 1998 The American Physical Society
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our model calculations we assume that the conduction e
tron states form a band~spanning from2 W/2 to W/2) with
a featureless density of states. This assumption is motiv
by the circumstance that the determination of the stable m
netic phases involves a comparison of ground state ene
for those phases, which in turn comprises an integration o
the filled part of the quasiparticle bands. Those bands con
strong peaks in the density of states caused by hybridiza
and hence the resultant energies should not depend sig
cantly on details of the bare-band structure.

In the largeU limit it is convenient to linearize the domi
nant Coulomb term. It can be achieved by introducing
slave-boson representation in the rotationally invariant fo
proposed by Liet al.9

u0,i &5ei
†uv&, us,i &5(

s8
Piss8

† f is8
† uv&,

u2,i &5 f i↑
† f i↓

† di
†uv&, ~2.2!

with the 232 matrix Piss85
1
2 [ pi011pi•t] ss8 . Here u0,i &,

us,i &, and u2,i & are the empty, singly, and doubly occupie
f-level states~at i th lattice site!, uv& is an abstract Bose an
Fermi vacuum state,f is is a pseudofermion field,ei , di , and
pi0 are slave-boson~spin S50) scalar fields,pi is a slave-
boson (S51) vector field, andt denotes the Pauli matrice
(tx ,ty ,tz). In this representation a spin-rotation invarian
of Hamiltonian~2.1! is conserved, but the Fock space is co
siderably enlarged. In order to maintain the physical ma
elements unchanged it is necessary to impose constr
which have been discussed before.9,7

As noticed by Spałek and Wo´jcik,8 one of the constraints
namely, (s f is

† f is5 1
2 @pi0

† pi01pi
†pi #12di

†di , implies the
equivalence between representation of the spin oper
of the physical f electron, Si[

1
2 (s,s8ais

† tss8ais8 , and
that of the pseudofermion,K i[

1
2 (s,s8 f is

† tss8 f is8 . There-
fore it can be rewritten equivalently as

(
s,s8

f is
† tss8 f is82pi0

† p̃i2p̃i
†pi050, ~2.3!

wherep̃i5(pi1 ,2pi2 ,pi3). This form of the constraint pro
vides a correct fermion quasiparticle energy in an app
field, and allows for the representation of the spinSi in terms
of new fermions.

A brief comment on representation~2.2! is in order. First,
the second of the states can be written in the spinor re
sentation as

z1,i‹5
1

2
@pi0

† 11pi
†
•t#f i

†uv&, ~2.4!

where the spinorf i
†5( f i↑

† , f i↓
† ). This is an explicitly rotation-

ally covariant form in the spin space. Thus, any magnetic
polarized state can be regarded as breaking SU~2! symmetry.
Second, within this representation one can defineSi as a
three-dimensional vector, the circumstance absent in the
lier Kotliar-Ruckenstein representation10 ~the former will re-
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duce to the latter only in the mean-field approximation,
which the dynamics ofSi

65Si
x6 iSi

y disappears!.
A radial gauge transformation~for details see Ref. 9! al-

lows us to eliminate the path integration over the phase v
ables for the fieldsei , pi0 , and pi , which are then trans-
formed into real and nonnegative quantitiesei , qi0 , andqi .
Under these circumstances the Lagrange multipliers9,7 a i ,
b i0, and bi transform into time-dependent bosonic field
Finally, the partition function of the system in the Lagran
ian formulation of the statistical field theory takes the for

Z[expS 2
F

kBTD5E @Dc#@Df #@De#@Dq#@Dd#@Da#

3@Db#expF E
0

1/kBT

~LF1LB!dtG , ~2.5!

whereLF (LB) is a fermionic~bosonic! part of Lagrangian.
In what follows we evaluateZ explicitly in the saddle-point
approximation.

III. MEAN FIELD SOLUTIONS

A. Paramagnetic, weak ferromagnetic, and strong
ferromagnetic cases

In the mean-field~saddle-point! approximation we regard
all the bosonic fields constant in space and time, i.e.,^ei&
5e, ^di&5d, etc. The self-consistent saddle-point solution
obtained by minimization of the free energyF with respect
to the averaged bosonic variables. Without a loss of gen
ality, for the collinear magnetic phases we can assume
q1i5q2i5b1i5b2i50, and redefine theq variables, qs i

5(1/A2) (q0i1sq3i), so the results have a similar form t
those discussed in Ref. 10.

As noticed in Ref. 10 such an approximation does n
lead to the correct results in theU50 limit ~as well as in the
totally spin-polarized limit!. A remedy for this in the Ander-
son lattice model is to renormalize the hybridization.7

Taking the space Fourier transform, the followin
Lagrangians are obtained:

LF5(
k,s

H cks
† S ]

]t
2m1ekD cks1Ṽs~cks

† f ks1H.c.!

1 f ks
† S ]

]t
2m1« f1b01sb3D f ksJ ~3.1!

and

LB5N$a~e21d21q↑
21q↓

221!

2b0~q↑
21q↓

212d2!2b3~q↑
22q↓

2!1Ud2%. ~3.2!

The equation]F/]a 50 reduces to a simple conditio
e21q↑

21q↓
21d251, which allows for the elimination ofe

anda. Finally, for the rectangular DOS in the bare condu
tion band, the explicit expression for the free energy is
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f [
F

N
52

kBT

W (
s,s

E
2W/2

W/2

ln@11e2~Es
~s!

2m!/kBT#de

2b0~q↑
21q↓

212d2!2b3~q↑
22q↓

2!1Ud21mne ,

~3.3!

whereEs
(s) denotes the hybridized subband energies~num-

bered bys561)

Es
~s!5

1

2
@e1« f1b01sb3

1sA~e2« f2b02sb3!214Ṽs
2 #, ~3.4!

Ṽs is the renormalized hybridization

Ṽs5V
qsA12d22q↑

22q↓
21dq2s

Ad21qs
2A12d22qs

2
, ~3.5!

and ne5Ne /N is the total density of electrons per site.
this paper we varyne between 0 and 2. The spin dependen
of the quasiparticle energy originates from the molecu
field b3 and renormalization of the hybridization.11 The re-
maining equations to be solved are] f /]q↑5] f /]q↓
5] f /]d5] f /]b0 5] f /]b3 5] f /]m 50.

A number of physical quantities can be determined o
we know the correlation functionŝf ks

† f ks& and^cks
† cks&. Of

special interest are: the filling of conduction band (nc) and
f-level states (nf), and their spontaneous magnetizations (mc
and mf , respectively!, all quantities per site. Under the a
sumption of the translational invariance of the system, th
are expressed as

mf[
1

N(
k,s

s^ f ks
† f ks&5q↑

22q↓
2 , ~3.6!

mc[
1

N(
k,s

s^cks
† cks&, ~3.7!

nf[
1

N(
k,s

^ f ks
† f ks&5q↑

21q↓
212d2, ~3.8!

nc[
1

N(
k,s

^cks
† cks&, ~3.9!

where the total magnetic moment ism5mf1mc , and the
fillings obey the relationnf1nc5ne .

Four types of ground states can be determined, nam
~1! paramagnetic~P! for any ne : q↑

25q↓
2 , b350 andm50,

~2! weak ferromagnetic~WF! for 1,ne,2: q↑
2Þq↓

2 , b3

Þ0 and umu522ne , ~3! strong ferromagnetic~SF! for 1
,ne<2: q↑

2Þq↓
2 , b3Þ0 andumu.22ne , ~4! ferromagnetic

~F! for ne,1: q↓
25d250 and umu5ne . They will be dis-

cussed numerically in the next section.
e
r
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B. Antiferromagnetic case

In this case, a three-dimensional~3D! cubic lattice with
the lattice parameterA is divided into two interpenetrating
sublatticesA and B, shifted one from another by a vecto
RAB5(a,a,a). In general, one can choosêqis&5qs

u

1sqs
s cosQ•Ri , whereQ5(p/a , p/a , p/a), andqu and

qs are uniform and staggered parts, respectively. If one
sumes additionally that neither ferrimagnetism nor char
density wave are present, then^qis&5qu1sqs cosQ•Ri .
The remaining mean fields are assumed to be^ei&5e, ^di&
5d, ^b0i&5b0 , ^b3i

s &5b3
s cosQ•Ri , i.e., the staggered

molecular fieldb3i
s is the source of the antiferromagnetism

In this picture thef-level magnetization is staggered (mf i

5mf
s cosQ•Ri) and thef-level filling is spatially uniform

(nf i5nf
u).

The renormalized hybridization can be rewritten in t
form Ṽis5Ṽu1sṼs cosQRi , where

Ṽu,s5
V

2 FA12d222~qu!222~qs!2~qu1qs!1d~qu2qs!

Ad21~qu1qs!2A12d22~qu1qs!2

6
A12d222~qu!222~qs!2~qu2qs!1d~qu1qs!

Ad21~qu2qs!2A12d22~qu2qs!2 G ,

~3.10!

with the plus sign corresponding to the uniform partṼu and
the minus sign corresponding to the staggered partṼs. After
elimination of e and a the bosonic part of the Lagrangia
takes the form

LB5N$22b0@~qu!21~qs!21d2#24b3
squqs1Ud2%.

~3.11!

The fermionic part can be written in a compact form as

LF5 (
kPRBZ,s

Xks
† S ]

]t
2m1EksDXks , ~3.12!

where

Eks5F « f1b0 Ṽu sb3
s

sṼs

Ṽu ek sṼs 0

sb3
s

sṼs « f1b0 Ṽu

sṼs 0 Ṽu 2ek

G . ~3.13!

The summation in Eq.~3.12! is running over the reduced
~halved! Brillouin zone ~RBZ!. Xks

†

[( f ks
† ,cks

† , f k1Qs
† ,ck1Qs

† ) is a four-component vector. In
order to obtain the matrix~3.13!, perfect nesting was as
sumed, i.e.,ek1Q52ek . For the sake of simplicity, it was
also assumed that the bare DOS within the RBZ is also r
angular and spans between2 W/2 and 0. Finally, the free
energy expression for the antiferromagnetic case is
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f 52
2kBT

W (
s
E

2W/2

0

ln@11e2~E~s!2m!/kBT#de

22b0@~qu!21~qs!21d2#24b3
squqs1Ud21mne ,

~3.14!

whereE(s) (s51,2,3,4) are the spin-independent eigenvalu
of the matrix~3.13! for givene ~the reduced band is split int
four separate subbands!. In effect, the mean-field equation
to be solved numerically are] f /]qu 5] f /]qs 5] f /]d
5] f /]b0 5] f /]b3

s 5] f /]m 50.
As in the previous case, many interesting physical qu

tities can be drawn from the correlation functions. For e
ample,

nf
u[

1

N (
kPRBZ,s

@^ f ks
† f ks&1^ f k1Qs

† f k1Qs&#, ~3.15!

mf
u[

1

N (
kPRBZ,s

s@^ f ks
† f ks&1^ f k1Qs

† f k1Qs&#, ~3.16!

nf
s[

1

N (
kPRBZ,s

@^ f k1Qs
† f ks&1^ f ks

† f k1Qs&#, ~3.17!

mf
s[

1

N (
kPRBZ,s

s@^ f k1Qs
† f ks&1^ f ks

† f k1Qs&#, ~3.18!

and analogically for the conduction electrons, but with t
fields c put in place off. One obtains easily thatmf

u5nf
s

50, nf
u52(qu)212(qs)212d2, and mf

s54quqs. The total
staggered moment is defined asms[mf

s1mc
s , and the total

density of electrons isnu[nf
u1nc

u5ne . All these quantities
are determined numerically and discussed in the next sec

IV. RESULTS OF NUMERICAL ANALYSIS
AND DISCUSSION

A. Quasiparticle states and magnetism

In the mean-field approximation we obtain the effecti
Fermi-liquid picture, in which quasiparticles are of the mix
character, i.e., contain both the itinerant~c! and the localized
( f ) contributions. In Fig. 1 we plotted schematically th
shape of the quasiparticle DOS for each of the phases
sidered, where the filled parts of the subbands are shade
the paramagnetic metal~PM! the density of states, as well a
the occupancy of the quasiparticle bands, are the same
both spin directions. The energy gap opens up as a resu
the intra-atomic~c-f! hybridization and its magnitude i
strongly reduced by the electron correlations. In effect,
ne&2 the DOS is strongly enhanced in the vicinity of th
Fermi level. ForJ[ 2V2U/u« f u(« f1U)→0, the f electrons
approach the Mott-localization limit~with nf51).

In the weakly ferromagnetic metal~WFM! the band struc-
ture is no more spin-symmetric;12 the lower majority-spin
band is fully occupied~i.e., contains one electron per site!,
whereas the minority-spin band remains partially filled~and
containsne21 electrons per site!, which results in a total
s

-
-

e

n.

n-
In

for
of

r

momentumc1mf u522ne that is very small forne→2. The
natural consequence of this band structure is the spin de
dence of many physical quantities, such as the effective m
of electrons.

In contradistinction to the WFM case, the majority-sp
electrons of the strongly ferromagnetic metal~SFM! also fill
the higher hybridized subband, which results in a stron
polarization of the system; the magnetization is of the or
of unity for any 1,ne<2. SFM remains metallic also in th
ne52 limit.

Ferromagnetic metal~FM! is the phase characteristic fo
ne,1 region of the phase diagram. One can treat this ph
as a continuation of either WFM or SFM, because all the
phases are identical forne51. In this limit they form a to-
tally polarized ferromagnetic insulator, which is unstab
with respect to the antiferromagnetism. In the FM case e
trons occupy only one spin subband.

In the antiferromagnetic metallic phases~AFM1 and
AFM2! the band structure is more complicated, as it involv
four magnetic subbands. As we excluded ferrimagnetism,
subbands are filled to the same extent for both spin dir
tions. We also visualized the basic feature distinguishing
tween AFM1 and AFM2: their second-lowest subbands
inverted with respect to each other.13

An analysis of the self-consistent fields as functions oV
allows for a better understanding of the quasiparticle prop
ties and the subband configuration. In Fig. 2 we display
panel with the mean fields for the discussed phases.

Consider first the PM phase, for whichq↑
25q↓

2 ~i.e.,nf s is
spin independent! and the molecular fieldb3 vanishes. Thef
level is shifted to the position«̃ f5« f1b0, and lies inside the
conduction band~the renormalizationb0 is of the order of
u« f2mu). With increasing hybridization the energy ga
opens up around«̃ f , as was discussed by many authors
decade ago.1–3,14

In the considered limitd[22ne!1, the mean fields of
the WFM phase are quantitatively very similar to those

FIG. 1. The quasiparticle band structure for different phases
the mean-field Anderson lattice model. Filled parts of the subba
are shaded.
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PM, since the moment is extremely small (m5d). However,
the qualitative differences are essential; these are the
dependence ofqs

2 and the appearance of a nonzero molecu
field b3. This means that many features of the system, s
as the f-level occupancy (nf s5qs

21d2), its position («̃ f

5« f1b01sb3), the DOS at the Fermi level, the energ
gap, etc., become spin split. Note that the WFM solut
does not extend toV50 ~with two trivial exceptions,
ne52 andne51, as will be shown later in Fig. 11!.

The SFM phase is diametrically different: forne lying
above the critical point~cf. point CP in Fig. 3! there exist
two branches of solutions, generating substantially differ
magnetizations of the system. For the higher-magnetiza
branch~marked by the solid line! the system is completely
polarized (q↑

251 andq↓
25d250) in the V50 limit. More-

over, b052b3 implying that the majority-spinf level re-
mains unchanged, whereas minority-spinf level is pushed
above the Fermi level. With the growing hybridization, t
magnetic characteristics of thef subsystem, such asmf5q↑

2

2q↓
2 and ub3u, decrease. The lower-magnetization bran

~the dashed lines! tends to the WFM in the small
hybridization limit. With the increasinguVu the magnetiza-
tion grows and the two branches meet at certain ‘‘critica
point.

The lower right picture in Fig. 2 describes the AF
phases. Thef-electron occupancies of the sublattices$A,B%
are nf

A,s5(qu1sqs)21d2 and nf
B,s5(qu2sqs)21d2, re-

spectively. Therefore, it is more appropriate to display
fields (qu6qs)2 instead ofqu,s. In theV50 limit, only the f
level is renormalized~by the termb06b3

s), whereas the itin-
erant electrons remain intact. ForuVu.0 a new magnetic gap
opens up in the conduction band. At the same time, thf
levels spread into narrow bands. As the hybridization

FIG. 2. The mean fields in various phases forU52.5, « f5
20.75, andne51.99. The AFM plot contains both AFM1 an
AFM2 solutions. Dashed lines in the SFM plot represent the low
magnetization branch. Note that the fieldsq2 andd2 are dimension-
less while the fieldsb are energies~in units of W!.
in
r
h

n

t
n

h

’

e

-

creases, the second- and third-lowest subbands contract
ne52 this process is continuous and for certainV these sub-
bands reduce to the atomic levels. Upon further increasinV,
they delocalize again, but the emerging subband structur
inverted with respect to the previous one: the states lying
the top of the subbands are now shifted to the bottom, wh
manifests itself as an exchange of the divergent parts in D
shown in Fig. 1. Forne,2 the transition from AFM1 to
AFM2 is discontinuous and the middle subbands never
duce to the atomic levels. In the SFM and AFM phases
molecular fieldb3 is very strong. In spite of this, the syste
may have a very small magnetic moment, as discussed n

B. Magnetic phase diagram

By comparing the ground-state energies of vario
phases, one can construct the magnetic phase diagram, w
comprises the phases listed in Fig. 1. Such a represent
diagram on theV2ne plane is displayed in Fig. 3. The oc
cupancies are 0,ne<2, and the hybridization is close to th
atomic limit ~V substantially less thanu« f u), as only then
does one expect spectacular effects associated with
heavy-fermion state and a nontrivial magnetism.

The regions with different magnetic phases form a rat
complicated map. Forne.1 it contains both WFM and
SFM. Below ne51 there also exists the entirely polarize
FM phase. For not too high hybridization, two antiferroma
netic metallic phases, AFM1 and AFM2, emerge in the
cinity of ne52, the former being also stable aroundne51.
At the bottom of the phase diagram, in the region 0,ne
&0.25, the PM phase becomes the most favorable ener
cally. There are also two insulating lines: one is t
antiferromagnetic-insulator~AFI! line for ne51, and the sec-
ond is thene52 line, along whichan antiferromagnetic
Kondo insulator~AKI ! transforms continuously intoa para-
magnetic Kondo insulator~PKI!. The basic feature distin
guishing the AKI and AFI phases is the moment compen
tion occurring in the former case only; this point is discuss
in the following subsections.

Almost all quantum-phase-transition lines are of first o
der and are represented by the solid lines. Only at two po

FIG. 3. Magnetic mean-field phase diagram forU52.5 and
« f520.75~in units ofW!. Abbreviations are explained in the mai
text.
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on ne52 line ~marked on Fig. 3!, and along the line sepa
rating SFM and WFM below the critical point~CP!, are they
continuous.

In order to illustrate the stability conditions of particul
phases, we have shown in Fig. 4 their energies calcul
with respect to the PM phase. This picture is a cut along
ne51.99 line of the phase diagram from Fig. 3. Obvious
only the phase with the lowest energy is the stable gro
state for given set of parameters (ne ,V,« f ,U, all energies in
units ofW!. The energy of the WFM state~magnified3103)
is very close to that of PM. In thene→2 limit these two
phases merge into the PKI state.

The lower branch of the SFM phase~marked by the
dashed line! is always less favorable energetically and is
cluded only for the sake of completeness.

C. Kondo-insulator states„ne52…

In thene52 limit we obtain two insulating states denote
as AKI and PKI. In our picture they are the states with tota
filled quasiparticle subbands and thus possessing an en
gapD between the full and the empty subbands. This para
eter is of great importance for the thermodynamic, magne
and transport properties. We plottedD as a function of hy-
bridization at the top panel of Fig. 5, where the solid lin
are drawn for the AKI state and the dashed lines repre
the PKI state. The kinks appearing on the former lines are
signs of a changeover in the subband structure. Only in
symmetric case does the band narrowing proceed sim
neously in the two middle subbands~which is a direct con-
sequence of particle-hole symmetry!, and a single kink
shows up. In the nonsymmetric cases two separate kinks
obtained as the second- and third-lowest subbands are
verted for differentV values. At criticalV ~marked by the
solid points!, there is a continuous transition to PKI andD
increases again.

In the PKI case, it can be shown analytically that forJ

!1 the energy gap vanishes exponentially, i.e.,TK[u«̃ f

2mu;D;Ṽ2;d2;exp(2„(1/2)J…. This limit is clearly
seen in the upper panel of Fig. 5, where the thin-dotted P

FIG. 4. The energies of all phases existing forU52.5, « f5
20.75, andne51.99, calculated with respect to PM. The dash
line represents the lower of two SFM branches and the dotted
represents AFM2.
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lines merge to theD50 line. At the same timenf converges
to unity, as shown by the thin-dotted lines drawn in the low
panel. However, in our approach PKI is not a stable phas
this region. It must therefore be stressed that the energy
obtained in our model is not small~cf. D in Fig. 5!, contrary
to the previous discussion, which was limited to the pa
magnetic case only.1 This is a drawback of our mean-fiel
solution. It remains to be seen whether the quantum fluc
tions will stabilize the PKI state withD→0.15

Only in the symmetric case isnf equal to unity in the
whole range for both paramagnetic and antiferromagn
phases. The situation is represented on the bottom pan
Fig. 5 by the solid and dashed lines, respectively. Howev
as can be seen from this figure, there are no dramatic cha
uponU deviating from the symmetric-case value to infinit
In other words, in the wide range of hybridizationnf is still
close to unity.

The most important and interesting feature of AKI~justi-
fying its name Kondo insulator! is the magnetic-momen
compensation. This effect, obtained here already on
mean-field level of approximation, consists in the compen
tion of thef-electron staggered moment by that of conduct
electrons. This compensation is possible because thf-
electron moment is already strongly reduced from its atom
value by their itineracy induced by the hybridization. Th
magnetic moments off andc electrons are plotted on the to
panel of Fig. 6. It should be emphasized that the Kondo-l
compensation and the small value of the moments in
limit close to the localization~as expressed bynf→1) are
the fundamental characteristics of themagnetic Kondo-
lattice state.

The basic characteristic is alsothe compensation ratio r
[umc

s/mf
su. It grows with the increasing hybridization an

achieves the maximal valuer max'1/2 for the critical value
Vc , where AKI transforms continuously into PKI, and whe

e

FIG. 5. The hybridization energy gap in the quasiparticle sp
trum ~top! and thef-level occupancy~bottom! for « f520.75, ne

52, and variousU values. The dashed lines are for PKI phase.
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mf
s and mc

s approach zero asuV2Vcu1/2. Both Vc and r max

diminish with decreasingU. This shows that the effect o
magnetic-moment compensation and the very existenc
the AKI phase are a consequence of the electron correlat
present in the system. Contrary to the impurity case,
compensation is never complete.

D. Heavy-fermion states

We consider next the metallic phases withne&2. In Fig.
7 we display the DOS enhancement at the Fermi level
two values ofd[22ne . The DOS enhancement is equal
the effective mass of the quasiparticles. In the case of st
AFM1 state, the DOS grows with the increasing hybridiz
tion through the orders of magnitude. This spectacu

FIG. 6. The magnetic moments off and conduction electron
~top! and the compensation ratior[umc

s/mf
su ~bottom! for « f5

20.75,ne52, and variousU values.

FIG. 7. The DOS enhancement at the Fermi level forU52.5,
« f520.75, and various dopingsd[22ne . The transitions from
AFM1 to AFM2 and from AFM2 to WFM are discontinuous. Th
dashed line represents PM phase and is drawn for comparison
of
ns
e

r

le
-
r

growth reflects the narrowing of the magnetic subbands
the growing contribution of thef states at the Fermi level
After the discontinuous transition to AFM2, the density
states drops sharply and, when the transition to WFM occ
it attains a value only a few times greater than that in
bare conduction band. For smalld, nf is essentially the same
as in its insulating-state counterpart, presented at the bo
plot of Fig. 5. In contrast, the DOS enhancement for t
AFM phases is extremely sensitive to the electron concen
tion in the system.

Let us stress that the maximal value of DOS is achiev
for intermediatevalues ofJ. In the AFM case the heavy
fermion state is therefore formed only under specific con
tions, and should be relatively easily destroyed by applyi
e.g., external pressure.

In the PM case~the thin-dashed line! the situation is quite
different. In the limitJ!1 the paramagnetic metal~unstable
here! has a highly enhanced DOS, which decreases rap
with the growinguVu.

The moment compensation appears also forne,2. In Fig.
8 we plotted the magnetization in three stable phases. In
AFM phases~top! the compensation is nearly the same as
the AKI limit; the AFM1-AFM2 transition is now visible as
a discontinuity on the magnetization curve. The total st
gered magnetization is defined as1

2 gfmf
s1 1

2 gcmc
s and has

been plotted as solid lines for the two values of Lande´ fac-
tors; among them that forgf5

6
7 reflects the situation for the

lowest crystal-field doublet of the Ce31 ion. In the WFM
phase~bottom! the compensation effect also exists. At th
critical value VAFM22WFM , AFM2 transforms discontinu-
ously into WFM.

In Fig. 9 we characterize the AFM1 and AFM2 phase
AFM1 exists only to the left of the dashed lines. At th
border, the second-lowest subband localizes andthe DOS at

FIG. 8. Staggered magnetization (ms[ 1
2 gfmf

s1
1
2 gcmc

s) in
AFM1 and AFM2 ~top!, and uniform magnetization (m[ 1

2 gfmf

1
1
2 gcmc) in WFM ~bottom! for U52.5, « f520.75, and ne

51.99. The dotted lines represent the conduction andf-level con-
tributions.VAFM22WFM is a discontinuous transition point.
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the Fermi level diverges. The partial moment compensatio
occurs only above the solid lines. The AFM2 phase~the
shaded area! is compensated everywhere withr &1/2. The
compensation ratio attains the maximal value forne→2.

AFM1 is stable in the vicinity ofne52 andne51. In the
latter region the moment is not compensated and the en
gap is relatively large. Hence the limit withne'1 cannot be
regarded as appropriate for the discussion of amagnetic
Kondo-lattice state.

E. Ferromagnetic region

As we move away from the insulating limit, the AFM
state destabilizes with respect to SFM. In Fig. 10 we disp
the magnetization in both SFM and WFM phases. As pre
ously, the contributions fromc and f electrons are repre
sented by the dotted lines. The thin-dashed lines repre
the lower of the two SFM branches. A discontinuous tran

FIG. 9. Above the solid line: the compensated~i.e., with a sign
of mc

s opposite to that ofmf
s) region of AFM1 for« f520.75 and

various U. This phase exists to the left of the dashed lines. T
AFM2 phase~the shaded triangle at the top forU52.5) is compen-
sated everywhere.

FIG. 10. Uniform magnetization in SFM and WFM forU
52.5, « f520.75, andne51.7. Dotted lines represent the condu
tion andf-level contributions, and dashed lines represent the lo
~energetically unfavorable! branch of SFM. Discontinuous trans
tion takes place atVSFM2WFM .
gy

y
i-

nt
i-

tion from SFM to WFM takes place atVSFM2WFM . The mo-
ment compensation in the SFM case is far less pronoun
~at least by one order of magnitude! than that in the AFM
phases nearne52. It should be also emphasized that t
DOS at the Fermi level is not substantially enhanced in SF
except forne very close to unity. For these reasons, the SF
phase cannot be regarded as a good candidate for the Ko
lattice ground state.

The moment compensation was also determined for
ferromagnetic phases. In Fig. 11 the results for WFM
shown. This type of the mean-field solution exists to the rig
from the dashed lines. Forne52 this phase merges into PK
and forne51 it forms a completely polarized FM state. Th
compensation effect exists only above the solid lines a
strengthens with increasingne .

V. CONCLUDING REMARKS

Let us summarize briefly the detailed discussion of Se
II–IV:

~1! Our method of analysis introduces a strong local a
nonlinear molecular field (b3), which is not obtained
within the standard Gutzwiller approach.2 It also yields
the concept of the spin-dependent effective mass re
malization in the ferromagnetically polarized phase
which is the same for all quasiparticle states.

~2! The Kondo compensation due to the conduction el
trons is as important as thef-moment autocompensatio
due to their itineracy induced by hybridization. The
compensations manifest themselves most spectacu
for ne→2, where the antiferromagnetic phases a
stable. Therefore, our picture involves a competition b
tween itineracy off electrons and thef-f kinetic exchange
on one side, and the concomitant Kondo compensa
of staggered moments on the other.

~3! Both the antiferromagnetic and ferromagnetic states w
extremely small moments (meff;1022mB) are possible
for d[22ne!1. One can transform the former into th
latter by applying, e.g., pressure.

e

r

FIG. 11. Above the solid line: the compensated region of WF
for « f520.75 and variousU. This type of mean-field solution ex
ists only to the right of the dashed lines.
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~4! One should note that the heavy-fermion state with
almost integer valency (nf→1), small staggered mo
ment meff,0.1mB , and a large DOS is possible at th
same time. It is much more difficult to obtain a stab
paramagnetic heavy-fermion state within the perio
Anderson model. The question of whether the quant
fluctuations would stabilize the PM state on expense
the magnetic states, remains open. Related to this is
occurrence of a small gap in the paramagnetic Kon
insulating state.16

The present approach represents probably the most
eral type of mean-field approach taking into account lo
magnetic correlations amongitinerant ~albeit almost local-
ized! f electrons if the Fermi-liquid state is stable. Howev
two principal factors have been neglected. The first of th
n-
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n
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n
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f
he
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l

,

is the crystal-field structure of, e.g., the Ce ion17 in the (3
1)-valency state~we have putgf56/7 in anad hocman-
ner!. The second of them is thek dependence of the hybrid
ization matrix elementV, which should be included in som
cases. Nonetheless, one should emphasize that the
Kondo insulating state is not possible ifVk has zeros at some
points on the Fermi surface.
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