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Effect of an oblique magnetic field on the superparamagnetic relaxation time.
II. Influence of the gyromagnetic term
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The effect of a uniform magnetic field applied at an oblique angle to the easy axis of magnetization on the
superparamagnetic~longitudinal or Néel! relaxation time is investigated by numerically solving the Fokker-
Planck equation for the smallest nonvanishing eigenvalue. It is demonstrated that the reciprocal of the
asymptotic formula for the Kramers escape rate in the intermediate to high damping limit for general nonaxi-
ally symmetric potentials when applied to the present problem, yields an acceptable asymptotic approximation
to the Néel time for moderate to high values of the damping. Alternatively the corresponding Kramers low
dissipation formula~energy controlled diffusion! provides an acceptable approximation for very small values
of the damping. The effect of the gyromagnetic term which gives rise to coupling between the longitudinal and
transverse modes of motion generally corresponds to an increase of the smallest nonvanishing eigenvalue and
so to a decrease of the Ne´el relaxation time. The integral relaxation time or area under the slope of the curve
of the decay of the magnetization is also evaluated. It is demonstrated that for sufficiently high values of the
uniform field ~much less, however, than that required to destroy the bistable nature of the potential! the
reciprocal of the lowest nonvanishing eigenvalue~proportional to the Ne´el time, or the time of reversal of the
magnetization! and the integral relaxation time may differ exponentially from one another signifying the
contributions of modes other than that associated with the overbarrier~Néel! relaxation process to the overall
relaxation process. The overall behavior is qualitatively similar~apart from the azimuthal dependence! to that
of the axially symmetric case which arises due to the depletion of the shallower of the two potential wells by
the uniform field, so that the fast processes in the deeper of the two wells may come to dominate the relaxation
process at sufficiently high values of the uniform field.@S0163-1829~98!04229-5#
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I. INTRODUCTION

The calculation of the relaxation timet of the magnetic
moment of a single-domain ferromagnetic particle under
influence of an applied field is very important because
value oft obtained provides a comprehensive description
the experimental results. For example, in the most comm
experiment which is used for characterizing particle ass
blies, i.e., the zero field cooled magnetizationMZFC, the
temperature of theMZFC maximum can be determined b
comparingt with the inverse of the heating rate,1 so that an
analytic expression fort is required for a quantitative dete
mination of the parameters of the relaxing system. Now
actual particle assemblies, the easy axes are in random d
tions with respect to the field orientation, therefore the c
culation of t must be performed for a field at an obliqu
anglec to the direction of the easy axis~the original calcu-
lations of the relaxation time by Brown and Aharoni2–4 were
PRB 580163-1829/98/58~6!/3249~18!/$15.00
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restricted to the case of axial symmetry which requires t
the field and easy axis should be colinear!. Such a calculation
may be directly checked by comparing it with experimen
results on either a particle assembly or on particle array
on isolated particles~monoparticle sample!. These are the
only systems for which samples are available at presen5–8

Furthermore, the experimental and theoreticalt values may
also be used to determine the contribution of other rotat
modes. In essence, the Ne´el-Brown model9,10 on which the
calculation oft is based assumes a single-domain parti
and a synchronous~coherent! rotation of the spins. However
depending on the size, shape, and parameters of the par
other rotation modes~incoherent magnetization processe!
may be more favorable energetically. Evidence of such
been provided by the authors of Ref. 5, although their m
surements were performed on relatively large and irregula
shaped samples. More recently, Wernsdorferet al. ~see Ref.
7! have presented some very interesting results by compa
3249 © 1998 The American Physical Society
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3250 PRB 58W. T. COFFEYet al.
their experimental observations to the predictions of the c
ing mode of magnetization reversal in an infinite cylind
where the exchange lengthd0 defined asd052AA/Ms(A is
the exchange constant andMs is the mean magnetization o
a nonrelaxing particle! defines the transition from uniform
rotation to curling. They have shown that for nanowires
diameter smaller than 100 nm, the process of uniform nu
ation is valid, whereas for wires having a diameter larg
than twice the exchange lengthd0, nucleation occurs at sev
eral almost degenerate fields at values close to the cu
instability. For wires whose diameters are close to the
change length, the Stoner-Wohlfarth model may be us
where the switching time and field measurements indic
that a single energy barrier is dominant and the reversal
cess may be described by an Arrhenius law.7 However, when
considering samples which are small when compared w
the exchange length~which is the topic of discussion in thi
paper!, recent experiments~see Ref. 8! have shown that the
concept of uniform rotation is valid in these cases. Althou
analytical considerations indicate that synchronous rota
~as is assumed in the Ne´el-Brown model! is not in principle
possible for a nonellipsoidal particle, nevertheless further
periments and calculations11 for NiFe2O4 particles demon-
strate that magnetic disordering occurs at the particle sur
due to the lack of interactions. Thus only small perturbatio
to synchronous rotations may take place. Our calculati
could bring some of these issues into discussion by chec
whether or not an approach based on the synchronous
tion assumption actually works.

A preliminary discussion of the effect of an external un
form magnetic field, applied at an oblique anglec to the
easy axis of magnetization of a single-domain ferromagn
particle, on the Ne´el or superparamagnetic relaxation tim
for uniaxial anisotropy has recently12 been published by us
The calculation of the Ne´el relaxation time is in general ac
complished by determining the smallest nonvanishing eig
valuel1 of the appropriate Fokker-Planck equation.l1 is the
rate constant associated with the longest surviving de
mode ~Néel mode! of the magnetization. The reciprocal o
l1 in the high barrier limit is approximately3 the time of
reversal of the magnetization~that is, the mean first passag
time, Néel time, or time taken to climb the potential hil!
over the potential barrier due to the crystalline anisotro
and the applied field. We have presented12 both an exact
numerical solution forl1 and an asymptotic estimate bas
on an extension3,12,13 of the Kramers theory14 of the ther-
mally activated escape of particles over potential barrier
include spin relaxation. The numerical calculations we ha
hitherto presented, however, all proceed from the assump
that the dimensionless damping parametera is so large that
the effect of the gyromagnetic~precessional! term ~which
contains 1/a as a prefactor! on the Néel time may be ignored
Thus the results pertain only to the very high damping lim
and so are quite restricted.

The omission of the gyromagnetic terms has the adv
tage that the set of differential recurrence relations for
aftereffect functions of the magnetization to which t
Fokker-Planck equation for the distribution function of t
magnetization orientations may be reduced by expanding
solution as a series of spherical harmonicsXl ,m(u,w) in the
polar anglesu andw ~specifying the orientation of the mag
l-
,
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netic moment! reduces to a nine term rather than a thirte
term one between the numbersl and m. Furthermore the
recurrence relations for negativem may easily be expresse
in terms of those for positivem by means of the symmetry
properties of theXl ,m @because the expectation values of t
spherical harmonicsxl ,m(t) are real when the gyromagnet
terms are ignored# so greatly reducing the amount of com
puter time required for the solution. If the gyromagne
terms are included, thexl ,m(t) are complex. It is then impos
sible to express the recurrence relation for thexl ,2m(t) in
terms of that of thexl ,m(t), only in terms of that of the
xl ,m* (t) ~the star denotes the complex conjugate!. Hence the
recurrence relations may only be solved by expressing
solution of the Fokker-Planck equation in terms of surfa
spherical harmonics. These lead to recurrence relations
the real and imaginary parts of thexl ,m(t) as we shall de-
scribe later. As far as the asymptotic estimate ofl1 is con-
cerned the omission of the gyromagnetic term indicated
first that an axially symmetric approximation12,15,16might be
made in the Kramers approach to the problem so reducin
to an effective one variable problem as only the reaction r
coordinateu ~colatitude! will now be involved. This, how-
ever, leads to asymptotic estimates which deviate appre
bly from the numerical solution so that a more rigorous tre
ment including both reaction coordinatesu,w must be given.

Our neglect of the gyromagnetic term besides having
obvious disadvantage~when the treatment is extended to ca
culate the complex magnetic susceptibility! that ferromag-
netic resonance phenomena,17 etc., may not be included im
plies that the calculation ofl1 will be invalid when the
damping parametera is finite. This is important in view of
the very recent experimental results of Dormannet al.18 on g
Fe2O3 with weak interparticle interactions which indica
that a may be as small as 0.05, hence the influence ofa on
l1 will be substantial.

Here the gyromagnetic effects are included in the cal
lation of l1 and hence the Ne´el relaxation time so that the
calculation is valid for all values of the damping paramet
Both an exact solution forl1 based on the thirteen term
differential recurrence relations arising from the Fokke
Planck equation including the gyromagnetic term and a
orously derived estimate ofl1 based on a two variable
Kramers approach as used for a general nonaxially symm
ric potential by Brown10 and Smith and de Rozario19 ~in a
discussion of relaxation in cubic anisotropy potentials! which
allows one to include the influence of the gyromagnetic te
in the prefactor of such an asymptotic estimate will be p
sented. The two variable12,14 asymptotic estimate is essen
tially a modification of the Kramers14,20 intermediate to high
damping~IHD! limit calculation of the escape rate for a pa
ticle diffusing in phase space. In addition, the value ofl1 for
very small values of the damping parametera will be com-
pared with the very low damping~LD! limit, using the for-
malism of Ref. 21, of the Kramers14 theory as adapted to th
magnetic problem by Klik and Gunther.22 This allows one3

to state the range of values of the damping parametera for
which a particular formula of Kramers14 is valid. Further-
more the integral relaxation timet which is the area unde
the curve of the decay of the magnetization following
change in the applied field will be calculated as far as ter
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linear in the perturbation, which means that the integral
laxation time may be identified with the correlation time
the autocorrelation function of the magnetization.

II. MAGNETIC RESPONSE FUNCTIONS
AND CHARACTERISTIC TIMES

In the particular nonaxially symmetric problem o
uniaxial anisotropy with the applied field at an anglec to the
easy axis which we are considering, the~Gibbs! free energy
density per unit volume is

V~r !5b21s@12~r•e3!
2#2b21j~r•h!, ~1!

where

r5M /Ms . ~2!

Ms is the mean magnetization of a nonrelaxing particle a
the polar anglesu andw ~see Fig. 1! specify the orientation
of M .

s5Kv/kT ~3!

is the anisotropy parameter,

j5HMsv/kT ~4!

is the external field parameter, andh is the orientation of the
external magnetic fieldH. The orthogonal coordinate syste
e1 ,e2 ,e3 is chosen so thate3 is parallel to the anisotropy axi
andh is parallel to the plane containinge1 ande3 ~see Fig.
1!, hence

h5sin ce11cosce3 . ~5!

The distribution of orientationsW(r ,t) of the magnetization
M of an assembly of noninteracting single-domain ferrom
netic particles on the unit sphere satisfies the Fokker-Pla
equation10,12

FIG. 1. External field and magnetization orientations in terms
spherical polar coordinates.
-

d

-
ck

Ẇ5LFPW, ~6!

where10,12

LFPW5b21¹2W1b¹2V1bS ]V

]u

]W

]u
1

1

sin2u

]V

]w

]W

]w D
1

b

a sin uS ]V

]u

]W

]w
2

]V

]w

]W

]u D . ~7!

The operator¹2 denotes the angular part of the Laplacia
that is

¹25
1

sin u

]

]uS sin u
]

]u D1
1

sin2u

]2

]w2
, ~8!

b5v/kT, ~9!

wherev is the volume of the magnetic particle andkT is the
thermal energy,

b5
ag

~11a2!Ms

, ~10!

and the diffusional relaxation time is

tN5b/2b. ~11!

~We remark thatb is often denoted in the literature byh8
while b/a is denoted byg8.! Here a5hgMs ~also denoted
by a) is the dimensionless damping parameter,h is the phe-
nomenological damping constant from Gilbert
equation,13,22,23 and g is the gyromagnetic ratio. The firs
three terms on the right hand side of Eq.~7! are purely dis-
sipative terms and the last term prefixed byb/a is the gyro-
magnetic term. In Ref. 12a is assumed to be so large that th
influence of the gyromagnetic term on the Ne´el relaxation
time t, where

t5
2tN

l1
5

~b/b!

l1
~12!

is negligible.l1 is the smallest nonvanishing eigenvalue
2(b/b)LFP.

In order to calculatel1 including the effects of the gyro
magnetic term we shall first calculate the linear response
the system following a small decreaseH1 in the fieldH. H1
is such that

vMsH1 /kT5j1!1 ~13!

so that termsO(j1
2) may be ignored. Thus the initial cond

tion for linear response may be imposed by replacingj with
j1j1 for t<0 wherej1!j. The system is assumed to be
thermodynamic equilibrium att50,̀ , so that both the initial
and final distributions are of Maxwell-Boltzmann typ
namely,

W~r ,0!5
e2bV1j1r–h

E e2bV1j1r–hdV

,

f
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3252 PRB 58W. T. COFFEYet al.
W~r ,`!5
e2bV

E e2bVdV

. ~14!

Here the volume element isdV5sinududw and the surface
integrals are over the unit sphere. The relaxation behavio
described by the response function

f ~ t !5 lim
j1→0

j1
21~^r–h&2^r–h&0!5(

i
Aie

2bb21l i t, t.0,

~15!

where l1 ,l2 ,l3 , . . . ; $0,ul1u,ul2u,ul3u,•••% are
the eigenvalues andA1 ,A2 ,A3 , . . . , thecorresponding am-
plitudes of2(b/b)LFP and13,15

^r–h&5E r–hW~u,w,t !dV

5E ~cosu cosc1sin u cosw sin c!WdV

~16!

represents the decay of the average cosine in the directio
the field. The subscript zero denotes that the statistical a
age is to be evaluated in the absence of the perturbationj1.

The normalized complex susceptibilityx(v) may now be
evaluated since according13 to linear response theoryx(v) is
given by

x~v!/x8~0!512 ivE
0

`

e2 ivt f ~ t !dt

5(
k

Ak

11 ivb/~lkb!Y (
k

Ak . ~17!

A global quantity associated3 with the decay of the mag
netization in addition to the mean first passage time~which is
the lifetime of the longest decay mode! is the integral relax-
ation time~which is the area under the curve of the decay
the magnetization, i.e., the correlation time, since the
sponse is linear!. The integral relaxation time is given by3,24

Tc5bb21E
0

`

f ~ t !dt/ f ~0!5(
k

lk
21Ak /(

k
Ak . ~18!

The integral relaxation time, because it is the area under
curve of the decay of the magnetization, is a relaxation ti
which provides a measure of therelativecontributions of all
the decay modes of the system~both long and short lived!. In
measurements of the reversal of the magnetization, howe
we are concerned only with the longest lived~Néel! mode. In
high frequency measurements such as those of the com
susceptibility, the integral relaxation time rather than t
Néel time should be used,3 since at high frequencies, th
contribution of the fast modes is significant. In order to c
culate the smallest nonvanishing eigenvalue~which is essen-
tially the reciprocal of the mean first passage time!, it is first
necessary~as in Ref. 12! to represent the Fokker-Planc
equation in Eq.~6! as a differential recurrence relation whic
is then converted to a first order matrix differential equat
with constant coefficients. The smallest nonvanishing eig
is

of
r-

f
-

he
e

er,

lex
e

-

n-

value is then the smallest root of the characteristic equa
of the system where a set of equations large enough to en
convergence of the system is taken. This may be acc
plished by expanding the distribution function in spheric
harmonics as we shall now describe.

III. MATRIX FORMULATION OF THE
FOKKER-PLANCK EQUATION

The nonaxially symmetric nature of the Gibbs free ene
means that the distribution function in the Fokker-Plan
equation is also nonaxially symmetric. The smallest non
nishing eigenvalue of the Fokker-Planck equation could
principle be calculated by posing the calculation ofl1 as a
Sturm-Liouville problem. A better method in this case, ho
ever, when two variables are involved is that one sho
expand the solution of the Fokker-Planck equation as a se
of spherical harmonics~Fourier-Laplace series!. This leads to
a set of differential recurrence relations for the Fourier co
ficients.

The spherical harmonics are defined by25

Xl ,m~u,w![Pl
m~cosu!eimw, umu< l , ~19!

wherePm
l denotes the associated Legendre functions. In

dition we shall require the normalized spherical harmon
Nl ,mXl ,m , where the normalization factor is given by

Nl ,m5~21!mA~2l 11!~ l 2m!!

4p~ l 1m!!
. ~20!

We remark that the normalized spherical harmonics form
complete biorthonormal basis forL2$V%,V5$r ,uur uu51%
~the Hilbert space of square integrable functions which
defined on the unit sphere!. We further remark that the
spherical harmonicsXl ,m satisfy25 the symmetry relation~the
star denotes complex conjugate!

Xl ,2m5r l ,mXl ,m* , r l ,m5~21!m
~ l 2m!!

~ l 1m!!
. ~21!

We shall now suppose that the solution of Eq.~6! has a
representation as a Fourier series

W~r ,t !5 (
umu< l

Nl ,m
2 xl ,m* ~ t !Xl ,m~r !. ~22!

Now Eq. ~1! becomes

bV5s~12a3
2!2j~a1sin c1a3cosc!, ~23!

b¹2V522s~123a3
2!12j~a1sin c1a3cosc!,

~24!

where thea i5rei , that is,

a15sin u cosw, a25sin u sin w, a35cosu
~25!

are the direction cosines of the magnetization. In addition
Fokker-Planck operator when it acts on a spherical harmo
~that is LFPXl ,m) has the following representation@Eq.
~2.113! of Ref. 15 and Eq.~39! of Ref. 21#
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LFPXl ,m5bF2 l ~ l 11!b211
l ~ l 11!

2
V1

1

2
¹2VGXl ,m

1
ib~ l 1m!~ l 2m11!

2a S ]V

]a1
1 i

]V

]a2
DXl ,m21

2 iba21m
]V

]a3
Xl ,m1

ib

2aS ]V

]a1
2 i

]V

]a2
DXl ,m11 .

~26!

Thus utilizing the recurrence relations of the spherical h
monics as in Ref. 15 we then find that15,21 the expectation
valuesxl ,m of the spherical harmonicsXl ,m satisfy the differ-
ential recurrence relations@Eq. ~3.28! and Eq.~3.29! of Ref.
15#

ẋl ,m5~Xl ,mẆ!5~Xl ,mLFPW!5bb21(
p,q

el ,m,p,qxp,q

~27!

~the braces denote the inner product!. The xl ,2m may be
written in terms of thexl ,m* by means of the symmetry rela
tion

xl ,2m5r l ,mxl ,m* ~28!

which follows immediately from Eq.~22!. Explicit expres-
sions for the matrix elementsel ,m,p,q are given in Appendix
A. Equation~27! constitutes a set of differential recurren
relations for the expectation valuesxl ,m of the spherical har-
monicsXl ,m . These will allow us to write down the differ
ential recurrence relations for the aftereffect functionf (t) in
Eq. ~15!. In order to achieve this, we introduce the surfa
spherical harmonics25 ~the introduction of these avoids
complex coefficient matrix hence greatly reducing t
amount of computer time required!, namely,

Ul ,05Xl ,0 , Ul ,m5~1/A2!~Xl ,m1Xl ,m* !5A2ReXl ,m ,

Ul ,2m5~1/iA2!~Xl ,m2Xl ,m* !5A2ImXl ,m , 0,m< l ,
~29!

and form differential recurrence relations in terms of the
remarking that the normalized surface spherical harmo
Nl ,umuXl ,umu also form a complete biorthonormal basis f
L2$V%. Thus we suppose that the solution of Eq.~6! has a
representation given by

W~r ,t !5 (
umu< l

Nl ,umu
2 ul ,m~ t !Ul ,m~r ! ~30!

then the expectation valuesul ,m of the surface harmonic
Ul ,m satisfy another set of differential-recurrence relatio
namely,

u̇l ,m5~Ẇ,Ul ,m!5~LFPW,Ul ,m!5bb21(
p,q

al ,m,p,qup,q .

~31!

The new matrix elements of which are given by

al ,m,p,q5bb21Np,uqu
2 ~Ul ,m ,LFPUp,q!. ~32!
r-

e
s

,

These may easily be related to the matrix elementsel ,m,p,q
defined by Eq.~27! as follows. Form,q.0 we form the
matrices

Al ,m,p,q5S al ,m,p,q al ,m,p,2q

al ,2m,p,q al ,2m,p,2q
D ,

Al ,m,p,05S al ,m,p,0

al ,2m,p,0
D , Rl ,m5r l ,mS 1 0

0 21D ,

Al ,0,p,q5~al ,0,p,q al ,0,p,2q!,

Al ,0,p,05al ,0,p,0 , Rl ,051 ~33!

and construct the following matrices from the matrix e
mentsel ,m,p,q :

El ,m,p,q5S Reel ,m,p,q 2Imel ,m,p,q

Imel ,m,p,q Reel ,m,p,q
D ,

El ,m,p,05A2S Reel ,m,p,0

Imel ,m,p,0
D ,

El ,0,p,q5~1/A2!~Reel ,0,p,q 2Imel ,0,p,q!,

El ,0,p,05Reel ,0,p,0 . ~34!

The various matrices above are related to one anothe
means of the equation

Al ,m,p,q5El ,m,p,q1El ,m,p,2qRp,q . ~35!

The matrix representation of the differential opera
(b/b)LFP is now

A5FA1,0,1,0 A1,0,1,1 A1,0,2,0 •••

A1,1,1,0 A1,1,1,1 A1,1,2,0 •••

A2,0,1,0 A2,0,1,1 A2,0,2,0 •••

A A A A
G . ~36!

This is now suitable for numerical computation of the r
sponse function as will be described below.

IV. RECURRENCE RELATIONS FOR THE RESPONSE
FUNCTION AND THE INITIAL CONDITIONS

In order to set up the equations for the calculation of
response function from Eqs.~31!–~36! we introduce the col-
umn vectors

U5~u1,0, u1,1, u1,21 , u2,0, u2,1, . . . !T, ~37!

B5~2j cosc/3, 2A2jsin c/3,

0, 4s/5, 0, 0, . . .!T, ~38!

whereU satisfies the set of simultaneous differential equ
tions

U̇5AU1B. ~39!
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The final equilibrium condition after removal of the pe
turbing fieldH1 ~i.e., a small step decrease in the magnitu
of the external uniform magnetic field! is given by

U̇~`!50 ~40!

so that the final equilibrium values vector

U`5U~`! ~41!

is found by solving13 the set of simultaneous linear equatio

AU`52B. ~42!

The decay modes12 of the magnetization, namely,

C5 lim
j1→0

~U2U`!, ~43!

expressed in matrix form satisfy the set of simultaneous
ferential equations

Ċ5AC. ~44!

Let cl ,m denote the components ofC. It then follows from
Eqs. ~14! and ~15! that the initial values~that is just before
the removal of the initial perturbing field! are given by

cl ,m~0!5 lim
j1→0

j1
21F E Ul ,me2bV1j1r–hdV

E e2bV1j1r–hdV

2

E Ul ,me2bVdV

E e2bVdV
G

5

E r–hUl ,me2bVdV

E e2bVdV

2

E r–he2bVdV

E e2bVdV

E Ul ,me2bVdV

E e2bVdV

. ~45!

This may be written in a more compact form

cl ,m~0!5~]ul ,m /]j!~`!5^r–hUl ,m&02^r–h&0^Ul ,m&0

5(
p,q

bl ,m,p,qup,q~`!. ~46!

Let wl ,m,p,q denote the coefficients when theul ,m are re-
placed by thexl ,m then thewl ,m,p,q are found by applying the
spherical harmonic recurrence relations and are given in
pendix B. The matrix elementsbl ,m,p,q may then be deter
mined from thewl ,m,p,q using the transformation defined i
Eq. ~35! (al ,m,p,q and el ,m,p,q replaced by bl ,m,p,q and
wl ,m,p,q , respectively!. The principle is the same as that us
for the axially symmetric case.13 The initial values vector is
then given by
e

f-

p-

C05C~0!5WU`1S 1

3
cosc,

A2

3
sin c, 0, . . .D T

.

~47!

The zero frequency Laplace transforms vector is de
mined from Eq.~44! by solving the simultaneous equation

AC̃~0!5C~0!. ~48!

The solution of Eq.~44! is given by

C~ t !5Sebb21LtK, ~49!

whereL is the diagonal matrix whose components are
eigenvaluesl1 ,l2 ,l3 , . . . , and

S5S S1
1,0 S2

1,0
•••

S1
1,1 S2

1,1
•••

A A A
D ~50!

is the matrix whose column vectors are the eigenvectors
A. The vector

K5~k1 , k2 , . . . , kN!T ~51!

is found by solving the set of simultaneous linear equatio

SK5C0. ~52!

The response function in Eq.~15! may be determined from
the decay modes because

f ~ t !5coscc1,0~ t !1sin cc1,1~ t !5(
i

Aie
2bb21l i t,

~53!

so that the amplitudes defined by Eq.~18! are given by

Ai5ki@coscSi
1,01~1/A2!sin cSi

1,1# ~54!

and the expression for the correlation time in Eq.~18! be-
comes

Tc5
cosc c̃1,0~0!1sin c c̃1,1~0!

coscc1,0~0!1sin cc1,1~0!
. ~55!

We now have formal expressions for all the quantit
required to describe the response following a small pertur
tion in the external field, namely, the response functionf (t)
in Eq. ~15!, the complex susceptibilityx(v) in Eq. ~17!, the
correlation timeTc in Eq. ~18!, and the mean first passag
time or Néel time3 t52tN /l1. Both numerical and analytic
aspects of the problem will be greatly simplified if we ha
an approximate analytic expression forl1 in the high barrier
limit. Such an expression serves as an important check on
validity of the numerical calculations while simultaneous
providing an analytic formula3 which may be compared with
experiment. The calculation of such an asymptotic formula
much more difficult in a nonaxially symmetric problem in
volving two reaction coordinates such as the present o
than in an axially symmetric problem where the mean fi
passage time depends only on a single reaction coordi
~namely, on the latitude! and exact analytic solutions fort
for every barrier height exist.3 Nevertheless the intermediat
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to high damping~IHD! method of Kramers14,20 ~as general-
ized by Langer and Ha¨nggi et al.26,27! for the treatment of the
escape of particles~diffusing in phase space so that the pr
cess is described by two variables, namely, position and
locity! over potential barriers in the IHD barrier limit may b
applied to the present problem. This two variable Kram
procedure~although not mentioned explicitly as such b
them! appears to have been first introduced into the theor
superparamagnetism~without reference to Langer’s26 work!
by Smith and de Rozario19 in a discussion of relaxation in
cubic anisotropy potentials, it was in effect also used
Eisenstein and Aharoni28 and generalized to an arbitrary no
axially symmetric potential by Brown10 and later discussed
by Klik and Gunther22 in relation to the Kramers14 two vari-
able theory. In the following section we shall apply the tw
variable IHD method to the calculation of asymptotic expr
sions forl1 for the problem in hand. We shall also provid
an asymptotic formula forl1 in the very low dissipation
limit following the Klik-Gunther22 adaptation of the uniform
expansion of the mean first passage time method of M
kowsky, Schuss, and Tier29 to the general nonaxially sym
metric superparamagnetic problem.

V. USE OF BROWNS HIGH-ENERGY BARRIER
APPROXIMATION FOR NONAXIALLY SYMMETRIC

POTENTIALS

We have shown in detail12 for the potential of Eq.~23! if
the parameter15 h5j/2s satisfies the condition

h,hc , ~56!

where

hc5@~sin c!2/31~cosc!2/3#23/2

5A11tan2c@11~ tanc!2/3#23/2, 0<c<p/2 ~57!

then the free energyV @of Eq. ~1!# remains bistable having
maximumV0, say, separated by minimaV1 ,V2. The smallest
nonvanishing eigenvaluel1 of the Fokker-Planck equation
Eq. ~6!, is the rate of escape of magnetic moments over
potential barrier characterized by the maximumV0. The con-
dition in Eq. ~56! was originally given by Stoner an
Wohlfarth30 in their discussion of the construction of hyste
esis loops from the potential given by Eq.~1! and by
Pfeiffer31 who studied the reversal of the magnetization~the
present problem! in the discrete orientation9 ~Néel! approxi-
mation. We have already derived12 by neglecting the gyro-
magnetic term in Eq.~7! and imposing axial symmetry, a
approximate asymptotic formula forl1 in the limit of high
potential barriers. This formula is Eq.~72! of Ref. 12,
namely,

l15
1

2p
sin u0A2bV9~u0!HAbV9~u1!

sin u1
e2b[V~u0!2V~u1!]

1
AbV9~u2!

sin u2
e2b[V~u0!2V~u2!]J . ~58!

This equation is simply Brown’s original2 ~1963! calculation
for an axially symmetric potential which has minima atu
50,p when applied to the case where the potential
e-

s

f

y

-

t-

e

s

minima atu5u1 ,u2 where 0<u<p ; it is related, although
in essence3,22 entirely different in origin, to the translationa
single reaction coordinate problem considered by Kramer14

Such an axially symmetric calculation leads to a rough e
mate ofl1 in the high barrier limit as described in Ref. 1
however, the application of it to a nonaxially symmetric p
tential cannot be justified. The two reaction coordinatesu
andw must be included in the calculation of the asympto
estimate by adapting the Kramers calculation14,20 of the es-
cape rate of a particle moving in phase space in the IHD li
to the present problem~essentially using the approach o
Langer26!. As we have mentioned this was achieved
Brown10 ~without reference to Langer, and without any di
cussion of the range of values of the damping parameter
which it is valid ! by calculating the flow of representativ
points across a saddle point of the potential~that is a point
where the potential is a minimum with respect to the dire
tion cosinea1 and a maximum with respect to the directio
cosinea2). The result holds good for any well behaved no
axially symmetric potential, as far as the present problem
concerned~for details see Refs. 10 and 15!.

The IHD calculation of Brown10 supposes that the fre
energy per unit volumeV5V(r ) has a bistable structure wit
minima at u1 and u2 separated by a potential barrier th
contains a saddle point atu0 ~where it is assumed that theu i
are coplanar!. If one denotes the plane containingu i by ) ,
then for eachi 50,1,2, one can define an orthogonal triad
unit vectors Ei5(e1

( i ) ,e2
( i ) ,e3

( i )) with e1
( i )') and e2

( i ) ,e3
( i )

P) . If

Xi
T5~a1

~ i ! ,a2
~ i ! ,a3

~ i !!

denotes the coordinate vectors~direction cosines! of r with
respect toEi , respectively, andr is close to the stationary
point u i of the potential, thenr5EiXi andV(r ) can be ap-
proximated to the second order of small quantities by
Taylor series

V5Vi1
1

2
@c1

~ i !~a1
~ i !!21c2

~ i !~a2
~ i !!2#. ~59!

In the context of the present problem we introduce the
rameters

u5h cosc, n5h sin c, ~60!

then the condition for a stationary point of the Gibbs fr
energy is

~x1u!A12x26nx50, ~61!

wherex5cosu. This is Eq.~28! of Ref. 12 where the nega
tive sign corresponds to the stationary points which occur
w50 while the positive sign for the local maximum whic
occurs forw5p. The truncated Taylor expansion in Eq.~59!
yields ~after a long calculation which has been discussed
length in Ref. 15!

Vi5b21s~12xi
222uxi22nA12xi

2!, ~62!

c1
~ i !52b21s~xi

21uxi1nA12xi
2!, ~63!

c2
~ i !52b21s~2112xi

21uxi1nA12xi
2!, ~64!
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where21<x2<x0<x08<x1<1 are the roots of the quarti
equation

~x1u!2~12x2!5n2x2 ~65!

which is obtained by squaring Eq.~61!.
We shall now suppose that the ratios of barrier heigh

thermal energy become appreciable, i.e.,b(V02Vi)@1, so
that we may assume that the density of magnetic mom
orientationsW rapidly achieves a state of quasiequilibrium10

thus the Fokker-Planck equation in Eq.~6! reduces to the
master equation

ṅ152ṅ25n2,1n22n1,2n1 ~66!

and

l1'bb21~n1,21n2,1!. ~67!

Thus after a very lengthy calculation which is analogous
that of Langer26 and is detailed fully in Ref. 15, Sec. V w
have essentially Brown’s asymptotic IHD formula, Eq.~84!
of Ref. 10 or Eq.~5.60! of Ref. 15, namely,

l1[b~Ac1
~1!c2

~1!e2b~V02V1!1Ac1
~2!c2

~2!e2b~V02V2!!

3
2c1

~0!2c2
~0!1A~c2

~0!2c1
~0!!224a22c1

~0!c2
~0!

4pA2c1
~0!c2

~0!
.

~68!

l1 may be evaluated analytically in three distinct cases. F
c50, the axially symmetric case. Here the process depe
on the single reaction coordinateu ~and so is valid for all
values of the damping parameter! and we have the axially
symmetric results of Brown2 and Aharoni4 ~an exact integral
solution for the problem may be obtained from the theory
mean first passage times as described in Ref. 3! and asymp-
totically,

l15
2s3/2

Ap
~12h2!@~11h!e2s~11h!2

1~12h!e2s~12h!2
#.

~69!

The other cases arec5p/2,p/4 which were also considere
by Pfeiffer31 in the discrete orientation approximation. He
the quartic equation~65! may be easily factorized. Fo
c5p/2, Eq. ~65! becomes

x2~12h22x2!50, ~70!

hence

x252A12h2, x050, x15A12h2. ~71!

Equations~62!–~64! give

b~V02Vi !5s~12h!2, i 51,2, c1
~1!5c1

~2!52K,

c2
~1!5c2

~2!52K~12h2!, c1
~0!52Kh,

c2
~0!522K~12h!, ~72!

hence
o

nt

o

st
ds

f

l15
s@122h1A114a22h~12h!#A~11h!

pAh
e2s~12h!2

.

~73!

Thus then i , j of the two level system described by Eq.~67!
are degenerate in this case. We remark that the axially s
metric approximation Eq.~82! of Ref. 12 differs from Eq.
~73! in the high damping limita→`, simply by the factor
Ah so that both formulas become asymptotic to each othe
h→1. In the other soluble casec5p/4, the stationary con-
dition Eq. ~61! becomes

xA12x21
h

A2
~A12x22x!50. ~74!

Let

w5A12x22x, ~75!

then Eqs.~74! and~75! yield, respectively, the pair of simul
taneous quadratic equations

2x212wx1~w221!50, ~76!

w22hA2w2150. ~77!

The roots of Eq.~77! are

w615
h6Ah212

A2
, ~78!

hence the simultaneous solutions of Eqs.~76! and ~77! are
the four roots of the pair of quadratic equations obtained
replacingw in Eq. ~76! with w61 in Eq. ~78!, i.e.,

x615
w1

2
6

1

A2
A12

w1
2

2

52
h1Ah212

2A2
6
A12h21hAh212

2
, ~79!

x618 52
w21

2
6

1

A2
A12

w21
2

2

5
2h2Ah212

2A2
6
A12h21hAh212

2
. ~80!

Let

S615A12h26hAh212

2
, ~81!

then Eqs.~62!–~64! yield for the various constants in Eq
~68!

b~V02V1!5
s

2
Ah212~S11S21!,

b~V02V2!5sS21~Ah21223h!,
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c1
~1!5b21s@11~h1Ah212!S1#,

c2
~1!52b21sS1Ah212,

c1
~0!5b21s@11~h2Ah212!S21#,

c2
~0!522b21sS21Ah212,

c1
~2!5b21s@11~2h1Ah212!S21#,

c2
~2!52b21sS21Ah212. ~82!

which are explicit forms for the constants in Eq.~68!. As far
as the other values ofc are concerned, the application of th
algebraic formula for the roots of the quartic equation~65! so
as to expressl1 of Eq. ~68! in terms of u and n is not
recommended due to the proximity of the roots atx0 andx08 .
For accurate results a numerical method such as New
Raphson should be used instead. The asymptotic estim
for l1 which we have presented above are based on the
case of the Kramers theory. The original investigations
Smith and de Rozario19 and Brown10 did not state3 the range
of values of the friction for which the IHD formula Eq.~68!
was valid. This problem was first addressed by Klik a
Gunther22 who presented a formula fort2152tn /l1 while
considering for convenience one escape path only~that over
the lower barrier!. The asymptotic equation in their 199
paper was given as

t215
ag

pMs
Ac1

~2!c2
~2!~V02V2!e2b~V02V2!. ~83!

Equation ~83! is similar to the low damping formula o
Kramers,14 however, Kramers14 included a factor of 1/2 in
his calculations. This factor must also be included3 in the
formula of Klik and Gunther,22 and so we obtain3,32

t215
ag

2pMs
Ac1

~2!c2
~2!~V02V2!e2b~V02V2!. ~84!

If we extend Eq.~84! to include both escape paths, it b
comes

t215
ag

2pMs
@Ac1

~2!c2
~2!~V02V2!e2b~V02V2!

1Ac1
~1!c2

~1!~V02V1!e2b~V02V1!#. ~85!

Using the fact that

b5
ag

~11a2!Ms

'
ag

Ms
~86!

for small a, we can form an expression forl1,

l15
b

2p
@Ac1

~2!c2
~2!~V02V2!e2b~V02V2!

1Ac1
~1!c2

~1!~V02V1!e2b~V02V1!#. ~87!

Hence, the low damping results forl1 are given by Eq.~87!.
Klik and Gunther22 introduced a criterion for the validity o
the IHD formula and the low damping formula in that th
n-
tes
D
y

IHD formula is applied in cases whereab(V02V2)
@1,b(V02V2).1, and the low damping formula of Eq
~87! is used in cases whereab(V02V2)!1,b(V02V2).1.
A detailed discussion of this is provided in Ref. 3.

VI. IMPLEMENTATION OF NUMERICAL
COMPUTATIONS

Exact values ofl1 were computed by programming th
matrix form of the Fokker-Planck equation@as described by
Eq. ~36!# in FORTRAN, where the indicesl ,m of the matrix
elementsAl ,m,p,q in Eq. ~35! are used to determine the ro
positioning of the elements, and the indicesp,q are used to
determine the column positioning of the elements. The lo
est eigenvaluel1 is determined by diagonalizing the matr
using an eispack routineRGG. To ensure convergence fo
each set of parametersh,s,a,c, the matrix size paramete
lmax @where the order of the square matrix is given
lmax*(lmax12)] is increased repeatedly until successi
values ofl1 lie within a tolerance of 1024. By using this
procedure, we can ensure accuracy of the results.

The barrier height parameters dominates the order of the
matrix required in order to obtain convergence. For exam
when the barrier height parameter is increased froms55 to
s510, the matrix size parameter lmax is increased to ens
convergence, and generally, CPU time requirements fos
510 are more than ten times that of the cases wheres55. It
has been observed in the calculation ofl1, that the diagonal
terms of the matrices involved increase asn2, wheren is the
order of the square matrices. This would explain the incre
ing difficulty of the problem, and the increase in CPU tim
requirements as the dimensions of the matrices increase

VII. NUMERICAL EVALUATION OF THE NE ´ EL TIME
AND COMPARISON WITH ASYMPTOTIC ESTIMATES

In this section we compare our numerical calculations
the Néel time as yielded by the formula

FIG. 2. Comparison of exact (l15lE) and asymptotic (l1

5lA) expressions including the gyromagnetic term. Evidently, E
~73! yields a good approximation to the high barrier solution in bo
cases.
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t52tN /l1 ~88!

with the asymptotic estimates forc5p/2,p/4 yielded by
Eqs. ~68!, ~73! and Eqs.~68!, ~74!–~82! which are the only
cases where explicit solution of the quartic equation~65! is
possible. Thus in Fig. 2~for c5p/2) we show the behavio
of lE which isl1 obtained from the exact numerical solutio
when compared withlA which is the behavior yielded by th
nonaxially symmetric asymptotic formula Eq.~68!
(c5p/2) @which leads to Eq.~73!# for a value of the dimen-
sionless damping parametera50.2. It appears from thes
figures that the asymptotic formula Eq.~68! provides a good
approximation tolE for large barrier heights. This is rein
forced by the results shown in Fig. 3 which are for infinitea
values~the high damping limit!. It is apparent that the ratio

FIG. 3. Comparison of the solutionl1(p/2) yielded by the
asymptotic formula@Eq. ~73!# in the high damping limita→` with
the exact numerical solution. It is apparent that the systematic e
in Fig. 13 of Ref. 11 is removed by the correct asymptotic formu

FIG. 4. Comparison of the exact value ofl1 , i.e., lE with the
low damping approximation of Eq.~87! (lLD), and the intermediate
to high damping approximation (l IHD) of Eq. ~68! ~denoted bylA

in all other figures!. The figure illustrates that in the case of lo
damping (a50.1) the low damping formula provides a better a
proximation to the exact solution.
lA /lE is in the vicinity of 1 for allh values of interest. This
result should be compared with one yielded by t
asymptotic formula using an axially symmetric approxim
tion as given previously by us@Eq. ~82! of Ref. 12#, namely,

l15
2s~12h!A11h

ph
e2s~12h!2

. ~89!

It is apparent that in the high damping limit, the two form
las differ simply by the factorAh so that they become
asymptotic to each other ash→1, the error so increasing a
h decreases. The effect of theAh correction is then to elimi-
nate the constant error apparent in Fig. 13 of Ref. 12.

However, whena is very small and satisfies the criterio
ab(V02V2)!1, then the low damping~LD! approximation
formula of Eq. ~87! must be used. Figure 4 illustrates th

or
.

FIG. 5. Same as Fig. 4 excepta510.0. In this case therefore
the IHD formula of Eq.~68! provides a better approximation to th
exact solution.

FIG. 6. Ratio of the asymptotic@lA yielded by Eq.~73!# and
exact expressions forl1 with a finite ~50.2! providing reasonable
constancy, and so indicating that Eq.~73! provides a useful
asymptotic estimate in these cases.
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exact eigenvaluelE , the approximation given by the IHD
formula (l IHD) of Eq. ~68!, and the approximation given b
the low damping formula (lLD). On examining Fig. 4, it is
evident in this case (a50.1,h50.1,s510), that the low
damping formula provides a much better approximation
the lowest eigenvalue. Figure 5 provides a plot oflE , l IHD ,
and lLD for the case whena51.0,h50.1,s510. Here the
criterion ab(V02V2)@1 is obviously satisfied, and it is
clear that in this situation, the IHD formula of Eq.~68! pro-
vides a much better approximation to the exact value of
lowest eigenvalue.

From Fig. 6 onwards, we use the IHD formula to appro
matel1 ~namely,lA). In Fig. 6, we show the ratio of the
approximate value ofl1 given by Eq.~68!, and the exact
valuelE (lA /lE) versuss for finite a50.2. Again the con-
sistency is reasonable indicating that Eq.~68! provides a use-
ful asymptotic estimate in this case~i.e., as borne out by Fig
2!. In Fig. 7 we show the variation oflA(a)/lA(`) for
various values ofa indicating that the general effect of th
gyromagnetic term is to decrease the longitudinal relaxa
time.

FIG. 7. Ratio of@lA(a)5lg# and @lA(`)5ln# showing the
variation of l1(a)/l1(`) for various values of the parametera.
Clearly the effect of the gyromagnetic term is to decrease the
gitudinal relaxation time.

FIG. 8. Same as Fig. 2 withc545° rather than 90°.
o

e

-

n

This can be understood by means of the following disc
sion. Without an applied field, or with an applied field an
c50, the gyromagnetic term in the Gilbert equation@corre-
sponding to the fourth term in Eq.~7!# has no effect on the
calculation of the Ne´el relaxation mode, which means th
the longitudinal ~Néel! and the transverse~precessional!
modes are completely decoupled from each other. The ef
of the dimensionless damping factora on the longitudinal
~Néel! relaxation mode manifests itself solely through t
diffusional (tN) time, proportional to (11a2)/a, which
leads to the disappearance of the Ne´el relaxation in the lim-
iting cases (a5` and zero!. Now, with an applied field with
c different from zero, there is a strong~mode-mode! cou-
pling between the two modes of motion. The mode-mo
coupling manifests itself as a geometric dependence of
prefactor ofl1 on a which for c5p/2, for example, is

5
sA11h

pAh
@122h1A114a22h~12h!#

n-

FIG. 9. Comparison of the solution@l1(p/4)# yielded by the
asymptotic formula of Eq.~68! in the high damping limit (a→`)
with the exact numerical solution, the constancy indicating that
asymptotic estimate again yields a good approximation to the e
solution.

FIG. 10. Same as Fig. 6 exceptc545°.
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which we shall use for the purpose of discussion. It is e
dent that the precessional mode corresponds to very
frequencies„that is, to very short times, much shorter th
the Néel time whens is not too small@in fact when Eq.~73!
is valid#…, and that the coupling leads to a decrease of
longitudinal~Néel! time compared to the case where no co
pling acts. Thus, the variation of the relaxation time of t
Néel mode witha is governed by two factors, namely, th
diffusional timetN @proportional to (11a2)/a# and by the
mode-mode coupling effect~that is the decrease of 1/l1 with
a).

Figures 8–10 show the behavior oflE for c5p/4 com-
pared with the asymptoticlA . It is apparent that the
asymptotic estimate yielded by Eqs.~68!, ~74!–~82! again
provides a good approximation to the exact solution. W
remark, however, that higher values ofs at givenh have to
be taken in this instance in order that the asymptotic form

FIG. 11. Same as Fig. 7 exceptc545°.

FIG. 12. Variation of the exact (l15lE) and asymptotic (l1

5lA) values ofl1 with c. The asymptotic estimate given by E
~68! provides a good approximation to the exact solution by reas
ably predicting the behavior ofl1. The deviation nearc50° is due
to the fact that the asymptotic estimate of Eq.~68! is no longer valid
in the regionc50°.
i-
gh

e
-

e

la

should be valid as the effective barrier height is only half th
for c50 or c5p/2. This makes numerical calculation
more difficult to carry out as a larger matrix size must
taken in order to ensure convergence. Inspection of Fig.
shows that the constancy oflA /lE is also remarkable for
this case for values ofs in excess of about 8 for the reduce
field h given. It is apparent from Figs. 9 and 10 that t
systematic error induced by the axially symmetric appro
mation@Eqs.~101! and~102! and Fig. 14 of Ref. 12# is again
eliminated by use of the correct asymptotic formula E
~68!, ~74!–~82!. In Fig. 11 we show the variation o
lA(a)/lA(`) for c5p/4 with a.

In situations where the value ofc differs from 0,p/4,p/2,
the quartic Eq.~65! is solved numerically and the roots o
dered using21<x2<x0<x08<x1<1. The root x08 corre-
sponding to the anisotropic maximum atw5p is not re-

n-

FIG. 13. Variation of the reciprocals of the exact and asympto
values ofl1 with c showing that the Ne´el relaxation time is an
absolute maximum atc590° and a minimum atc545°.

FIG. 14. Variation of the asymptotic values ofl1, when
lA(`)5lA ,a5106, and lA(0.2)5lA ,a50.2 with c. The plot
confirms that the effect of the gyromagnetic term is to reduce
relaxation time.
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quired. On proceeding in this way it is then possible
compare the variation ofl1 with the anglec as predicted by
the exact solution with that yielded by the asymptotic e
mate Eq.~68!. This is shown in Fig. 12. Figure 13 which i
the reciprocal of Fig. 12, shows that in all cases the N´el
relaxation time has an absolute maximum atc5p/2 and a
minimum nearc5p/4. It is apparent that the asymptot
formula Eq.~68! again provides a reasonable estimate ofl1.
The deviation nearc50 is consistent with the fact that th
asymptotic estimate, Eq.~68!, is no longer valid in the region
c50. The asymptote should be constructed in this case
ing the Brown-Aharoni formula Eq.~69!. This formula does
not exhibit the characteristicAh dependence of the nonax
ally symmetric asymptote neither does it contain the dim
sionless damping factora arising from the inclusion of the
gyromagnetic term which occurs when one uses Eq.~68! so
invalidating that formula for very small values ofh!0.1,
and for c50 also invalidating Eq.~68! as there is noa
dependence in this axially symmetric situation. In view
the acceptable approximation provided by the asympt
formula of Eq.~68!, we have shown in Fig. 14 the variatio
of lA with c for a5` anda50.2 confirming that the effec

FIG. 15. Same as Figs. 7 and 11 withc530°.

FIG. 16. Same as Figs. 7, 11, and 15 withc575°.
-

s-

-

f
ic

of the gyromagnetic term is to reduce the relaxation tim
Finally in Figs. 15 and 16 we show the variation
lA(a)/lA(`) with a as computed forc530° andc575°
using the asymptotic formula Eq.~68!.

The results we have just given confirm that the asympto
formula following the Brown10 approach@Eq. ~68!# is ca-
pable of providing an accurate description of the Ne´el relax-
ation time for the present nonaxially symmetric problem
the IHD limit @where the criterionab(V02V2)@1 is satis-
fied#. Brown’s approach which appears to have been s
gested by the earlier work of Smith and de Rozario19 is in
effect3 an adaptation to spin relaxation of the intermediate
high damping asymptotic formula of Kramers14 @also Eq.
~25! of Ref. 14# for escape rates for a process governed
the Fokker-Planck equation in phase space~the Klein-
Kramers equation14! to the present problem. In the limit o
very small damping Eq.~68! will reduce to a formula analo-
gous to Eq.~26! of Kramers14 ~the transition state value in
his nomenclature!. This is unphysical, since it indicates th
Néel relaxation can take place in the limit of zero frictio
and it is an artifact of applying the IHD formula beyond i
range of validity. In order to discuss the behavior at smalla,
the low friction Kramers formula must be used. In gener
the IHD theory may only be applied when the energy lo
during one period of the undamped motion~i.e., precession!
is .kT. If this criterion is not satisfied, the moderate
damped formula must be used@controlled byab(V02V2)#.

A discussion of the problem in the context of th
Kramers14 calculation has also been given by Klik an
Gunther.22 In order to further assist the reader we show in t

TABLE I. The lowest nonvanishing eigenvaluel1 for various
values of the barrier height (s) and field parameters (h); c50°.

l1

h s50.2 s50.5 s51.0 s52.0 s55.0 s510.0

0.01 1.844 1.627 1.306 0.8079 0.1354 0.0029
0.1 1.845 1.629 1.314 0.8322 0.1876 0.0086
0.2 1.846 1.634 1.336 0.9056 0.3134 0.0383
0.4 1.849 1.659 1.426 1.196 0.9109 0.3846
0.5 1.852 1.676 1.493 1.412 1.398 0.8829
0.7 1.860 1.723 1.671 1.974 2.782 2.927
0.8 1.864 1.753 1.783 2.317 3.670 4.524
1.0 1.876 1.823 2.049 3.121 5.824 8.777

TABLE II. The lowest nonvanishing eigenvaluel1 for various
values of the barrier height (s) and field parameters (h); c530°.

l1

h s50.2 s50.5 s51.0 s52.0 s55.0 s510.0

0.01 1.844 1.627 1.306 0.8079 0.1358 0.0029
0.1 1.845 1.629 1.313 0.8297 0.1743 0.00845
0.2 1.845 1.634 1.334 0.8691 0.306 0.0481
0.4 1.850 1.656 1.416 1.165 1.022 0.8447
0.5 1.852 1.672 1.477 1.371 1.706 2.248
0.7 1.859 1.716 1.641 1.929 3.905 8.499
0.8 1.863 1.743 1.744 2.284 5.447 13.50
1.0 1.874 1.808 1.989 3.148 9.349 26.94
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manner of Tables I–IV, a representative selection ofl1 for
various angles and fora5`. We shall now proceed to th
calculation of the correlation time.

VIII. NUMERICAL CALCULATION OF THE
CORRELATION TIME

The results of the numerical calculation of the correlat
time are shown in Figs. 17–20 and in Tables V–VIII. Fir
the equilibrium values are obtained by solving Eq.~42!, then
the initial values are obtained by means of Eq.~46!, and
finally the zero frequency Laplace transforms are obtained
solving Eq.~48!. The correlation time is then given by Eq
~55!. An alternative procedure is to construct the matrix
Eq. ~50! from the eigenvectors ofA and solve Eq.~52!. On
calculating the amplitudes in Eq.~54!, the correlation time is
then given by Eq.~18!.

It is then apparent from Figs. 17–20 that the correlat
time always exhibits significant departure from increas
exponential behavior for larges where h is sufficiently
large, however, far less than the critical value needed for
destruction of the bistable nature of the potential. This c
clusion is reinforced by the results shown in Figs. 21 and
where in all cases the product of the correlation time and
smallest eigenvalue shows a very marked departure f
unity for sufficiently largeh ands. Moreover, the effect has
a strong angle dependence, the most marked departure b
at c5p/2. This is a striking example of the effect of a stron
uniform field which was first described in Ref. 33, and e
plained physically by Garanin34 as being due to the depletio
of the shallower of the two potential wells by the field so th

TABLE III. The lowest nonvanishing eigenvaluel1 for various
values of the barrier height (s) and field parameters (h); c545°.

l1

h s50.2 s50.5 s51.0 s52.0 s55.0 s510.0

0.01 1.844 1.627 1.306 0.8079 0.1357 0.0029
0.1 1.845 1.628 1.312 0.8272 0.1694 0.0079
0.2 1.845 1.634 1.331 0.8861 0.2895 0.0478
0.4 1.849 1.654 1.405 1.127 0.9981 0.9523
0.5 1.851 1.669 1.461 1.313 1.712 2.594
0.7 1.858 1.708 1.609 1.825 4.108 10.05
0.8 1.862 1.733 1.701 2.153 5.850 16.22

TABLE IV. The lowest nonvanishing eigenvaluel1 for various
values of the barrier height (s) and field parameters (h); c590°.

l1

h s50.2 s50.5 s51.0 s52.0 s55.0 s510.0

0.01 1.844 1.627 1.306 0.8073 0.1356 0.0029
0.1 1.845 1.628 1.311 0.8220 0.1577 0.0056
0.2 1.845 1.632 1.326 0.8649 0.2276 0.0188
0.4 1.848 1.649 1.383 1.034 0.5392 0.1676
0.5 1.850 1.661 1.426 1.158 0.7968 0.3918
0.7 1.856 1.693 1.540 1.478 1.5354 1.384
0.8 1.859 1.714 1.609 1.671 2.014 2.198
1.0 1.867 1.762 1.774 2.114 3.167 4.585
,
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the Néel mode is completely swamped by the relatively fa
modes in the deeper potential well.

The behavior of the correlation timeTc for small values
of h is similar to that of 1/l1, except for values ofc in the
range of 60°290°, where a strong decrease is observed w
Tc becoming very small. This is also true of the produ
Tcl1 ~Figs. 21,22! and may be explained as follows. Forc
5p/2, the two minima of the energy are symmetric wi
respect to the direction of the applied field and so their po
lations are equal in thermodynamic equilibrium. Starti
from such a situation, on slightly decreasing the field, th
is a quasi-instantaneous small change of the angle of
minima and thus the magnetic moment direction~so that
only rapidly damped fast oscillations occur!. Thus, the area
under the magnetization decay curve, i.e.,Tc is very small.
In fact x uu'0 while x' maintains its oscillatory characte
On the other hand whenc decreases from 90°, the tw
minima become asymmetric with respect to the applied fi
direction, and the decay of the magnetization appears a

FIG. 17. Variation of the reciprocal of the correlation time wi
the barrier height parameters for c50°. The correlation time ex-
hibits significant departure from increasing exponential behavio
s increases whenh is large~but no larger thanhc at which point the
bistable structure of the potential is destroyed!.

FIG. 18. Same as Fig. 17 withc545°.
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this direction. HereTc increases, and takes on values of t
order of 1/l1 at c'75°.

In fact, for c<70°, the productTcl1 has only a weak
dependence on the value of the dimensionless damping
tor a, a slight increase being observed for small values ofs.
As far as the dependence on the other parameters is
cerned,Tcl1 decreases from unity whenc increases, with an
enhanced decrease ifs is small. On the other hand,Tcl1
slightly increases withs, and finallyTcl1 is almost indepen-
dent ofh for small values ofs, while it decreases for high
values ofs.

We wish to emphasize that values ofTcl1 sensibly
smaller than unity indicate that the higher~faster! relaxation
modes ~corresponding tol2 ,l3 , . . . ) are of importance.
Nevertheless for those experiments which measure the d
of the magnetization over a long period of time, such as fi
cooled and zero field cooled magnetizations, and therm
manent magnetization experiments,l1 is the correct param
eter because the magnetization is governed by

FIG. 19. Same as Fig. 17 withc560°.

FIG. 20. Variation of the reciprocal of the correlation time wi
the barrier height parameters for the case whenc590°. The cor-
relation time exhibits the most significant departure from expon
tial behavior atc590°.
c-

n-

ay
d
e-

(
k

Ake
2lkt/2tN, ~90!

and asl1,lk (k>2), the term ine2l1t/2tN ~that is, the
longest lived relaxation mode! dominates. However, in thos
experiments which measure the magnetization behavior o
a short time interval~such as susceptibility measurements
high frequency!, Tc must be used. Consequently ifTcl1 is
markedly different from unity, then measurements at sh
and long times do not examine the same phenomena so
the results are not directly comparable.

As far as the numerical calculations are concerned,
exact values of the correlation time were computed by s
ting up theA matrix of coefficients as in the calculation o
l1, and also the vectorB, as given by Eq.~39!. A LAPACK

linear equation solver was then used to compute the solu
to the real system of linear equations

AU`52B,

as given by Eq.~44!, whereLU decomposition with partial
pivoting and row interchanges is used to factorA as

A5PLU,

whereP is a permutation matrix,L is a unit lower triangular,
and U is an upper triangular. The factored form ofA was
then used to solve the system of equationsAU`52B. The
next step was to set up the matrixW as described in Sec. IV

TABLE V. Reciprocal of the correlation time 1/Tc for various
values of the barrier height (s) and the field (h) parameters;c
50°.

1/Tc

h s51.0 s52.0 s55.0 s510.0

0.01 1.309 0.8132 0.1375 0.002943
0.1 1.317 0.8404 0.1833 0.008923
0.2 1.343 0.9246 0.3496 0.08420
0.4 1.446 1.292 2.738 43.33
0.5 1.526 1.607 9.160 51.79
0.7 1.744 2.648 24.58 60.75
0.8 1.886 3.451 28.05 65.11
1.0 2.244 5.728 33.17 73.68

TABLE VI. Reciprocal of the correlation time 1/Tc for various
values of the barrier height (s) and the field (h) parameters;c
530°.

1/Tc

h s51.0 s52.0 s55.0 s510.0

0.01 1.432 0.8989 0.1444 0.002998
0.1 1.440 0.9269 0.1906 0.009579
0.2 1.466 1.014 0.3785 0.1647
0.4 1.571 1.396 3.102 27.49
0.5 1.652 1.720 8.464 30.96
0.7 1.872 2.756 18.31 35.75
0.8 2.015 3.518 20.54 38.16
1.0 2.371 5.560 23.88 43.09-
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and then the initial values vectorC0 was evaluated as in Eq
~47!. The zero frequency Laplace transform vectorC̃(0) is
then computed by again using theLAPACK linear equation
solver DGESV, and the correlation time was found by usin
the zero frequency Laplace transform vector as indicated
Eq. ~55!. The matrix size parameter lmax was increased u
successive results were obtained within a tolerance of at l
1024. All programs were again coded inFORTRAN, and all
results were obtained using the CRAY-J90 at the Rutherf
Appleton Laboratory, requiring no more than two minutes
CPU time for even the most difficult cases. For examp
whenc5p/4,h50.4,a50.2, ands510, the amount of CPU
time required to complete the calculation for successive
trix sizes given by lmax525 and lmax526, within a toler-
ance of 1027 was 78.01 sec.

IX. GENERAL DISCUSSION AND CONCLUSIONS

In this paper we have given methods for the calculation
the Néel relaxation time and the integral relaxation tim
~here, the correlation time! for an assembly of noninteractin
superparamagnetic particles with the field applied at an
lique angle to the easy axis of magnetization~and including
the gyromagnetic term! by direct solution of the simulta
neous linear equations which arise from the Fokker-Pla
equation.

In general terms, the behavior shows a departure of
Néel relaxation time from the integral relaxation time simil
to that of Coffey, Crothers, Kalmykov, and Waldron,33 for an

TABLE VII. Reciprocal of the correlation time 1/Tc for various
values of the barrier height~s! and the field (h) parameters;c
545°.

1/Tc

h s51.0 s52.0 s55.0 s510.0

0.01 1.614 1.053 0.1582 0.003109
0.1 1.623 1.083 0.2053 0.009641
0.2 1.649 1.175 0.4052 0.1510
0.4 1.756 1.576 2.892 22.26
0.5 1.837 1.909 6.923 26.33
0.7 2.059 2.919 14.77 29.85
0.8 2.201 3.621 16.75 36.62

TABLE VIII. Reciprocal of the orrelation time 1/Tc for various
values of the barrier height (s) and the field (h) parameters;c
590°.

1/Tc

h s50.2 s50.5 s51.0 s52.0 s55.0 s510.0

0.01 2.083 2.220 2.484 3.172 6.949 17.31
0.1 2.084 2.222 2.492 3.198 6.860 16.81
0.2 2.084 2.229 2.517 3.277 6.657 15.37
0.4 2.089 2.255 2.617 3.588 6.434 11.38
0.5 2.092 2.274 2.692 3.818 6.575 10.10
0.7 2.100 2.327 2.892 4.415 7.448 9.975
0.8 2.106 2.340 3.018 4.776 8.162 10.93
1.0 2.118 2.439 3.318 5.608 10.08 14.44
y
il
st

d
f
,

a-

f

b-

k

e

applied field parallel to the easy axis. In addition it has be
demonstrated that the asymptotic expressions for the N´el
time derived by Brown10,15 in the IHD limit, and by Klik and
Gunther22 in the LD limit provide a good description of th
exact eigenvalue for high barriers. Both formulas are go
approximations, even in the region ofab(V02V2)'1. A
disadvantage of the present method is that it is expensiv
terms of CPU time because of the large matrices which
required. Reformulation of the solution of the set of diffe
ential recurrence relations as a matrix continued fraction s
gests that the size of the matrices involved may be sign
cantly reduced, thus enabling one to carry out the calcula
for much larger values of the anisotropy parameter.35 Finally
we wish to emphasize the importance of the approximat
formula in Eq.~68!. It yields a close approximation to th
exact solution~Figs. 2, 3, 6, 8–10, 12, and 13! with the
exception of small values ofs (s<3) and very smallh
values (h<0.05). From an experimental point of view, th

FIG. 21. Variation of the product of the exact values of t
lowest eigenvaluel1 and the correlation timeTc with c. The figure
shows significant departure from the increasing exponential be
ior at c590°.

FIG. 22. Variation ofTcl1 with c when the gyromagnetic term
is included for various values ofa. The figure shows that the gyro
magnetic term has no effect on the behavior ofTcl1.
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former situation (s<3) corresponds to very short relaxatio
times which are very difficult to observe~except by neutron
dispersion!, while the latter (h<0.05) occurs in example
such as field cooled and two field cooled magnetization
periments at small applied fields. Secondly, for applicatio
of magnetic measurements, two quantities are required,
only the Néel time t52tN /l1, but also its constituent part
t1,t2 corresponding to the jump from the lower minimu
to the upper minimum and the reverse jump, respectiv
The reversed magnetization results from a combination
these two quantities taking account of the particular mea
ing process.1 For example, the field cooled magnetizatio
MFC is equal in the two level framework to

MFC5MSRF~T!, T.TB5MSRF~TB!, T,TB
~91!

with

F~T!5
t1cos~u12c!1t2cos~u22c!

t11t2
~92!

and

cosu15x1 , cosu25x2 . ~93!

whereTB is the blocking temperature relative to the cooli
rate, calculated from the expression fort1.

It is easy to recognize in Eq.~68!, the quantitiesl1
1

(52tN /t1) and l1
2(52tN /t2) which are the terms in

e2b(V02V1) and e2b(V02V2). We remark that in theF(T)
calculation, the prefactor

2~c1
~0!1c2

~0!!1A~c2
~0!2c1

~0!!224a22c1
~0!c2

~0!

4pA2c1
~0!c2

~0!

disappears, which is not so in thet calculation. This means
that for T.TB , the MFC values are independent ofa which
indicates that the superparamagnetic state has been atta

Therefore by solving the quartic Eq.~65! for a givenc,
we can calculatex1 ,x2 ,x0, and all thec’s so that we can
determinet, TB , and F(T). We remark that in an actua
sample, the field anglec and the particle volumev are ran-
dom so that averages will be required, which are not
difficult to evaluate numerically on account of the simplici
of the above formulas. The above analysis may be app
directly in experimental situations such as those discusse
Refs. 7, 8, and 36 where single particles have been isol
with the intention of studying macroscopic quantum tunn
ing.
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APPENDIX A: MATRIX ELEMENTS FOR THE
SPHERICAL HARMONIC REPRESENTATION

el ,m,l ,m52 l ~ l 11!1
2s

~2l 21!~2l 13!
@ l ~ l 11!23m2#

22suia21m,

el ,m,l 21,m215
sn~ l 11!~ l 1m!~ l 1m21!

~2l 11!
,

el ,m,l ,m215
isn~ l 1m!~ l 2m11!

a
,

el ,m,l 11,m215
sn l ~ l 2m12!~ l 2m11!

~2l 11!
,

el ,m,l 22,m5
2s~ l 11!~ l 1m!~ l 1m21!

~2l 21!~2l 11!
,

el ,m,l 21,m5
2s~ l 1m!

~2l 11!
@u~ l 11!2 ia21m#,

el ,m,l 11,m52
2s~ l 2m11!

~2l 11!
@ul1 ia21m#,

el ,m,l 12,m52
2s~ l 2m12!~ l 2m11!

~2l 11!~2l 13!
,

el ,m,l 21,m1152
sn~ l 11!

~2l 11!
,

el ,m,l ,m115
isn

a
, el ,m,l 11,m1152

sn l

~2l 11!
.

APPENDIX B: MATRIX ELEMENTS FOR THE
CALCULATION OF THE INITIAL VALUES

wl ,m,l 21,m215
sin c~ l 1m!~ l 1m21!

2~2l 11!
,

wl ,m,l 11,m2152
sin c~ l 2m12!~ l 2m11!

2~2l 11!
,

wl ,m,l 21,m5
cosc~ l 1m!

~2l 11!
,

wl ,m,l 11,m5
cosc~ l 2m11!

~2l 11!
,

wl ,m,l 21,m1152
sin c

2~2l 11!
, wl ,m,l 11,m115

sin c

2~2l 11!
,

wl ,m,l ,m52coscu1,0~`!2sin cu1,1~`!.
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