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Effect of an oblique magnetic field on the superparamagnetic relaxation time.
II. Influence of the gyromagnetic term
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The effect of a uniform magnetic field applied at an oblique angle to the easy axis of magnetization on the
superparamagnetig¢ongitudinal or Nel) relaxation time is investigated by numerically solving the Fokker-
Planck equation for the smallest nonvanishing eigenvalue. It is demonstrated that the reciprocal of the
asymptotic formula for the Kramers escape rate in the intermediate to high damping limit for general nonaxi-
ally symmetric potentials when applied to the present problem, yields an acceptable asymptotic approximation
to the Neel time for moderate to high values of the damping. Alternatively the corresponding Kramers low
dissipation formulaenergy controlled diffusionprovides an acceptable approximation for very small values
of the damping. The effect of the gyromagnetic term which gives rise to coupling between the longitudinal and
transverse modes of motion generally corresponds to an increase of the smallest nonvanishing eigenvalue and
so to a decrease of the’ Blerelaxation time. The integral relaxation time or area under the slope of the curve
of the decay of the magnetization is also evaluated. It is demonstrated that for sufficiently high values of the
uniform field (much less, however, than that required to destroy the bistable nature of the pptinetial
reciprocal of the lowest nonvanishing eigenvalpeoportional to the Nel time, or the time of reversal of the
magnetization and the integral relaxation time may differ exponentially from one another signifying the
contributions of modes other than that associated with the overbéxget) relaxation process to the overall
relaxation process. The overall behavior is qualitatively sim{@grart from the azimuthal dependejée that
of the axially symmetric case which arises due to the depletion of the shallower of the two potential wells by
the uniform field, so that the fast processes in the deeper of the two wells may come to dominate the relaxation
process at sufficiently high values of the uniform fifl§0163-182¢28)04229-5

I. INTRODUCTION restricted to the case of axial symmetry which requires that
the field and easy axis should be coline&uch a calculation
The calculation of the relaxation time of the magnetic may be directly checked by comparing it with experimental
moment of a single-domain ferromagnetic particle under theesults on either a particle assembly or on patrticle arrays or
influence of an applied field is very important because theon isolated particlesmonoparticle samp)e These are the
value of r obtained provides a comprehensive description obnly systems for which samples are available at pre¥ént.
the experimental results. For example, in the most commourthermore, the experimental and theoreticalalues may
experiment which is used for characterizing particle assemalso be used to determine the contribution of other rotation
blies, i.e., the zero field cooled magnetizatidyec, the  modes. In essence, the &lBrown model® on which the
temperature of theM ;- maximum can be determined by calculation of7 is based assumes a single-domain particle
comparingr with the inverse of the heating rateso that an  and a synchronougoherenik rotation of the spins. However,
analytic expression for is required for a quantitative deter- depending on the size, shape, and parameters of the particle,
mination of the parameters of the relaxing system. Now inother rotation modesincoherent magnetization processes
actual particle assemblies, the easy axes are in random direztay be more favorable energetically. Evidence of such has
tions with respect to the field orientation, therefore the calbeen provided by the authors of Ref. 5, although their mea-
culation of 7 must be performed for a field at an oblique surements were performed on relatively large and irregularly
angle ¢ to the direction of the easy axithe original calcu- shaped samples. More recently, Wernsdoefeal. (see Ref.
lations of the relaxation time by Brown and Aharotiiwere  7) have presented some very interesting results by comparing

0163-1829/98/5@)/324918)/$15.00 PRB 58 3249 © 1998 The American Physical Society



3250 W. T. COFFEYet al. PRB 58

their experimental observations to the predictions of the curlnetic moment reduces to a nine term rather than a thirteen
ing mode of magnetization reversal in an infinite cylinder,term one between the numbedrsand m. Furthermore the
where the exchange length defined asl,=2JA/M (A is  recurrence relations for negative may easily be expressed
the exchange constant ai, is the mean magnetization of in terms of those for positiven by means of the symmetry
a nonrelaxing particledefines the transition from uniform properties of theX, , [because the expectation values of the
rotation to curling. They have shown that for nanowires ofspherical harmonics, ,(t) are real when the gyromagnetic
diameter smaller than 100 nm, the process of uniform nucleterms are ignoreldso greatly reducing the amount of com-
ation is valid, whereas for wires having a diameter largerputer time required for the solution. If the gyromagnetic
than twice the exchange lengtl, nucleation occurs at sev- terms are included, the (t) are complex. It is then impos-

eral almost degenerate fields at values close to the curlingiple to express the recurrence relation for e ,(t) in
instability. For wires whose diameters are close to the eXterms of that of thex, (t), only in terms of that of the

change length, the Stoner-Wohlfarth model may be L?Seqq*'m(t) (the star denotes the complex conjugatéence the
where t_he switching time "’?”d f|eI_d measurements Ir'd'c""t‘?ecurrence relations may only be solved by expressing the
that a single energy barrier is dominant and the reversal pro- lution of the Fokker-Planck ton in t ¢ surf
cess may be described by an Arrhenius laowever, when solution Ot the Fokker-mlanck equation In terms ot surtace
considering samples which are small when compared Witﬁpherlcal harmonlgs. These lead to recurrence relations for
the exchange lengttwhich is the topic of discussion in this € real and imaginary parts of the(t) as we shall de-
papel, recent experiment&ee Ref. 8 have shown that the scribe later. As_ fa_r as the asymptotic esfumatexgﬁs con-
concept of uniform rotation is valid in these cases. Althougt€'ned the omission of the gyromagnetic term indicated at
analytical considerations indicate that synchronous rotatiofist that an axially symmetric approximatitrt>*°might be

(as is assumed in the WeBrown model is not in principle ~Made in the Kramers approach to the problem so reducing it
possible for a nonellipsoidal particle, nevertheless further exto an effective one variable problem as only the reaction rate
periments and calculatiohsfor NiFe,O, particles demon- coordinateé (colatitude will now be involved. This, how-
strate that magnetic disordering occurs at the particle surfacever, leads to asymptotic estimates which deviate apprecia-
due to the lack of interactions. Thus only small perturbationdly from the numerical solution so that a more rigorous treat-
to synchronous rotations may take place. Our calculationgnent including both reaction coordinatésp must be given.
could bring some of these issues into discussion by checking Our neglect of the gyromagnetic term besides having the
whether or not an approach based on the synchronous rot@bvious disadvantagevhen the treatment is extended to cal-
tion assumption actually works. culate the complex magnetic susceptibjlithat ferromag-

A preliminary discussion of the effect of an external uni- netic resonance phenometfaetc., may not be included im-
form magnetic field, applied at an oblique angleto the  plies that the calculation ok, will be invalid when the
easy axis of magnetization of a single-domain ferromagnetidlamping parametea is finite. This is important in view of
particle, on the Kel or superparamagnetic relaxation time the very recent experimental results of Dormatral.*® on y
for uniaxial anisotropy has recentfybeen published by us. F&Os; with weak interparticle interactions which indicate
The calculation of the N& relaxation time is in general ac- thata may be as small as 0.05, hence the influenca oh
complished by determining the smallest nonvanishing eigenx; will be substantial.
value\ ; of the appropriate Fokker-Planck equatian.is the Here the gyromagnetic effects are included in the calcu-
rate constant associated with the longest surviving decalation of A\, and hence the N# relaxation time so that the
mode (Neel mode of the magnetization. The reciprocal of calculation is valid for all values of the damping parameter.
\, in the high barrier limit is approximatelythe time of Both an exact solution foh,; based on the thirteen term
reversal of the magnetizatidthat is, the mean first passage differential recurrence relations arising from the Fokker-
time, Neel time, or time taken to climb the potential hill Planck equation including the gyromagnetic term and a rig-
over the potential barrier due to the crystalline anisotropyorously derived estimate ok, based on a two variable
and the applied field. We have preserifedoth an exact Kramers approach as used for a general nonaxially symmet-
numerical solution foi; and an asymptotic estimate basedric potential by Brown? and Smith and de Rozaff(in a
on an extensioh'?'® of the Kramers theory of the ther-  discussion of relaxation in cubic anisotropy potenjiathich
mally activated escape of particles over potential barriers t@llows one to include the influence of the gyromagnetic term
include spin relaxation. The numerical calculations we havén the prefactor of such an asymptotic estimate will be pre-
hitherto presented, however, all proceed from the assumptiosented. The two variabig* asymptotic estimate is essen-
that the dimensionless damping parametes so large that tially a modification of the Krameté?°intermediate to high
the effect of the gyromagnetifprecessionalterm (which  damping(IHD) limit calculation of the escape rate for a par-
contains 14 as a prefactgron the Nel time may be ignored. ticle diffusing in phase space. In addition, the value pfor
Thus the results pertain only to the very high damping limitvery small values of the damping parametewill be com-
and so are quite restricted. pared with the very low dampin@.D) limit, using the for-

The omission of the gyromagnetic terms has the advanmalism of Ref. 21, of the KrameYstheory as adapted to the
tage that the set of differential recurrence relations for thenagnetic problem by Klik and Gunth&t.This allows oné
aftereffect functions of the magnetization to which theto state the range of values of the damping paraneeter
Fokker-Planck equation for the distribution function of the which a particular formula of KrameYsis valid. Further-
magnetization orientations may be reduced by expanding itsmore the integral relaxation time which is the area under
solution as a series of spherical harmoniGs,(6,¢) in the  the curve of the decay of the magnetization following a
polar anglesy and ¢ (specifying the orientation of the mag- change in the applied field will be calculated as far as terms
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FIG. 1. External field and magnetization orientations in terms of b= ay (10

spherical polar coordinates. (1+a2)M J
S
linear in the perturbation, which means that the integral reand the diffusional relaxation time is
laxation time may be identified with the correlation time of
the autocorrelation function of the magnetization. ™= BI2b. (11

(We remark that is often denoted in the literature by
while b/a is denoted byg’.) Herea= nyMg (also denoted
by «) is the dimensionless damping parametgrs the phe-
In the particular nonaxially symmetric problem of nomenological damping constant from  Gilbert's
uniaxial anisotropy with the applied field at an angi¢o the  equation:*?**and vy is the gyromagnetic ratio. The first
easy axis which we are considering, ti&bbs free energy three terms on the right hand side of Ed) are purely dis-

II. MAGNETIC RESPONSE FUNCTIONS
AND CHARACTERISTIC TIMES

density per unit volume is sipative terms and the last term prefixedlya is the gyro-
. 5 . magnetic term. In Ref. 18 is assumed to be so large that the
V(r)=pg""o[1-(r-e)]=p "&(r-h), (1) influence of the gyromagnetic term on thé eleelaxation
where time 7, where
r=M/Ms. () _ 27y _(Bb)
T x x (12

M, is the mean magnetization of a nonrelaxing particle and
the polar angle® and ¢ (see Fig. 1 specify the orientation s negligible.\, is the smallest nonvanishing eigenvalue of

of M. —(B/b)Lep.
In order to calculate.; including the effects of the gyro-
o=Kuv/kT ©) magnetic term we shall first calculate the linear response of
is the anisotropy parameter, f[he system following a small decreadg in the fieldH. H;
is such that
E=HMg/KkT (4)
UMSHl/kT: §l<1 (13)

is the external field parameter, ahds the orientation of the

external magnetic fielth. The orthogonal coordinate system so that termgD(£5) may be ignored. Thus the initial condi-
€,,6,,6; is chosen so that; is parallel to the anisotropy axis tion for linear response may be imposed by replacinith
andh is parallel to the plane containirg ande; (see Fig. £+ ¢, for t<0 whereé; <¢. The system is assumed to be in

1), hence thermodynamic equilibrium at= 0,0, so that both the initial
and final distributions are of Maxwell-Boltzmann type,
h=sin e, +cos ye;. (5  namely,
The distribution of orientation8V(r,t) of the magnetization — BV
M of an assembly of noninteracting single-domain ferromag- W(r,0)= € '
netic pargi%es on the unit sphere satisfies the Fokker-Planck e BV+Erhg Q)
equatiod®
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e~ BV value is then the smallest root of the characteristic equation
W(r,0)= . (14)  of the system where a set of equations large enough to ensure
f e 8VdO convergence of the system is taken. This may be accom-
plished by expanding the distribution function in spherical

Here the volume element @ = sin #déde and the surface harmonics as we shall now describe.
integrals are over the unit sphere. The relaxation behavior is

described by the response function . MATRIX FORMULATION OF THE
FOKKER-PLANCK EQUATION

f(t)= lim & *(r-h)—(r-n)g)= > Ae P M, >0, The nonaxially symmetric nature of the Gibbs free energy
&—0 ' means that the distribution function in the Fokker-Planck
(15 equation is also nonaxially symmetric. The smallest nonva-
where Ay,Ap, N3, ...; {0<|\q|<|Ny/<|Ng|<---} are nishing eigenvalue of the Fokker-Planck equation could in

the eigenvalues and;,A,,A;, ..., thecorresponding am- principle be calculated by posing the calculation\gfas a
plitudes of — (B/b)Lgp and315 Sturm-Liouville problem. A better method in this case, how-

ever, when two variables are involved is that one should
expand the solution of the Fokker-Planck equation as a series
of spherical harmonicg-ourier-Laplace seri¢sThis leads to

a set of differential recurrence relations for the Fourier coef-

- : ficients.
= + wdQ . . i
j (cos g cosy+sin 6 cose sin ¢) The spherical harmonics are definedby

<r~h):f r-hw(e,e,t)dQ

(16)

represents the decay of the average cosine in the direction of

the field. The subscript zero denotes that the statistical avelwherePy, denotes the associated Legendre functions. In ad-

age is to be evaluated in the absence of the perturbgtion dition we shall require the normalized spherical harmonics
The normalized complex susceptibilig(w) may now be N X m, where the normalization factor is given by

evaluated since accorditigo linear response theopy( ) is

Xi.m(0,0)=P"(cos 9)e'™*, |m|<I, (19

given by o amy (@D —m)!
Nn= DN o irm (20
X(“’)/X’(O):l_i“’fo e '“'f(t)dt We remark that the normalized spherical harmonics form a
complete biorthonormal basis fdc?{Q},Q={r,||r||=1}
Ay (the Hilbert space of square integrable functions which are

IEk: m/ ; Ac. (17 defined on the unit sphereWe further remark that the
spherical harmonicX satisfy?° the symmetry relatiofthe

A global quantity associatdavith the decay of the mag- Star denotes complex conjugate
netization in addition to the mean first passage timlkich is
the lifetime of the longest decay mads the integral relax- X = ppX pm=(—1)"
ation time(which is the area under the curve of the decay of Lm=m= PmAtme - Flm
the magnetization, i.e., the correlation time, since the re-

sponse is linear The integral relaxation time is given % We shall now suppose that the solution of E6). has a
representation as a Fourier series

(I=m)!
(I+my!”

(21)

Tc:bﬂ-lf f(H)dUF(0)=> N *AJD Ac. (18
0 3 K W= 20 N 0Xm(1): (22
< B '

The integral relaxation time, because it is the area under the m

curve of the decay of the magnetization, is a relaxation timéNow Eqg. (1) becomes

which provides a measure of thelative contributions of all

the decay modes of the systéhoth long and short livedIn BV=0(1—a3)— &(aysin g+ azcos i), (23
measurements of the reversal of the magnetization, however,

we are concerned only with the longest livédeel) mode. In BV =—20(1—3a3)+2&(a;Sin Y+ a5c0S ),

high frequency measurements such as those of the complex (24

susceptibility, the integral relaxation time rather than the .

Neel time should be usetisince at high frequencies, the where thea;=re;, that is,

contribution of the fast modes is significant. In order to cal- @,=SiN 0 COS@, a=SiN 0 SiNg, as=coso

culate the smallest nonvanishing eigenvalwbich is essen- (25)
tially the reciprocal of the mean first passage finieis first

necessary(as in Ref. 12 to represent the Fokker-Planck are the direction cosines of the magnetization. In addition the
equation in Eq(6) as a differential recurrence relation which Fokker-Planck operator when it acts on a spherical harmonic
is then converted to a first order matrix differential equation(that is LgpX; ) has the following representatiofiEq.
with constant coefficients. The smallest nonvanishing eigenf2.113 of Ref. 15 and Eq(39) of Ref. 2]
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o, 10+ 1, These may easily be related to the matrix elemeqts,, q
LepXim=b| —I(1+ 1)+ —5—V+ VNV Xy defined by Eq.(27) as follows. Form,q>0 we form the
matrices
ib(l+m)(|—m+1)( N Vv
- 2a \Fay ey A [ ®mpa  Bmpog
I,m,p,q— a _ a _ A
ba-1 aVX +ib EAVAR\Y) ma ELEme A
1oa maag lm 2a r?al I(?sz hmt+1: A al,m,p,O R 1 0
(26) B A L S T
Thus utilizing the recurrence relations of the spherical har- _(8 a
monics as in Ref. 15 we then find thaf! the expectation Aopq=(Bi0pa 3i0p-a),
valuesy, ., of the spherical harmonics, , satisfy the differ- _ _
ential recurrence relatiorj&q. (3.28 and Eq.(3.29 of Ref. Alopo=a0p0r Rip=1 (33
13] and construct the following matrices from the matrix ele-
mentse| mp.q-
Xl,m:(xl,mW):(XI,mLFPW):b,B712 €.m,p.aXp,q
p.q R%| m — |me| m
27 E _ mp.q m.p,q
MMPAT Ime g R&Lmpg
(the braces denote the inner producthe x, _,, may be
written in terms of thex",, by means of the symmetry rela- Reg| m.p.o
tion Et.mpo= V2 ’
|me|'m'p'0
X| —m= P mXf 28
i =m™ Plmm 28 EI,O,p,q:(ll\/E)(R%LOP,q —1meopq),
which follows immediately from Eq(22). Explicit expres-
sions for the matrix elements ., , , are given in Appendix Eiopo=Ree gpo- (39

A. Equation(27) constitutes a set of differential recurrence . )

relations for the expectation valugg,, of the spherical har- The various matrices above are related to one another by
monicsX, . These will allow us to write down the differ- M€ans of the equation

ential recurrence relations for the aftereffect functigt) in
Eq. (15). In order to achieve this, we introduce the surface Armp,a= Eimp,atEimp,-qRpq- (35
spherical harmoniés (the introduction of these avoids @ The matrix representation of the differential operator
complex coefficient matrix hence greatly reducing the(g/py . is now

amount of computer time requirgchamely,

A A A

Uig=Xi0r Uim=(LN2)(X)m+ X ) = V2R, P
A= 1,1,1,0 1,1,1,1 1,120 °°° (36)
U _n=(1f \/E)(Xhm— |*’m)= \/Elmth, o<m=<|, Azo010 Az011 Azo20 ¢ '

(29

and form differential recurrence relations in terms of these]-hiS is now suitable for numerical computation of the re-
remarking that the normalized surface spherical harmonic§ponse function as will be described below.

N; jmXi,m @lso form a complete biorthonormal basis for
L2{Q}. Thus we suppose that the solution of E6) has a

representation given by IV. RECURRENCE RELATIONS FOR THE RESPONSE

FUNCTION AND THE INITIAL CONDITIONS

W(r t)= N2 U (OU, (r 30 In order to set up the equations for the calculation of the
(.0 \r%‘%l it JUim(r) 30 response function from Egé31)—(36) we introduce the col-

, _umn vectors
then the expectation valuas ., of the surface harmonics

U,  satisfy another set of differential-recurrence relations, U=(U;g, Upq, Uj—1, Usg, Usy...)T, (37)
namely, ' ' ’ ' ’
B=(2£ cosyl3, 2\2&sin i3,
1 —(\ _ _hp-1
Ui m=(W,Uym) = (LepW, Uy m) =bj % &1.m,p.atp.q- 0, 4o¢/5, 0, 0, ..)T, (38

31 . . . .
S whereU satisfies the set of simultaneous differential equa-
The new matrix elements of which are given by tions

al,m,p,q:Bb_lNg,M(Ul,mvLFPUp,q)- (32 U=AU+B. (39
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The final equilibrium condition after removal of the per- 1 ) T
turbing fieldH, (i.e., a small step decrease in the magnitude Co=C(0)=WU_.+ §cos U, ?sin Y, 0,
of the external uniform magnetic figlés given by (47)
U()=0 (40) The zero frequency Laplace transforms vector is deter-

so that the final equilibrium values vector mined from Eq.(44) by solving the simultaneous equations

U= U(o0) (41) ACT(0)=C(0). (48)
is found by solving® the set of simultaneous linear equations 1he solution of Eq(44) is given by
AU..=-B. (42) C(t)=Se# HiK, (49)
The decay modé$ of the magnetization, namely, wherelL is the diagonal matrix whose components are the
eigenvalues\i, A\, A3, ..., and
C= lim (U-U,,), (43
£-0 SR
expressed in matrix form satisfy the set of simultaneous dif- s=| st st (50)
ferential equations
C=AC. (44) is the matrix whose column vectors are the eigenvectors of

A. The vector
Let ¢, ,, denote the components @. It then follows from

Egs. (14) and(15) that the initial valuegthat is just before K=(ky, Koo ..., kyT (51)

the removal of the initial perturbing fieldare given by ) . ) ] .
is found by solving the set of simultaneous linear equations

f U, e AVHarhgq SK=C. (52)
¢ m(0)= lim &;* . .
, £0 _av+erh The response function in E¢15) may be determined from
! e 1dQ the decay modes because
f Uy me #VdQ f(t)=coS gicy (1) +Sin Yoy (1) = >, Aie™P8 ML,
I
B (53
J e AVdQ . . .
so that the amplitudes defined by E8) are given by
f r-hU, ne AVdQ A=ki[cos ySHO+ (1/y2)sin ySY] (54)
= and the expression for the correlation time in Et8) be-
f e AVdQ comes
COS C1 ((0) +sin c, 4(0)
f r'he_BVdQ j U|’me_BVdQ C:COS ¢Clvo(0)+sin ¢C1,1(0) . (55)
(45)
J e AVdO J e AVdO We now have formal expressions for all the quantities
required to describe the response following a small perturba-

tion in the external field, namely, the response funcfift)
in Eq. (15), the complex susceptibility(w) in Eq. (17), the
C1.m(0)= (U m/3€) () ={r-hU; o= (r-h)o{U; mo correlation timeT, in Eqg. (18), and the mean first passage
time or Neel time* 7=2ry/\ ;. Both numerical and analytic
aspects of the problem will be greatly simplified if we have
an approximate analytic expression foy in the high barrier
limit. Such an expression serves as an important check on the
Let w; m g denote the coefficients when tlig,, are re-  validity of the numerical calculations while simultaneously
placed by the, ,, then thew, ., , 4 are found by applying the providing an analytic formufawhich may be compared with
spherical harmonic recurrence relations and are given in Apexperiment. The calculation of such an asymptotic formula is
pendix B. The matrix elements; ,, ,  may then be deter- much more difficult in a nonaxially symmetric problem in-
mined from thew, ., , 4 Using the transformation defined in volving two reaction coordinates such as the present one,
Eq. (39 (@mpq and e mpq replaced byb, ,,q, and than in an axially symmetric problem where the mean first
Wi m.p.q+ F€spectively. The principle is the same as that usedpassage time depends only on a single reaction coordinate
for the axially symmetric cas€.The initial values vector is (namely, on the latitudeand exact analytic solutions far
then given by for every barrier height existNevertheless the intermediate

This may be written in a more compact form

:2 bl,m,p,qup,q(oo)- (46)
p.q
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to high dampingIHD) method of Kramer$:?° (as general- minima atf= 6,, 6, where 0< < ; it is related, although
ized by Langer and Hagi et al2®?’) for the treatment of the in essence? entirely different in origin, to the translational
escape of particle@iffusing in phase space so that the pro- single reaction coordinate problem considered by Krarffers.
cess is described by two variables, namely, position and veSuch an axially symmetric calculation leads to a rough esti-
locity) over potential barriers in the IHD barrier limit may be mate of\, in the high barrier limit as described in Ref. 12,
applied to the present problem. This two variable Kramerdowever, the application of it to a nonaxially symmetric po-
procedure(although not mentioned explicitly as such by tential cannot be justified. The two reaction coordinates
them) appears to have been first introduced into the theory ofind ¢ must be included in the calculation of the asymptotic
superparamagnetisfwithout reference to Lange?Swork)  estimate by adapting the Kramers calculatfdf of the es-

by Smith and de Rozartdin a discussion of relaxation in cape rate of a particle moving in phase space in the IHD limit
cubic anisotropy potentials, it was in effect also used byto the present problenfessentially using the approach of
Eisenstein and Aharoffiand generalized to an arbitrary non- Langef®). As we have mentioned this was achieved by
axially symmetric potential by Browfl and later discussed Brown'® (without reference to Langer, and without any dis-
by Klik and Gunthef in relation to the Kramefé two vari-  cussion of the range of values of the damping parameter for
able theory. In the following section we shall apply the twowhich it is valid ) by calculating the flow of representative
variable IHD method to the calculation of asymptotic expres-oints across a saddle point of the potentthht is a point
sions for\, for the problem in hand. We shall also provide where the potential is a minimum with respect to the direc-
an asymptotic formula foi; in the very low dissipation tion cosinea; and a maximum with respect to the direction
limit following the Klik-Gunthef? adaptation of the uniform cosinea,). The result holds good for any well behaved non-
expansion of the mean first passage time method of Mataxially symmetric potential, as far as the present problem is
kowsky, Schuss, and Tfrto the general nonaxially sym- concernedfor details see Refs. 10 and )15

metric superparamagnetic problem. The IHD calculation of BrowH supposes that the free

energy per unit volum®=V(r) has a bistable structure with

V. USE OF BROWNS HIGH-ENERGY BARRIER minima at 6, and #, separated by a potential barrier that
APPROXIMATION FOR NONAXIALLY SYMMETRIC contains a saddle point &} (where it is assumed that thée
POTENTIALS are coplanar If one denotes the plane containidg by II,

then for each =0,1,2, one can define an orthogonal triad of
unit vectors E;=(e{",el),e{’) with e{"L 11 and ef,ef’
ell. If

h<h, (56) XT=(al, el al)

1,02 ,a3

We have shown in detdfl for the potential of Eq(23) if
the parametér h=¢/20 satisfies the condition

where denotes the coordinate vectddirection cosinesof r with

—T(ai 234 2/31-312 respect tok,, respect_ively, and is close to the stationary
he=Lisin ) (cos¢)™] point #; of the potential, them=E;X; andV(r) can be ap-
=/1+ta 1+ (tar) 231732 o<uy<#/2 (5 proximated to the second order of small quantities by the
L1+ (tang) ==~ ¥ (57

) ] ) Taylor series
then the free energy [of Eq. (1)] remains bistable having a

maximumV,, say, separated by minim\g ,V,. The smallest 1 . Lo

nonvanishing eigenvaluk, of the Fokker-Planck equation, V=Vit E[C(ll)(a(ll))zJ“C(Zl)(“(zl))z]- (59

Eq. (6), is the rate of escape of magnetic moments over the )

potential barrier characterized by the maxim\fg The con- In the context of the present problem we introduce the pa-
dition ianOEq. (56) was originally given by Stoner and rameters
Wohlfarth™ in their discussion of the construction of hyster- _ .
esis loops from the potential given by E@l) and by u=hcosy, wv=hsind, (60
Pfeiffer! who studied the reversal of the magnetizatitre  then the condition for a stationary point of the Gibbs free
present problemin the discrete orientatiSn(Neel) approxi-  energy is

mation. We have already derivicby neglecting the gyro-

magnetic term in Eq(7) and imposing axial symmetry, an (x+Uu)V1-x?xvx=0, (61)
approximate asymptotic formula for; in the limit of high

) ) . . h = . This is Eq.(28) of Ref. 12 wh h -
potential barriers. This formula is Eq72) of Ref. 12, wherex=cos. This is Eq.(28) of Re where the nega

tive sign corresponds to the stationary points which occur for

namely, ¢=0 while the positive sign for the local maximum which
VTR occurs forg= . The truncated Taylor expansion in E§9)
)\lzism 0o /_IBV”(QO){'B_V—(el)e_ﬁ[v(eo)_v(el)] yields (after a long calculation which has been discussed at
2m sin 6, length in Ref. 1%
+ VBV (02) e_ﬁ[v(go)_v(gz)]} (58) ViZB_lo'(l—Xiz_ZUXi_ZV\/l_—XiZ), (62)
sin 02 '
(— 9 p—1(y2 I
This equation is simply Brown'’s origina{1963 calculation C1'=28" "o (X +uxi+ry1-x), (63

for an axially symmetric potential which has minima @t : ~
=0,m when applied to the case where the potential has cY)=28"to(—1+2x*+ux+vy1-x), (64)
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where — 1< x,<xy<xy<x;=<1 are the roots of the quartic o[1-2h+ \/1+4a*2h(1—h)]\/(1+h)
equation A= T g-o(1-h?
7vh
(x+u)?(1—x?)=1v?x? (65) (73)
which is obtained by squaring E¢61). Thus thev; ; of the two level system described by E7)

We shall now suppose that the ratios of barrier height taare degenerate in this case. We remark that the axially sym-
thermal energy become appreciable, ig(V,—V,;)>1, so metric approximation Eq(82) of Ref. 12 differs from Eq.
that we may assume that the density of magnetic momer({¥3) in the high damping limita—«, simply by the factor
orientationsW rapidly achieves a state of quasiequilibrfm /h so that both formulas become asymptotic to each other as
thus the Fokker-Planck equation in E@) reduces to the h—1. In the other soluble casg= n/4, the stationary con-

master equation dition Eq. (61) becomes
Ny =—Ny= vy Np— 66 h
1= M= 2™ v (68 xVI—x2+ —(yI—x2—x)=0. (74)
and J2
1 Let
N~Bb™ H(vyotvay). (67)
Thus after a very lengthy calculation which is analogous to w=1-x2=X, (79

that of Langef® and is detailed fully in Ref. 15, Sec. V we
have essentially Brown’s asymptotic IHD formula, E§4)
of Ref. 10 or Eq.(5.60 of Ref. 15, namely,

M =B(VcPee AV Vi 4 e cPemFlVomV2))

2—hy2w—1=0.
— 10— O+ \/(cl0 — cl9)2— 42~ 2¢O w?=hy2w 0 7
1 2 2 1 1 >2
X ) The roots of Eq(77) are

4= O

then Eqs(74) and(75) yield, respectively, the pair of simul-
taneous quadratic equations

2x2+2wx+ (w?—1)=0, (76)

(68) We1=

N1 may be evaluated analytically in three distinct cases. First
=0, the axially symmetric case. Here the process dependience the simultaneous solutions of E(&6) and (77) are

on the single reaction coordinate (and so is valid for all the four roots of the pair of quadratic equations obtained on
values of the damping parametand we have the axially replacingw in Eq. (76) with w., in Eq. (78), i.e.,

symmetric results of Browhand Aharorft (an exact integral

(78)

solution for the problem may be obtained from the theory of wy 1 Wi
mean first passage times as described in Re&n8 asymp- X:1:7i7 1- Py
totically, 2
25312 , , h+vh2+2  Vi-h?+hyh?+2 79
A= 1-h?)[(1+h)e "M 4 (1—h)e e@=M7, == * )
1= = (1Ol (1—h) ] -~ 5
(69)
2
The other cases ang= 7/2,7r/4 which were also considered , o W N 1 W1
by Pfeiffe! in the discrete orientation approximation. Here Xe1= ™ T—ﬁ 1= 2
the quartic equation(65 may be easily factorized. For
y=ml2, Eq.(65) becomes —h-+hZ+2 \/1—h2+h\/m -
2010 _h2_ 2y — = * . 80
x“(1-h"=x)=0, (70 2\/5 2
hence Let
X2:_\l_h y XOZO, Xl:\l_h . (71) \/l_hzth\/h2+2
Equations(62)—(64) give Se1= 2 : (8D)
B(Vo—V)=c(1-h)?, =12, cP=cP=2K, then EqQs.(62)—(64) yield for the various constants in Eqg.

(68)

ciV=cP'=2K(1-h?), c{”=2Kh, o
0 B(Vo=V1)=5Vh*+2(S;+8_y),

cy)=—2K(1—h), (72)

hence B(Vo—V,)=0S_(Yh?+2-3h),
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C&l)=ﬁ_10'[1+(h+ \/m)sl]’ Plot of A versus o, h=0.1,0.2, a=0.2
cV=2p"10S,\Vh?+2,

=8 "to[1+ (h— Vh?+2)S_4], =
¢f¥'=—2p oS W7 +2,
c®@=p o1+ (—h+h%¥2)S_,],
c@=28"1S_,hZ+2. (82

which are explicit forms for the constants in E§8). As far
as the other values af are concerned, the application of the
algebraic formula for the roots of the quartic equati6b) so 0.0
as to express\; of Eg. (68) in terms ofu and v is not 00
recommended due to the proximity of the roots@andx .

For accurate results a numerical method such as Newton- FIG. 2. Comparison of exact\(=\g) and asymptotic X,
Raphson should be used instead. The asymptotic estimat&s\a) expressions including the gyromagnetic term. Evidently, Eq.
for A, which we have presented above are based on the |HEY3) Yields a good approximation to the high barrier solution in both
case of the Kramers theory. The original investigations byFaS€s:

Smith and de Rozartd and Browrt® did not stat@ the range

of values of the friction for which the IHD formula E¢68) IHD formula is applied in cases wheraB(Vo—Vs)
was valid. This problem was first addressed by Klik and>1,8(V,—V,)>1, and the low damping formula of Eq.
Gunthef? who presented a formula far *=27,/x; while  (87) is used in cases wheeB(Vo—V,)<1,8(Vo—Vy)>1.
considering for convenience one escape path @higt over A detailed discussion of this is provided in Ref. 3.

the lower barriex. The asymptotic equation in their 1990

paper was given as

10

oo oo
Mo ==

2.0 4.0 6.0 8.0 10.0
c

VI. IMPLEMENTATION OF NUMERICAL
COMPUTATIONS

_ ay _ _
= e e (Vo— Vo)e VoV (83 ,
s Exact values of\; were computed by programming the

Equation (83) is similar to the low damping formula of matrix form of the Fokker-Planck equati¢as described by
Kramers;* however, Kramer$ included a factor of 1/2 in  Eq. (36)] in FORTRAN, where the indice$,m of the matrix
his calculations. This factor must also be inclutiéu the — elementsA, ., , 4 in Eq. (35) are used to determine the row
formula of Klik and Gunthef? and so we obtaftt? positioning of the elements, and the indiges| are used to
determine the column positioning of the elements. The low-
_ Y oo, (Ve est eigenvalua.; is determined by diagonalizing the matrix
7 1:277MS o (Vo=Vo)e Ao 2. (84) using an eispack routineGG. To ensure convergence for
i ) each set of parametelgo,a, ¥, the matrix size parameter
If we extend EQ.(84) to include both escape paths, it be- |jax [where the order of the square matrix is given by
comes Imax*(Imax+2)] is increased repeatedly until successive
values of\, lie within a tolerance of 10%. By using this

T—l:i[\/C<12>C<22)(V0_Vz)e—B(Vo—Vz> procedure, we can ensure accuracy of the results.
2mMs The barrier height parameterdominates the order of the
RGN — B\ matrix required in order to obtain convergence. For example,
* C(l )C(Z )(VO_Vl)e plomv], (89 when theqbarrier height parameter is inc?eased feorb to P
Using the fact that o=10, the matrix size parameter Imax is increased to ensure
convergence, and generally, CPU time requirementsofor
ay ay =10 are more than ten times that of the cases wher&. It

b= 11a)M. ~ M. (86)  has been observed in the calculation\gf that the diagonal
s S terms of the matrices involved increasergswheren is the

for smalla, we can form an expression far, order of the square matrices. This would explain the increas-
ing difficulty of the problem, and the increase in CPU time
B AW BV requirements as the dimensions of the matrices increase.
)\122[ /C(l )C(2 )(VO_VZ)e B(Vo—Vy)
++cMeSH (V- Ve FVo Vi, (87 VII. NUMERICAL EVALUATION OF THE NE ~EL TIME

. . AND COMPARISON WITH ASYMPTOTIC ESTIMATES
Hence, the low damping results fayg are given by Eq(87).

Klik and Gunthef? introduced a criterion for the validity of In this section we compare our numerical calculations of
the IHD formula and the low damping formula in that the the Neel time as yielded by the formula
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Plot of A, / A versus ¢ for h=0.1,0.2,0.4,0.5,0.7,0.8

T T j h=04
h=0.5
h=0.2
1.0 h=0.1
h=0.7

0.8
RT3 h=0.8

04

02

0.0
. 10.0

(s}

FIG. 3. Comparison of the solution,(7/2) yielded by the
asymptotic formuldEq. (73)] in the high damping limia— oo with
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Plot of & versus y h=0.1, a=1.0, 6 =10

0.025 T T

0.020 - b

A 0.015

0.010

Ae

0.005

40.0 60.0 80.0

W

0.0 20.0

the exact numerical solution. It is apparent that the systematic error FIG. 5. Same as Fig. 4 except 10.0. In this case therefore,
in Fig. 13 of Ref. 11 is removed by the correct asymptotic formula.the IHD formula of Eq.(68) provides a better approximation to the

T=27N/N\ (88
with the asymptotic estimates fap=n/2,7/4 yielded by
Egs. (68), (73) and Egs.(68), (74)—(82) which are the only
cases where explicit solution of the quartic equati6b) is
possible. Thus in Fig. 2for = 7/2) we show the behavior
of Ng which is\ 4, obtained from the exact numerical solution
when compared with 5 which is the behavior yielded by the
nonaxially symmetric asymptotic formula EQq(68)
(= w/2) [which leads to Eq(73)] for a value of the dimen-
sionless damping parametar=0.2. It appears from these
figures that the asymptotic formula E®8) provides a good
approximation toxg for large barrier heights. This is rein-
forced by the results shown in Fig. 3 which are for infirdte
values(the high damping limijt It is apparent that the ratio

Plot of A versus y a=0.1, h=0.1, =10

0.028 T T T

0.024

0.018

A 0,013

0.009

0.004 - B

-0.002

40.0 60.0 80.0

v

0.0 20.0

FIG. 4. Comparison of the exact value ©f, i.e., \g with the
low damping approximation of Eq487) (A p), and the intermediate
to high damping approximation\(yp) of Eq. (68) (denoted by o
in all other figureg The figure illustrates that in the case of low

damping @=0.1) the low damping formula provides a better ap-

proximation to the exact solution.

exact solution.

Na/Mg is in the vicinity of 1 for allh values of interest. This
result should be compared with one yielded by the
asymptotic formula using an axially symmetric approxima-
tion as given previously by U€q. (82) of Ref. 12, namely,

(89

20(1-h)\1+h _ .
1= ¢ .

ks

It is apparent that in the high damping limit, the two formu-
las differ simply by the factoryh so that they become
asymptotic to each other &s— 1, the error so increasing as
h decreases. The effect of thé correction is then to elimi-
nate the constant error apparent in Fig. 13 of Ref. 12.
However, whera is very small and satisfies the criterion
aB(Vy—V,)<1, then the low dampin@g.D) approximation
formula of Eq.(87) must be used. Figure 4 illustrates the

Plot of &, / A, versus o for h=0.1,0.2, a=0.2, y=90°

2.0 T T T T

h=0.1

M/ 10

0.5

0.0
0.0

6.0

2.0

4.0
c

8.0 10.0

FIG. 6. Ratio of the asymptotif\ 5 yielded by Eq.(73)] and
exact expressions for; with a finite (=0.2) providing reasonable
constancy, and so indicating that E(73) provides a useful
asymptotic estimate in these cases.
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Plot of xg /X, as a function of a, 5 =10.0, w=90.0° Plot of A, / A versus o for h=0.1,0.2,0.3,0.4, y =45°

30.0 T T T T T T T T T T T T T T T

h=0.3
h=02

h=0.1
h=04

0.0 1 I I L L L L 1 L h=0.1 01 L L L L L L L L L
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 05 15 25 35 45 55 65 75 85 95
a o
FIG. 7. Ratio of[Aa(@)=Ng] and [Aa()=\,] showing the FIG. 9. Comparison of the solutiof\,(/4)] yielded by the

variation of Ay(@)/Ay(=) for various values of the parametar  asymptotic formula of Eq(68) in the high damping limit §— =)
Clearly the effect of the gyromagnetic term is to decrease the lonwith the exact numerical solution, the constancy indicating that the
gitudinal relaxation time. asymptotic estimate again yields a good approximation to the exact

. . . . solution.
exact eigenvalue\g, the approximation given by the IHD

formula (\1yp) of Eq. (68), and the approximation given by This can be understood by means of the following discus-
the low damping formulaX,p). On examining Fig. 4, itis  sjon. Without an applied field, or with an applied field and
evident in this casea=0.1h=0.10=10), that the low =0, the gyromagnetic term in the Gilbert equatf@orre-
damping formula provides a much better approximation tosponding to the fourth term in EG7)] has no effect on the
the lowest eigenvalue. Figure 5 provides a plokgf Ajup,  calculation of the Nel relaxation mode, which means that
and\p for the case whem=1.0h=0.10=10. Here the the longitudinal (Neel) and the transverséprecessional
criterion ag(Vo—V,)>1 is obviously satisfied, and it is modes are completely decoupled from each other. The effect
clear that in this situation, the IHD formula of E@8) pro-  of the dimensionless damping factaron the longitudinal
vides a much better approximation to the exact value of thengel) relaxation mode manifests itself solely through the
lowest eigenvalue. diffusional (ry) time, proportional to (#a?)/a, which
From Fig. 6 onwards, we use the IHD formula to approxi-|eads to the disappearance of theeNeelaxation in the lim-
mateX; (namely,\,). In Fig. 6, we show the ratio of the jting cases 4= and zerg. Now, with an applied field with
approximate value ok, given by Eq.(68), and the exact  different from zero, there is a strorfgnode-modg cou-
valueXg (Ma/Ag) versuso for finite a=0.2. Again the con-  pling between the two modes of motion. The mode-mode
sistency is reasonable indicating that E8f) provides a use-  coupling manifests itself as a geometric dependence of the

ful asymptotic estimate in this Cas-m., as borne out by Flg prefactor Of)\l on a which for = /2, for example, is
2). In Fig. 7 we show the variation ok (a)/\a(x) for

various values of indicating that the general effect of the ovJl+h —
gyromagnetic term is to decrease the longitudinal relaxation Z?[1_2h+ V1+4a ?h(1-h)]
time.

—| — — 0
Plot of & versus o, h=0.1,0.2, a=0.2, y=45" Plotof &, / A versus o for h=0.1.0.2, =02,V =45

20 . . 20 —— — .
h=0.1
18t 1
h=0.2
16 | 1
15t 1
14 f 1
12t &
Aq0 - _ CNER T .
08 f ]
06 1
05 t 1
Ayh=0.2 0.4 - |
Aeh=0.2
Ah=0.1 0.2 1
Agh=0.1
0.0 L 1 L 1 0.0 1 1 L 1 1 1 L L 1
0.0 2.0 4.0 6.0 8.0 10.0 00 10 20 30 40 50 60 70 80 9.0 100

(o} (¢

FIG. 8. Same as Fig. 2 witi¥=45° rather than 90°. FIG. 10. Same as Fig. 6 except=45°.
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Plot of A,/ A, as a function of a, y=45 Plot of 1/ versus v, 6 =10.0, h=0.2, a=0.2, 10°

10.0 T T 52.5
9.0 - b 47.5
8.0 - b 42.5
70 - B 37.5

32.5

Agih,
VA 275 1/A,,a=10°
22,5

175

&

E=0,4

hos 125 Ag,a=0.2

h=0.2

h=0.1
1.0 L . L : 008 w5 1/A,,a=0.2 i
"0.10 0.20 0.30 0.40 0.50 0.60 o5 aa=U.

a 0.0 200 400 60.0 80.0 100.0 120.0 140.0 160.0 180.0
FIG. 11. Same as Fig. 7 except=45°. v

_ ) ) ) ~ FIG. 13. Variation of the reciprocals of the exact and asymptotic
which we shall use for the purpose of discussion. It is evivalues of\; with  showing that the e relaxation time is an
dent that the precessional mode corresponds to very highbsolute maximum ap=90° and a minimum afy=45°.
frequencieg(that is, to very short times, much shorter than
Fhe N.EEI time whena is not toq smal[in fact when Eq(73) should be valid as the effective barrier height is only half that
's valid]), and that the coupling leads to a decrease of thg, =0 or ¢=m/2. This makes numerical calculations
Io_ngltudlnaI(NeeI) time co_mpared to the case_whe_re NO COU~re difficult to carry out as a larger matrix size must be
pllng acts. Thus, t.he variation of the relaxation time of thetaken in order to ensure convergence. Inspection of Fig. 11
Neel T"Ode .W'tha IS goverr_1ed by two fazctors, namely, the shows that the constancy afy/\g is also remarkable for
?AﬁgS'_orﬂald time TN"rEprO?fogt'ﬁn?il t?h(lga r)/ al ang\lb{vittne this case for values af in excess of about 8 for the reduced

ode-mode coupling effecthat is the decrease ofNy/ field h given. It is apparent from Figs. 9 and 10 that the

a). . ; . ) ;
. . B systematic error induced by the axially symmetric approxi-
Figures 8-10 show the behavior B for = /4 com- mation[Egs.(101) and(102) and Fig. 14 of Ref. 1Ris again

pared with the asymptotio,. It is apparent that the eliminated by use of the correct asymptotic formula Eqgs
asymptotic estimate yielded by Eq$8), (74)—(82) again (68) (74)—(8y2). In Fig. 11 we shoyw IC1[he variation o?
provides a good approximation to the exact solution. WeAA(é)/)\A(oc) for 4= /4 with a

remark, however, that higher values ®fat givenh have to

be taken in this instance in order that the asymptotic formulqh In situations where the value gf differs from 0r/d,m/2,

e quartic Eq(65) is solved numerically and the roots or-
dered using—1<x,<Xo<xj<x;<1. The rootx;, corre-

8
Plot of A versus y, 6 =10.0, h=0.2, a=0.2, 10 sponding to the anisotropic maximum at=1 is not re-
0.15
Plot of &, versus vy, h=0.2, 6 =10.0, a=0.2, 10°
0.13
0.14 — — .
0.1
0.12
0.09
r 0.10
0.07
Ay™. 0.08
0.05
0.03 0.06
0.01 e 0.04 [ d
0.0 200 400 600 80.0 100.0 120.0 140.0 160.0 180.0
v
0.0

2 1 1 Il 1 1 Il Il 1
0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

FIG. 12. Variation of the exact\j=\Ag) and asymptotic X; v

=\,) values of\; with . The asymptotic estimate given by Eq.

(68) provides a good approximation to the exact solution by reason- FIG. 14. Variation of the asymptotic values af;, when
ably predicting the behavior of;. The deviation neag=0° is due  Aa(®)=Aa,a=10F, and A5(0.2)=\,,a=0.2 with . The plot

to the fact that the asymptotic estimate of E&g) is no longer valid  confirms that the effect of the gyromagnetic term is to reduce the
in the regiony=0°. relaxation time.
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Plot of A4/A, as a function of a, 6=10.0, =30 TABLE I. The lowest nonvanishing eigenvalug for various
values of the barrier heights{) and field parametershj; =0°.

8.0 T T T

A
h =02 0=05 0=10 0=20 0¢=50 0=10.0

001 1844 1627 1306 0.8079 0.1354 0.002920
0.1 1845 1629 1.314 0.8322 0.1876 0.00860
0.2 1846 1.634 1.336 0.9056 0.3134 0.03830
0.4 1849 1.659 1426 1196 0.9109 0.3846
0.5 1852 1.676 1.493 1412 1.398 0.8829
0.7 1860 1.723 1.671 1974 2782 2.927
0.8 1.864 1753 1783 2317 3.670 4.524
1.0 1.876 1823 2.049 3.121 5824 8.777

.0 L 1 1 1
0.10 0.20 0.30 0.40 0.50 0.60 . . ) )
a of the gyromagnetic term is to reduce the relaxation time.

i . R Finally in Figs. 15 and 16 we show the variation of
FIG. 15. Same as Figs. 7 and 11 wifhv30°. Na(@)/Aa(°) with a as computed fory=30° and = 75°
using the asymptotic formula E¢68).

The results we have just given confirm that the asymptotic
formula following the Brown® approach[Eq. (68)] is ca-
pable of providing an accurate description of theeNelax-
ation time for the present nonaxially symmetric problem in
the IHD limit [where the criteriora8(Vy—V,)>1 is satis-
fied]. Brown’s approach which appears to have been sug-

quired. On proceeding in this way it is then possible to
compare the variation of; with the angley as predicted by
the exact solution with that yielded by the asymptotic esti-
mate Eq.(68). This is shown in Fig. 12. Figure 13 which is
the reciprocal of Fig. 12, shows that in all cases thesINe
relaxation time has an absolute maximumyet /2 and a

s 55 g s emsnens sy S5 by e srer work of omih n e oz
=q. gain pr ¢ ) O effect an adaptation to spin relaxation of the intermediate to
The deviation neary=0 is consistent with the fact that the high damping asymptotic formula of Kramé&tgalso Eq.

asymptotic estimate, E¢68), is no longer valid i.n thg region (25) of Ref. 14 for escape rates for a process governed by
#=0. The asymptote should be constructed in this case Uspe Fokker-Planck equation in phase spatee Klein-

ing the Brown-Aharoni formula E¢(69). This formula does  kramers equatiol) to the present problem. In the limit of
not exhibit the characteristi¢h dependence of the nonaxi- very small damping Eq68) will reduce to a formula analo-
ally symmetric asymptote neither does it contain the dimenyoys to Eq.(26) of Kramers* (the transition state value in
sionless damping facta arising from the inclusion of the  hjs nomenclature This is unphysical, since it indicates that
gyromagnetic term which occurs when one uses(E8. S0 Neel relaxation can take place in the limit of zero friction
invalidating that formula for very small values #<0.1,  and it is an artifact of applying the IHD formula beyond its
and for 4=0 also invalidating Eq(68) as there is nca  range of validity. In order to discuss the behavior at sraall
dependence in this axially symmetric situation. In view ofthe Jow friction Kramers formula must be used. In general,
the acceptable approximation provided by the asymptoti¢he |HD theory may only be applied when the energy loss
formula of Eq(68), we have shown in Flg 14 the variation during one period of the undamped mo“bmy precessio)f]
of A with ¢ for a=c0 anda=0.2 confirming that the effect s >kT. If this criterion is not satisfied, the moderately
damped formula must be usgcbntrolled byag(Vy—V,)].

Plot of 4/, as a function of a, 6=10.0, y=75’ A discussion of the problem in the context of the
Kramers* calculation has also been given by Klik and
Gunther?? In order to further assist the reader we show in the

22.0 T T T T T T T T
20.0 p

- TABLE Il. The lowest nonvanishing eigenvalug for various
values of the barrier heighto{) and field parametershf; #=30°.

18.0
16.0

14.0
Afh, 12.0

g M

- A,l
| h 0=0.2 0¢=05 0¢=10 0¢=20 o0=50 o0=10.0

10.0 . 0.01 1.844 1627 1306 0.8079 0.1358 0.002924
01 1845 1629 1.313 0.8297 0.1743 0.008450
0.2 1845 1634 1.334 0.8691 0.306 0.04819
Tess 04 1850 1656 1416 1.165 1.022  0.8447
& =F 05 1.852 1.672 1477 1371 1706  2.248
20 — b0 0.7 1859 1716 1.641 1.929 3.905  8.499
0.10 0.15 0.20 0.25 0.30 0.;35 040 0.45 0.50 0.55 0.60 08 1.863 1.743 1.744 2284 5.447 13.50
1.0 1874 1808 1.989 3.148 9349  26.94

8.0

6.0

4.0

FIG. 16. Same as Figs. 7, 11, and 15 wjth 75°.
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TABLE lll. The lowest nonvanishing eigenvalug for various Plot of the Reciprocal of the Correlation time versus o, y=0°
values of the barrier heights{) and field parametershf; #=45°.

N
h =02 0=05 0=10 0¢=20 0¢=50 0=10.0 1.0 b

001 1844 1627 1306 08079 0.1357 0.002918
01 1845 1628 1312 0.8272 0.1694 0.007901
02 1845 1634 1331 08861 02895 004788 .5 O1f
04 1849 1654 1405 1127 09981 0.9523
05 1851 1.669 1461 1313 1712 2594
07 1858 1708 1609 1.825 4108  10.05 001 b
08 1862 1733 1701 2153 5850  16.22

h=0.16

h=0.1

h=0.01

manner of Tables 1-1V, a representative selection pffor 0.001,5 05 20 5.0 10.0
various angles and faai=. We shall now proceed to the 6

calculation of the correlation time. L , L ,
FIG. 17. Variation of the reciprocal of the correlation time with

the barrier height parameter for s=0°. The correlation time ex-
VIII. NUMERICAL CALCULATION OF THE hibits significant departure from increasing exponential behavior as
CORRELATION TIME o increases wheh is large(but no larger tham, at which point the

. . . __bistable structure of the potential is destroyed
The results of the numerical calculation of the correlation

time are shown in Figs. 17—-20 and in Tables V-VIII. First
the equilibrium values are obtained by solving E4), then
the initial values are obtained by means of E46), and
finally the zero frequency Laplace transforms are obtained b
solving Eq.(48). The correlation time is then given by Eq.
(55). An alternative procedure is to construct the matrix in
Eq. (50) from the eigenvectors oh and solve Eq(52). On
calculating the amplitudes in E¢p4), the correlation time is
then given by Eq(18).

It is then apparent from Figs. 17-20 that the correlatio
time always exhibits significant departure from increasin

'the Neel mode is completely swamped by the relatively fast
modes in the deeper potential well.

The behavior of the correlation timE, for small values
%f h is similar to that of 1A 4, except for values ofy in the
range of 60%90°, where a strong decrease is observed with
T. becoming very small. This is also true of the product
T\, (Figs. 21,22 and may be explained as follows. Fgr
=/2, the two minima of the energy are symmetric with
respect to the direction of the applied field and so their popu-
Nations are equal in thermodynamic equilibrium. Starting
i . i - %rom such a situation, on slightly decreasing the field, there
exponential behavior for larger where h is sufficiently is a quasi-instantaneous small change of the angle of the
large, however, far less than the critical value needed for thf‘hinima and thus the magnetic moment directico that

dlest_ruct_lon fothe %'S;akiLe naturﬁ ththe pptelgtlal. 2T1h|s go;- nly rapidly damped fast oscillations ocguthus, the area
clusion 1S reinforced by the results shown In Figs. 21 an nder the magnetization decay curve, i'E,,is very small.

where in all cases the product of the correlation time and th?n fact y;~0 while y, maintains its oscillatory character.

smallest eigenvalue shows a very marked departure frore)n the other hand whew decreases from 90°, the two
unity for sufficiently largeh and. Moreover, the effect has minima become asymmetric with respect to the applied field

a strong angle dependence, the most marked departure bei : o
at = /2. This is a striking example of the effect of a strong diection, and the decay of the magnetization appears along

uniform field which was first described in Ref. 33, and ex-
plained physically by Garanifias being due to the depletion
of the shallower of the two potential wells by the field so that . .

Plot of the Reciprocal of the Correlation time versus o, \u=45°

TABLE IV. The lowest nonvanishing eigenvalwag for various 10
values of the barrier heights) and field parametershj; #=90°.

N
h =02 0=05 0=10 0=2.0 0=50 0=10.0 T 0.1 |

001 1844 1627 1306 0.8073 0.1356 0.002906
01 1845 1628 1.311 0.8220 0.1577 0.005649
02  1.845 1.632 1.326 0.8649 0.2276 0.01889 0.01 |
04  1.848 1.649 1.383 1.034 0.5392 0.1676
05 1.850 1.661 1.426 1.158 0.7968 0.3918
07 1.856 1.693 1540 1.478 15354  1.384 0.001 . ‘ .
08 1859 1714 1.609 1671 2.014  2.198 02 05 L2 50 10.0
1.0 1867 1762 1774 2114 3.167 4585

FIG. 18. Same as Fig. 17 with=45°.
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Plot of the Reciprocal of the Correlation Time versus o, y=60" TABLE V. Reciprocal of the correlation time T{ for various
values of the barrier heighto) and the field ) parametersy
I b=1.0 ‘ h=0.5 h=04‘ =0°.
10k 03 ] 1/Tc
h c=1.0 c=2.0 o=5.0 c=10.0
h=02
0.01 1.309 0.8132 0.1375 0.002943
YT o1 0.1 1.317 0.8404 0.1833 0.008923
) o 0.2 1.343 0.9246 0.3496 0.08420
‘ 0.4 1.446 1.292 2.738 43.33
oot | o 0.5 1.526 1.607 9.160 51.79
0.7 1.744 2.648 24.58 60.75
b=001 0.8 1.886 3.451 28.05 65.11
1.0 2.244 5.728 33.17 73.68
0.001 : ‘ ‘
0.2 05 20 5.0 10.0
o
FIG. 19. Same as Fig. 17 witli=60°. > A M2 (90)

k

this direction. HereT increases, and takes on values of theand asx;<\, (k=2), the term ine >N (that is, the
order of 1k, at ¢y~75°. longest lived relaxation mode&ominates. However, in those

In fact, for ¢=<70°, the producfT,A; has only a weak experiments which measure the magnetization behavior over
dependence on the value of the dimensionless damping fae-short time interva({such as susceptibility measurements at
tor a, a slight increase being observed for small values.of high frequency, T, must be used. ConsequentlyTif\, is
As far as the dependence on the other parameters is comarkedly different from unity, then measurements at short
cerned,T .\ decreases from unity whefincreases, with an and long times do not examine the same phenomena so that
enhanced decrease df is small. On the other hand,;)A;  the results are not directly comparable.

slightly increases witlrr, and finallyT .\ ; is almost indepen- As far as the numerical calculations are concerned, the
dent ofh for small values ofo, while it decreases for high exact values of the correlation time were computed by set-
values ofo. ting up theA matrix of coefficients as in the calculation of

We wish to emphasize that values @f\; sensibly X\, and also the vectdB, as given by Eq(39). A LAPACK
smaller than unity indicate that the highaste) relaxation linear equation solver was then used to compute the solution

modes (corresponding toh,,M\3, ...) are ofimportance. to the real system of linear equations
Nevertheless for those experiments which measure the decay
of the magnetization over a long period of time, such as field AU,=—B,

cooled and zero field cooled magnetizations, and thermoreéiS iven by Eq(44), whereLU decomposition with partial
manent magnetization experiments, is the correct param- g y EALS9), p P

eter because the magnetization is governed by pivoting and row interchanges is used to factoas

A=PLU,
Plot of the Reciprocal of the Correlation time versus o, \|r=90°

whereP is a permutation matrix, is a unit lower triangular,
16.0

B=0s and U is an upper triangular. The factored form Afwas
gg%ﬁ then used to solve the system of equatiéng,.,= —B. The
= next step was to set up the matik as described in Sec. 1V,
8.0 TABLE VI. Reciprocal of the correlation time T{ for various
values of the barrier heighto) and the field ) parametersy
lfre :300.
1T,
40 h =10  ¢=20 0=50  0=100
0.01 1.432 0.8989 0.1444 0.002998
0.1 1.440 0.9269 0.1906 0.009579
20 ] ‘ ) 0.2 1.466 1.014 0.3785 0.1647
0.2 0.5 20 5.0 10.0 0.4 1.571 1.396 3.102 27.49
° 0.5 1.652 1.720 8.464 30.96
FIG. 20. Variation of the reciprocal of the correlation time with 0.7 1.872 2.756 18.31 35.75
the barrier height parameter for the case whery=90°. The cor- 0.8 2.015 3.518 20.54 38.16
relation time exhibits the most significant departure from exponen4.0 2.371 5.560 23.88 43.09

tial behavior atyy=90°.
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TABLE VII. Reciprocal of the correlation time T/ for various Plot of T\, versus y, 6=10.0, h=0.3, a=10°

values of the barrier heighiv) and the field f)) parametersy
— 450 0.20 . : . . . o :

0.18 - / \ / .

T, 0.16 / “\ ,’ \ 1

h o=1.0 oc=2.0 o=5.0 0=10.0 ] [

014 | Py "
0.01 1.614 1.053 0.1582 0.003109 o012 - oy ]
0.1 1.623 1.083 0.2053 0.009641 ™ oo | /R N B |
0.2 1.649 1.175 0.4052 0.1510 ' A N B
0.4 1.756 1.576 2.892 22.26 008 1 / \ / \ 1
0.5 1.837 1.909 6.923 26.33 0.06 |- i\ | N\ 1
0.7 2.059 2.919 14.77 29.85 0.04 - | / \ |
0.8 2.201 3.621 16.75 36.62 002 T \\ .-”[ S|

0.00 v

- i 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
and then the initial values vect@;, was evaluated as in Eq. v

(47). The zero frequency Laplace transform vedB{0) is

then computed by again using thepAck linear equation lowest eigenvalua ; and the correlation tim&, with . The figure

solver bGesy, and the correlation time was foun(_j by using shows significant departure from the increasing exponential behav-
the zero frequency Laplace transform vector as indicated by, y=90°.

Eq. (55). The matrix size parameter Imax was increased until

successive results were obtained within a tolerance of at leaﬁbplied field parallel to the easy axis. In addition it has been

_4 . .
10" All programs were again coded FORTRAN, and all  yemonstrated that the asymptotic expressions for thel Ne
results were obtained using the CRAY-J90 at the Rutherfor ime derived by Brow#"15in the IHD limit, and by Klik and

Appleton Laboratory, requiring no more than two minutes ofnthef? in the LD limit provide a good description of the
CPU time for even the most difficult cases. For exampleg, st eigenvalue for high barriers. Both formulas are good
wheny=m/4h=0.4a=0.2, ands =10, the amount of CPU o5 yimations, even in the region af3(Vo—V,)~1. A
time required to complete the calculation for successive Magigadyantage of the present method is that it is expensive in
trix sizes g|7ven by Imax25 and Imax-26, within a toler-  torms of CPU time because of the large matrices which are
ance of 10* was 78.01 sec. required. Reformulation of the solution of the set of differ-
ential recurrence relations as a matrix continued fraction sug-
IX. GENERAL DISCUSSION AND CONCLUSIONS gests that the size of the matrices involved may be signifi-
antly reduced, thus enabling one to carry out the calculation
or much larger values of the anisotropy paramétdtinally

FIG. 21. Variation of the product of the exact values of the

In this paper we have given methods for the calculation o

the Neel relaxatlo_n time and the integral rela>_<at|on Me \ve wish to emphasize the importance of the approximation
(here, the correlation timdor an assembly of noninteracting formula in Eq.(68). It yields a close approximation to the

superparamagnetic particles with the field applied at an o axact solution(Figs. 2, 3, 6, 8-10, 12, and LWvith the
ligue angle to the easy axis of magnetizatiand including exception of small vaiue,s er (os’3) z;nd very smalh

the gyromagnetic terjnby direct solution of the simulta- : ; ;
) ; ) . val =<0.05). From an experimental point of view, th
neous linear equations which arise from the Fokker-PIanckaueS 0<0.05). From an experimental point of view, the

equation.
. Plot of T A , h=0.2, 2=0.2,0.3,0.4,1.0, 6=10.0
In general terms, the behavior shows a departure of the Lol T versis W @ °
Neel relaxation time from the integral relaxation time similar 0.50 ' '
to that of Coffey, Crothers, Kalmykov, and Waldrdtfor an 0.45
040 |
TABLE VIIl. Reciprocal of the orrelation time Tj;, for various
values of the barrier heighto) and the field f) parametersyy 035
=90°. 0.30
Tc)\’l ..
o, 0.25
h 0=02 ¢=05 0=10 0=20 0¢=50 ¢=10.0 020 r
015 |
0.01 2.083 2.220 2.484 3.172 6.949 17.31
01 2084 2222 2492 3198 6.860 16.81 e.10
0.2 2.084 2.229 2.517 3.277 6.657 15.37 0.05 -
04 2089 2255 2617 3.588 6434  11.38 0.00 N
05 2092 29274 2692 3818 6575 10.10 00 200 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

0.7 2.100 2.327 2.892 4.415 7.448 9.975 Y

0.8 2.106 2.340 3.018 4.776 8.162 10.938 FIG. 22. Variation ofT \; with  when the gyromagnetic term

1.0 2.118 2.439 3.318 5.608 10.08 14.441 is included for various values @. The figure shows that the gyro-
magnetic term has no effect on the behavioiTgx ;.
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former situation ¢<3) corresponds to very short relaxation
times which are very difficult to obserexcept by neutron
dispersion, while the latter 1i=<0.05) occurs in examples
such as field cooled and two field cooled magnetization ex-

periments at small applied fields. Secondly, for applications ©.mm=

of magnetic measurements, two quantities are required, not
only the Neel time =27y /\4, but also its constituent parts
r+,7~ corresponding to the jump from the lower minimum
to the upper minimum and the reverse jump, respectively.
The reversed magnetization results from a combination of
these two quantities taking account of the particular measur-
ing process. For example, the field cooled magnetization
Mec is equal in the two level framework to

Mec=MgeF(T), T>Tg=MsgF(Tg), T<Tg
(91
with
tcoq 0;— )+ 7 cog 6,—
F(T)=T g0, ll:) 77 g 0,— ) 92)
T +T
and
COSf#;=X;, COSOr,=Xj. (93

whereTyg is the blocking temperature relative to the cooling
rate, calculated from the expression fdt

It is easy to recognize in Eq68), the quantities\;
(=27y/77) and N\{ (=27y/7") which are the terms in
e AVo=V1) and e #Vo~V2) We remark that in the=(T)
calculation, the prefactor

— (94 c) + (e - c0)2— 422V

47\ —cPc?P

disappears, which is not so in thecalculation. This means
that for T>Tg, the M values are independent afwhich
indicates that the superparamagnetic state has been attained.
Therefore by solving the quartic E¢G5) for a given ¢,
we can calculate;,x,,Xy, and all thec’s so that we can
determiner, Ty, and F(T). We remark that in an actual
sample, the field angl¢s and the particle volume are ran-
dom so that averages will be required, which are not too
difficult to evaluate numerically on account of the simplicity
of the above formulas. The above analysis may be applied
directly in experimental situations such as those discussed in
Refs. 7, 8, and 36 where single particles have been isolated
with the intention of studying macroscopic quantum tunnel-

ing.
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EFFECT OF AN OBLIQUE ...

APPENDIX A: MATRIX ELEMENTS FOR THE
SPHERICAL HARMONIC REPRESENTATION

20

—1(l1+1)+ m['('

+1)—3m?]
—2cuia 'm,

ov(l+1)(1+m)(1+m—1)
(21+1) '

€ mi-1m-1=

iov(l+m)(1—m+1)

€ mim-1= a )

ovl(l-m+2)(I-m+1)
(21+1) '

€ ml+1m-1~

20(1+1)(I+m)(1 +m—1)
(2—1)(21+1) '

€ ml-2m™

20(I+m)

el,m,l—l,m:W[U(l +1)—ia 'm],

20(l-m+1)

EER [ul+ia tm],

€ mi+im= —

20(l-m+2)(I—-m+1)
(21+1)(21+3) '

€ mi+2m=—

ov(l+1)
el,m,lfl,m+1:_mv

iov ovl

€ mlm+1™ a’ el,m,l+l,m+1:_(2|+l)-

APPENDIX B: MATRIX ELEMENTS FOR THE
CALCULATION OF THE INITIAL VALUES

sin (I +m)(I+m—1)
2(21+1) '

Wimi—-1m—1=

sin (I —m+2)(I—m+1)
2(21+1) '

Wiml+1m-1= —

_cos Y(l+m)
Wl,m,l—l,m_ (2| ¥ 1) )
cosy(l—m+1)

(21+1) '

Wi ml+1m=

sin

sin ¢

Wl,m,lfl,m+1:_2(2|+1)! Wl,m,l+l,m+l:2(2|+1)1

Wi, m,,m= —COS iUy () —SiN g o().

B | R 3265
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