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We consider the gquantum Heisenberg antiferromagnet on a face-centered-cubic lattice inJwtiieh
second-neighbdiintrasublatticg exchange constant, dominat¥s the first-neighbofintersublatticg exchange
constant. It is shown that the continuous degeneracy of the classical ground state with four de@Goupled
mean-field sengesimple cubic antiferromagnetic sublattices is removed so that at second ordiddithe
spins are collinear. Here we study the degeneracy between the two inequivalent collinear structures by ana-
lyzing the contribution to the spin-wave zero-point energy which is of the foHg;/J=C,

+ C4010,0304(3'13)*+0(J'13)%, whereo; specifies the phase of thith collinear sublatticeC, depends on
J’'/J but not on thes’s, andC, is a positive constant. Thus the ground state is one in which the product of the
o’s is — 1. This state, known as treecond kind of type As stable in the rang’| <2|J| for largeS. Using
interacting spin-wave theory, it is shown that the main effect of the zero-point fluctuations is at small wave
vector and can be well modeled by an effective biquadratic interaction of the fArlEf‘f2

ZQE, LSy - S(j)1%/S3. This interaction opens a spin gap by causing the extra classical zero-energy
modes to have a nonzero energy of ordleyS. We also study the dependence of the zero-point spin reduction
on J'/J and the sublattice magnetization on temperature. The resulting experimental consequences are dis-
cussed[S0163-182(08)01830-X]

I. INTRODUCTION troduced below. Subsequently many examples of ground-
state selection via quantum fluctuations have been
Interest in quantum fluctuation effects in frustrated mag-analyzed1° This phenomenon is the analog afdering by
netic systems has greatly increased in the last few yearsdisorderdue to thermal fluctuations, a concept discussed by
The Heisenberg antiferromagnet with nearest-neighbor andillain et al!! for Ising systems and then extended to vector
next-nearest-neighbor interactions of competing strength ispin systems by Henlée{?:® The same effect can be realized
one example of a frustrated quantum spin systekmother by configurational fluctuations associated with random sub-
example, one in which the frustration is geometriga., it  stitution in alloys!**3
does not require adjustment of the magnitude of the coupling In this paper we are concerned with the determination of
constanty is that studied by Shendein which spins on a the ground state of quantum Heisenberg antiferromagnets on
bcc lattice have strong second-neighbor antiferromagnetia face-centered-cubiéfcc) lattice in the case when the
interactions and weaker first-neighbor interactions. In thasecond-neighbor isotropic antiferromagnetic interaction of
system one therefore has two simple cubic antiferromagnetithe formJS - §; dominates the isotropic nearest-neighbor in-
sublattices which are decoupled in the mean-field sense. lreraction(with coupling constand’), as illustrated in Fig. 1.
the classical version of that system the energy is independeit seminal study of the classical ground state of this system
of the relative orientations of the two sublattices. In thewas given by Yamamoto and Nagam#faln particular, a
guantum version of this system, one must consider the selecelevant structure to study is that which they called type
tion between classical degenerate ground states which are n&E-1I (we will refer to it as the “second kindJ; which has a
equivalent by any symmetf/Such an analysis, developed in twofold degeneracy between inequivalent structures called
Ref. 3, showed that quantum fluctuations favored a collineatype A and type B, as shown in Fig. 2, and whose domain of
arrangement of sublattices. Based on this result, Hémley  stability for the classical $— ) case is|J’|<2|J].*® This
posed that this effect could be described phenomenologicallgegeneracy of the ordering of the second kind was found to
by an effective biquadratic exchange interaction of the formbe extremely robust: it was not removed by either a tetrago-
KI[S- 8]2 where the results of Ref. 3 indicated tiatis of  nal distortion, or by tetragonal anisotrop{This system may
orderJ’zl(JS3) whereJ andJ’ are coupling constants in- be viewed as four interpenetrating simple cubic antiferro-
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previously!® is convenient. We also point out that in real
systems there may be mechanisms other than quantum fluc-
tuations which could remove the degeneracy between the
collinear states. For example, dipolar interactions, single-ion
anisotropy, biquadratic exchange interactions, or elastic
strain effects due to the dependence of the exchange tensor
on atomic displacementgtc. may play an important role.
However, for the purpose of this paper, we are interested in
understanding the effects that quantum fluctuations alone can
have on the ground-state selection and therefore we will give
little consideration to other possible interactions not included
in the isotropic Hamiltonian given below.

A related question in such frustrated systems concerns the
nature of the elementary excitations. The Goldstone

FIG. 1. Four antiferromagnetic sublattices on a fcc lattice. Near-, 6: 1
. e : . ) . " theoren® indicates that at zero wave vector there should be
est neighbors within a given simple cubic sublattice are specified b

vectors A, of which one is shown. Interactions between neares?w0 ze.ro-ene.rgy modes.l In V'eW. of the classical deQene_raCy
neighbors on the same sublattice are proportional fnd those ~associated with the relative rotation of decoupled sublattices,

between sublattice by’. A few nearest-neighbor vectots, z con- ~ On€ finds additional Zero-energy mpdes. However, in t.he
necting different sublatticea and 8 are also shown. The coordi- Ppresence of quantum fluctuations which remove the classical
nate axes are chosen such thatthaxis is alongh,, thez axisis ~ degeneracy, one can understand the results of Ref. 3, namely
up, and they axis is into the page. that quantum fluctuations cause the extra zero-energy modes
to have a nonzero energy at ord&r/S. Such “quantum
magnetic sublattices in which the mean field on one sublatgaps” have been observed by inelastic scattering of
tice due to any of the other vanishes. Thus this system proreutrons.’~*° As we shall see, and similar to the results of
vides yet another example of one which classically has &ef. 2, in contrast to ground-state selection, the gaps still
continuous degeneracy which we expect to be lifted by quaneccur at relative orded’?/(J2S) in a calculation ofw?(q),
tum fluctuations. The phenomenological biquadratic interac- even though one must go to higher orderJifiJ to com-
tion mentioned above causes the sublattices to be CO”ineé’vj]e[eW resolve the structural degeneracy. We calculate the
but it does not resolve the degeneracy betwger] structures aﬁantum gap at relative orderSliising the Dyson-Maleéd
type A and type B. Recently, we analy28a similar ques-  transformation. This provides an alternative, and possibly
tion for the bct antiferromagnet where collinearity is en- simpler, calculation than in Ref. 3.
forced at relative orded’?/(3°S), but to remove the degen-  Briefly this paper is organized as follows. In the next
eracy associated with different stacking sequences, it Wagection, we invoke symmetry considerations to write down
necessary to include the effect of quantum fluctuations tghe most general form of the effective interaction between
higher order inJ'/J. As we shall see, the degeneracy be-antiferromagnetic sublattices and then deduce the number of
tween type A and type B structures is removed when thenequivalent collinear spin configurations. In Sec. Ill we use
effects of quantum fluctuations are included to higher ordefinearized spin-wave theory to calculate the quantum correc-
in J'/J. For this type of calculation the formalism introduced tions at first order in 8B due to the zero-point motion. To
analyze this complicated expression we follow our previous
work!® and expand the zero-point energy in powers) ofJ
to get the effective interaction between sublattices. These
interactions lead to the structure experimentally determined
for MnO.2%22|n Sec. IV we study the spin waves and gaps
due to quantum fluctuations by treating spin-wave interac-
tions using the standard Hartree decoupling of the higher-
order interaction terms introduced by the Dyson-Maleev
2nd kind, type A 2nd Kind, type B transformatiof” to bosons. Here we show that the effects of
guantum fluctuations can be well approximatedly at zero
wave vectoy by the effective biquadratic interaction men-
tioned above. Although a convincing way to demonstrate
that an observed gap is caused by quantum fluctuations is to
monitor its temperature dependertéé®we show in an ap-
pendix that this conclusion can also be reached by studying
how the high-temperature specific heat is related to the ob-
served gap. In Sec. V we study the dependence of the zero-
point spin reduction on the rati&//J and that of the magne-
FIG. 2. Various inequivalent collinear spin arrangements in thefization on temperature, from which we find that the
face-centered cubé-) and(+) represent spins up and down with calculated Nel temperature agrees well with that observed
respect to any given direction. The coordinate axes are the same MnO.2%22 Our results are discussed and summarized
in Fig. 1. briefly in Sec. VI.

3rd kind 4th kind
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Il. SYMMETRY CONSIDERATIONS C, by linear spin-wave theory and show that the leading

i - 0 1y4a—1
We consider the model contribution is a positive one of orded’(J)*S™".

H= E J'S- SJ + 2 JS-S., 1) Il. LINEARIZED SPIN-WAVE THEORY

(i:1) (i1:2) To obtain the sign ofS, we recall thatC,=0 for S=oo.
where(ij ;n) indicates that the sum is over pairsrah near- This result shows the degeneracy for the classical case ana-
est neighbors. We are mainly concerned with the case whebzed by Yamamoto and Nagamiy&Therefore, we work to
J is dominant, and the system can be considered to be foliglative order 1%, which involves calculating the quantum
interpenetrating simple cubic antiferromagnetic sublatticeszero-point energy of spin waves. At this order i 1for this
As we mentioned previously, the effect of quantum fluctua-€nergy to be a function of fous’s, we must involve four
tions at second order id’/J is to cause the spins to be J'’s. (To see this recall that zero-point fluctuations involve
arranged collinearly. Therefore, for theath simple cubic creating a pair of spin excitations on different sublattices. In
antiferromagnetic sublattice we introduce an Ising variablethis picture, a contribution to the ground-state energy which
o, to specify its phase, so that, gives the value o, for ~ involves all four sublattices requires creating two pairs of
the spin at position, , wherer,, is given in Table I. In terms spin excitations to cover the four sublattices and then subse-

of these variables, the ground-state energy, i.e., the effectiv@iently destroying two pairs of excitationgs we shall see,

interaction, denotet;, then must be of the form: we obtain a nonzero result fa, at order ('/J)*/S. So
going to higher order in ¥ cannot lead to a result lower
Hest/I=Cot+ Co(010,+ - - - + 0304) + Cy010,030y, order in Q'/J).
2 As mentioned, wherd’ is sufficiently small, the system

o - forms four simple cubic antiferromagnetic sublattices. We
where the coefficient€, depend ord’/J and 16. In writing  therefore write the Hamiltonian of EGl) as

this result we omitted odd-order terms in the, since the

original Hamiltonian of Eq(1) is invariant undelS— —S

for alli. Now itis possible to eliminate some terms in E2). H=J 2 S,(1)S,(j)+J’ E S (1)Ss(j), (4
using the symmetry operations of the system. First of all, the (ai,aj;2) (ai,pj;1)

reflection operation with respect to th00], [010], or [001] , , , ) i
planes should not change the energy. Since these symmeW‘ereSa(') denotes theth spin on sublatticex. The first

operations change the sign of any twg, the coefficients, ~ €/m on the right-hand side of Ed4) is the interaction
in Eq. (2) must be zero. Thus we have within the sublattices and second term is that between sub-

lattices.
3) Within the classical approximation the four sublattices

may assume arbitrary relative orientations in the ground
Since there is no symmetry operation which changes the sigstate. It is known that in such a situation quantum fluctua-
of the only oneo; (or equivalently, three of themthe term  tions select collinear structurd$®* We could verify this
010,030, is allowed by symmetry. It therefore follows that result here by evaluating the zero-point energy when the four
we have two inequivalent collinear spin arrangement insublattices are arbitrarily oriented. However, in the interest
which o,0,030, is minus or plus ongSee Fig. 2. The first  of simplicity, we will assume that the spin structure is col-
one wheres,o,030,=—1 is called “the second kind of linear, so that all spins lie along the positive or negative
type A.” For this configuration it is possible to find a unique axis and the magnetic structure is characterized by a wave
[111] direction, perpendicular to which, each net plane convectorQ and a phasé, such that the phase & at sitei in
tains a ferromagnetic array of spins and the sequence of suchiblatticea,
net planes is stacked antiferromagnetically. In other words,

Heii/ J=Co+ Cyo102030,.

this structure has trigonal crystal symmetry and is there- b, (1)=Q-1,+8,, (5)
fore subject to a rhombohedral distortion. In contrast, order-
ing of “the second kind of type B"(also shown in Fig. P TABLE Il. Wave vectorsQ and phased, of Eq. (5) for the

for which (o10,0304=1), still has cubic symmetry. In or-  gtryctures shown in Fig. 2. Since each componei@ &f an integer
der to determine which of these structures is really thenultiple of 7/a (wherea is defined in Fig. 1, we may restrict each
ground-state configuration, we therefore need to know th@omponent to assume the values Oda. Application of elements
sign of C, in Eq. (3). In the next section we shall calculate of cubic symmetry lead to structures equivalent to those shown.
E.g., takingQ=(0,7/a,0) leads to a structure equivalent to that of
TABLE |. Origins of the four sublatticesr,,, used in the cal- the third kind shown in Fig. 2.

culations.
Kind (type) of structure aQ {6,}
Sublattice,a To = (XosYa1Za)

1 (0,0,0 (0,7,0,m)
1 (0,0,0) 2A (7,7, 7) (0,0,0,0
2 3(a,a,0) 2B (o, 77,77) (0,,0,0
3 1(0a,a) 3 (,0,0 (0,— 7/2,7,7/2)
4 1(a,0a) 4 (m,7,0) (0,7, — wl2,7I2)
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is a multiple of#. For the spin-wave expansion we introduce S/Hi)=S—a}(i)a,li). 9)
local axes at sité in sublatticea, so that theS, axis lies

I he direction in which th [ ints in th
along the direction in which the spin points in the groundAII the structures shown in Fig. 2 are described by a single

state: . . )
wave vector(but with appropriate choice df, for each sub-
1 0 0 lattice), as listed in Table II. In particular, for the structures
of the second kind, one has
Su(i)=| 0 cos(Q-ri+86,) 0 S(i),

0 0 Tt 0,
cos(Q-ri+6,) ©) Q=(wla,wla,mla), (10)

where, using Dyson-Maleev transformation, we have

s
SHOE \[5
SY(i)=i \E’

wherea is defined in Fig. 1.
From Eg.(6) one can write

a, (i) +aui)- Zisag(i)a;(i)aa(i)},

@ Sa(i)-Sp(j)=S?cos(0;5,,) + O[5, .+ O3, +O(L1S),
L o atiina 11
258« (Dag(haa(i)],

a,(i)—au(i)-

(8 where the quadratic term is

N 1
Offlia= =S cos (04, )[az ()aq(i) +az (Dag(i)]+ 5 S[1+cos (04,0 @ (Dag(i) +aui)as(j)]

1
+ 55[1—005(9;3,1,1)][320)6;(])+aa(i)a,g(j)], (12
where
0igia=Q-(rj—r)+65—0, (13

is the angle between spinin sublatticea and spinj in sublattice. In Eq. (11) (A)J(;‘;?ia is the four-operator term which is
discussed in Sec. IV B.

For the structures of the second kifgke Fig. 2, we use Eq(12) to write the Hamiltonian up to terms quadratic in the
boson operators as

H: E0+ H0+ H| y (14)
where
Eo=—12NJS[1+(1/9)], (15)
Ho=3JS§;q {a, (@aq(a)+a.@)a, (@) +y(a)la,(@)a,(—a) +a.(da.—a]}, (16)
|
where Thus this representation is based on a reciprocal lattice with
basis vectors
(@=33 ¢us
4 6% b;=(2w/a)(1,0,0, b,=(2m/a)(0,1,0),

=(1/3)[cos(qya) +cos(qya) +cos(qza)], (17) bs=(2m/a)(0,0,1), (19
andH, is the interaction between sublattices. ANads the  \yhose unit cell we will refer to as the simple cubisd
number of the sites in each of the four simple cubic antifergyjjouin zone (BZ). Note thatH, represents the sum of

romagnetic sublatticeq is summed oveN values in the  jndependent Hamiltonians for each of the antiferromagnetic
interval — m<ag,<w (a=Xx,y,z), and we introduced Fou- gyplattices, which, in the absence’f, are completely de-

rier transformed variables by coupled.
1 It is useful to compare this formulation for four interpen-
a(i)=——=2, a’(q)e'dri. (18)  etrating antiferromagnetic subsystems with that for a single
“ N antiferromagnetic system on a simple cubic lattice. In the
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usual(two sublattice formulation of an antiferromagnet, one 1 . .
introduces operatora® (i) andb™(j) which create excita- Aqp(q)= Zz [1+C0S(Q- 6, 5+ 05— 0,)]e 9 %as,
tions on thea (up) andb (down) sublattices. Then the mag- Sa.p

netic unit cell contains two spins and the corresponding mag- (213

netic BZ is half as large as the sc BZ. In this two sublattice 1 R o
picture each mode is doubly degenerate'. This doubly dggen— B.s(Q)= ZE [1-cos(Q- 8,5+ 05— 6,)]e 19 %as,
erate spectrum can be obtained by “folding over” the single a8

mode spectrum of the sc BZ, because for the sc BZ spectrum (21b)

the modes ag and g+ (n/a)(1,1,1) are degeneratfOne  \yhere §, , is summed over the four first-neighbor vectors
can see this from E¢(37), below, noting that for both these \yhich connect sublattices and 3, as shown in Fig. 1.

wave vectorsy(q)? is the samd.Applied to the present case  we now specialize to structures of the second kind, with
of four antiferromagnetic subsystems, the situation is as folQ given by Eq.(10). For such collinear structures we may
lows. In the representation based on a sc BZ and in theharacterize the orientation of sublattieeby an Ising vari-
absence of interactions between subsystems, each of th@leos, which specifies the sign &, at the origin,r,, of
mode of the antiferromagnet is fourfold degenerate. Wheublattice. Inserting the values ef, from Table |, we see
H, is taken into account, one obtains four modes which arghat Eq.(5) gives
nondegenerate at a generic point in phase space. However,

because the mean field at one sublattice due to another one if a=1

Oy

vanishes, within linearized spin-wave theory, even whgn C0S o= —o, otherwise. 22
is included, all four modes will have vanishing energy as theEquation(Zl) can be rewritten as
reduced wave vector goes to zero. Counting both the modes
at q=0 and those atj=(=/a)(1,1,1), we see that within A,5(Q)=C,p5(Q)+S,s(a), (239
linearized spin-wave theory there are then eight Goldstone
modes. As we will see later, interactions give six of these Bap(a)=Cop(q) = Sap(q), (23b
modes a nonzero energy, so that, as expected, we are Igfhere C,4(q) and S,4(q) are the matrix elements of the
with only two true Goldstone modes. matrices
The interaction between sublattices is
0 ny(Q) Cyz(q) sz(q)
Hi=3'S > {Aa)lal(qaga)+aga;(a)] Cla) Cry(d) 0 Ced)  Cyy() ”
a,B,9 (CI) c ( ( )
yAd) S 0 cyla)
+Bos(@)a, (@ag(—a)+a(@a—a)]}, (20) Cld)  Cydd) Clq) O
whereA,,=B,,=0, and, fora# B8, we have and
|
0 - UlUZSxy(q) - UIUSSyZ(q) —01045¢(Q)
— 0201S,y(Q) 0 02035,:,(Q) 0204S,,(0Q)
sa=| b =, (25
0301Sy(0)  03035,/0) 0 03045x,(0)
—04015,Q) O'AO'ZSyZ(q) 0'40'35xy(Q) 0
|
wheres,,,(q) andc,,(q) (u,v=X,y, orz) are with
S.»(Q)=sin (q,a/2) sin(q,a/2), (26) a,(qQ)
_ ay(q)
c,.,(q)=cos(q,a/2) cos(q,al2). V(g)= a3(q) (29
3
The bilinear Hamiltonian in Eq14) can be written in matrix a,(q)
form as 4
L and the matrixM(q) is
H=Eqg+ =2, X (@M (q)X(q). 2
ot 32 X (AM(@X(a) (27 i) Hy(Q)
M@=| o Hyq) (30
Here 2(a 11a
V() whereH; andH, are the four-dimensional matrices
X = ’ 28 ’
@ (W—q)) 29 Hy(@=6ISI+[GIIA@), (31
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Ha(q) =6 y(a)I +[J'/(3J)]B(a)}. (31b

Here | is the four-dimensional unit matrix and the matrix
elements ofA(q) andB(q) were given in Eqs(21). After
diagonalizing the matrixM(qg), one finds that the Hamil-
tonian in Eq.(27) can be written in terms of normal mode
operatorsc, (q) andc,(q) as

H=E0+AEQ+Eq o Qc(@cq) , (32

wherea=1,2,3,4 labels the eigenvaluesMf(q) and where
the first quantum correctioldEq, is

1
AEq=52 (0 - (33

Here thew,(q) are the positive square roots of the roots of
the characteristic equation of the dynamical mabiq)

D(q)=[H1(q)+Hx(a)][Hi(a) —H2(q)] (34)
=E5(a)[1 +4jP(a) ][I +4jR(q)], (35)
where
j=J'1(6J), (36)
Eo(a)=6JSV1—*(q), (37)
and the matrice® andR are
1
P(q)= m[A(Q) +B(9)]= H—MC(Q),
(39
1
R(g)= 2[1_—7((4)]['“\((1)— B(a)]= 1= (q) S(q).
(39

We may use EQq(33) to express the zero-point energy per
site in dimensionless unitd Eq,, as

AE(QEAEQ/(lzNJsz)zﬁ% tr(\/D)

1 1
= 24N352% Eo(tr(VI+Yq)= 4—S(tr( NERB)
E_AeQ, (40)

S

so thatS™ 1AeQ is the correction to the ground-state energy
in dimensionless units at relative ordeSland

Y=4i[P(a)+R(a)]+16*P(q)R(q) (41)

and( .. .)q represents the following summation over the
first Brillouin zone:

M FLUCTUATIONS IN ... 3149
f = ! E f
( (q)>q_6N—JS% o(@)f(a)
a 3 rala mla
B E J'fﬂn'/adqxjfﬂ'/adqy
la
Xfﬁ /adqz\/l_Y(Q)zf(Q)- (42

To get an analytical expression for the effective interac-
tion between antiferromagnetic sublattices, we now follow
Ref. 10 and expandeg in powers ofj. For the regime of
interest|J’|<2|J|, j=[J'/(6J)]<1/3. Therefore we write
Aeg in Eq. (40) as

©

Aeango Co(tr(YD))q.

(2n)!
22" 2(nH2(2n—1)

Cn )nfl

(— (43
and then collect the terms which are of the same ordgitdn
getAeg in the form

P4

Aeg=Ael+Aedj2+Aelj3+Ael]

+Ael)j%+0(j°). (44)

In above expansion we have two types of terms. The first
one is a term like(tr(P™R")),. This type of term cannot
depend on Ising variables,o; because of the form of the
matrix R. [See Eqs(39) and(25).] We can see this easily by
realizing that the matribR" (wheren is a positive integer
has the same form d&: namely, its nonzero diagonal ele-
ments do not depend an, becauserff 1. The off-diagonal
entry,[R"] .4 is proportional tar, o sin (@,a/2) sin @,a/2)
times a function which is even iy, q,, andqg,. Note also
that all matrix elements d? are even functions of momenta.
Therefore all terms iqtr(P™R") which depend on the,'s
vanish when the sum over is performed. The second type
of terms are those of the forrtr(P'1R'2P'sR4. .. P')),
with 14, |,, etc. nonzero. Such terms can dependagn
From Egs.(41) and (43) we see that the terir(PRPR)),
first occurs at fourth order id’/J, so that

Aeg=const 256 C,+3C3+2C,J{tr(PRPR))4j*
= const-(tr(PRPR)),j*, (45)

where const denotes terms which are independent of the
o,'s. After a little algebra one finds that

Aeg=constr 4(CZ(S5 +5) +C2(S0,+8)
+ 63212( ASEZ—F Asiy)>q0-la-20-30-4j 4
=constr 24 CZ, 52 )q01020304) %, (46)

where
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. 1 a a TABLE lll.  Numerical values of the expressions
=1 @ sin % sin | HrEXY.Z obtained in Egs.  (50—(53). Here (f(a))q
74 I G R N R N T ORICR
1 a a (f(a))q Numerical value
& ——~  cos|*Z 4 -
C#‘V—ler(q)cos 5 cos m,v=X,Y,Z. (1), 9.0284¢ 10" L
(48 (8)q 1.7070<10"*
From this equation, we see that zero-point fluctuations select (Sy)q 5.6635<10"?
the collinear spin arrangement whergo,030,= —1 as the (85,C2)q 2.0281x10°?
ground state. This type spin arrangement is caledsecond (.62 3.7644x 10?2
. . y—xz/q
kind of typg Aby Yamamoto and I\_Iagawjé.They call the (282 23987 102
other collinear arrangement in which the product yord 4.7980% 10-2
o10,030,4=1 the second kind of type.Bhe difference in <SXVSYZSZX>q ' 72
energy between these two collinear configurations is (5455.,C)q 1.0681x 1072
A B <Sxysyzszxcxy>q 0.9166<10
+€:§Z(SXZ+ S)Q,))qj4 Iatticgs. Co_llinear spin f:onfigurations denoted by A and E at
. the right side of the figure have much lower energy than
=—1.8069 noncollinear configurations. The energy difference between

- -3 ' two nonequivalent collinear states &{o,030,=—1) and

1.3942¢10° for J'=J. 49 B (0,0,030,=1) is 1.1863< 10 2 which is in good agree-
Using the algebraic computational computer prognaamH- ment with the one obtained from E@9) This indicates that
EMATICA, one can easily get the following expressions forour expansion converges rapidly enough to stop at fourth
the termsAel)) (n=1,2,...) in Eq.(44): order inj whenj=1/6.

0)_
Aeg’=(1)q, (50 IV. SPIN WAVES AND GAPS DUE TO QUANTUM
FLUCTUATIONS

AeP=—12S2 )y, 51
Q <Sxy>q ®D In the previous section we showed that there are two in-

3 PPN equivalent degenerate collinear spin structures with

Ae(Q):48<SXYS>’ZSZX>Q’ (52) o,02030,=*1 and that the quantum fluctuations remove

(4) this degeneracy and select the spin structure with

=248 C} )q01020304— 605 )q—360(SE,SE,) o,0,030,=—1 as the ground state. Here we will consider
other quantities, such as spin waves and spin gaps, and the

+48(S5, C2 )+ 12AS5,CE ). (53
] s e e T T T T A 28
Aey)=—288S,,S,,5,,CL ) 01020304 0.880 —3
(6,6,6,6,=1)
+336qsxysyzszxsxy>q 576<Sxysyzszx xy/q - ) . /2
Z 0875 B: /S
(59 I 4
z 2
In writing the above expressions, we used the fact that from ~%o ) T
&2 A2 o o w 0870 C: 1
symmetry(S;,)q=(Cj,)q and other similar equalities ob- ﬁ 4 ]3
tained with different permutations @f,v=x,y,z. After in- S 2\
tegrating these expressions numerically, results from which < ¢.ges /T:
are listed in Table Ill, the zero-point energy given in &) f £
is obtained as AT AE<1210° 2e— 1
0.860 PR AR (TR N U M ! E 34"“—"4
0 30 60 90 120 150 180 (6,6,6,6=1)

=0.90285- 2.04842%+ 2.3033 3 _ . N
FIG. 3. Zero-point energy as a function of orientation of four
+(0.9034% 10,030 ,— 9_98298j4 antiferromagnetic sublattices fd=J'. If 4, is the angle of sublat-
tice «, the curve in the figure corresponds to the spin configurations
—(2.6399%10,030,—41.1674j°.  (55)  where6,=0, 6,=t, 6;= —t, and6,= -+t wheret varies from 0
to . At the right side of the figure we show the particular spin
In order to corroborate our analytical work, we have alsoconfigurations at points A, B, C, D, and E shown on the energy
diagonalized the matrix numerically and then calculated theurve. Note that collinear configurations A and E have lower energy
zero-point energy from Ed33) for different spin configura-  than noncollinear configurations. point Ar{o,030,=—1) has
tions. For instance, Fig. 3 shows the zero-point energy peslightly lower energy than Point Eo{,o,030,=1) as shown ana-
spin forJ’ =J as a function of spin orientation of four sub- lytically in the text.

t (degree)
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20 ’ the effect of quantum fluctuations should open a gap at the
' 6,0,0,0,~1 J= zone center, as pointed out in Ref. 3 and verified by
s experiment’ ' Thus, even though linear spin-wave theory
2 is able to predict an effective interaction due to zero-point
El.o motions of the spins, it is not capable of predicting the ex-
s pected gap a=0. Here we use an approach alternate to that
osf @ @ @ of Ref. 3, namely we use the Dyson-Malé&transformation
to treat spin-wave interactions correctly to leading order in
0.0 (1/S). In agreement with Ref. 3 we find that within linear-
20 6,0,6,0,—1 roJ ized s_pin-wa\(e theo_ry the contribution w’(q) from _spin—
wave interactions arises at relative ordé#/(J°S) and is the
15 same for both collinear structures. At higher ordersJi/ Q)
g the quantum gap for the two different collinear spin structure
510 will be different. However we do not expect this difference
s G to be significant. Therefore we only consider the contribu-
o5 ©@ @) @ tions to the spin gap at second order i /J). We will
obtain this gap in two different approaches. First we will do

this by introducing effective biquadratic interactions between

700) (000) 0 ) 000) _ s
(790)" (o00) @0) 0 (ma) ) (aom) . sublattices to account for the effect of quantum fluctuations:

FIG. 4. Spin-wave spectrunfrom noninteracting spin-wave Q
theory in the four-sublattice representation for two inequivalent AEQ~— _(51.52)2_ (57)
collinear spin structures withryo,030,=1 ando,05030,=—1, s
respectively, fod’ =J. The degeneracy of the modé@smore than

one is also shown in parenthesis, This approach will be practically very useful to obtain the

degeneracy and a qualitative estimate of the spin-wave gaps
. L at q=0. In the next subsection we will corroborate this ap-
temperature dependence of_ the sublattice magnetization f?)rroach by analyzing the effect of the four-operator terms in
the ground-state structure, i.e., foro,0304=—1. Apart e 1oson Hamiltonian. At the end of this section, we will
fro.m beln'g the'ground state, the other' hice thing abogt hiscuss the experimental consequences of the spin gap, its
spin conflggratlon Wlth(710'20'30'4.= —1is that_ the Hamil- temperature dependence, etc.

tonian matricesd, andH, (or matricesC andS) in Egs.(31) In the remainder of this paper we will be concerned with
commute [H;,H,]=0) and thus we can diagonalize them e hronerties of the structure with o,050,=—1, i.e., the
simultaneously. This enables us to perform the diagonalizag;, ,cture of the second kind, type A, shown in Fig. 2. Notice
tion analytically at any point, as discussed in Appendix A, fom Taple |1 that this is the only structure for whidh, is

and obtain the spin-wave spectrum as independent ofr. Accordingly, for this structure, the coeffi-
cients in Eq.(12) depend only orr;—r;. Then it is appro-
priate to describe the structure with a unit cell whose basis
vectors are

©2(q)= (639 1+ y(q)+4jcm(a)]
X[1-vy(q)+4jsn(q)] m=1,23,4. (56)

Herec,(q) ands,,(q) are the eigenvalues &(q) and S(q) a=za(i+]), &=za(i+k), a=j3a(j+k), (58
matrices in Eqs(24) and (25 which are given in Appendix and the associated basis vectors for the reciprocal lattice are
A. In the absence of single-ion anisotropy, this result is
equivalent to that obtained by ColliR3as we shall see be-
low.

The spin-wave spectrum given above is compared with
that of the other collinear structure with,o,030,=1 in
Fig. 4. From only the dispersion curves along principal di-The volume of the corresponding unit céliZ) is four times
rections it is not possible to tell which structure has the loweithat of the sc BZ introduced above. As a result we now write
zero-point energy. However, our calculations show that the
ground state is the one which has the lower symmetry. It is
particularly important to note that the four spin-wave modes
all have zero energy aj=0 wherey(q)=1 ands;(gq)=0
and atg=(w/a)(1,1,1) wherey(q)=—1 andc,(g)=0. Wwhere the sum oveq extends over the BZ defined by Eq.
This is exactly what one expects in the classical limit, i.e.,(59). In this representatiohi; andH, are scalars given by
S—o where the four antiferromagnetic sublattices are de-
coupled in the mean-field sense. However the absence of a ~ H1=6JS+2J'S{cos[a(q,—ay)/2]
spin-wave gap is a little surprising at first glance, as we
included quantum fluctuations via linear spin-wave theory in
our calculation, and it is these fluctuations which give rise to _ ,
an effective interaction between the AF sublattice% and force Ho=6JSy(q)+2)"S{cos[a(q,+ y)/2]+cos[a(g,
them to be collinear. Hence one would expect that including

b,=(2wla)(i+]—k), b,=(2m/a)(i—]+k),

by=(2m/a)(—i+]+k). (59)

1 )
al(i)=—=2, a}(q)e', (60)
* V4Ngez ¢

+cos[a(qx—0,)/2]+cos[a(d,— ay)/2]}

+0,)/2]+ cos[a(q,+qy)/2]}. (62
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A. Effective biquadratic exchange interactions

20}
15t Here we study the effect of biquadratic exchange interac-
' tions on the ground state atite spin-wave spectrum at zero
10 | {F 1F 1t 1 wave vectorln the next section we will show that the effects
05 | of quantum fluctuations at lowest order id’'(J) can be

& ' represented by an effective biquadratic interactiof the

3 "0 o o) ows)maie_ oura)-o form

g2 1t 1t 1t ] off__ 1 N qi)12/S3

S 51 { {1 1 | AHQ=—§Qi2]_ Ay[S(i)- S()1Y/S?, (64)
1.0 ¢ 1F 1F 1F 1 whereA;; is unity if spinsi andj are nearest neighbors and
05} 1t ] /_\ /\ is zero otherwise. In the next subsection we will analyze the

effect of spin-wave interactions on the spin-wave spectrum at

0 e Ta e e M me T zero wave vector and by identifying those results with those

from the effective interaction of Eq64), we will obtain an
FIG. 5. Spin-wave spectrum of the collinear ground-state strucevaluation ofQ in terms of the parametesandJ’ of our
ture with 010,030,=—1 (antiferromagnet of the second kind, model. As a resul is is of order 0'/J)?. Note that this
type A) in the one-sublattice representation, witiottom panels  pjquadratic interaction does not break the degeneracy be-
and without(top panel$spin-wave interactions. The top four panels wyeen the collinear states but nevertheless can open a spin-
[for 0<g< m/a reproduce the entire spectrum of the four-sublatticewave gap ag#0. An advantage of this phenomenological
representation on the liney(0,0)]. Thebottom panels show the 0y aqratic interaction is that it forms the basis of a

effect of spin-wave interactions in opening a gap for all the non-re o aiization-group discussion of properties near the criti-
Goldstone modes which had zero energy within linearized spin- al point27
a :

wave theory. These results are evaluated for parameters appropria(% . .
10 MnO: S=5/2, /kg=J'/kg=5 K. Hereq=(q.0,0) anddy . Gy , ) I;romtEq.(Sl), one obtains, after keeping only the qua-
andq; are defined in Eq(61). ratic interactions,

2.
Thereby one finds a single mode whose energy is given by [S(1)-S(j)]%S*=S cos'6; j+ <O} cosd;;, (65)

s
2= w2(d)=(6IS) 1+ +dic where here and below the indicégr are replaced, in the
0 (@=wi(A)=(6J97 1+ () +41cu(a)] present single sublattice picture, by a single inddRemem-
X[1—y(q)+4js4(q)], (62 bering that co®;;=1, and using Eq(12), one can write

wherec, ands, are giyen in Appendix“A. The four ,l?ranch AHgﬁ: consHZ A Q[a*(iha(i)+a*(j)a(j)]
spectrum of Eq.(56) is obtained by “folding over” the ]
single branch spectrum of E¢62) so that modes at the four

wave vectors, — %[1+cos 6;il[a”(Ha(j)+a(i)a*(j)]

d:=0, Qg,=g+(2w/a)(1,0,0=qg+0ax, Q e o
+5[1-cosg;lla’(ha”(j)+ala(i)];.

This equation indicates that addim‘gj—(%ff to the Hamil-

=qg+(2 0,0,)=qg+
ds=9q+(2n/a)(0,0,))=q+q; tonian in Eq.(14) leads to

are all associate_zd with wave vectpof the smaller sc BZ. In H,=6(JS+2Q)+2(J'S—Q){cos[a(g,—a,)/2]
the representation of Eq62), these four wave vectors are

inequivalent, modulo the reciprocal lattice of E9), +cos[a(g,—q,)/2]+cos[a(q,—qy)/2]}
whereas in the representation of E56), these wave vectors

are equivalent. One can see that evaluatif@) ands,(q) 20 0

at the four wave vectors of E463) yields the set of,(q) :635{ 1+ 35/ 7121— 333 [C4(Q)+S4(Q)]},
ands,(q) for m=1,2,3,4. The relation between the spectrum

of Eq. (56) and that of Eq(62) is illustrated by the compari- _ ,

son of Fig. 4 to the top set of panels of Fig. 5, where the Ho=63Sy(0)+2(J'S+ Q){cos[a(a.+a,)/2]
spectrum of Eq(62) is plotted for the wave vectors of Eq. +cos[a(qy+0q,)/2]+cos[a(q,+qy)/2]}

(63).2° The representation based on the BZ of E8p) is

useful because at any wave vector the inelastic neutron-

scattering cross section is nonzero only for the single mode :635{ y(q)+
appearing in this basigWithin the sc BZ basis, only one of

the four modes is observable at any given wave vector.  This leads to the energy spectrum

2]+%S)[c4(q)—s4(q)]} (67)
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! =_1y +iyat(i + (i ;
(@)= (6157 1+y(q)+% 1—5“;‘”)+%c4<q>} Q=—13"{[(a*(ha’ (i)t [(a*(Da(i))],
=0((3")21), (73
20Q c4(Q) 2J L .
X|1—y(q)+ Is 1- 3 + gszl(q) . (68) where( .. .) indicates a ground-state expectation value and

the subscripts “p” and “ap” label nearest neighboring spins
uwhich are parallel and antiparallel, respectively.

In this representation, the true Goldstone modes occ ; ;
For this calculation we use the Dyson-Maleev transforma-

when
tion given in Egs.(7)—(9) and the local quantization axis
v(Q)=1, s4(0)=0, c4(q)=3, (699 defined by the rotation matrix in E@6). Thus, one can ob-
tain
or
y(@=-1, c4(q)=0, si(q)=3. (69 S(i)-S(j)=5? cos 6, ;+ 07+ O +0O(1/s), (74

If we write the wave vector in the form A (2) - .
where O is obtained from Eq(12) and the four operator

q=(27/a)(H,K,L), (70 termO* is
then the first case correspondsHoK, andL either all even

integers or all odd integers and the second case correspond}}f‘# #[1+cos 6J-Yi][2n(i)n(j)—a*(i)a*(i)a(i)a(j)
to H—3, K—3, L—3 either all even integers or all odd

. . . . l . .
integers. The inelastic neutron-scattering cross section van- —a’(pat(pa(a(i)]-zl1-cosd;l[2n(i)n(j)
ishes in the first case and is divergent in the second (aste +a*t(hat(ha(a*(j)+at(jat(jajar(i)] .
as happens for a sc two-sublattice antiferromagnéhe
modes which have fluctuation-induced gaps occur when (79

y()=1, s,9)=0, cuq)=-1, (719 In first order in 15 we simply take out all nonzero contrac-

tions of operator averages, to get an effective biquadratic

interaction fromO{?,

or

y(q):_lv C4(Q):01 s4(Q):_l’ (71b) A (2),eff 1 + 5 + i
namely at wave vectors in each zone for which either one orQ1i —constr3L[1+cos;][a” (i) —a"(j)]

two of H, K, andL are even integers and the rest are odd x[a(i)—a(j)]—3M[1—cos 0; qa*(hH+a(j)]
integers or when one or two ¢1—3, K—3, andL—3 are L . o '
even integers and the rest are odd integers. As before, the x[a™(j)+a(i)]+ VT, (76)

neutron-scattering cross section is zero wh€g) =1 and is . . . ] )
large (divergent forQ—0) wheny(q)=—1. As we discuss Wherei andj are nearest neighboring sites,
below, the spectrum shown in the bottom panels of Fig. 5 is

essentially the spectrum one gets for the valu®Qodppro- L=(a"(i)a(i))—[(a’()a(j))]p,
priate to describe fluctuations. At the three wave vectors of (77)
Eqg. (71) one has a gap, induced by interactions, so that M=(a*(i)a(i))+[(a*()a*(j))]

ap’
wp(@)=(6192[1-3c(q)1(2QI9)=102SQ (72,
Thus, when interactions are taken into account, only the true
Goldstone modes have zero energy. v2eli=2(a*(i)a(i))[1—cos 6, ][a(i)a(j)—a*(i)a(j)].

(78)
B. Interacting spin-wave theory—Hartree decoupling .
of fourth-order interaction terms In order to get the above expressions, we used the fact that
o ] o ] ] operator averages of the terms which have the faftor
The objective of this section is to obtain spin-wave gaps, cos ;] only need to be taken over parallel spins. Similarly

by including the effect of quantum zero-point motion. In the y,5se terms which have the factpt —cosé ] need to be
previous subsection we showed that a biquadratic EXChangﬁ/eraged over antiparallel spins. "

interaction given in Eq(64) leads to a nonzero spin-wave
energy for all but the Goldstone modes. Here we perform an
interacting spin-wave calculation using the standard Hartre

decoupling of the fourth-order interaction terms which is . ) i~
known to give correctly all contributions to the spin-wave considered elsewhef® Note that the anti-Hermitian term

energies at relative order @)/. Since the procedure gives _VZ'Eﬁ gnly starts to contnbut_e at se(_:ond ord_er '_S']ACP ord-

the same structure of the spin-wave spectrum at zero wavggly, in what follows we will drop its contribution t@>*".
vector as does biquadratic exchange, we may use its result to Then using the same argument given in the previous sec-
determine an effective value for the biquadratic couplingtion, one can easily see that addify? " into the Hamil-
constantQ in Eqg. (64). The result we will obtain is that tonian leads to the results

Inclusion of O%¢f will enable us to include effects of
pin-wave interactions correctly at first order if81Correc-
ions to the spin-wave spectrum at higher order B\ill be
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Hl(q)=6J§{ 1+
!

H2<q>=6JS[y<q>+ 3
Therefore the spin-wave energy is now

2J' J(L=-M) J 2
1+ (@) + 37+ —5g—[1738(@)]— 55(L+M)Ca(q) || 1= ¥(Q) + 5754(0)

J(L-M)| J/[ L

M
1—§)[c4(q)—s4(q)]}- (80)

!

»*(q)=(6J9)?

J(L—M) J
+ g (1= Sea(@)]- Jg(L+M)sa(@) |-

(81)

We see that the Goldstone modes still occur when the condition ofe@yjis satisfied. The fluctuation-induced gaps at the
wave vectors of Eq(71) are given by

J'(L-M
w=(83(6392 S < 081 S{[(a’ (ha” ()t [(a (Da(}) - (82

Comparing this with Eq(72) one identifieQ as in Eq.(73). Note that because Eq&8) and(81) are not of the same form,
this identification ofQ only applies to the zero wave vector spectrum. However, for the actual valugsiof, andM, the
modified spin-wave spectra obtained from E8{1) and from the effective biquadratic interaction given in Ef) (with Q
from above equatignare almost identical over the whole zone because, as one sees in Fig. 5, quantum corrections to the
spin-wave energy occur mainly at wave vectors close to those of/Rg.where they open a gap. The true Goldstone modes
remain at zero energy, of course.

We now evaluate the spin gaps numerically. We start by evaluating

1
[<a+(i)a(j)>]p:<a+(i)a(j)>j=i+%a(ffi):mqu [exda) s (@) )(a” (a)a(a)), (83)

whereq e Z indicates that the sum is over the Brillouin zone defined by (B§). and AN is the total number of spins in the
system:2,.z1=4N. Using the transformation to normal modes given in Appendix A, one obtains

Hi(9)—w(q)  2H,(q)

[a*(ha(}))]p= 4NE [ex(@) + S @ I[mg+ (13+mE)n(T)] 8N2 [l @+l )| = =+ g (D)
Hi(q)
SNZ [Cxd )+ Sl DT )[1+2n<T>] (84)
where
n(T)=1(e“KT-1) . (85)
A similar evaluation yields
+iVaT(i — 1
[<a (')a (J))]ap__ﬁqez (86)
Hence, the spin-wave gap is
wh=—963J'S{[(a* (a* (j))]ap+ [(a" (Da(j))]p}
1 1+2n(T)
=—12)0'S= >, {C(D[H1() = Ha(@) ]+ S [ Ha(a) + Ho( ) F———. (87)
Ngez ()

The details of the numerical evaluation of this expression atvhereY is a dimensionless lattice sur¥i~1.366.
T=0 are discussed in Appendix B, where we obtain the One might think that the above procedure could be used
result to determine the temperature dependence of the gap. This
) 5 approach would lead us to believe that the quantum gaps
wp=4J'°SY, (88)  would increaseas the temperature is increased. This behav-
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ior strongly disagrees with experimenfs;® which showed 1.0 (e e e e e
that the quantum gap has a temperature dependence close to € j
that of the order parameter. In the boson calculation as out-
lined above, the result is that the quantum gap enesgyor

a fixed value ofd'/J is given by 08

w2=(J3")?S,[kT/(I9)], (89 os

wheredf,/dx is positive. More generally one would expect
a result of the form
0.2

w3=(3"9(US)f[KT/(I9]+(1/ISH)f[KT/(IF]
+0(1/S%)}. (90)

AS (Zero—-point—-motion spin reductio

LI (LI I N N L I N L I D D B I B

0 N AN NN RN SRS NN SRS N

.0
00 02 05 08 10 12 15 18 20
Presumably, the second term dominates at all but the very 7/

lowest temperatures. A possible mechanism for this is that _ _ _ _
the spectral weight functions in a bosonic formulation are FIG. 6. Spin reduction due to quantum fluctuations as a function
usually replaced, in a more accurate calculation, by Spectréﬁ the ratioJ'/J. Each dot represents a numerical evaluation. Note
weight functions associated with spin operators, which havéhat there is a divergence d§J—2 at which the classical system

an amplitude proportional tS,) rather than to unity. Re- 'S MOt stable.
placement ofa* (i)a* (j))r by (S,)r(a* (i)a* (j))r would .
lead to the experimental result. We are presently considering . 2, o 4
how to make this argument in detail. AS(T)= qu;‘z (g mg){a(a)” a(a))
We have calculated the gap at zero temperature for MnO
[i.e., usingS=5/2,J'Ikg=J/kg=5 K (Refs. 14, 21 and 22 1 Ha(a) .
At T=0 K one obtains a gap of about 1.5 meV. This mag- T NG () (a(9)” (a))
nitude of the gap is quite consistent with what is seen in
experiment® although a detailed interpretation of the gaps 1 H1(q) 1
requires taking into account the dipolar induced anisotropy T AN 0(q) el @kT_q" (94)

in addition to the mechanism discussed Hare.

Figure 6 shows the spin reduction due to zero-point fluc-

V. SPIN REDUCTION AND TEMPERATURE tuations as a function af’/J. At J'=0, we have four de-
DEPENDENCE OF MAGNETIZATION coupled simple cubic antiferromagnetic sublattices and thus

We now discuss the zero-point spin reduction and temA S=0.078, as calculated by Andersthzero-point fluctua-

perature dependence of the staggered magnetization. W@NS increase slowly up t'/J=1 and then very rapidly for
start by considering the expectation value of the sublatticd /J>1 with a logarithmic divergence at'/J=2. This be-
magnetizationS%(i). Of course, this expectation value is in- havior is very similar to that of the frustrated antiferromagnet
dependent of. Thus we write on a square latticg:3 In fact, the transition expected here

from the structure of the second kind, type A, to the structure
1 of the third kind(see Fig. 2, is very similar to that between
Z(i VW =S (aT(i)al(i))\=S— — + the (w,7) state and the #,0) state investigated by
(§1)=S-(a (ha(i)=s 4Nq§z (@’ (@a(@). Chubukov®>* It is interesting to note that a3'/J is in-
(91 creased, the system becomes unstable before2J, where
the classical model is unstable.
Using the canonical transformation of Appendix A, one Our result for the zero-point spin reduction can be com-
can show that pared with similar results for other systems. For instance,
Oguch?® calculatedAS for an fcc lattice with a nearest-
(SHi))=S—AS—AS(T), (92) neighbor antiferromagngtic ilnteraction and obtained the quite
large value 0.33, an indication of very strong frustration. In
our systemAS exceeds this value fat' >1.85]. Finally we
note that atT=0 our calculation would say that we lose
1 1 H.(Q)— w(q) long-range order al’ =1.964) for S=1/2, for instance.
— _E mi= — M@~ »l@ The temperature dependence of the magnetization,
ANGzz % 8Ngzz  w(q) AS(T), is shown in Fig. 7 for the parametei3=5/2,
J'Ikg=J/kg=5 K which are appropriate for Mné&}. It is
_ 1 15 He interesting thaff f lculati lose t
- ' (93) g thafly from our calculation comes very close to
2 8Ngzz w(q) the experimental value. However, we expect this is coinci-
dence as linear spin-wave theory usually reproduces the ex-
and the temperature-dependent spin reduction is perimental magnetization at low but underestimates the

where the spin reduction due to zero-point fluctuations is

AS
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(iii ) In order to include the effect of quantum fluctuations
on the spin-wave modes, we performed interacting spin-
wave calculations using the standard Hartree decoupling of

2.5 LI O I I O O IO

20 | 3 the fourth-order interaction terms. Quantum fluctuations are

E = E found to modify the spectrum of low-energy spin waves. In
(2 8 ] particular they cause the modes associated with the classical
P 15 F E degeneracy to have nonzero energy. We showed that this gap
2 E E and the modified spin-wave spectrum due to quantum fluc-

| r E tuations can be very well modeled by an effective biqua-
w10 = E dratic interactions of the form:
[SI: ]

v 05 E 3

0.5 T,=118.5K

|

s o b by b b by Ty N g e Ly

0'00.0 02 04 06 08 1.0 12 1.4 1.6 1.8 2.0 3
KT/(6]S) Q:_E{[<a+(i)a+(j)>]ap+[<a+(i)a(j)>]p}:O(J,2/J)r

1
A= =3Q3 [S) SIS’

TTTTITTIT
AERRENEN]

whereQ is estimated to be

FIG. 7. Spin reduction due to both the zero-point and the therWhere( . . .) indicates a ground-state expectation value.
mal fluctuations. The plot is particularly f@=5/2. (iv) We point out that the temperature dependence can be

used to demonstrate whether or not the gap is due to quan-

magnetization at temperature close . TWe also note that tum fluctuations”*® It is an open question to show defini-
magnetization decreases linearly with increasing temperdively that this temperature dependence is nearly the same as

ture. This is a surprising result as such a behavior was exhat of the order parameter. We also shw Appendix Q
pected for a nearly 2D systef. that the ratio of the high-temperature specific heat to the gap

has a signature that can reveal whether or not the gap is due
to quantum fluctuations.
(v) Finally we studied the spin reduction due to both
In summary we studied the quantum Heisenberg antiferquantum zero-point and thermal fluctuations. 74t 0 K, the
romagnet on a face-centered-cubic lattice with first- andzero-point spin reduction is quite large and strongly depends
second-nearest-neighbor interactichseind J’, using inter-  on the ratio of)’/J. When this ratio approaches 2, where the
acting spin-wave theory with the standard Hartree decousecond kindnagnetic spin structure is not stable classically,
pling approach. Our results can be summarized as follows:the zero-point fluctuations are very large and eventually de-
(i) The infinite degeneracy of the ground-state manifold ofstroy the long-range order in a manner similar to that found
this system is partially removed by collinear ordering in viewfor the frustrated antiferromagnet on a square lafttc?.
of effects previously calculated by Shender at relative ordeWe also evaluate the temperature dependence of the sublat-
J'2/(J2S). Using symmetry arguments we showed that therdice magnetization. For the realistic values of parameters
are only two inequivalent collinear spin structuréise., (S=5/2J'/kg=J/kg=5 K) for MnO, we obtainedTy
0120202304= +1), which are degenerate at relative order=118.5 K, very close to the experimental value of 120 K.
J'41(J°S).
(i) We then study the complete removal of the remaining ACKNOWLEDGMENTS
degeneracy between these two inequivalent of collinear
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type A is chosen to be the ground state by quantum fluctua-

tions. We note that in this particular spin configuration, theAPPENDIX A: DIAGONALIZATION OF THE QUADRATIC
magnetic symmetry is trigonal and therefore the magnetic SPIN HAMILTONIAN

ordering should give rise to a structural distortion away from
cubic symmetry. In fact, most of the monoxides of the iron
group element$*?122 suych as MnO, have the magnetic
structure found here and exhibit a small trigonal distortion
from cubic symmetry. However we mention a caution that in 1

these real systems there may be other energies, such as H= 52 X (M(q)X(q) , (A1)
single-ion anisotropy, dipolar, or magnetoelastic interactions, d

which should be considered together with those discussedthere X' (q)=[a;(q),....a,(q),a; (—Q),....a, (—q)]
here. and for a hermitiar#, M is

zero-point energy which is shown to be of the form;

Heff/J: C0+ C40'10'20'30'4(\],/\])4+ O(\]’/\])S,

In this appendix, we discuss the diagonalization of the
bosonic Hamiltonian in Eq(14). We start from the Hamil-
tonian written as quadratic form of spin operators
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H H
( ):( 1(q) 2(01)). (A2)

Ha(a) Hi(q)
Here we will treat only the case whekg (q) andH,(q) are
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roots of the eigenvalues d¥(g). We now concentrate on
M (q) in Eq. (30) for the structure of the second kind, type A,
shown in Fig. 2, for whichoio,030,=—1 (say o,=03
=0,=—0,=1). For this particular case, it is easy to see

real symmetric. In particular, we will obtain analytical ex- that[H,,H,]=0 and thusH,; and H, are simultaneously
pressions for eigenvalues and canonical transformation faiagonalizable. Hence, the eigenvaldsgin modesof D in

the collinear ground stateofo,030,=—1) for which

[H1(q),H>(g)]=0. A formal discussion of this problem

with its most general forniwhereH;(q) is Hermitian and
H,(q) is complex but symmetriccan be found in Ref. 34.

The diagonalization of the Hamiltonian in EGAL) re-
quires finding a canonical transformati®&yq) defining qua-
siparticle operators

X(q)=S(Y(q), (A3)

where  Y*(q)=[ay(q), ... .an(®), a5 (—0), ... (
—q)] and
P Q) P -Q
= and S Y= . _ |. (A4
s() (Q 5 (a) (_Q S |- (9
It is easy to show that commutation relations yield
(P-Q)(P+Q)=I1 and PQ—QP=0, (A5)
and that the diagonalization condition]a,(q),H]

= wn(0q) an(q), yields
H;P+H,Q=PQ and H,Q+H,P=—QQ, (A6)

where Q) is a diagonal matrix with);; = w;(q) i=1,...n.
Adding and subtracting these equations give

(Hi+H2)(P+Q)=(P-Q)Q
and
(H1=H2)(P—Q)=(P+Q)Q. (A7)
Thus combining these yields
D(P+Q)=(H;—Hy)(H;+Hz)(P+Q)=(P+Q)Q?,
(A8)
D(P—Q)=(H1+Hy)(H1—Hy)(P-Q)=(P- Q)02

Thus the spin-wave energiegq) are found as the square

Eq. (34) are

whH(A)=(639)2[ 1+ ¥(q)+4jcn(a)]
X[1—=y(q)+4jsn(q)] m=1,2,3,4. (A9)

Herec,(q) ands,(q) are the eigenvalues @(q) and S(q)
matrices in Eqs(24) and (25);

[ (@) @) —cylq) if m=1,
] mey(@ Fe(@—cyla) if m=2,
D= _e (@) —cul@+eyda) if m=3,
[ (@) t+o Q) tey(q) if m=4,
[ Sy(@ =S Aq)—Sy(q) if m=1,
_ _Sxy(q) +SXZ(q)_Syz(q) if m=2
Snl@)= _SXy(q) _sz(Q)+Syz(Q) if m=3,
[ Sy(@  Tsa)+sy(q) if m=4.

(A10)

In the one sublattice approach, as discussed in theHigxt,
andH, are scalars and therefore we have

a(q)=lqa(q)+mya(—q)", (A11)
where
»_Hi(a)+w(q) , Hi(@)—w(q)
T 20(q) 9 20(q)
_ Hy(a)
Iqmq_ - 20(q)" (Al12)

APPENDIX B: NUMERICAL EVALUATION OF THE GAP
Here we discuss the evaluation of Eg§7) for the quantum gap. For simplicity we work in the lindit/(6J) <1, so that we

have
wi=— 123J’S%q§z 2%(1){%} :
e
~ —24JJ'S%§Z () i; Zig; 1/2{“ 3 insj(yq()q)] - 3J§ic+4(yq()q)]
:8J'Zs%q§z cxz<q>2%

=4J'2SY, (B1)
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where

2 1— 1/2
v=2S g @l
Naez [1+y(q)]*?
In the above we used the fact thag. ;¢,,(q)f(q) =0, whenf is an orthogonal trigonometric function. Numerically we find
Y =1.365 94, which, for MnO, leads t@;=1.5 meV.

(B2)

APPENDIX C: THE HIGH-TEMPERATURE SPECIFIC We will now show that the value ORECKTZ/(szz)
HEAT AND THE GAP assumes quite different values depending on whether the gap

In this appendix we show that a measurement of the highi-s. due to quantum fluctugtions or to biquadra’\tE: exchange.
o P First of all, when the gap is due @ and we sefl’ =0, then

temperature specific heat can be used to distinguish whether

the gap in the spin-wave spectrum is due to biquadratic ex- 2Q?

change interactions or to quantum zero-point fluctuations. To CkT2=J2X2+ @[4%‘— 6X3+6X2]. (C6H)

this end we will calculate the high-temperature limiting 1

value of CkT?, whereC is the magnetic specific heat per Also, whend’ =0, the gap at zero temperatusg obeys

spin. (We assume that experimental data can be analyzed to

eliminate contributions from the lattice or nuclear spin de- Q=wd/(1929) , (C7)

grees of freedon.

We start from the standard formdtafor the limiting  so that

value of the high-temperature specific heat per €pifrom .

the Hamiltoniari: CkT2=J2X2+ —%34 [ 4X4— 6X3+6X2]
15(192) '
CKT2=Ng '[TrH?/(Tr1)—(TrH/Tr1)?] ,  (C) X ) o)
whereNs is the number of spins. We assume a Hamiltoniang,q approximatelyfor large S),
of the form
R=1+ 24( @0 )4 (C9)
H=2 =2 [3iS- S +K (S-S -Co)] . 52435
(C2) WhenQ=0, butJ’ is nonzero, then
whereJ scales the usual exchange interactidtscales the s s -
biquadratic exchange interactions, ai@h=S*(S+1)%/3 CkT*=J7X"+2J3"°X (C10
=X?/3 is a constant introduced to make the Hamiltonian d
traceless. We will entertain two scenarios: in the fist
=0 so that the gapyg is due entirely to quantum fluctua- wo=23"\/SY (C11)
o— ]

tions. In the second, we attribuég, to biquadratic exchange,
in which case we sel’=0. Our aim is to see hoWCkT?  where the constan¥, which is of order unity, is given in
differs in these two limiting scenarios. Appendix B. Thus

Equation(C1) yields

crre=| 124 0 |2 (C12
CkT?=3> TrH3/Z, , (C3) 2SY,
J
whereZ,=Trl. Take sitd to be in sublattice 1, as in Fig. 1. and(for large S)
Then the sum ovefr will be carried over six values af; for w2
which J;;=J andK;;=0 and over 12 values of thé&'s for R=1+—2o (C13
which J;; =3’ andK;; = Q/S®. Thus 2SY ¥
CkT?=3J2G,+6(Q%S%)[G,—2C,G,+ CS] Numerical evaluation of these results in typical cases
) P shows thatR is very close to unity whed’ =0 (i.e., when
+12(Q/S%)J' G5 +6J'%G?, (C4  the gap is due to biquadratic exchangad is about 3 for
whereG,=Tr(S-S)"(Trl), with parameters given below E(B7) appropriate to MnO. Thus
A J ’ measurement of the high-temperature magnetic specific heat
G,=3X% Gz=—3X? Gu=tX*"—&X3+£&X2 can also be used to distinguish a gap due to biquadratic ex-

(CH change from one due to quantum fluctuations.
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