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Polaron solutions and normal-mode analysis in the semiclassical Holstein model
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We investigate polaron properties in the semiclassical Holstein model in one, two, and three dimensions,
using two methods: a simple and efficient numerical scheme and a variational approach. We obtain accurate
information on the energy and the existence regimes of the polaron state. We study small oscillations of the
polaron through normal-mode analysis, investigate their stability, and evaluate the density of states of the
polaron eigenfrequencies for different system parameters. The normal-mode analysis shows in the one-
dimensional case a pinning-breathing mode crossing in the transition region of the small to large polaron.
Similar crossings do not exist in higher dimensiof&0163-18208)07329-9

I. INTRODUCTION AND THE SEMICLASSICAL tice. Polarons, which are localized stationary solutions of the
HOLSTEIN MOLEL equations of motion, will be calculated via a fast humerical
scheme that enables us to evaluate the polaron wave function

Polarons, of either purely electronic or excitonic nature,and its energy. The strength of this method is that while it is
are ubiquitous in materials where the electron-phonon couvery simple it provides very accurate and easily obtainable
pling cannot be ignored. Issues related to the formation anéiformation on polaron properties. Subsequently, we develop
dynamics of p0|arons have been in the foreground of re.a _V_arlatlonal method that glves accurate exact reSUlt.S for the
search for approximately half a century, during which sey-Critical valut_as of _the coupling parameter.that dgtermmes the
eral models were introduced and a variety of exact and agRolaron regimes in one, two, and three dimensi@is). We
proximate solution schemes have been thgd. The also derive arlalytlcal expressmns'for the smal! polaron en-
Holstein model has emerged as one of the fundamental mo&/9y that are in good agreement with the numerical results in
els in the attempt to understand the fundamentals of polaror@P and 3D as well as in 1D for large enough coupling. The
in condensed matter and biological systems. One of the mosfationary polaron results will be used in Sec. Ill, where the
successful approaches for obtaining polaron ground stafeolaron nprmal—mode_s are calculate_d through Ilneanzatl_on of
properties via the Holstein model has been through the use §f€ €quations of motion for the stationary polaron solutions.
scaling ideas and a continuous approximation. These studid¥€ focus on the lower frequency eigenmodes and discuss
showed that while in one dimension the polaron was alwayéhe'r ch_aracter, i.e. the contribution of the electronic and
the ground state of the Holstein model in two and three diPhononic degrees of freedom. Furthermore, we present the
mensions, a minimal electon-phonon coupling is required fofotal picture of the density of states for the spectrum of the
the phenomenon of the electronic wave function self-polaron eigenfrequencies. We conclude our study in Sec. IV.
trapping that leads to polaron formation. Furthermore, while
in one dimension there is a continuous crossover from the A. The semiclassical Holstein model
small to the large polaron, in two and three dimensions small
coupling polarons do not exist. Most of the results of Ref. 3 ; ; .
havg be?eﬁ shown to be correct also in the discrete fitfitn el HiarTHine. The first termH,, describes a tight-
the present paper, one of our aims will be to readdress th%'nd'ng. electrpn in aj-dlm_englonal simple latt'.c.éd__l’ 2,
well known stationary polaron properties, using, however,Or 3 with N sites and periodic boundary conditions:
alternative approaches.

For our study we will use the semiclassical Holstein
model, in which the lattice oscillators are treated classically.
The dynamical equations of motion describe in the semiclas-
sical approximation a quantum electr@r excitor) interact-  where the integem counts all the lattice sites and the integer
ing with classical Einstein oscillators indedimensional lat-  é[ m] of the second sum that dependsromienotes the sum-

The Hamiltonian of the Holstein model consistg &f,,

N
He|=—vm2:1 5[2“] Imy(m+ 4], &)
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mation of all the nearest neighbors at each sit@.e., takes tion of the electron and lattice, respectively. The parameter
2d values ford=1,2,3). The statgm) represents an atomic- is also equal toa\2(m*/M), wherem* is the electronic
like electronic state localized at site, for example, a Wan- pand effective mass am:aw is the dimensionless
nier state. In Eq(1) we have taken the on-site matrix ele- |attice constanta is the lattice constantUsing these quan-
mente,, appearing in the diagonal terreg> ,[m)(m[, to be  tities we cast Eqs4) and(5) into a dimensionless form and

zero, while—V is the nearest-neighbor transfer integral.  obtain their dependence on only two parameters
The second terril|,; describesN identical Einstein oscil-

lators, each located in a different lattice site and having mass . dGC,
M and frequencyw,: Y ar T %] Cn+s| TKChthn, ©6)
N 2 N
Mo 2
__= 2 0 2 d<u
Ha=5y 2 Pt —— 2 Xm ) <7 +untklC,?=0. )

wherepy, and x,, are the momentum and the displacement v gis0 write for subsequent use the expressions for the
from the equilibrium, respectively, of the oscillator located atgyimensionless energies, given in unitswfThe contribution
site m. , _ , of each term in the total energ#,;=Ee+Eint+ Ejar,

The Ias_t termHim_ descrl_bes a Ipca_ll interaction _of the \yhere Eoi=(Ve|He|We) and Ejy=(We|Hin¥o), is ob-
electron with the optical lattice that is linear in the displace-;5ineq through the relations
ments of oscillators:

N
N *
Hing=x 2, [m)(m|xp, 3 Ba== 2, a[zm] Crlemes: ©®
e
where y is the electron-phonon coupling constant. This in- E. =k§ IC,J2u 9
teraction term signifies that the on-site tight-binding matrix Nt R, ml Emo
elemente,,, i.e., the local site energy, depends on the dis-
placement of the oscillator at site as €;,= €g+ xXn, - 1 N du,\? 1 N
We derive the equations of motion for this model by treat- E,at=§ mEl ar + > mEl uﬁq.

ing the oscillator subsystem classically, while we use a quan-

tum description for the electron. This semiclassical treatment (10

can be justified in cases of large atomic mass leading to verin what follows we will study one-, two-, and three-

slow atomic motion compared to that of the electron. Wedimensional polaron solutions of Eq$) and(7), their sta-

write the electronic state asl(t))==,C,(t)|n), where bility properties analyzed through their normal-mode oscilla-

C, (1) is the probability amplitude to find the electron in the tions and their dependence on system parameters.

localized statgn). The Hamiltonian operator for the electron

is Hej+Hint, given by Egs.(1) and (3). Using the Schro Il. POLARON SOLUTIONS

dinger equationf (d| W )/dt) = (H¢+Hin) | ¥e), We obtain ,

the time evolution of the amplitudes, (t): A. Numerical scheme
The polarons are localized stationary solutions of the

coupled system. In our case a stationary solution is obtained

throughdu,/d7=0 andC,(7)=V¥,e M7 where¥, is

time independent. From E¢7) we have that for a stationary
The classical Hamiltonian that we use for the oscillators issolution

given by Hgjas= (W e|Hio We). From the Hamilton equa-

. . — 2
tions X, = dH a5/ Ipn @and p,= — IH a5/ X, We determine U= — K[| (1D

the dynamical behavior of the lattice variables. As a resultand substituting in Eq(6) we obtain for the electronic wave
we have function

dC
ih——=—V| > Cpis
dt 5]

+xCpXp. (4)

d?x

M T2“+|v|w3xn+x|cn|2:o. (5) E«Ifnz—(% \Ifn+5)—k2|\1fn|2‘l'n. (12)
Similar equations, such as Eqd) and(5), have been widely  This is thed-dimensional time-independent discrete nonlin-
used in numerical studies of various electron-phononegr Schidinger equatioﬁ?‘zs Equations (11) and (12),
systems.’~**In modified forms, they have also been studiedwhich describe the stationary solutions of the semiclassical
in the Davydov's soliton model for the transport of vibra- model, are identical to those obtained in the adiabatic
tional energy in protein&:~*° approximation-®° The energyE that appears in Eq(12)

We use the dimensionless quantities wgt (dimension- g equal t0  Eg+Ein, where now Eg
less time, u,=+M wOZ/VXn (dimensionless displacemepts = —E’r\'nzlﬁa[m]‘l’:n‘l'mw andE; = _k22m:l|\pm|4_ In or-

k=X/\/VMw02 [dimensionless effective coupling, designatedder to obtain the total energy of a stationary solution we have
usually asy\ (Ref. 12], and y=hwo/V=t./t;, wheret, to add toE the lattice energy, i.eE=E+E,, where
=#/V andt,= l/w, are the characteristic times for the mo- E = (k?/2)=N_, | ¥ |*.
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The extended Bloch stateBﬂ=(1/\/N)e‘q“ are solutions lowest energy extended state, dnd) for k> kCZ the polaron

of Eqg. (12) forming a banq with gnergigE from —2d is the ground state of the system. Whenever the polaron ex-
—k?/N to 2d—k?/N, whered is the dimension of the lattice. ists, i.e., fork> ke, it extends only to a few lattice sites, thus

The total energy, taking into account the lattice potentiakorming a small polaron. In a three-dimensional simple cubic
energy, is shifted by-k®/2N. In the limit of an infinite chain  |attice the picture is exactly the same as in 2D. The only
the band is from-2d to 2d and the lattice is undistorted. In  yifference is that now the critical values of coupling are

addition to these extended states, Etp) admits localized  gpifteq upward tck,. =2.8022 anck,. = 3.2887.
solutions as well. These localized electronic states accompa- 1 2
nied by lattice distortions that are localized in the same are
as indicated by Eq(11), represent polaron states.

A very simple method for the numerical calculation of
polarons emerges from the fact that they are attractors of t
map

Figures 1 and 2 summarize these findings. In Figal-1
a_[(c) the thick lines show the total polaron enerBy,; as a
function of the effective coupling for d=1, 2, and 3, re-
ectively. Polaron wave functions are presented in Fig. 2.
he thick continuous line in Fig.(d) shows a large one-
dimensional polaron fok=0.15. The filled circles in Fig.
(W= {W = H{WY/|H{¥}], (13)  2(b) show a small polaron in 1D fok=2.5. Finally, the
filled circles in Figs. 2c) and Zd) show sections of polarons

Whe(re{)‘l’}:(‘l’ll---a‘l’r\l), the operatoH is defined through in 2D for k=2.5 and in 3D fork=4, respectively.
Eqg. (12) as

B. Analytical variational results

- 2 2
HiW}e= (S[En] Wi 5= KWW, We will consider simple trial functions that produce very

accurate variational results. In three dimensions we have
and |H{¥}|=V=N_,(H{¥},)? is the norm of the state
H{Ww}.2 Vi mom =A™ MM for g=3, (14)

It is easy to see that in the anti-integrable limit, defined as e

the limit where the electron does not move from site to sitewhere m, refers to the site in th& direction, etc., and in
i.e., the transfer integral—0,*%! the term= 5,/¥,,, of  lower dimensions the ansatz wave function changes appro-
Eg. (12 is absent, and the on-site localized polaron is a venypriately. The variational parameteytakes values in the in-
strong attractor of the mal3). When we depart from the terval 0<z<1 and gives the linear extent of the solution
nonintegrable limit this attractor becomes less strong, whilafter the substitutiomy=e~Y%. As 7 increases the solution
in the two- and three-dimensional cases it is lost in somdéecomes more delocalized and in the limit-1 we obtain
instances. In order to calculate the polaron state we begian extended state. The coefficiéhts evaluated through the
with a completely localized initial statgl'™'},= Snng, @Ct  normalization of the solution, i.emey_._|\Ime”_.|2=1, lead-

on this with the operatoH, normalize the resulting vector, ing to
and repeat this procedure until convergence is achieved. As a
result we find the polaron wave functig f'"3'}, while the

energyE of Eq. (12) is given through the norfiH{ ¥ fnal|,

This procedure converges very fast to the polaron state
whenever it exists in most cases only after few tens of iteraThe total variational energ$ is given by
tions, for an accuracy better than 8. When there is no
polaron solution it converges to the lowest energy extended

1— 772 d/2
for d=1,2,3. (15

1+ 7]2

O=— > (Vp Wy AVn W g o)

state (except for the cas&=0, where it cannot select be- e My see
tween the lower and higher energy Bloch states
. . . k2
The polaron solution depends only on the dimensionless _ K v 14 16
effective couplingk and not on the parameter, as can be 2 it T el (16)

seen readily from Eqg12) and (11). The results we obtain

are in agreement with those of Refs. 9 and 10 and summ&substituting the trial functiokil4) into Eq.(16) and using the
rized as follows. In 1D the polaron exists always as thefact that

ground state of the system and there is a smooth transition

from the small polaron to the large polaron. Approximately . .

we have a smalllarge) polaron fork>2 (k<1). In the large _n;“ o Fmer AV, P, F00)
polaron case the smaller the couplinghe more extended in )

size and smaller in height the wave function. For example,

for k of the order of 10° the size of the polaron is of the :mE__. (W1, =W, [*+)—2d

order of 1§—10* lattice constants. It is therefore necessary .

to explore larger lattices in order to distinguish the polaronfor d=1,2,3, respectively, we finally obtain the expressions
from the extended states. In a two-dimensional square lattickor the variational energyb,

there are two critical values of the couplikgl=2.3877 and

ke,=2.5844 that determine three parameter regignsfor - ad 4=123
k< kCl there is no polarori) for kc1< k< kc2 the polaron is ()= 1+72 2 (1+ 7?3 ' Toe
metastable, i.e., has more energy than the corresponding v

7 K (1-792)%1+9H¢
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FIG. 2. Polaron wave functionga) The thick line shows a large
polaron in 1D fork=0.15, the thin line results from the numerical
calculation of the minimum of variational energy, and the open
circles are values given by the continuous approximatibpThe
filled circles show a small polaron in 1D fé&r=2.5, the continuous
line results from the numerical calculation of variational energy
minimum, and the open squares are obtained analytically by the
perturbation expansion of the variational parameter in the calcula-
tion of the variational minimunjEgs. (20) and (14)]. (c) and (d)
Sections of the polaron in 2D fdt=2.5 and in 3D fork=4, re-

spectively. The points and the lines have the same meaning as in
-12 : .

(b).
2 K ke 3 4 5 .
dimensionless coupling k In Figs. 3a)—3(c) we show, ford=1, 2, and 3, respec-

tively, the function®() for different values of the coupling

. o) k. The dashed lines show the lowest energy extended states.
\ ] The variational energyl7) predicts qualitatively the exis-

Y T E— -— - —-— . Jower enery oxtendeq state _ tence of the critical valuek, and k., in two and three

dimensions and in one dimesnion the polaron exists for all

d=3 the nonzero values ¢f while there is a continuous transition

from the small to the large polaron. In particular, for the

three-dimensional cadéig. 3(c)], for largek the minimum

. of ®(7) is below the energy of the extended states and thus

the polaron is the ground state. Furthermore, from (@),

for d=3 we have that whem— 1 the energy® goes to—6

as —6+3(1—7)?, i.e., from above. This means that the

extended state is a metastable state in this regidq sépa-

rated by an energy barrier from the polaron ground state. On

the other side, for smak there is no minimum correspond-

ing to a localized state. In the intermedi&teegion there is a

) _ _ minimum for »<<1, but it corresponds to a metastable state
FIG. 1. Polaron total energy as a function of the dimensionlesgince the absolute minimum corresponds to an extended state

coupling (thick line) for simple lattices in(a) one dimension(b) (at 7=1). In 2D we see from Fig. ®) a similar behavior,

two dimensions, andc) three dimensions. The open circles result even though there is one difference concerning the region of

from the numerical calculation of the minimum variational energy. . \vhere the polaron is the ground state. Specifically,dor

The long-dashed lines are analytical expressidag. (19)] that o . .
were obtained keeping in the variational minimum calculation only_2 Eq. (17) gives that Wh2en77—>1 th2e V_a”atlonal energy
oes to—4 as —4+(2—k“/8)(1—»)*, i.e., from above

the first-order terms of the variational parameter. The short-dashe$ ;
lines are more accurate expressipisg. (21)] resulting from a per- whenk<4 and from below wheik>4. This means that for

turbation expansion of the variational parameter. The continuou§™ 4 the extended state is unstable, whileKer4 it is meta-

thin lines show the zeroth-order reselk?/2. The long-dash—short- Stable and has to overcome an energy barrier before falling to
dashed lines show the lowest energy of the extended states. THBE polaron ground state. On the contrary, in the three-
dotted line in(a) is the result of the continuous approximation. The dimensional case, the energy barrier between the two solu-
critical values of coupling., andk.,, for d=2 andd=3, are also tions exists for all values df. This feature was already no-
indicated in(b) and(c), respectively. In the insets we show in detail ticed in Ref. 10, even though a different valuekpfess than

the transition regions. 4, was given for the vanishing of the barrier in 2D. The

total energy E, (in units of V)

\ polaron energy

10 F

SN

total energy E,, (in units of V)

—14 — 1

dimensionless coupling k
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0 ' ' - - sizes that we were able to explafé We note that the mini-
mum of the variational energy in 2D and 3D corresponding
to a localized solution is obtained for relatively small values
of the variational parameter. This designates the formation of
a small polaron. Contrary to the results in two and three
dimensions, Fig. &) shows qualitatively different results for
the one-dimensional case. A minimum of the variational en-
ergy exists always below the energy of the extended states,
even for very smalk [see the inset of Fig.(8]. As k de-
creases, the minimum becomes closer to the extended state
energy, which is obtained for larger values®fAs a result,
kclzo ford=1, since fork=0 there is no localized solution

oo for the tight binding electron of Eq12). Furthermore, since
s s ' s ' the polaron solution is always the ground state, there is no
0.0 02 04 0.6 08 10 second critical valug, . For d=1 the function®(7) ap-
variational parameter n 2
proaches—2 as —2— (k?/4)(1— »), i.e., always from be-
low, resulting in unstable extended states.

We now present quantitative results of the variational ap-
proximation, as well as their agreement with the numerical
results of Sec IlA. From Eq.(17) we have d®/dy
=P(7)[k®—1f(7)], whereP(7) is a positive function in the
interval 0<#n<1 (different for each dimensignand the
functionf(#7)=f4(#) (also positive in this intervals given
below. The minimization condition for the variational energy
results in the equality

variational energy @ () (in units of V)

variational energy @ () (in units of V)

k2: (1+7]2)3d—1
n(n*—=n?+1)(1+ nH o Y (1-

7]2)d—2 Ef(r])

0.0 0.2 04 06 08 1.0 for d=1,2,3. (18
variational parameter n

2 . . . . The functionf(#) determines the minimum o®(7) and
consequently the polaron solutions. A straightforward calcu-
c) lation of the minima of the functioffi( %) leads to the exact
calculation of the critical coupling®" in two*® and three

—~4 <z 1 dimensions. Furthermore, by substituting tk from Eq.

k=2. (18) into Eq. (17) and equating theb(7) with the lower
energy of extended states, we obtain the corresponding val-
ues of » and from them the critical valueg>". These re-

sults, together with a comparison with the results obtained

3.5 throught the numerical evaluation of Sec. Il A are displayed

in Table I. We observe good agreement between the analyti-

cal and numerical results.

In the following we derive expressions for the polaron

. . . energy. First, we observe that the numerical calculation of

0.0 02 04 06 08 1.0 the minima of the variational energil7) gives results for
variationa| parameter 1 the energy and wave function in quite good agreement with

FIG. 3. Variational energyb(7) as a function of the variational the numerical solutions of Sec. Il fve compare the open
parametenr, for different values of dimensionless couplikgn (a) circles in Figs. 18-1(c), for the energy in each dimension
one dimension(b) two dimensions, anéc) three dimensions. The and the continuous lines in Fig. 2 for the wave functipns
dashed line in all cases shows the lowest energy of the extendéd/e also see that in 2D and 3D as well as for relatively large
states. The inset if8) is an enlargement of the region closego K in 1D, the minima of the variational energy are found at
=1 small values of the variational parameterAs a result, it is

possible to solve the minimization conditiqd8) keeping
linear stability of the lowest energy extended state in twoehly first order terms of;. Then we finds (k) = 1/ for each
dimensions was numerically investigated using the methodimension. Substituting the solutiof(k) into the variational
of a time Fourier transform of small oscillations around theenergy(17), we obtain
solution (see Sec. ¥ The solution is unstable fdk larger )
than a value that increases with the lattice size, but it seems b = k_ _ E
to be saturated somewhere above @#least for the lattice var 2 Kk

variational energy @ () (in units of V)
T
w

for d=1,2,3. (19
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TABLE I. Comparison of the numerically, calculated, critical values of coupling with the corresponding
analytical value derived through the variational method. NA denotes not available.

Dimensiond ke, kgf’ Relative erron%o) ke, kg:“ Relative erron(%o)
1 0 0 NA NA
2 2.3877 2.353 1.45 2.5844 2.593 0.33%
3 2.8022 2.694 3.85 3.2887 3.293 0.13%
These energies are presented in Figa)-11(c) by the long- The results for the wave functions are presented in Fig. 2.

dashed linegslightly above the thick lines of the numerical The open squares in Figs(l—2(d) show the variational
calculation. We note that the resu(fil9) can be obtained by wave functions of Eq(14) with the parameter; given by

using more complicated diagrammatic technigtie. Eq. (20). Figure Zc) shows one of the worst approximated
If we apply a perturbation expansion gtk) with respect cases in 2D and 3D, viz., the metastable pola¢fam kcl
to powers of k> we find from Eq.(18) that <k<k,). In Fig. 2a) the open circles show values given by

4d—2 1 the continuous approximatiof22) that approximates accu-
n(k)= EZ+ T6_+O<@) for d=1,2,3. (20 rately the large polaron.

Substituting the expressid0) into Eq.(17), we obtain the Ill. NORMAL-MODES OF POLARONS

results for the variational energy A. Born-Oppenheimer approimation

k2 2d 4d?-3d

L= oY

1
2 K2 kS kI

klO

for d=123 In order to study normal-modes of polarons, we consider
or d=La3. the effects of small perturbations and linearize the equations
(21 of motion around the polaron solutions. We first treat this

. . . problem through the use of the Born-Oppenheimer approxi-
In Figs. Xa)-1(c) we plot these relations using Short'd’c"s’hedmation. We consider the oscillator displacementsfor k

lines (between the thick and the long-dashed ljnés d =1,...N as fixed parameters with the electron instanta-

=1, 2, and 3, respectively. We see that expres¢l) ap- neously adjusting. This is a good approximation whgn

proximates quite weII.the polaron energies n 2D and 3D< 1. The electronic energy and wave function obey the equa-
(especially in the region where the polaron is the ground[.

state, i.e., fok>k.,) and in 1D in the small polaron regime. on
The largerk is, the better the coincidence is. In the limit of
very largek all the above-derived expressions tend-tk?/2,
reproducing the well-known result of the non-integrable _ _ _ _
limit. 2 The curves of-k?/2 are also plotted for comparison While the dynamical equation for the oscillators is
in Figs. —1(c) with th ntin hin lines. The resul

gs. Xa)—1(c) with the continuous t es. The results a2y, JE{u) L

;i] \Pi+5 +kUi\Pi:E{Uk}\I’i, (24)

of Egs.(19) and(20) in the one-dimensional case differ from —tu
the correspondig ones of Ref. 29 because in the latter paper dr? au;
the effect of the normalization of the electronic wave func—We consider small deviations(7) from the polaron, i.e

. . . . . q y .Gy
tion on the depth of the lattice distortion was not taken '”toui(r):u?+5i(r), whereu? are the static polaron displace-

account. A ;
. . ments. Substituting into E§25) and using the Taylor expan-
The only case where the formu(a1) fails to describe the sion for the termyE{u,}/au; , we get to first order fos, (1)

polaron energy is in the one-dimensional large polaron,

(25

wheren is relatively large. In this regime, however, the con- d?s,
tinuous approximation is valid, resulting in the solufion FJFZ (Jjj+ 6ij) 6;(7)=0, (26)
I
v - k 1 29 where J;;= #?E{u,}/du;ou; and &; is Kronecker's delta
" ova K2\’ (22) symbol.
cos Zn The matrix elementd;; can be computed through a nu-

merical calculation of the second derivative since it is pos-
with energy sible to find from Eq.(24) the values ofE for u; close to
u’.32 However, a more accurate calculation can be done us-
(23) ing perturbation theory. In particular, from E@4) we have
that 9E/gu;=kW?. Thend;;=2k¥;(d¥,;/au;). In order to

The energy(23) is also shown, as a dotted line, in Figal calculated¥; /du;, we f(i)nd the first-order corre_ction in the
We observe that it describes the polaron energy in almost thelaron wave functiorb;’, using as a perturbation thg's.
entire region where Eq21) for d=1 fails. We conclude that AS @ result, we obtain

accurate analytical expressions of the polaron energy are vy

available for almost all the values of coupling in one, two, Ji=—2k2p2g0 > b 27)
and three dimensions. ! 'S0 E,—Ep’

k4

Deon=—2- 48
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where the labelv counts the eigenfunctions of the unper-
turbed problem:

+ku'd/=E,¢/. (28)

% Bl s

The ground statev=0 corresponds to the polaron. Thus,
from the diagonalization of the unperturbed Hamiltonian
Hoijzku?b‘ij—(ﬁiﬁﬁ 8 j—1) we compute the matrix;
using the sunt27). From Eq.(26) we see that in order to find
the normal modes we have to diagonalize the malkjx

+ ;. The resulting eigenvalues give the square of the

eigenfrequencies.

In Figures 4a)—4(c) we present the five lowest eigenfre-
guencies as a function of the couplikdor d=1, 2, and 3,
respectively. All other eigenfrequencies are conjested be
tween these five and the frequensy of the oscillators. The
corresponding eigenvectors of the four lowest modesdfor
=1 and 2 are shown in Fig. 5. In 1D for largein the small
polaron region the lower mode is a breathing symmetric
mode[see Fig. 5a)] and the next mode is an antisymmetric
pinning modgsee Fig. ¥)]. As can be seen from Fig(&,
whenk decreases there is a mode crossing and the pinnin

mode becomes the lower one. This happens in the region 0= o5 | ]
the transition from the small to the large polaron. For smaller &

k the pinning mode squared frequency is very srt@dtise to
zero, but positive. We note that if a squared frequency is

zero or negative then the solution is unstable. This is not the
case for the one-dimensional polaron. In 2D and 3D the low-

est mode is always a breathing modee Fig. %e) for d

=2]. Its frequency goes abruptly to zero as the critical value 2
ke, is approached. The next higher frequency is a pinning

mode and it is doubly degenerate in 28ee Figs. &) and
5(g)] while triply degenerate in 3D. These degenerate mode

correspond to perpendicular directions. The renormalization
of the phonon frequencies has also been found in a smal

cluster consisting of four sités:!

B. Study of the complete problem
In order to study the complete problem we depart from

the Born-Oppenheimer approximation and take additionally
into account the electronic motion. For small perturbations &

from the polaron solutiona® and ¢ we have
Wi(1)=[¢7+ei(n)]e 7,

u(n=u+s(r), i=12,..N, (29)

wheree;(7) is complex ands;(7) and|e;(7)| are very small.
Substituting into Eqs(6) and (7) and keeping first-order
terms iné; ande;, we obtain the linearized equations

kul— A kp0S =i E
+ (kuy —Ep) €+ Koy 6; IydT’

_(2 €i+s
Ii]

d?s; 0 .
Gz tkei(e+e)+8=0. (30)

1.0 - Qf a)
Kt
s
£ d=1
3
£
05} E
oy
o
2
g
0.0 1 1 1 1
o 1 2 3 4 5
dimensionless coupling k
b)
1.0 -
/T de.
g
k]
2
(:
£ d=2
oy
g
g
0.0 r— :'3 "’ 5
dimensionless coupling k
)
S I ===
3 d=3
s
2
g 28 3.0
£ T
05} E
§ 098 -
0.96
00 %R ; ;

dimensionless coupling k

FIG. 4. The five lowest polaron eigenfrequencies in the Born-
Oppenheimer approximation as a function of the coupling(&r
one dimension(b) two dimensions, andc) three dimensions. We
note a mode crossing in the one-dimensional case, at the transition
regime from a small to a large polaron.

There are two ways to proceed. The polaron solution is
periodic in the AN-dimensional phase space of
{ReV¥;,ImW¥; u,u} with period T=27y/E, (because
Wi(7)= ¢ e /M7 A standard way for finding the nor-
mal modes in this case is by using the Floquet analysis. For
this we have to calculate numerically the tangent ivband
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FIG. 6. The five lowest polaron eigenfrequencies as a function
) of the coupling for different values af in a one-dimensional lattice
N - - + - - consisting ofN=500 sites.
L We have additionally that fow#0, €?(w)=—[wy/(E,

—Eo)]1e!Y(w), whereas forv=0 the values are" ()
=0 [this relation is equivalent with the normalization
FIG. 5. The four lowest eigenmodes of the polaron in the Born-condition for the ¥, of Eg. (29] and 65,2:)0((0)
Oppenheimer approximatiof@—(d) in one dimension fok=2.5  — _(k/w)’)zi(ﬁio5i(w)-
and (e)—(h) in two dimensions folkk=2.5. The sign of the corre- For nonzero solutions the determinant of the sys(a)

sponding eigenvector at each lattice site is presented with a Sizﬁ"lould be equal to zero. Thus the eigenfrequencies will be
proportional to its magnitude. A zero value in the eigenvector isobtained through the condition

represented by an empty site.

A R
de(l’[)=de< BT c) =0, (32

diagonalize it. The latter maps an initial deviation
{Re &(0),Im (0),5(0),5(0)} from the periodic solution to a
deviation resulting from the linearized equatidB$) aftera  where A is an (N—1)><(N2—21) diagonal matrix with ele-
period T, ie., {Reg(T).Im &(M),8(T).8(T)}=M{Reg(0), ments A, ={E,~Eo~[w*y/(E,~Eg)]}s,,, Ris the

- N + (N=1)xN matrix R,;=k¢’#!, R is its transpose, an@
Im €(0),6(0),6(0)}. Due to the normalization condition is NxN diagonalC vi 1(1' '2’)5 '
3i|Wi|?=1, implying ;¢ Re =0, the di ion of th <ij =20 @ )0 - iy
m|f|;1p It|hat v\;illlrgg glir;gonljiilzedeiz (\&?—,1)S< ?Xpﬁnflfr:/voe doe We note that in the limity=0 the condition(32) reduces
not present here the results of the Floquet analysis for thE0 the Born-Oppenheimer result. This is seen clearly by us-
polarons®? but continue the analysis using the time Fourier'
transform method, which also permits us to obtain the po- —
laron normal modes. de(Il)=def{A)de{f C-R'A™"R) (33

We  consider 6i(7)=4di(w)cosor and €(7)

=eY(w)coswrt+id?(w)sinwr and use PP (w) and
=3, @ (w)¢?, where thep! are the eigenfunctions of
Eq. (28) obeying S;¢’¢’ =35,,.; after substitution into (C—R'AT'R);
Egs.(30) we obtain the system of equations

1 0b?hO?
:E (1_ w2)5ij _ZKZZ ¢| ¢| ¢lf21y2 , (34)
v#0
w — —
B, Eom g | €M(0) KD 4015 (w)=0 SRS,
E,—Eq/ i
Vv#0, where in the limity=0 the last term gives thg; of Eq. (27).

For y#0, after multiplications of the firsN—1 lines and
1 columns ofIl by VE,—Egy/y and the lasiN lines and col-
K 0’ e (w)+ = (1— 0 6 (w)=0 Vi. (31 umns byv2, we obtain the squared eigenfrequencies from the
VZ'O didie, (@) 2( w’)di(w) S diagonalization of the matrix
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AE,\2 V2k V2k
(T) 0 7¢(1)¢%VAE1 7¢%¢hVAEl
V2k V2k
0 0 7¢8¢%¢AE2 7¢%¢MAE2
AEN_,\2 V2k - V2k ~
0 ( » ) 7¢8¢? "VAEN-, 7¢%¢N AEN-; |, (39
V2k V2k -
—;—¢2¢%JAE1 —;-¢2¢T LVAEN_, 1 0
V2k V2k -
—;—¢ﬁ¢§JAE1 —;-¢g¢m LJAEN_, 0 1

whereAE, stands for the differencé,—E,. dimensionality. The only important effect of the interaction
In Fig. 6 we present for differeng the five lowest eigen- is the appearance of several discrete phononic levels that are

frequencies as a function &fin one dimension. We observe Visible if not covered by the band. If the electronic band is
that for relatively largek the lower modes are determined above(below) the unit then the disjoin phononic levels are
essentially by the lattice thus reproducing the Born-below(above the strong peak. In Fig. 7 we present the DOS
Oppenheimer results. For smal however, the electronic Of polaron eigenfrequencies together with the DOS of the
motion modifies this picture. Depending an a transition ~ €lectronic spectrumi, —Eq)/y for y=10 and two different
takes place at different values &f The smaller they, the values ofk, in two dimensions. Qualitatively, the only dif-

smaller the corresponding transition vakje Similar behav- ference in the total picture of the spectrum at the other di-

ior appears in two and three dimensions. However, Sincgnensdlc_)ns IS _the ;?ape Of.ﬂ:e electr(t)nlc ba”d-kFOF eﬁm%e,g
there is no polaron fok<kcl, there is no such transition at °N¢ dIMeNSIon there exist very Strong peaks in the ban

_ edges, as a square root singularity.
all for relatively smally (<1-2). o _ The electronic frequencies(— E,)/y and thus the loca-

We calculate the electronic contribution at each eigentjon of the electronic band as a function of the paramekers
vector through the ratio =,[(€")2+(€?)2]/{2;67  andy can be evaluated analytically. The lower band edge of
+3,[(eM)2+(€2)2]). We see that the character of the the electronic frequencies is determined from the expression
lower modes changes abruptly from phononic to electronic at
the transition poink;. The character of lower modes is in-
terpreted by the position of the spectrum of electronic fre-
quencies E,— Eg)/y with respect to the frequency(in our
dimensionless unijsof the pure lattice. In particular, as can :
be seen from the matrit35), we couple theN phonon fre-
guencies at a frequency equal to 1 with the- 1 electronic
frequencies. For fixed, the smaller they, the higher the
frequencies E,—Eg)/y. For fixed y, the larger thek, the
higher the excitation energieE,—E, of the eigenvalue
equation(28) and, as a result, the higher the electronic fre-
guencies. When the electronic spectrum is far away from
frequency 1, due to the coupling, some phonon frequencies
split from the others. This results in lower modes with
phononic character that can be accurately provided by the L ‘ 0 n
Born-Oppenheimer approximation. As long as the electronic
spectrum remains above the unit frequency the lattice deter-
mines the lower modes. Increasingr decreasing the cou-
pling k changes abruptly the character of the lower modes
and the transition takes place when the electronic spectrum
crosses the Born-Oppenheimer phonon frequencies.

The density of state@DOS) of the spectrum of polaron
eigenfrequencies consists of a thin and very strafitike
peak at frequency 1 plus a band with an electronic origin. FIG. 7. Density of state€O$) of polaron eigenfrequencies and
The position of the band depends krand y, as discussed also of the electronic spectrum in a two-dimensional lattice consist-
previously, while its width is 4/y, whered is the lattice ing of N=21x21 sites fory=10 and(a) k=2.4 and(b) k=4.

—2d—E,
wband:T1

(36)

a) b)

k=2.4 k=4

DOS of polaron eigenfrequencies

(=1
E
N
(=1
-
N

DOS of electronic spectrum

frequency (in units of ;)
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IV. CONCLUSIONS

We studied the polaron solutions of the semiclassical Hol-
stein model in one, two, and three dimensions. The classical
treatment of the lattice permits us to obtain dynamical equa-
tions suitable for numerical integrations. The stationary so-
lutions of these equations can be either extended Bloch states
or localized polarons. Using a very simple numerical method
we are able to calculate the polaron energies and wave func-
tions for all values of the parameters. In two and three di-
mensions there are two critical values of the dimensionless
couplingk. Fork< kCl there are no polaron solutions, while

for k> kC2 the polaron is the ground state of the system. In

the two-dimensional square lattice the critical values are
kC1:2.3877 and<c2= 2.5844, while in the three-dimensional

log (Y) . . .
simple cubic lattice they artecl=2.8022 and<02=3.2887.
he | | modes f h _ | - takes ol In contrast, in one dimension the polaron solution is always
the lower normal modes from phononic to electronic takes place ag,o 4y nd state. These qualitative results are not restricted
a function of the logarithmibase 10 of y. The lines are the ana- to the simple lattices that we have considered in our work
Iytical results. The filled circles show the numerical results for one F: if | ical thod to the t ’
dimension, the asterisks for two dimensions, and the empty squaré:Or examplié, 1T we apply our numerical method to the two-
for three dimensions. _|menS|onaI honeycomb I_attlc(lahe structure of graphijeve

find the same picture as in the square lattice, where now the

whereE, is the ground state of E428). We obtain different Cfitical values are =2.0345 andk;,=2.1465, i.e., shifted
expressions for the small and large polaron, respectively, uglownward. It seems quite reasonable that the smaller the
ing the resultE,=—k? in the first case andE,=—2  coordination number, the easier it is for the electron to be
—Kk*/16 in the second. For the small polaron c&geis ob-  trapped due to lattice deformation. o

tained through Eq(17) with the substitution 0k%/2 with k2, We applied a variational method approximating the po-
while the dependence of(k) will remain the same. The laron state by a simple trial function. Because of the simple

reason is that Eq17) includes also the lattice energy, which form of the trial function we found explicitly the energy as
we substrate by using, for the static solution, thgt, 2 function of the variational parameter. The dependenek of

— —2E,,, holds. Finally, we have for the small polaron on the coupling constant exp!ains qualitatively all the fea-
tures of the polaron for each dimension. Furthermore, we are
able to find exactly the critical values of coupling, which are
in very good agreement with the numerically calculated val-
ues(Table | in Sec. IV. Although we cannot solve analyti-
cally the minimization condition, keeping leading terms ap-
propriate for a small polaron, we derive exact formulas for
the polaron energy, given by E@L9). Using a perturbation
(38)  expansion, we derive expressiofsl) that provide a better
description of the polaron energy, especially close to the
transitions regimes. These relations approximate accurately
If we use the more accurate expressi@n) for the 7 (k) the numerical results in almost all the cases, except that of
of the small polaron, we obtain an additional termthe large polaron in 1D where the continuous approximation
—2d(4d—3)/k® in the nominator of Eq(37). At largek s valid and its energy is given by E(3).
values the electonic spectrum and the phononic peal,at Finally, the normal-modes of small perturbations around
=1 are well separated; as the value of the coupling is rethe polarons were examined. We presented the lower modes
duced the spectra come closer and at some critical Mglue and the dependence of their frequency on the parameters of
the character of the lower modes changes from phononic tthe model. We analyzed whether they have phononic or elec-
electronic. This point is determined through the conditiontronic character, i.e., if they are determined principally by the
wpandKi)=1. As a result we obtain for the small polaron lattice or electron motion, respectively. In the former case
they are fully described by the Born-Oppenheimer approxi-
ke=/y+2d, (399  mation. Their character depends on the position of the spec-
and for the large polaron fat=1

FIG. 8. Critical value of coupling;, for which the transition of

k?—2d
wband:Ta

d=12.3 (37)

and for the large polaron fat=1

k4
wband:ﬁ-

d=1,2,3
trum of electronic frequencies with respect to the frequency
wq of the Einstein oscillators. Moreover, the complete pic-
ture of the density of states of polaron eigenfrequencies was
discussed. We derived analytical expressions for the lower
edges of the electronic band and through them expressions
The dependence df; on v is depicted in Fig. 8, where the for the critical valuek, that changes the character of the
continuous curves are the analytical results of E§8) and  lower normal modes from phononic to electronic. We note
(40) and the discrete points represent numerical results.  that the normal-modes may be manifest in the spectra of real

ke=2(y)Y4 (40)
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systems described through the Holstein model. vibrational time scales sets the regime of validity of the ap-
The results presented in this work depend on the validityproximation to times of the order of @&j.

of the semiclassical approximation. The latter coincides with

the adiabatic approximation in the limit of atoms with infi-
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