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Polaron solutions and normal-mode analysis in the semiclassical Holstein model
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We investigate polaron properties in the semiclassical Holstein model in one, two, and three dimensions,
using two methods: a simple and efficient numerical scheme and a variational approach. We obtain accurate
information on the energy and the existence regimes of the polaron state. We study small oscillations of the
polaron through normal-mode analysis, investigate their stability, and evaluate the density of states of the
polaron eigenfrequencies for different system parameters. The normal-mode analysis shows in the one-
dimensional case a pinning-breathing mode crossing in the transition region of the small to large polaron.
Similar crossings do not exist in higher dimensions.@S0163-1829~98!07329-9#
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I. INTRODUCTION AND THE SEMICLASSICAL
HOLSTEIN MOLEL

Polarons, of either purely electronic or excitonic natu
are ubiquitous in materials where the electron-phonon c
pling cannot be ignored. Issues related to the formation
dynamics of polarons have been in the foreground of
search for approximately half a century, during which se
eral models were introduced and a variety of exact and
proximate solution schemes have been tried.1–16 The
Holstein model has emerged as one of the fundamental m
els in the attempt to understand the fundamentals of pola
in condensed matter and biological systems. One of the m
successful approaches for obtaining polaron ground s
properties via the Holstein model has been through the us
scaling ideas and a continuous approximation. These stu
showed that while in one dimension the polaron was alw
the ground state of the Holstein model in two and three
mensions, a minimal electon-phonon coupling is required
the phenomenon of the electronic wave function se
trapping that leads to polaron formation. Furthermore, wh
in one dimension there is a continuous crossover from
small to the large polaron, in two and three dimensions sm
coupling polarons do not exist. Most of the results of Ref
have been shown to be correct also in the discrete limit.9,10 In
the present paper, one of our aims will be to readdress
well known stationary polaron properties, using, howev
alternative approaches.

For our study we will use the semiclassical Holste
model, in which the lattice oscillators are treated classica
The dynamical equations of motion describe in the semic
sical approximation a quantum electron~or exciton! interact-
ing with classical Einstein oscillators in ad-dimensional lat-
PRB 580163-1829/98/58~6!/3094~11!/$15.00
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tice. Polarons, which are localized stationary solutions of
equations of motion, will be calculated via a fast numeric
scheme that enables us to evaluate the polaron wave fun
and its energy. The strength of this method is that while i
very simple it provides very accurate and easily obtaina
information on polaron properties. Subsequently, we deve
a variational method that gives accurate exact results for
critical values of the coupling parameter that determines
polaron regimes in one, two, and three dimensions~3D!. We
also derive analytical expressions for the small polaron
ergy that are in good agreement with the numerical result
2D and 3D as well as in 1D for large enough coupling. T
stationary polaron results will be used in Sec. III, where
polaron normal-modes are calculated through linearization
the equations of motion for the stationary polaron solutio
We focus on the lower frequency eigenmodes and disc
their character, i.e. the contribution of the electronic a
phononic degrees of freedom. Furthermore, we present
total picture of the density of states for the spectrum of
polaron eigenfrequencies. We conclude our study in Sec.

A. The semiclassical Holstein model

The Hamiltonian of the Holstein model consists of1 Htot
5Hel1Hlat1Hint . The first termHel describes a tight-
binding electron in ad-dimensional simple lattice~d51, 2,
or 3! with N sites and periodic boundary conditions:

Hel52V (
m51

N

(
d[m]

um&^m1du, ~1!

where the integerm counts all the lattice sites and the integ
d@m# of the second sum that depends onm denotes the sum
3094 © 1998 The American Physical Society
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mation of all the nearest neighbors at each sitem ~i.e., takes
2d values ford51,2,3!. The stateum& represents an atomic
like electronic state localized at sitem, for example, a Wan-
nier state. In Eq.~1! we have taken the on-site matrix el
mente0 , appearing in the diagonal termse0(mum&^mu, to be
zero, while2V is the nearest-neighbor transfer integral.

The second termHlat describesN identical Einstein oscil-
lators, each located in a different lattice site and having m
M and frequencyv0 :

Hlat5
1

2M (
m51

N

pm
2 1

Mv0
2

2 (
m51

N

xm
2 , ~2!

wherepm and xm are the momentum and the displaceme
from the equilibrium, respectively, of the oscillator located
site m.

The last termHint describes a local interaction of th
electron with the optical lattice that is linear in the displac
ments of oscillators:

Hint5x (
m51

N

um&^muxm , ~3!

wherex is the electron-phonon coupling constant. This
teraction term signifies that the on-site tight-binding mat
elementem , i.e., the local site energy, depends on the d
placement of the oscillator at sitem asem5e01xxm .

We derive the equations of motion for this model by tre
ing the oscillator subsystem classically, while we use a qu
tum description for the electron. This semiclassical treatm
can be justified in cases of large atomic mass leading to v
slow atomic motion compared to that of the electron. W
write the electronic state asuCe(t)&5(nCn(t)un&, where
Cn(t) is the probability amplitude to find the electron in th
localized stateun&. The Hamiltonian operator for the electro
is Hel1Hint , given by Eqs.~1! and ~3!. Using the Schro¨-
dinger equationi\(duCe&/dt)5(Hel1Hint)uCe&, we obtain
the time evolution of the amplitudesCn(t):

i\
dCn

dt
52VS (

d[n]
Cn1dD 1xCnxn . ~4!

The classical Hamiltonian that we use for the oscillators
given by Hclas5^CeuHtotuCe&. From the Hamilton equa
tions ẋn5]Hclas /]pn and ṗn52]Hclas /]xn we determine
the dynamical behavior of the lattice variables. As a res
we have

M
d2xn

dt2
1Mv0

2xn1xuCnu250. ~5!

Similar equations, such as Eqs.~4! and~5!, have been widely
used in numerical studies of various electron-phon
systems.17–21In modified forms, they have also been studi
in the Davydov’s soliton model for the transport of vibr
tional energy in proteins.22–25

We use the dimensionless quantitiest5v0t ~dimension-
less time!, un5AMv0

2/Vxn ~dimensionless displacements!,
k5x/AVMv0

2 @dimensionless effective coupling, designat
usually asAl ~Ref. 12!#, and g5\v0 /V5te /t l , where te
5\/V and t l51/v0 are the characteristic times for the m
ss
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tion of the electron and lattice, respectively. The parameteg
is also equal toaA2(m!/M ), where m! is the electronic
band effective mass anda5aAMv0

2/V is the dimensionless
lattice constant~a is the lattice constant!. Using these quan-
tities we cast Eqs.~4! and~5! into a dimensionless form an
obtain their dependence on only two parameters

ig
dCn

dt
52S (

d[n]
Cn1dD 1kCnun , ~6!

d2un

dt2 1un1kuCnu250. ~7!

We also write for subsequent use the expressions for
dimensionless energies, given in units ofV. The contribution
of each term in the total energyEtot5Eel1Eint1Elat ,
where Eel5^CeuHeluCe& and Eint5^CeuHintuCe&, is ob-
tained through the relations

Eel52 (
m51

N

(
d[m]

Cm
! Cm1d , ~8!

Eint5k (
m51

N

uCmu2um , ~9!

Elat5
1

2 (
m51

N S dum

dt D 2

1
1

2 (
m51

N

um
2 .

~10!

In what follows we will study one-, two-, and three
dimensional polaron solutions of Eqs.~6! and ~7!, their sta-
bility properties analyzed through their normal-mode oscil
tions and their dependence on system parameters.

II. POLARON SOLUTIONS

A. Numerical scheme

The polarons are localized stationary solutions of
coupled system. In our case a stationary solution is obtai
throughdun /dt50 andCn(t)5Cne2 i (E/g)t, whereCn is
time independent. From Eq.~7! we have that for a stationar
solution

un52kuCnu2 ~11!

and substituting in Eq.~6! we obtain for the electronic wave
function

ECn52S (
d[n]

Cn1dD 2k2uCnu2Cn . ~12!

This is thed-dimensional time-independent discrete nonl
ear Schro¨dinger equation.26–28 Equations ~11! and ~12!,
which describe the stationary solutions of the semiclass
model, are identical to those obtained in the adiaba
approximation.1,9,10 The energyE that appears in Eq.~12!
is equal to Eel1Eint , where now Eel

52(m51
N (d@m#Cm

! Cm1d andEint52k2(m51
N uCmu4. In or-

der to obtain the total energy of a stationary solution we h
to add toE the lattice energy, i.e.,Etot5E1Elat , where
Elat5(k2/2)(m51

N uCmu4.
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The extended Bloch statesCn
q5(1/AN)eiqn are solutions

of Eq. ~12! forming a band with energiesE from 22d
2k2/N to 2d2k2/N, whered is the dimension of the lattice
The total energy, taking into account the lattice poten
energy, is shifted by1k2/2N. In the limit of an infinite chain
the band is from22d to 2d and the lattice is undistorted. I
addition to these extended states, Eq.~12! admits localized
solutions as well. These localized electronic states accom
nied by lattice distortions that are localized in the same a
as indicated by Eq.~11!, represent polaron states.

A very simple method for the numerical calculation
polarons emerges from the fact that they are attractors o
map

$C%→$C8%5H$C%/iH$C%i , ~13!

where$C%5(C1 ,...,CN), the operatorH is defined through
Eq. ~12! as

H$C%n52(
d[n]

Cn1d2k2uCnu2Cn ,

and iH$C%i5A(n51
N (H$C%n)2 is the norm of the state

H$C%.29

It is easy to see that in the anti-integrable limit, defined
the limit where the electron does not move from site to s
i.e., the transfer integralV→0,30,31 the term(d@n#Cn1d of
Eq. ~12! is absent, and the on-site localized polaron is a v
strong attractor of the map~13!. When we depart from the
nonintegrable limit this attractor becomes less strong, w
in the two- and three-dimensional cases it is lost in so
instances. In order to calculate the polaron state we be
with a completely localized initial state$C init%n5dn,n0

, act
on this with the operatorH, normalize the resulting vector
and repeat this procedure until convergence is achieved.
result we find the polaron wave function$C f inal%, while the
energyE of Eq. ~12! is given through the normiH$C f inal%i .
This procedure converges very fast to the polaron s
whenever it exists in most cases only after few tens of ite
tions, for an accuracy better than 10210. When there is no
polaron solution it converges to the lowest energy exten
state~except for the casek50, where it cannot select be
tween the lower and higher energy Bloch states!.

The polaron solution depends only on the dimensionl
effective couplingk and not on the parameterg, as can be
seen readily from Eqs.~12! and ~11!. The results we obtain
are in agreement with those of Refs. 9 and 10 and sum
rized as follows. In 1D the polaron exists always as
ground state of the system and there is a smooth trans
from the small polaron to the large polaron. Approximate
we have a small~large! polaron fork.2 (k,1). In the large
polaron case the smaller the couplingk, the more extended in
size and smaller in height the wave function. For examp
for k of the order of 1022 the size of the polaron is of th
order of 103– 104 lattice constants. It is therefore necessa
to explore larger lattices in order to distinguish the polar
from the extended states. In a two-dimensional square la
there are two critical values of the couplingkc1

52.3877 and

kc2
52.5844 that determine three parameter regions:~i! for

k,kc1
there is no polaron,~ii ! for kc1

,k,kc2
the polaron is

metastable, i.e., has more energy than the correspon
l
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lowest energy extended state, and~iii ! for k.kc2
the polaron

is the ground state of the system. Whenever the polaron
ists, i.e., fork.kc1

, it extends only to a few lattice sites, thu
forming a small polaron. In a three-dimensional simple cu
lattice the picture is exactly the same as in 2D. The o
difference is that now the critical values of coupling a
shifted upward tokc1

52.8022 andkc2
53.2887.

Figures 1 and 2 summarize these findings. In Figs. 1~a!–
1~c! the thick lines show the total polaron energyEtot as a
function of the effective couplingk for d51, 2, and 3, re-
spectively. Polaron wave functions are presented in Fig
The thick continuous line in Fig. 2~a! shows a large one
dimensional polaron fork50.15. The filled circles in Fig.
2~b! show a small polaron in 1D fork52.5. Finally, the
filled circles in Figs. 2~c! and 2~d! show sections of polaron
in 2D for k52.5 and in 3D fork54, respectively.

B. Analytical variational results

We will consider simple trial functions that produce ve
accurate variational results. In three dimensions we have

Cmx ,my ,mz
5Ah umxu1umyu1umzu for d53, ~14!

where mx refers to the site in thex direction, etc., and in
lower dimensions the ansatz wave function changes ap
priately. The variational parameterh takes values in the in-
terval 0,h,1 and gives the linear extent of the solutio
after the substitutionh5e21/2j. As h increases the solution
becomes more delocalized and in the limith→1 we obtain
an extended state. The coefficientA is evaluated through the
normalization of the solution, i.e.,(mx ,...uCmx ,...u251, lead-
ing to

A5S 12h2

11h2D d/2

for d51,2,3. ~15!

The total variational energyF is given by

F52 (
mx ,...

~Cmx ,...
! Cmx11,...1Cmx ,...

! Cmx21,...1¯ !

2
k2

2 (
mx ,...

uCmx ,...u4. ~16!

Substituting the trial function~14! into Eq.~16! and using the
fact that

2 (
mx ,...

~Cmx ,...
! Cmx11,...1Cmx ,...

! Cmx21,...1¯ !

5 (
mx ,...

~ uCmx11,...2Cmx ,...u21¯ !22d

for d51,2,3, respectively, we finally obtain the expressio
for the variational energyF,

F~h!524d
h

11h2
2

k2

2

~12h2!d~11h4!d

~11h2!3d
, d51,2,3.

~17!
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FIG. 1. Polaron total energy as a function of the dimensionl
coupling ~thick line! for simple lattices in~a! one dimension,~b!
two dimensions, and~c! three dimensions. The open circles res
from the numerical calculation of the minimum variational energ
The long-dashed lines are analytical expressions@Eq. ~19!# that
were obtained keeping in the variational minimum calculation o
the first-order terms of the variational parameter. The short-das
lines are more accurate expressions@Eq. ~21!# resulting from a per-
turbation expansion of the variational parameter. The continu
thin lines show the zeroth-order result2k2/2. The long-dash–short
dashed lines show the lowest energy of the extended states.
dotted line in~a! is the result of the continuous approximation. T
critical values of couplingkc1

andkc2
, for d52 andd53, are also

indicated in~b! and~c!, respectively. In the insets we show in deta
the transition regions.
In Figs. 3~a!–3~c! we show, ford51, 2, and 3, respec
tively, the functionF~h! for different values of the coupling
k. The dashed lines show the lowest energy extended st
The variational energy~17! predicts qualitatively the exis
tence of the critical valueskc1

and kc2
in two and three

dimensions and in one dimesnion the polaron exists for
the nonzero values ofk, while there is a continuous transitio
from the small to the large polaron. In particular, for th
three-dimensional case@Fig. 3~c!#, for largek the minimum
of F~h! is below the energy of the extended states and t
the polaron is the ground state. Furthermore, from Eq.~17!,
for d53 we have that whenh→1 the energyF goes to26
as 2613(12h)2, i.e., from above. This means that th
extended state is a metastable state in this region ofk, sepa-
rated by an energy barrier from the polaron ground state.
the other side, for smallk there is no minimum correspond
ing to a localized state. In the intermediatek region there is a
minimum for h,1, but it corresponds to a metastable sta
since the absolute minimum corresponds to an extended
~at h51!. In 2D we see from Fig. 3~b! a similar behavior,
even though there is one difference concerning the regio
k where the polaron is the ground state. Specifically, fod
52 Eq. ~17! gives that whenh→1 the variational energy
goes to 24 as 241(22k2/8)(12h)2, i.e., from above
whenk,4 and from below whenk.4. This means that for
k.4 the extended state is unstable, while fork,4 it is meta-
stable and has to overcome an energy barrier before fallin
the polaron ground state. On the contrary, in the thr
dimensional case, the energy barrier between the two s
tions exists for all values ofk. This feature was already no
ticed in Ref. 10, even though a different value ofk, less than
4, was given for the vanishing of the barrier in 2D. Th

s
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FIG. 2. Polaron wave functions.~a! The thick line shows a large
polaron in 1D fork50.15, the thin line results from the numeric
calculation of the minimum of variational energy, and the op
circles are values given by the continuous approximation.~b! The
filled circles show a small polaron in 1D fork52.5, the continuous
line results from the numerical calculation of variational ener
minimum, and the open squares are obtained analytically by
perturbation expansion of the variational parameter in the calc
tion of the variational minimum@Eqs. ~20! and ~14!#. ~c! and ~d!
Sections of the polaron in 2D fork52.5 and in 3D fork54, re-
spectively. The points and the lines have the same meaning a
~b!.



w
ho
he

em

ing
es
n of
ee
r
n-
tes,

state

no

ap-
cal

y

cu-
t

val-

ed
ed
lyti-

n
of

ith

n
s
rge
at

l

nd

3098 PRB 58G. KALOSAKAS, S. AUBRY, AND G. P. TSIRONIS
linear stability of the lowest energy extended state in t
dimensions was numerically investigated using the met
of a time Fourier transform of small oscillations around t
solution ~see Sec. V!. The solution is unstable fork larger
than a value that increases with the lattice size, but it se
to be saturated somewhere above 4.4~at least for the lattice

FIG. 3. Variational energyF~h! as a function of the variationa
parameterh, for different values of dimensionless couplingk, in ~a!
one dimension,~b! two dimensions, and~c! three dimensions. The
dashed line in all cases shows the lowest energy of the exte
states. The inset in~a! is an enlargement of the region close toh
51.
o
d

s

sizes that we were able to explore!.32 We note that the mini-
mum of the variational energy in 2D and 3D correspond
to a localized solution is obtained for relatively small valu
of the variational parameter. This designates the formatio
a small polaron. Contrary to the results in two and thr
dimensions, Fig. 3~a! shows qualitatively different results fo
the one-dimensional case. A minimum of the variational e
ergy exists always below the energy of the extended sta
even for very smallk @see the inset of Fig. 3~a!#. As k de-
creases, the minimum becomes closer to the extended
energy, which is obtained for larger values ofh. As a result,
kc1

50 for d51, since fork50 there is no localized solution
for the tight binding electron of Eq.~12!. Furthermore, since
the polaron solution is always the ground state, there is
second critical valuekc2

. For d51 the functionF~h! ap-

proaches22 as 222(k2/4)(12h), i.e., always from be-
low, resulting in unstable extended states.

We now present quantitative results of the variational
proximation, as well as their agreement with the numeri
results of Sec II A. From Eq.~17! we have dF/dh
5P(h)@k22 f (h)#, whereP(h) is a positive function in the
interval 0,h,1 ~different for each dimension! and the
function f (h)5 f d(h) ~also positive in this interval! is given
below. The minimization condition for the variational energ
results in the equality

k25
~11h2!3d21

h~h42h211!~11h4!d21~12h2!d22
[ f ~h!

for d51,2,3. ~18!

The function f (h) determines the minimum ofF~h! and
consequently the polaron solutions. A straightforward cal
lation of the minima of the functionf (h) leads to the exac
calculation of the critical couplingkc1

var in two33 and three

dimensions. Furthermore, by substituting thek2 from Eq.
~18! into Eq. ~17! and equating theF~h! with the lower
energy of extended states, we obtain the corresponding
ues ofh and from them the critical valueskc2

var . These re-

sults, together with a comparison with the results obtain
throught the numerical evaluation of Sec. II A are display
in Table I. We observe good agreement between the ana
cal and numerical results.

In the following we derive expressions for the polaro
energy. First, we observe that the numerical calculation
the minima of the variational energy~17! gives results for
the energy and wave function in quite good agreement w
the numerical solutions of Sec. II A@we compare the open
circles in Figs. 1~a!–1~c!, for the energy in each dimensio
and the continuous lines in Fig. 2 for the wave function#.
We also see that in 2D and 3D as well as for relatively la
k in 1D, the minima of the variational energy are found
small values of the variational parameterh. As a result, it is
possible to solve the minimization condition~18! keeping
only first order terms ofh. Then we findh(k)51/k2 for each
dimension. Substituting the solutionh(k) into the variational
energy~17!, we obtain

Fvar52
k2

2
2

2d

k2 for d51,2,3. ~19!

ed



ding
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TABLE I. Comparison of the numerically, calculated, critical values of coupling with the correspon
analytical value derived through the variational method. NA denotes not available.

Dimensiond kc1
kc1

var Relative error~%! kc2
kc2

var Relative error~%!

1 0 0 NA NA
2 2.3877 2.353 1.45 2.5844 2.593 0.33%
3 2.8022 2.694 3.85 3.2887 3.293 0.13%
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These energies are presented in Figs. 1~a!–1~c! by the long-
dashed lines~slightly above the thick lines of the numerica
calculation!. We note that the result~19! can be obtained by
using more complicated diagrammatic technique.34

If we apply a perturbation expansion ofh(k) with respect
to powers of 1/k2 we find from Eq.~18! that

h~k!5
1

k2 1
4d22

k6 1OS 1

k10D for d51,2,3. ~20!

Substituting the expression~20! into Eq. ~17!, we obtain the
results for the variational energy

Fvar52
k2

2
2

2d

k2 2
4d223d

k6 1OS 1

k10D for d51,2,3.

~21!

In Figs. 1~a!–1~c! we plot these relations using short-dash
lines ~between the thick and the long-dashed lines! for d
51, 2, and 3, respectively. We see that expression~21! ap-
proximates quite well the polaron energies in 2D and
~especially in the region where the polaron is the grou
state, i.e., fork.kc2

! and in 1D in the small polaron regime
The largerk is, the better the coincidence is. In the limit o
very largek all the above-derived expressions tend to2k2/2,
reproducing the well-known result of the non-integrab
limit.1,9 The curves of2k2/2 are also plotted for compariso
in Figs. 1~a!–1~c! with the continuous thin lines. The result
of Eqs.~19! and~20! in the one-dimensional case differ from
the correspondig ones of Ref. 29 because in the latter p
the effect of the normalization of the electronic wave fun
tion on the depth of the lattice distortion was not taken in
account.

The only case where the formula~21! fails to describe the
polaron energy is in the one-dimensional large polar
whereh is relatively large. In this regime, however, the co
tinuous approximation is valid, resulting in the solution1

Cn5
k

2&

1

coshS k2

4
nD , ~22!

with energy

Fcont5222
k4

48
. ~23!

The energy~23! is also shown, as a dotted line, in Fig. 1~a!.
We observe that it describes the polaron energy in almost
entire region where Eq.~21! for d51 fails. We conclude that
accurate analytical expressions of the polaron energy
available for almost all the values of coupling in one, tw
and three dimensions.
d

er
-

,

he

re
,

The results for the wave functions are presented in Fig
The open squares in Figs. 2~b!–2~d! show the variational
wave functions of Eq.~14! with the parameterh given by
Eq. ~20!. Figure 2~c! shows one of the worst approximate
cases in 2D and 3D, viz., the metastable polaron~for kc1

,k,kc2
!. In Fig. 2~a! the open circles show values given b

the continuous approximation~22! that approximates accu
rately the large polaron.

III. NORMAL-MODES OF POLARONS

A. Born-Oppenheimer approximation

In order to study normal-modes of polarons, we consi
the effects of small perturbations and linearize the equati
of motion around the polaron solutions. We first treat th
problem through the use of the Born-Oppenheimer appro
mation. We consider the oscillator displacementsuk for k
51,...,N as fixed parameters with the electron instan
neously adjusting. This is a good approximation wheng
!1. The electronic energy and wave function obey the eq
tion

2S (
d[ i ]

C i 1dD 1kuiC i5E$uk%C i , ~24!

while the dynamical equation for the oscillators is

d2ui

dt2 1ui1
]E$uk%

]ui
50. ~25!

We consider small deviationsd i(t) from the polaron, i.e.,
ui(t)5ui

01d i(t), whereui
0 are the static polaron displace

ments. Substituting into Eq.~25! and using the Taylor expan
sion for the term]E$uk%/]ui , we get to first order ford i(t)

d2d i

dt2 1(
j

~Ji j 1d i j !d j~t!50, ~26!

where Ji j 5]2E$uk%/]uj]ui and d i j is Kronecker’s delta
symbol.

The matrix elementsJi j can be computed through a nu
merical calculation of the second derivative since it is p
sible to find from Eq.~24! the values ofE for ui close to
ui

0.32 However, a more accurate calculation can be done
ing perturbation theory. In particular, from Eq.~24! we have
that ]E/]ui5kC i

2. ThenJi j 52kC i(]C i /]uj ). In order to
calculate]C i /]uj , we find the first-order correction in th
polaron wave functionf i

0 , using as a perturbation thed i ’s.
As a result, we obtain

Ji j 522k2f i
0f j

0(
nÞ0

f i
nf j

n

En2E0
, ~27!
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where the labeln counts the eigenfunctions of the unpe
turbed problem:

2S (
d[ i ]

f i 1d
n D 1kui

0f i
n5Enf i

n. ~28!

The ground staten50 corresponds to the polaron. Thu
from the diagonalization of the unperturbed Hamiltoni
H0i j

5kui
0d i j 2(d i , j 111d i , j 21) we compute the matrixJi j

using the sum~27!. From Eq.~26! we see that in order to find
the normal modes we have to diagonalize the matrixJi j
1d i j . The resulting eigenvalues give the square of
eigenfrequencies.

In Figures 4~a!–4~c! we present the five lowest eigenfre
quencies as a function of the couplingk for d51, 2, and 3,
respectively. All other eigenfrequencies are conjested
tween these five and the frequencyv0 of the oscillators. The
corresponding eigenvectors of the four lowest modes fod
51 and 2 are shown in Fig. 5. In 1D for largek ~in the small
polaron region! the lower mode is a breathing symmetr
mode@see Fig. 5~a!# and the next mode is an antisymmetr
pinning mode@see Fig. 5~b!#. As can be seen from Fig. 5~a!,
when k decreases there is a mode crossing and the pin
mode becomes the lower one. This happens in the regio
the transition from the small to the large polaron. For sma
k the pinning mode squared frequency is very small~close to
zero!, but positive. We note that if a squared frequency
zero or negative then the solution is unstable. This is not
case for the one-dimensional polaron. In 2D and 3D the lo
est mode is always a breathing mode@see Fig. 5~e! for d
52#. Its frequency goes abruptly to zero as the critical va
kc1

is approached. The next higher frequency is a pinn
mode and it is doubly degenerate in 2D@see Figs. 5~f! and
5~g!# while triply degenerate in 3D. These degenerate mo
correspond to perpendicular directions. The renormaliza
of the phonon frequencies has also been found in a s
cluster consisting of four sites.8,11

B. Study of the complete problem

In order to study the complete problem we depart fro
the Born-Oppenheimer approximation and take addition
into account the electronic motion. For small perturbatio
from the polaron solutionsui

0 andf i
0 we have

C i~t!5@f i
01e i~t!#e2 i ~E0 /g!t,

ui~t!5ui
01d i~t!, i 51,2,...,N, ~29!

wheree i(t) is complex andd i(t) andue i(t)u are very small.
Substituting into Eqs.~6! and ~7! and keeping first-orde
terms ind i ande i , we obtain the linearized equations

2S (
d[ i ]

e i 1dD 1~kui
02E0!e i1kf i

0d i5 ig
de i

dt
,

d2d i

dt2 1kf i
0~e i1e i

!!1d i50. ~30!
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There are two ways to proceed. The polaron solution
periodic in the 4N-dimensional phase space o

$ReCi ,Im Ci ,ui ,u̇i% with period T52pg/E0 ~because
C i(t)5f i

0e2 i (E0 /g)t!. A standard way for finding the nor
mal modes in this case is by using the Floquet analysis.
this we have to calculate numerically the tangent mapM and

FIG. 4. The five lowest polaron eigenfrequencies in the Bo
Oppenheimer approximation as a function of the coupling for~a!
one dimension,~b! two dimensions, and~c! three dimensions. We
note a mode crossing in the one-dimensional case, at the trans
regime from a small to a large polaron.
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diagonalize it. The latter maps an initial deviatio

$Reei(0),Im ei(0),di(0),ḋi(0)% from the periodic solution to a
deviation resulting from the linearized equations~30! after a
period T, i.e., $Reei(T),Im ei(T),di(T),ḋi(T)%5M$Reei(0),
Im ei(0),di(0),ḋi(0)%. Due to the normalization condition
( i uC i u251, implying ( if i

0 Reei50, the dimension of the
map that will be diagonalized is (4N21)3(4N21). We do
not present here the results of the Floquet analysis for
polarons,32 but continue the analysis using the time Four
transform method, which also permits us to obtain the
laron normal modes.

We consider d i(t)5d i(v)cosvt and e i(t)
5e i

(1)(v)cosvt1iei
(2)(v)sinvt and use e i

(1),(2)(v)
5(nen

(1),(2)(v)f i
n , where thef i

n are the eigenfunctions o

Eq. ~28! obeying ( if i
nf i

n85dnn8 ; after substitution into
Eqs.~30! we obtain the system of equations

S En2E02
v2g2

En2E0
D en

~1!~v!1k(
i

f i
0f i

nd i~v!50

;nÞ0,

k(
nÞ0

f i
0f i

nen
~1!~v!1

1

2
~12v2!d i~v!50 ; i . ~31!

FIG. 5. The four lowest eigenmodes of the polaron in the Bo
Oppenheimer approximation~a!–~d! in one dimension fork52.5
and ~e!–~h! in two dimensions fork52.5. The sign of the corre
sponding eigenvector at each lattice site is presented with a
proportional to its magnitude. A zero value in the eigenvecto
represented by an empty site.
e
r
-

We have additionally that fornÞ0, en
(2)(v)52@vg/(En

2E0)#en
(1)(v), whereas forn50 the values areen50

(1) (v)
50 @this relation is equivalent with the normalizatio
condition for the C i of Eq. ~29!# and en50

(2) (v)
52(k/vg)( if i

0d i(v).
For nonzero solutions the determinant of the system~31!

should be equal to zero. Thus the eigenfrequencies will
obtained through the condition

det~P!5detS A R

RT CD 50, ~32!

where A is an (N21)3(N21) diagonal matrix with ele-
ments Ann85$En2E02@v2g2/(En2E0)#%dnn8 , R is the
(N21)3N matrix Rn i5kf i

0f i
n , RT is its transpose, andC

is N3N diagonalCi j 5
1
2 (12v2)d i j .

We note that in the limitg50 the condition~32! reduces
to the Born-Oppenheimer result. This is seen clearly by
ing

det~P!5det~A!det~C2RTA21R! ~33!

and

~C2RTA21R! i j

5
1

2 F ~12v2!d i j 22k2(
nÞ0

f i
0f i

nf j
0f j

n

En2E02
v2g2

En2E0

G , ~34!

where in the limitg50 the last term gives theJi j of Eq. ~27!.
For gÞ0, after multiplications of the firstN21 lines and
columns ofP by AEn2E0/g and the lastN lines and col-
umns by&, we obtain the squared eigenfrequencies from
diagonalization of the matrix

-

ze
s

FIG. 6. The five lowest polaron eigenfrequencies as a func
of the coupling for different values ofg in a one-dimensional lattice
consisting ofN5500 sites.
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whereDEn stands for the differenceEn2E0 .
In Fig. 6 we present for differentg the five lowest eigen-

frequencies as a function ofk in one dimension. We observ
that for relatively largek the lower modes are determine
essentially by the lattice thus reproducing the Bo
Oppenheimer results. For smallk, however, the electronic
motion modifies this picture. Depending ong, a transition
takes place at different values ofk. The smaller theg, the
smaller the corresponding transition valuekt . Similar behav-
ior appears in two and three dimensions. However, si
there is no polaron fork,kc1

, there is no such transition a

all for relatively smallg (<122).
We calculate the electronic contribution at each eig

vector through the ratio (n@(en
(1))21(en

(2))2#/$( id i
2

1(n@(en
(1))21(en

(2))2#%. We see that the character of th
lower modes changes abruptly from phononic to electroni
the transition pointkt . The character of lower modes is in
terpreted by the position of the spectrum of electronic f
quencies (En2E0)/g with respect to the frequency 1~in our
dimensionless units! of the pure lattice. In particular, as ca
be seen from the matrix~35!, we couple theN phonon fre-
quencies at a frequency equal to 1 with theN21 electronic
frequencies. For fixedk, the smaller theg, the higher the
frequencies (En2E0)/g. For fixed g, the larger thek, the
higher the excitation energiesEn2E0 of the eigenvalue
equation~28! and, as a result, the higher the electronic f
quencies. When the electronic spectrum is far away fr
frequency 1, due to the coupling, some phonon frequen
split from the others. This results in lower modes w
phononic character that can be accurately provided by
Born-Oppenheimer approximation. As long as the electro
spectrum remains above the unit frequency the lattice de
mines the lower modes. Increasingg or decreasing the cou
pling k changes abruptly the character of the lower mo
and the transition takes place when the electronic spect
crosses the Born-Oppenheimer phonon frequencies.

The density of states~DOS! of the spectrum of polaron
eigenfrequencies consists of a thin and very strong,d-like
peak at frequency 1 plus a band with an electronic orig
The position of the band depends onk and g, as discussed
previously, while its width is 4d/g, whered is the lattice
-
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es
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dimensionality. The only important effect of the interactio
is the appearance of several discrete phononic levels tha
visible if not covered by the band. If the electronic band
above~below! the unit then the disjoin phononic levels a
below ~above! the strong peak. In Fig. 7 we present the DO
of polaron eigenfrequencies together with the DOS of
electronic spectrum (En2E0)/g for g510 and two different
values ofk, in two dimensions. Qualitatively, the only dif
ference in the total picture of the spectrum at the other
mensions is the shape of the electronic band. For exampl
one dimension there exist very strong peaks in the b
edges, as a square root singularity.35

The electronic frequencies (En2E0)/g and thus the loca-
tion of the electronic band as a function of the parametek
andg can be evaluated analytically. The lower band edge
the electronic frequencies is determined from the expres

vband5
22d2E0

g
, ~36!

FIG. 7. Density of states~DOS! of polaron eigenfrequencies an
also of the electronic spectrum in a two-dimensional lattice cons
ing of N521321 sites forg510 and~a! k52.4 and~b! k54.
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whereE0 is the ground state of Eq.~28!. We obtain different
expressions for the small and large polaron, respectively,
ing the result E052k2 in the first case andE0522
2k4/16 in the second. For the small polaron caseE0 is ob-
tained through Eq.~17! with the substitution ofk2/2 with k2,
while the dependence ofh(k) will remain the same. The
reason is that Eq.~17! includes also the lattice energy, whic
we substrate by using, for the static solution, thatEint
522Elat holds. Finally, we have for the small polaron

vband5
k222d

g
, d51,2,3 ~37!

and for the large polaron ford51

vband5
k4

16g
. ~38!

If we use the more accurate expression~20! for the h(k)
of the small polaron, we obtain an additional ter
22d(4d23)/k6 in the nominator of Eq.~37!. At large k
values the electonic spectrum and the phononic peak av0
51 are well separated; as the value of the coupling is
duced the spectra come closer and at some critical valukt
the character of the lower modes changes from phononi
electronic. This point is determined through the conditi
vband(kt)'1. As a result we obtain for the small polaron

kt5Ag12d, d51,2,3 ~39!

and for the large polaron ford51

kt52~g!1/4. ~40!

The dependence ofkt on g is depicted in Fig. 8, where th
continuous curves are the analytical results of Eqs.~39! and
~40! and the discrete points represent numerical results.

FIG. 8. Critical value of couplingkt for which the transition of
the lower normal modes from phononic to electronic takes plac
a function of the logarithm~base 10! of g. The lines are the ana
lytical results. The filled circles show the numerical results for o
dimension, the asterisks for two dimensions, and the empty squ
for three dimensions.
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IV. CONCLUSIONS

We studied the polaron solutions of the semiclassical H
stein model in one, two, and three dimensions. The class
treatment of the lattice permits us to obtain dynamical eq
tions suitable for numerical integrations. The stationary
lutions of these equations can be either extended Bloch s
or localized polarons. Using a very simple numerical meth
we are able to calculate the polaron energies and wave f
tions for all values of the parameters. In two and three
mensions there are two critical values of the dimensionl
couplingk. For k,kc1

there are no polaron solutions, whil

for k.kc2
the polaron is the ground state of the system.

the two-dimensional square lattice the critical values
kc1

52.3877 andkc2
52.5844, while in the three-dimensiona

simple cubic lattice they arekc1
52.8022 andkc2

53.2887.

In contrast, in one dimension the polaron solution is alwa
the ground state. These qualitative results are not restri
to the simple lattices that we have considered in our wo
For example, if we apply our numerical method to the tw
dimensional honeycomb lattice~the structure of graphite! we
find the same picture as in the square lattice, where now
critical values arekc1

52.0345 andkc2
52.1465, i.e., shifted

downward. It seems quite reasonable that the smaller
coordination number, the easier it is for the electron to
trapped due to lattice deformation.

We applied a variational method approximating the p
laron state by a simple trial function. Because of the sim
form of the trial function we found explicitly the energyF as
a function of the variational parameter. The dependence oF
on the coupling constant explains qualitatively all the fe
tures of the polaron for each dimension. Furthermore, we
able to find exactly the critical values of coupling, which a
in very good agreement with the numerically calculated v
ues~Table I in Sec. IV!. Although we cannot solve analyti
cally the minimization condition, keeping leading terms a
propriate for a small polaron, we derive exact formulas
the polaron energy, given by Eq.~19!. Using a perturbation
expansion, we derive expressions~21! that provide a better
description of the polaron energy, especially close to
transitions regimes. These relations approximate accura
the numerical results in almost all the cases, except tha
the large polaron in 1D where the continuous approximat
is valid and its energy is given by Eq.~23!.

Finally, the normal-modes of small perturbations arou
the polarons were examined. We presented the lower mo
and the dependence of their frequency on the paramete
the model. We analyzed whether they have phononic or e
tronic character, i.e., if they are determined principally by t
lattice or electron motion, respectively. In the former ca
they are fully described by the Born-Oppenheimer appro
mation. Their character depends on the position of the sp
trum of electronic frequencies with respect to the frequen
v0 of the Einstein oscillators. Moreover, the complete p
ture of the density of states of polaron eigenfrequencies
discussed. We derived analytical expressions for the lo
edges of the electronic band and through them express
for the critical valuekt that changes the character of th
lower normal modes from phononic to electronic. We no
that the normal-modes may be manifest in the spectra of
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systems described through the Holstein model.
The results presented in this work depend on the valid

of the semiclassical approximation. The latter coincides w
the adiabatic approximation in the limit of atoms with in
nite mass. Several recent investigations have shown g
ageement between exact diagonalization and approximat
suls in this regime.10,11 On the other hand, it is known tha
semiclassical self-trapping4 may not survive in an exac
quantum lattice regime.8 The atomic vibrational frequenc
sets the appropriate time scale during which the semicla
cal results are valid. Consequently, the time regime of va
ity of the semiclassical results extends as the the mass o
atoms increases, while the general disparity of electronic
.
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vibrational time scales sets the regime of validity of the a
proximation to times of the order of 1/v0 .
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