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Monte Carlo simulation of diffusion in a B2-ordered model alloy

R. Weinkamer, P. Fratzl, B. Sepiol, and G. Vogl
Institut für Materialphysik der Universita¨t Wien, Boltzmanngasse 5, A-1090 Wien, Austria

~Received 21 January 1998!

The diffusion process in aA-B binary alloy withB2 order is studied by atomistic Monte Carlo simulations
using a vacancy mechanism. The chosen ordering energies were taken from neutron scattering experiments and
ensure a phase diagram close to that of the real Fe-Al system. The dynamics was introduced by one single
vacancy jumping to nearest-neighbor sites. Employing different jump-energy evaluations for the exchange
vacancy and atom, we determined diffusion constants as a function of temperature and investigated the mo-
bility of antiphase boundaries. While the different jump-energy evaluations yielded a similar behavior of the
diffusion constant aboveTc , we found a more complex influence of the evaluation on the diffusion constant
belowTc . Finally, the autocorrelation function of the atoms was calculated and compared with measurements
on Fe50Al50 done by quasielastic Mo¨ssbauer spectroscopy. A similarity between the simulated and the experi-
mentally obtained autocorrelation function is observed despite the simplicity of the jump model used.
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I. INTRODUCTION

In many crystalline materials the elementary process
diffusion corresponds to the exchange between a vaca
and a neighboring atom. While this is well understood, e
for simple metals,1 the diffusion process inB2 ordered in-
termetallic alloys is still not well understood. The main d
ficulty is that an exchange of the vacancy with a neare
neighbor~NN! atom is associated with a local disturbance
the A-B ordering. In well-ordered alloys, e.g., at low tem
peratures, this implies an additional energetic barrier aga
diffusion. A number of possible jump mechanisms whi
might overcome this barrier without altering the long-ran
order have been proposed in the past. Typical examples
the classical six-jump cycle,2 the antistructure bridge
mechanism,3 the triple-defect mechanism,4 and antisite-
assisted six-jump cycles.5 As an alternative solution, elemen
tary diffusion jumps to second and third nearest neighb
i.e., within their own sublattice, have been suggested.

While tracer diffusion experiments allow only an indire
conclusion about the elementary diffusion jumps,6,7 direct
evidence could be gained by quasielastic Mo¨ssbauer spec
troscopy ~QMS!,8 quasielastic neutron scattering~QNS!,9

and recently nuclear forward scattering of synchrotron rad
tion ~NFS!.10 These experimental techniques typically me
sure the autocorrelation function~or its Fourier transform! of
a tagged atom in the alloy, with a time resolution cor
sponding to the life timet0 of the Mössbauer level for QMS
and NFS~about 1027 s! or the interaction time with the
neutron for QNS~about 1029 s!.

The autocorrelation function gives information on the p
sition of the tagged atom, initially located at the origin, af
the timet. Recently, it has been deduced from QMS for t
case ofB2 FeAl that the Fe atoms effectively jump betwe
sites on their own sublattice. These jumps are mostly to
third and, partly, to the second neighbor,11,12 at least at
1065 °C. However, the QMS experiments provided evide
that they are a combination of two nearest-neighbor jum

A considerable effort is currently also undertaken byab
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initio calculations and computer simulations using ‘‘molec
lar statics’’ and the embedded atom method,13 as well as
Monte Carlo ~MC! simulations of simple models5,14–18 to
reach a better understanding of these phenomena. Thab
initio calculations seem to indicate that vacancies practic
cannot exist on the Al sublattice in Fe50Al50,

19 so that a direct
jump of iron atoms to second neighbor positions~again lo-
cated on the Fe sublattice! is proposed for the elementar
diffusion jump.20 MC simulations with a single vacancy, o
the other hand, indicate that a simple nearest-neighbor
change mechanism can explain a number of observations
even predicts a wealth of possible cyclic jumps occurring
low temperature,5 among which is the well-known six-jump
cycle.

Despite these efforts, a consistent picture for the elem
tary jump inB2 alloys has not yet emerged. In order to a
some more pieces to this puzzle, we have undertaken a
simulation of the diffusion process in aB2 model alloy fo-
cusing on the calculation of autocorrelation functions
comparison with QMS and NFS.

We chose to study the simplest possible Ising model w
pair-interaction parameters as determined by diffuse neu
scattering for FeAl, the dynamics being provided by a sin
vacancy moving by nearest-neighbor jumps. To keep
number of parameters as small as possible, we take inte
tion parameters that guarantee equal probability for the
cancy to stay on either sublattice. We are aware that
assumption is not realistic. While the introduction of the v
cancy does certainly not change the equilibrium propertie
the Ising model significantly, the choice of the actual eva
ation of the jump-energy may be expected to influence
dynamics, i.e., the diffusion process. To take this probl
into account, we compare different evaluations and estim
the diffusion both at thermodynamic equilibrium and in t
approach to equilibrium by monitoring the movement of a
tiphase boundaries~APB’s!. We then calculate diffusion
constants as well as autocorrelation functions and comp
them to available experimental data.
3082 © 1998 The American Physical Society
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II. DESCRIPTION OF THE SIMULATION

A. The model

The Monte Carlo simulations have been performed o
rigid bcc lattice, using periodic boundary conditions to r
duce finite-size effects. The typical lattice consisted ofN
532332364565536 sites, which were occupied by a
equal number of atoms of typeA (NA) and B (NB). The
lattice was allowed to have one empty site representin
vacancy (NV51), substituting always aB atom (N5NA
1NB11, NB115NA). In a first approximation, only pai
interactions«XY

(k) were included into the Hamiltonian of thi
system, whereX,Y equalsA, B, or V. We took into consid-
eration interactions up to the third nearest neighbors, i.ek
51,2, or 3. In this so-called ABV model21,22the Hamiltonian
can be written as

H5H01 (
k51

3

(
^ i , j &

kth

@K ~k!s i
2s j

21J~k!s is j

1U ~k!~s i
2s j1s is j

2!#, ~1!

where

K ~k!5 1
4 ~«AA

~k!1«BB
~k!12«AB

~k! !1«VV
~k!2«AV

~k!2«BV
~k! ,

J~k!5 1
4 ~«AA

~k!1«BB
~k!22«AB

~k! !,

U ~k!5 1
4 ~«AA

~k!2«BB
~k! !2

1

2
~«AV

~k!2«BV
~k! !.

The notation(^ i , j &
kth means summation over allkth nearest-

neighbor pairs. The spin variables i takes the values 1,21,
or 0, if there is anA atom, B atom, or vacancy at sitei ,
respectively. The termH0, and—in our case of one singl
vacancy—also the first summand, are independent of the
croscopic configuration of the atoms.

An alternative way of writing the interaction Hamiltonia
is

H5H 082 (
k51

3

@2J~k!nAB
~k!1U ~k!~nAV

~k!2nBV
~k! !#, ~2!

wherenXY
(k) denotes the number ofXY pairs ofkth neighbors.

This equation clearly shows that the constantsJ(k) essentially
determine the ordering betweenA and B atoms, while the
constantsU (k) are responsible for the behavior of the v
cancy. In particular, ifU (k).0 ~respectively,U (k),0) the
vacancy prefersA atoms~respectively,B atoms! in its kth
neighbor shell. ForU (k)50, which is chosen here, there is n
preference.

We have used the ordering energiesJ(k) adapted by
Schmid and Binder23 from diffuse neutron scattering exper
ments on Fe-Al.24 With the appropriate temperature resc
ing, we took J(1)51, defining the unit of energy,J(2)

50.167 andJ(3)520.208. This model exhibits an orde
disorder transition from the disorderedA2 to the orderedB2
phase atTc57.9J(1)/kB .23 Because of the low melting tem
perature of Fe50Al50 (1310 °C), this phase transition cann
a
-

a

i-

be observed in the real alloy. The phase diagram of theA-B
model is not expected to be changed by the introduction
single vacancy.

All the dynamics was introduced by the movement of t
single vacancy. In contrast to previous simulations,14,25 only
jumps to one of the eight nearest-neighbor positions w
allowed. The problem of vacancy trapping in ordered regio
did not emerge because of the rather large coordination n
ber of the bcc lattice26 (Z158) on the one hand, and th
moderate and high temperatures employed in our simulat
on the other hand. The temperatureT ranged from 0.46Tc up
to infinity, excluding temperatures too close to the critic
temperature.

The degree of order in the system was observed by o
parameters in the usual way. The long-range order~LRO!
parameter was defined as independent sum over both su
tices (a,b) with different sign (LRO51/N(u(as i2(bs i u),
while thei th short-range order parameter was set equal to
probability of finding ai th nearest-neighborAB pair. All the
simulations were repeated 25 or 50 times to improve th
statistical reliability.

B. Jump-energy evaluations and algorithms

We used two different jump-energy evaluations for t
vacancy and atom exchange to investigate the influenc
the evaluation on the simulation results. The two possibilit
for evaluating the energy changeDE associated with the
jump of the vacancy were~i! to take the difference betwee
the energy of the final and the initial state or~ii ! to introduce
an energy barrier separating these two states. In~ii !, the en-
ergy changeDE was the saddle point energy minus the e
ergy of the initial state and, therefore, was independent of
energy level reached after the jump. The height of the ene
barrier was assumed to be higher than the energy of all p
sible configurations around the vacancy, i.e.,DE.0 in any
case. In the following, the two different jump-energy eva
ations are shortly designated as evaluation without barrie~i!
and evaluation with barrier~ii !. For both evaluations we
compared~a! the standard Metropolis algorithm27 with ~b! a
residence time algorithm~RTA!.28–30

~a! Following the standard Metropolis algorithm the e
change probability of the vacancy with a randomly chos
NN atom i is given by

Pi5min@1,exp~2DE/kT!#. ~3!

Hence, the probability of a vacancy-exchange with t
NN atomi at exactly thetth trial, i.e., aftert21 unsuccess-
ful trials, is

pi
M~t!5~12q!t21q

Pi

Z1
, ~4!

with q5(1/Z1)( j 51
Z1 Pj . The time unit is usually defined a

one Monte Carlo step~MCS!, i.e., one attempted interchang
per site.

~b! In contrast to the standard algorithm, the use o
residence time algorithm ensures that the vacancy perform
jump at each attempt. Here the exchange probabilitiesPj are
evaluated for each NN atom using the Metropolis rule~3!.
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Two random numbers between 0 and 1 are generated.
first R1 serves for the determination of the exchanging at
i according to the inequality

(
j 51

i 21

Pj /P<R1,(
j 51

i

Pj /P, ~5!

whereP5qZ1 and the secondR2 yields the incrementation
t of the total time by

t5
2 ln~R2!

q
. ~6!

For the conversion into MCS,t has to be divided byN, the
number of sites. Heret denotes a continuous time and th
probability of an atom and vacancy exchangei at t is

pi
R~t!5exp~2qt!q

Pi

Z1
. ~7!

The mean residence timet̄ is equal for the standard Me
tropolis algorithm

t̄5 (
t51

`

t~12q!t21q5
1

q
, ~8!

and for the residence time algorithm

t̄5E
0

`

t exp ~2qt!qdt5
1

q
. ~9!

III. CALCULATION

A. Diffusion constants at thermal equilibrium

The conventional way of determining the tracer~respec-
tively, vacancy! diffusion constant by means of comput
simulations is to observe the mean-squared displacemen
the tracer atoms~respectively, vacancy!, for bcc lattices, see
e.g., Ref. 31. For each given temperature, a run was
started until the lattice reached thermal equilibrium. This w
controlled by comparing two runs starting from a perfec
ordered lattice, on the one hand, and from a random di
bution of atoms, on the other. When both reached the s
long-range order parameter, we considered to have atta
equilibrium and started the determination of the diffusivitie
The vacancy diffusion constant was calculated using32

DV5 lim
t→`

S 1

6

]

]t
RV

2~ t ! D , ~10!

whereRV
2(t) denotes the mean-squared total displacemen

the vacancy after a timet. Since allA atoms (B atoms! may
individually be viewed as tracers, the tracer diffusion co
stantDA (DB) was calculated in the same way from

DA5 lim
t→`

F 1

6NA

]

]tS (
A atoms

RA
2~ t ! D G . ~11!

In order to obtain adequate statistics the data were a
aged over at least 50 independent simulation runs each g
on for t up to 1000 MCS. The number of runs was increas
at low temperatures because in this case the atoms perfo
he
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only a small number of jumps per run. Since there was
asymmetry betweenA andB atoms (U (k)50), the values for
DA andDB were equal and could be averaged additiona
Because only one vacancy was included in the system, it
also necessary to perform longer runs in order to reduce
large error bars forRV

2(t) in the determination ofDV .
Figure 1 shows a typical plot of the mean-squared d

placement of the tracer atoms versus time. The slope of
straight line, determined by a least squares fit, was use
calculate the diffusion constant.

B. Motion of antiphase boundaries

We also examined the motion of antiphase bounda
~APB’s! at late stages of an ordering process. The star
point was the completely disordered state (T5`). After a
quench well below the order-disorder transition (Tc), long-
range order developed by nucleation and growth of orde
domains. In later stages the system consisted of a networ
domain walls separating ordered regions~Fig. 2!. In this so-
called coarsening regime, the energy excess of the sys
was typically contained in the APB’s. In good approxim
tion, the deviation of the first short-range order~SRO! pa-
rameter from its equilibrium value can be taken proportio
to the surfaceS of the APB’s33 (SRÒ 2SRO}S). Since the
volume of the ordered domains is approximately const
and roughly equal to the system size in this regime,S is
correlated elementary with the mean domain sizeR by S
}1/R.

For a binary alloy undergoing an order-disorder transitio
that is with nonconserved order parameter, an algeb
growth law R(t)}(Mt)x with x5 1

2 has been proposed34

~Allen-Cahn law!, where M denotes the mobility of
APB’s. The power lawR(t)}tx had been confirmed by MC
simulations,33 although the exponent was sometim

FIG. 1. The mean-squared displacement~relative to the lattice
constant a! with standard deviation of the tracer atoms as a funct
of time; T/Tc50.65, standard Metropolis algorithm without energ
barrier. The diffusion constant is given by the slope times 1/6
cubic lattices.
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larger than 1
2 and could depend on temperature a

dimensionality.14 Summarizing, we expect to find the rela
tion

SRO2SRÒ 5K~Mt !21/2, ~12!

whereK is a prefactor.
Figure 3 shows the short-range order parameter differe

SRO2SRÒ as a function of time21/2. A linear regime is
observed over a long period of time, which is interpreted
the coarsening regime marked by open symbols. Natura
the fitted straight line has to pass through zero in the li
t→`. The same behavior is observed for both algorithm
Deviations from this behavior occurred at short and at v

FIG. 2. Snapshot picture of the system@~100! plane# at the be-
ginning of the coarsening regime. The image was prepared by o
laying a mask ofB2 order. Therefore domains are distinguished
color.

FIG. 3. The deviation of the first short-range order parame
from its equilibrium value plotted againstt21/2. Open symbols mark
the coarsening regime, where a linear correlation holds;T/Tc

50.65, standard Metropolis algorithm without energy barrier.
ce

s
y,
it
.
y

long times. At short times, there is a deviation from linear
before the beginning of the coarsening regime. A deviat
can also be seen at very long times, when the mean dom
size becomes comparable to the size of the whole sys
Runs with smaller and larger lattices (L516 and 64,N
52L3) proved that this deviation was due to finite-size e
fects.

Since all points not belonging to the coarsening regime
above the fitted line, we computed the mobilityM from the
minimum value of t1/2(SRO2SRÒ ). Averaging over 25
different runs, we excluded the cases that lead to fi
‘‘slab’’ configurations, which were characterized by a ve
low value of the long-range order parameter, and cor
sponded to two competing domains separated by a flat in
face.

IV. RESULTS AND DISCUSSION

A. Temperature dependence of diffusion constants

The atomic diffusion constant at equilibriumDA and the
mobility of APB’s M were determined at temperatures b
low and aboveTc and for all different updating jump-energ
evaluations and algorithms~Fig. 4!. As expected, there wa
no difference in the results obtained with the residence t
or the standard Metropolis algorithm, neither forDA nor for
M . However, the use of an evaluation with barrier~ii !
yielded smaller values for the diffusion constant at equil
rium than the evaluation~i!, except in the limit of infinite
temperature@Fig. 4~a!#. The values forDA could be fitted by
two straight lines as a function of 1/T for temperatures above
and belowTc . The Arrhenius plot shows a change in slo

r-

r

FIG. 4. Arrhenius plots of the common logarithm of the ato
diffusivity versus inverse temperature calculated by observing~a!
the mean-squared displacement of the atoms,~b! the movement of
antiphase boundaries calculated using an jump-energy evalu
with barrier ~circle! and without barrier~squares!. Filled symbols
correspond to a standard Metropolis algorithm, small open sym
to a residence time algortihm. Since the open, small, and filled la
symbols superimpose almost perfectly, they look similar to o
open symbol. Error bars are partly too small to be seen.
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at Tc , and the migration energyEA
m is lower in the disor-

dered phase (1.0J(1)) than in the ordered phase (23.0J(1)).
This small value forEA

m in the disordered phase is reasona
since there is no significant change in the environment of
vacancy before and after the jump, i.e.,DE'0. For an algo-
rithm with energy barrier the change by passingTc is from
24.1J(1) to 5.0J(1). This large deviation from zero is due t
the fact that the energy of a random environment around
vacancy is well below the defined energy barrier. As m
tioned above, the height of the energy barrier is defined
the configuration around the vacancy with highest ener
which is a kind of wrong-ordered state.

In the limit T→`, DA is the same for all algorithms an
can be calculated as follows. For cubic lattices the tra
diffusion coefficient is given by35

DA5
Gr 2f

6
, ~13!

where G is the jump frequency (G51 @MCS21#, because
every jump trial is successful atT5`), r the NN distance
(r 5aA3/2), and f the correlation factor of bcc (f bcc

50.72714),35 and thereforeDA
T5`50.09089 @a2MCS21# in

perfect agreement with the simulated value.
Figure 4~b! shows the temperature dependence of the m

bility M of APB’s on the same scale. The temperature ra
is restricted to temperatures belowTc simply because only
there do APB’s exist. Again the data can be fitted by t
straight lines, but in comparison with the case studied abo
the slope is smaller. The activation energies were determ
to 5.5J(1) without barrier and 6.8J(1) with barrier. The rather
small energies can be understood in comparison with
simulations that indicated that the vacancy path is ma
restricted to disordered regions.22 As a consequence the va
cancy is bound to the APB’s and does not stray into
ordered domains.

Figure 5 shows the ratio of the results using the jum
energy evaluations with and without barrier for the APB m
bility M as well as for the diffusion constantDA . For DA

FIG. 5. Arrhenius plot of the ratio betweenDA ~circles! and M
~squares! obtained by a jump-energy evaluation with and witho
barrier. Error bars denote standard deviations.
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this ratio has an Arrhenius-type behavior forT.Tc with a
slope of53.9J(1). Therefore, employing an evaluation wit
barrier simply results in an additional activation energy. T
same assertion holds for the mobility of APB’s, although t
additional energy is smaller (1.3J(1)). Below Tc , the behav-
ior is more complicated in the case ofDA . The full symbols
obviously cannot be fitted by a straight line revealing a no
Arrhenian behavior of the diffusion constants. Moreover,
open and full symbols in Fig. 5 do not superimpose, wh
means that the consideration of an activation barrier in
energy evaluation has changed the mobility ofA atoms and
of APB’s in a different way.

B. Ratio of atom diffusion to vacancy diffusion

In Fig. 6 the ratio between the atom diffusivity~multiplied
by the number of atomsN21) and the vacancy diffusivity is
plotted against the inverse temperature scaleTc /T. The data
points scatter around two straight lines subdividing the d
gram into two temperature ranges above and below the
dering energy. AboveTc , the ratiof 5(N21)DA /DV equals
the diffusion correlation coefficient of a bcc lattice (f bcc
50.72714),35 which means that the system behaves as a c
ventional bcc lattice. BelowTc , the ratio increases with de
creasing temperature,f taking values larger than 1.

This effect may be explained by highly correlated v
cancy sequences. Using improved residence algorith
Athèneset al.5 showed that at sufficiently low temperature
(T/Tc,0.3) six-jump cycles are the only contribution t
atomic migration. For intermediate temperatures antisites
integrated into the six-jump cycles lowering the activati
energy ~anitsite-assisted six-jump cycle!. This concept of
antisite-assisted cycles can be extended, especially at hi
temperatures when more antisites are present in the sy
and therefore can be involved into jump cycles. The outco
of these jump cycles is a low net migration of the vacan
without preventing the atom diffusion as observed in o

t
FIG. 6. Semilogarithmic graph of the ratio between the at

diffusivity and the vacancy diffusivity. Different symbols deno
different evaluations of the jump energy. Error bars correspond
the standard deviation of the mean. The solid line marks the co
lation factor of a bcc lattice.
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simulation. At temperatures close toTc and decreasing long
range order the vacancy is not restricted to such jump cy
anymore since a combined destruction and restoration of
lattice order take place. AboveTc the vacancy basically per
forms a random walk.

C. Autocorrelation function

Figure 7 shows the probability of finding anA atom, lo-
cated at the origin att50, in thekth coordination shell after
a time t. Since the simulation yielded the displacement v
tor for each atom as a function of time~Sec. III A!, we ob-
tained the autocorrelation function by counting the ato
with the same total displacement, i.e., atoms within the sa
coordination shell. The simulations were performed with
standard Metropolis algorithm without barrier at 0.76Tc .
The consideration of an energy barrier had no influence
the results within the small error bars, except a time dep
dence. At the given temperature it took almost four tim
longer to obtain the same probability distribution of theA
atoms than with a jump-energy evaluation without barri
By definition all theA atoms are located in the zeroth sh
for t50 MCS. Aftert510 MCS, the predominant part of th
A atoms did not move or jumped back to their starting po
The bar at position 0 still does not fit in the diagram~top of
Fig. 7!. The probability of finding anA atom typically de-
creases with the index of the coordination shell. The sit
tion changed aftert5100 MCS. Just under 20% of the atom
did effectively not move. The first neighbor shell is poor
occupied, whereas the second and third shell house mo
the A atoms, namely, 20% each. Note that at this time a
about 20% of theA atoms reached the tenth or higher coo
dination shell. The salient feature after 200 MCS, finally,

FIG. 7. Autocorrelation function of theA atoms aftert510,
100, and 200 MCS;T/Tc50.76, standard Metropolis algorithm
without energy barrier. The last, hatched bar represents the p
ability of finding an iron atom in the tenth or higher coordinatio
shell.
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that the third neighbor shell exceeds the second one cle
The first shell is almost deserted. More than 35% of
atoms jumped further than the ninth shell.

These results are quite interesting in comparison to m
surements on the Fe-Al system done by QMS~Ref. 11! and
NFS.12 A reasonable fit of the experimental data was o
tained under the assumption that iron atoms jump betw
sites on their own sublattice. There is a preference of jum
to a third nearest-neighbor site~@110# jumps! over jumps to a
second nearest-neighbor site~@100# jumps! with a probability
ratio W110/W100 of 1.7. The authors concluded that the jum
is, however, not a direct one, but rather a combination of t
nearest-neighbor jumps leading to a short-time occupatio
an antistructure site on the Al sublattice.

Ab initio calculations also increased the doubt that ir
atoms jump directly on their own sublattice. While the ca
culations for the direct jump of an Fe atom to a~100! site
resulted in a migration energy of 2.41 eV,20 direct @110#
jumps can be excluded because of the extremely high mi
tion energy of 6.36 eV.36

For comparison with the autocorrelation function obtain
by the MC simulations, we calculated the autocorrelat
function with the jump probabilities taken from the QM
experiments. The preference of@110# jumps over @100#
jumps is reflected in the approximately time-independ
higher occupation of the third with respect to the seco
nearest-neighbor shell, again with a ratio of roughly 1.7.

Now, our MC simulations, which are based on the a
sumption that diffusion proceeds via vacancy jumps to N
sites exclusively, also give a higher probability that the
oms end up on a third nearest-neighbor site after a t
larger than 70 MCS. This is surprising at first glance, sin
an atom, which has just jumped to a NN site, has an eq
number of possibilities to jump either to a second or to
third neighbor, namely, 3. Taking into consideration the c
related movement of the vacancy, the situation gets e
worse. Calculations performed about the six-jump cy
found that the probability ratio even should rather be in fav
of ~100! jumps.37 This tendency is reversed, however, if a
the atoms had a sufficient large number of interchanges w
the vacancy. Then, there are many more indirect paths
third neighbor site than there are to a second, the rea
being simply that in the bcc lattice there are twice as ma
third neighbors than second neighbors~12:6!.

This similarity of the simulated autocorrelation functio
with the main feature of the experimental autocorrelat
function is remarkable. It may indicate the possibility to r
produce the experimental results with an even simpler ju
model than proposed earlier.11 We are currently working to
improve the model and the simulations in order to allow
more direct and more quantitative comparison with QM
results.
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