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Stationary states of the two-dimensional nonlinear Schro¨dinger model with disorder
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Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schro¨dinger
equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model,
otherwise unstable excitations are stabilized in the presence of disorder. In the discrete model, the disorder is
found to leave the narrow excitations unaffected. Our results suggest that the disorder provides a possibility to
control the spatial extent of the stable excitations in the continuum system.@S0163-1829~98!06429-7#
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I. INTRODUCTION

The interplay between disorder and nonlinearity has b
drawing increasing attention of theoretical physicists the
ten years.1 It is also a topic of great experimental concern
several fields of modern physics, such as nonlinear optic2,3

polaron formation in solid-states materials,4,5 and energy
transport in organic thin films.6

Attention has mainly been paid to systems that
integrable—soliton bearing—in the absence of disorder
particular, in Ref. 7 the authors have discussed the effec
a periodic potential on the soliton of the cubic nonline
Schrödinger~NLS! equation, and have shown on the basis
an averaged NLS equation that the periodic potential lead
a simple renormalization of the solitons and creates a ‘‘dre
ing’’ of the soliton. Investigations of stationary wave prop
gation in nonlinear disordered media have shown that n
linearity changes the transmission properties of disorde
systems.8 It has been shown theoretically,9 and recently veri-
fied experimentally,10 that the presence of nonlinearity ma
change the characteristic exponential decay of the trans
sion coefficient with system length into a power-law dec
Among the soliton bearing models is also the so-called s
trapping model of electrons in ionic crystals through p
laronic lattice distortion11 ~a general model for coupled-fiel
systems12! where the nonlinearity arises from adiaba
elimination of the lattice distortions. The study of such mo
els with disorder and temporal noise has shown that
ground state is always localized in the presence of disord11

while the temporal noise always leads to destruction of
localized states.13

However, the studied models all have long-lived solito
like solutions because in the continuum limit these equati
are all exactly integrable. The situation may change dra
cally if the continuum limit is nonintegrable. A relevant e
ample of such an equation is the two-dimensional~or higher-
dimensional! NLS equation. The most prominent applicatio
of the two-dimensional NLS equations is probably the d
scription of optical beams propagating in a three-dimensio
Kerr active medium.14 The discrete version has also be
applied in the context of optics as a model of optical pu
propagation along a cluster of optical fibers.15 Two-
dimensional NLS equations have also been used in the m
eling of two-dimensional organic thin films6 and in several
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other areas of nonlinear physics. However, the importanc
the two-dimensional NLS equation stems not only from
physical importance but also from its simple and tractab
yet rich, mathematical structure. As a mathematical obje
the two-dimensional NLS equation is rather well studie
mainly due to the critical collapse phenomenon it exhib
~for a review, see Rasmussen and Rypdal16!. As was realized
early,17 the two-dimensional NLS equation, although it
nonintegrable, possesses a localized solution. This solutio
marginally stable and will, in the presence of perturbatio
usually either collapses or disperses.

Recently, Christiansenet al. investigated the effects o
disorder on the localized excitations in the quintic on
dimensional NLS equation~where the nonlinear term is o
the form ucu4c) and showed that otherwise unstable exci
tions are stabilized by the presence of disorder in the c
tinuum problem.18 In the present paper, we study the effec
of disorder on the localized excitations in the cubic tw
dimensional NLS equation.

The paper is organized as follows. In Sec. II we introdu
the model describing the basic properties in the homo
neous discrete and continuum cases, and we discuss th
merical results obtained when disorder is included in
problem. We present numerical results showing that only
broad excitations are significantly affected by the disor
while the intrinsically localized excitations are rather una
fected. Most importantly, we find that the disorder stabiliz
the very broad excitations. In Sec. III we address the prob
analytically in the continuum limit and show that the diso
der indeed creates a stability window for the localized ex
tations. Finally, Sec. IV contains a discussion of our resu

II. MODEL AND NUMERICAL RESULTS

We consider a quadratic two-dimensional lattice with t
lattice spacing equal to unity. The model is given by t
Lagrangian

L5 i(
nW

1

2
~ ċnWcnW2c.c.!2H, ~1!

where
3075 © 1998 The American Physical Society
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FIG. 1. The norm,N versus nonlinear frequencyL for various disorder strengthsh. Homogeneous caseh50 ~solid line!, h50.04
~dotted line!, h50.07 ~dashed-dotted line!, andh50.1 ~dashed line!.
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H5(
nW

(
DW

ucnW2cnW 2DW u22
1

2 (
nW

ucnW u42(
nW

enW ucnW u2

~2!

is the Hamiltonian of the system. In Eqs.~1! and ~2!, cnW

[cm,n is a complex wave function,nW 5(m,n), (m,n50,
61,62...) is the lattice vector, while the vectorDW 5
(61,0),(0,61) connects nearest neighbors in the latti
The first term in Eq.~2! is the dispersive energy of the ex
citation, the second term describes a self-interaction of
excitation, and the third term represents diagonal disorde
the lattice. Finally, the random functionsenW are assumed to
have Gaussian distribution with the probability

p~enW !5
1

hAp
exp@2~enW /h!2# ~3!

and have the autocorrelation function

^enWenW 8&5h2dnW ,nW 8 , ~4!

where the bracketŝ• • • •& denote averaging over all rea
izations of the disorder. From the Lagrangian~1! we obtain
the equation of motion for the excitation function in the for

i ċm,n1~cm,n211cm,n111cm11,n1cm21,n24cm,n!

1ucm,nu2cm,n1em,ncm,n50,

n,m50,61,62, . . . . ~5!

Equation~5! conserves the normN defined as
.

e
in

N5(
nW

ucnW u2, ~6!

and the HamiltonianH.
We are interested in the stationary solutions of Eq.~5! in

the form

cnW~ t !5fnW exp~ iLt !, ~7!

with a real shape functionfnW and a nonlinear frequencyL.
The governing equations for the functionsfnW[fm,n then
become

2Lfm,n1~fm,n211fm,n111fm11,n1fm21,n24fm,n!

1ufm,nu2fm,n1em,nfm,n50. ~8!

Equation~8! together with Eq.~6! constitute a nonlinear ei-
genvalue problem that can be solved numerically using
techniques described in Ref. 19. The dependenceN(L) in
the case without disorder has been studied earlier19–21and is
shown with a solid line in Fig. 1. It has previously bee
shown20–22 that the linear stability of the stationary states
the discrete case is determined by the Vakhitov-Kolokol
criterion,23 yielding linear stability wheneverdN/dL.0.
This, together with the solid curve in Fig. 1, shows that low
frequency nonlinear excitations in the discrete tw
dimensional NLS model (0<L<L th51.088) are unstable
In the continuum limit (L→0) N(L)→Nc.11.7.

Further, we show in Fig. 1 the dependenceN on L for the
solutions of Eq.~8! in the presence of disorder. Results fo
three values of the varianceh50.04 ~dotted line!, 0.07
~dash-dotted line!, and 0.1~dashed line! are shown. The re-
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sults have been obtained as averages of 150 realization
the disorder. Several features arise as a consequence o
disorder. In the continuum limit (L→0), we no longer have
N5Nc anddN/dL50. Instead,N→0 anddN/dL.0, sig-
nifying that the disorder stabilizes the excitations in the lo
frequency limit. The disorder creates a stability window su
that a bistability phenomenon emerges. Consequently, t
is an interval of the excitation norm in which two stab
excitations with significantly different widths have the sam
norm.

Furthermore, we see that the disorder creates a ga
small L in which no localized excitation can exist, and th
the size of this gap apparently is increased as the varianc
the disorder is increased. It is also clearly seen that, aL
increases~decreasing width!, the effect of the disorder van
ishes, so that the very narrow excitations are in average
affected by the disorder and only the continuum results
affected by disorder. It is important to stress that this is
average effect, because for each realization of the diso
the narrow excitation will be affected. The narrow excitati
will experience a shift in the nonlinear frequency equal to
amplitude of the disorder at the position of the excitation

The qualitative form of the dependenceN(L) for a par-
ticular realization is very similar to the form of the avera
dependence shown in Fig. 1. It is noteworthy that for
realizations the curveN(L) is a smooth curve. It turns ou
that the basic difference from realization to realization is
displacement of the curve along theL axis.

The bistability we observe in Fig. 1 occurs due to t
competition between two different length scales of the pr
lem, one length scale being defined by the relation betw
the nonlinearity and the dispersion, while the length sc
defined by the disorder gives the other length scale. A sim
effect was observed by Christiansenet al.18 for the one-
dimensional discrete NLS equation with a quintic nonline
ity. The latter is quite natural because, as it is well kno
~see, e.g., Ref. 24!, the properties of the two-dimension
NLS model with a cubic nonlinearity are similar to the pro
erties the one-dimensional NLS equation with a quintic n
linearity.

Having studied the stationary problem, it is vital to com
pare the results to full dynamical simulations. Therefore,
carry out a numerical experiment launching a pulse in a s
tem governed by the equation

FIG. 2. Evolution of an initial excitation of the normN
510.4402 in continuum systems without disorder~upper part! and
with disorder strengthh50.1 ~lower part!.
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i ] tc~rW,t !1¹2c~rW,t !1uc~rW,t !u2c~rW,t !1e~rW !c~rW,t !50,
~9!

being the continuum limit of Eq.~5! for the excitation func-
tion cnW(t)5c(rW,t). Specifically, stationary solutions to Eq
~9! were obtained, and after reducing the amplitude of th
solutions by 5% they were used as initial conditions of t
dynamical simulations that were performed by applying
Runge-Kutta scheme. Examples of the described experim
are shown in Fig. 2. As is seen, the pulse behavior in
absence of disorder and in the presence of disorder~we
present here a realization corresponding to the disorder v
anceh50.1) differs drastically. While the pulse rapidly dis
perses in the ideal system~the contour plot fort5250 is
absent because the pulse width is of the system size!, the
process is arrested in the disordered system. After some
sient behavior the excitation stabilizes and attains an
proximately stationary width. It is clearly seen in Fig.
where the quantity

R5E uc~rW,t !u4drW, ~10!

FIG. 3. The inverse width squared, obtained by numerical so
tion of Eq. ~9! in a no-disorder case (h50) ~upper part! and with
disorder strengthh50.1 ~lower part!. The normN510.4402 is the
same as in Fig. 2.
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characterizing the spatial extent of the excitation is sho
When c(rW,t) is chosen as the self-similar solution@see be-
low, Eq. ~12!#, this quantity represents the squared inve
excitation width. The dynamical simulations thus support
conclusion that otherwise unstable excitations are stabil
by the presence of disorder in the continuum limit.

III. ANALYTICAL RESULTS

Apparently, for the average dynamics there are only s
nificant effects of the disorder in the limit of small nonline
frequenciesL, and we shall therefore apply the analytic
approach in the continuum limit of Eq.~5! that is given by
Eq. ~9!. In what follows we will not restrict ourselves by th
two-dimensional model but will consider thed-dimensional
(d51,2,. . . ) case. Therefore,rW is thed-dimensional radius
vector and¹2 is the d-dimensional Laplace operator. Th
potentiale(rW) is a spatially homogeneous Gaussian rand
function with the properties

^e~rW !&50, ^e~rW !e~rW8!&5h2d~rW2rW8!. ~11!

In order to gain some analytical understanding of how
presence of disorder affects the dynamics of the nonlin
excitations, we apply a collective coordinate approach. T
it is assumed that the dynamics can be described in term
collective coordinates using a localized self-similar tr
function c(rW,t) ~Ref. 25! of the form

c~rW,t !5AA~ t !

bd~ t !
f S urW2RW ~ t !u

b~ t !
D eia~ t !@rW2RW ~ t !#21 ikW~ t !rW1 if~ t !,

~12!

where f (urW u) is the real shape function. Here we have a
sumed that the solution is radially symmetric. The two r
time-dependent parametersA(t) andf(t) determine the am-
plitude and the phase of the excitation,b(t) anda(t) deter-
mine the width and the chirp of the excitation while anoth
pair of real parametersRW (t) and kW (t) determine the excita
tion center-of-mass motion.

Equation~9! is the Euler-Lagrange equation for the acti

S5E
2`

`

L dt, ~13!

where

L5E S i

2
~c] tc* 2c.c.!2u¹cu21

1

2
ucu41e~rW !ucu2DdrW

~14!

is the Lagrangian of the system. Inserting the trial funct
into Eq. ~9!, the following equations are derived from th
Euler-Lagrange equations:

Ȧ50, ~15!

2AS ḟ1
1

2
RẄ RW 1

1

4
RẆ 2D s(0,2)2

A

4
b̈bs~2,2!1

1

2

A2

bd s~0,4!

5U~b!2F~$e%,b,RW !, ~16!
.

e
e
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-
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n

As~2,2!

2
b̈52

]

]b
@U~b!2F~$e%,b,RW !#, ~17!

and

1

2
RẄ 5

]F~$e%,b,RW !

]RW
, ~18!

where

U~b!5p~0,1!
A

b2 2
1

2

A2

bd s~0,4! ~19!

is the effective potential function when disorder is absent a

F~$e%,b,RW !5
A

bd E e~rW ! f 2S urW2RW u
b

D drW ~20!

is the part of the potential caused by the disorder. The co
ficientss(n,m) andp(n,m) are given by

s~n,m!5E urWunf m~ urWu!drW,

p~n,m!5E urWunS dmf ~ urWu!

durWum D 2

drW. ~21!

The stationary points of the set of equations~17! and~18!
are determined by the equations

]

]b
@U~b!2F~$e%,b,RW !#50, ~22!

]

]RW
F~$e%,b,RW !50. ~23!

Solving the problem includes the following steps. Consid
ing the center-of-mass motion that is described by Eq.~18!,
we see that for each realization of the random potentiale(rW)
the pulse moves to the positionRW 5RW m($e%,b) in the lattice
whereF($e%,b,RW ) as a function ofRW has a maximum. In-
serting the valueRW 5RW m($e%,b) into Eq. ~22!,

]

]b
U~b!2S ]

]b
F~$e%,b,RW ! D

RW 5RW m~$e%,b!

50, ~24!

and solving it, we find the valueb($e%) of the pulse width
that minimizes the potentialU(b)2F($e%,b,RW ) for a given
realization$e(rW)%. The final step of the procedure is to fin
the average valuêb($e%)&. It is impossible, however, to
realize the described program simply because we can
solve Eqs.~22! and ~23!, for givene(rW). Therefore, we will
use the following approximate approach.

Introducing

b5B1d, B5^b&, ~25!

and averaging Eq.~24!, we get to the zeroth order ind that
the stationary value of the mean excitation widthB is deter-
mined by the extrema of the function
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W5U~B!2V, ~26!

where

V5^F@$e%,RW m~$e%,B!,B#& ~27!

is the averaged disorder potential. Clearly, Eq.~27! can be
written as

^F@$e%,RW m~$e%,B!,B#&5E
2`

`

f P~ f !d f , ~28!

where P( f )d f is the probability of the function
F($e%,RW ,B), having a maximum in the interval (f , f 1d f ).
We also take into account that the random fieldF($e%,RW ,B)
is stationary~all its spectral moments are independent ofRW ).

To evaluateV, we apply the theorem by Belyayev,26

which is a multidimensional generalization of Rice
theorem27 ~see also Ref. 28!. Let F(RW ), (RW 5R1 ,..Rd) be a
stationary Gaussian field with zero mean andFi(RW )
5 ]F(RW )/]Ri , Fi j (RW )5 ]F(RW )/]Ri]Rj . Let D5(hi j ) be a
symmetricd3d matrix andgW 5(gi) a vector of lengthd,
and hW 5(hi j ), (i< j 51,2..d) a vector of lengthd(d11)/2.
Finally, if p( f ,gW ,hW ) is the joint probability density function
for the random functionsF(RW ),Fi(RW ),Fi j (RW ), so that

p~ f ,gW ,hW !5K d~ f 2F !)
i 51

d

d~gi2Fi ! )
i< j 51

d~d11!/2

d~hi j 2Fi j !L .

~29!

The probability thatF has a maximum in the interval (f , f
1d f ) is

P~ f !d f5~21!d

*
P~h!

uD~h!up~ f ,0,hW !dhW

*2`
` *
P~h!

uD~h!up~ f ,0,hW !dhW d f
d f ,

~30!

whereuD(h)u is the determinant ofD(h) andP(h) is the set
of hW for whichD(h) is negative definite.

Inserting Eq.~30! into Eq. ~28!, we get

^F~$e%,RW m~$e%,B!,B!&

5~21!d

*
2`

`

*
P~h!

f uD~h!up~ f ,0,hW !dhW d f

*
2`

`

*
P~h!

uD~h!up~ f ,0,hW !dhW d f

. ~31!

It is seen from Eqs.~11! and ~20! that ~i! F and Fi are
uncorrelated for alli , ~ii ! F and Fi j are uncorrelated fori
Þ j , ~iii ! Fi andF j are uncorrelated foriÞ j , ~iv! Fi andF jk
are uncorrelated for alli , j ,k.

Thus we obtain from Eqs.~11!, ~20!, ~29!, and~31!,
^F~$e%,RW m~$e%,B!,B!&

5~21!d

*
P~h!

uD~h!u( j 51
d M j

]

]hj j

f~hW !dhW

*
P~h!

uD~h!uf~hW !dhW
, ~32!

where the abbreviation

f~hW !5expS 2
1

2 (
i , j 51

d hi j
2

Mi j
2

1

2 (
i , j 51

d

hii hj j @M 21# i j D
~33!

is used. Here

M j52^FF j j &5^F jF j&, ~34!

and the squared3d matrix M with componentsMi j that are
second moments of theFi j ’s, i.e.,

Mi j 5^Fii F j j &. ~35!

An explicit form of the effective potential functionW is
obtained using the fact that the trial function given by E
~12! is radially symmetric in the frame of reference that
coupled with the center-of-massR. Then we have

M j5
A2h2

B2d E S ]gS urWu
B

D
]r j

D 2

drW

5
A2h2

Bd12 E r j
2

r 2 @g8~ urWu!#2drW[
A2h2

Bd12 m1 ,

M j j 5
A2h2

B2d E S ]2gS urWu
B

D
]r j

2
D 2

drW

5
A2h2

Bd14 E F 1

urWu S 12
r j

2

urWu2D g8~ urWu!1
r j

2

urWu2
g9~ urWu!G2

drW

[
A2h2

Bd14 m2 ,

Mi j 5
A2h2

B2d E S ]2gS urWu
B

D
]r i]r j

D 2

drW

5
A2h2

Bd14 E r i
2r j

2

urWu4 S g9~ urWu!2
1

urWu
g8~ urWu! D 2

drW

[
A2h2

Bd14 m3 , ~ iÞ j !, ~36!

whereg5 f 2 and g8(x)5 dg/dx. It is seen that the coeffi-
cientsm1 , m2 , andm3 do not depend on the indicesi and j .
They merely depend on the dimensionality of the system
on the explicit form of the trial functionf (r ).

Inserting Eqs.~36! into Eqs.~32!–~35!, and rescaling the
variableshi j ,
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hi j 5
Ah

Bd/212 zi j , ~37!

we obtain that the averaged disorder potential has the fo

V5vd

Ah

Bd/2 , ~38!

where the coefficientv is

vd5~21!dm1

*
P~z!

uD~z!u( j 51
d ]

]zj j
f~zW !dzW

*
P~z!

uD~z!uf~zW !dzW
~39!

with the functionf(zW) being determined by Eqs.~33! and
~35! in which one has to substitute

Mi j 5m2d i j 1m3~12d i j !. ~40!

In accordance with Eqs.~36!, the coefficientv depends only
on the dimensionality of the systemd and the explicit form
of the trial functionf (r ). E.g.,

v15A2p
p~0,1!

Ap~0,2!
, v25

8

A6p

p~0,1!

Ap~22,1!1p~0,2!
.

~41!

Thus the effective averaged potentialW takes the form

W5p~0,1!
A

B2 2
1

2

A2

Bd s~0,4!2vd

Ah

Bd/2 . ~42!

Using this and Eq.~16!, the nonlinear frequencyḟ5L can
be determined as

L52
1

N S W2
1

2

A2s~0,4!

Bd D . ~43!
In the case of the one-dimensional NLS equationd
51), Eq. ~42! has the same form as the effective potent
obtained in Ref. 11 where the effects of disorder on the
laron ground state were studied. In Ref. 11 a quite differ
approach, combining statistical and scaling analysis, w
used.

In the case of the two-dimensional NLS equationd
52), the effective potential~42! can be written as

W5
N

s~0,2! Fp~0,1!S 12
N

Nc
D 1

B2 2
v2h

B G , ~44!

where N5As(0,2) is the number of excitations andNc
52p(0,1)s(0,2)/s(0,4) is its critical value for which the sta
tionary state of the two-dimensional NLS equation exists
the absence of disorder. WhenN,Nc , the effective poten-
tial ~44! has a minimum for

B5
2

v2h
p~0,1!S 12

N

Nc
D ~45!

and the nonlinear frequency~43! takes the form

L5
v2

2h2

4s~0,2!p~0,1!S 12
N

Nc
D S 11

As~0,4!

2p~0,1!S 12
N

Nc
D D .

~46!

Equation~46! shows that the nonlinear frequencyL increase
monotonically whenN is increasing. According to the
Vakhitov-Kolokolov criterion, this means that the corre
sponding stationary states are linearly stable. It is also s
from Eq. ~46! that L(N) does not vanish in the limitN
→0:

Lgap[ lim
N→0

L;h2. ~47!
the
FIG. 4. The width of the gap,Lgap versus the disorder strengthh. Results of numerical calculations are indicated by squares while
analytical dependence given by Eq.~47! is shown by the solid line. The gap is measured atN54.
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The appearance of the gap was also seen in the nume
simulations. Figure 4 shows the comparison of the dep
dence given by Eq.~47! with the numerically obtained de
pendence of the gap. The agreement between the two
proaches is rather good, signifying that the analyti
approach captures the essential features of the system.

IV. SUMMARY

In summary, we have in this paper shown that the pr
ence of disorder permits the existence of stable locali
low-frequency excitations. We have shown this using a
lytical analysis and numerical simulations of the stationa
as well as the dynamical problem. Analyzing the discre
problem, the appearance of a bistability phenomenon
observed, and the source of this bistability was identified
be the competition between two length scales. The len
scale was found to be directly related to the strength of
disorder. The existence of a frequency gap in which no s
tionary state exists was shown analytically and numerica
This gap, and the appearance of a narrow region where st
excitations exist, allows rather accurate controllability of t
i
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excitations via the disorder. Comparing our results with t
results of Ref. 18 for a similar case of a one-dimension
NLS equation with a quintic nonlinearity, it is found that th
two systems exhibit very similar features in the presence
disorder. This may be predictable considering the similar
of these systems.16 It is, however, noteworthy that the aver
aged potential, Eq.~39!, arising from the disorder is differen
in the two cases@see Eq.~43! of Ref. 18#, suggesting that the
exact form of the potential is not crucial.
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