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Charge dynamics and recombination kinetics in columnar discotic liquid crystals
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The time-dependent quasi-one-dimensional transport of electrons or holes along the molecular columns in
columnar liquid crystals has been studied. Recent mobility measurements on the tryphenylene-based HAT-n
materials have revealed Gaussian transits in the liquid crystalline phases but dispersion in the crystalline
phases. In this work the factors governing the photoconductivity are rigorously analyzed using random-walk
methods. Strong evidence for one dimensionality is found in the time- and electric-field-dependent photocur-
rent decays. The field begins to affect the decay for values of field energy per hop which are well belowkT and
comparable with trap concentration as predicted by theory. The trap concentration in the crystalline phase is
governed by structural disorder. The traps however appear ‘‘shallow’’ and the long time current disagrees with
the deep trap theory. In the liquid crystalline phase, these traps are annealed out by thermal fluctuations and, as
consequence, no direct kinetic proof of one-dimensional kinetics is obtainable. This observation of quasi-one-
dimensional transport of charge is in keeping with earlier findings for exciton motion in these materials.
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I. INTRODUCTION

The charge transport properties of the columnar phase
discotic liquid crystals are not only of fundamental intere
but make these materials potentially useful in applicatio
ranging from sensing devices to high resoluti
xerography.1–6 These properties stem from their unique a
chitecture. They are comprised of disordered stacks of d
like molecules, such as the hexa-alkoxy-triphenylen
(HATn) arranged on a two-dimensional lattice; see Fig.

The fluctuations in columnar order are sufficient to su
press inhomogeneously distributed structural traps and
rise instead to a uniform ‘‘liquidlike’’ dynamic disorder. A
a consequence, the individual molecular columns can tra
port electronic charge with well defined Gaussian transits3–5

Charge carrier mobilities along the columns can be as h
as 1022 cm2 V21 s21 and are typically 103 greater than in the
perpendicular direction. In HAT6m i;431024 cm2 V21 s21

and the intra and intercolumnar distances ared;3.5 Å and
d;19.5 Å so that, usingm5eD/kT, we calculate thatD i

;1026 cm2/s and D';1029 cm2/s. The latter compare
with the value of 1028 cm2/s measured by NMR~Ref. 6! for
the molecular self-diffusion coefficient perpendicular to t
column axis. Thus the charge carrier transport from colu
to column is assisted by the occasional molecular hop.

We can therefore expect discotic liquid crystals~DLC’s!
to exhibit, in a restricted but accessible time domain, tr
one-dimensional transport characteristics. In theDh ~self-
repairing! mesophase, these materials should be amongs
PRB 580163-1829/98/58~6!/3063~12!/$15.00
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best ordered quasi-one-dimensional ‘‘transporters’’ of b
charge and excitons.7 This is because the liquidlike fluctua
tions in columnar order which take place on a time scale
less than 1025 s provide an effective self-repairing mech
nism. Previous studies of one-dimensional kinetics ha
been carried out in the pioneering works of Haarer a
Moehwald,8 Hunt, Bloor, and Movaghar,9 Seiferheld,
Baessler, and Movaghar10 for charge transport and by Dlott
Fayer, and Wieting11 and Rughoputhet al.12 for exciton
transport.

In this paper, we have to begin by presenting to the rea
a number of rigorous mathematical results necessary to
derstand one-dimensional charge transport in columnar
uid crystalline phases. The theoretical formalism needed
understand the aspect contained in the data cover the dc
ac conductivities. We examine the nature of the stocha
motion in DLC’s, the origin of dispersion, the type of diso
der, and defects expected. We then present the theor
photoconductivity in the bulk and examine the transient p
tocurrents with absorbing electrode boundaries in the p
ence of structural disorder and trapping.

Quasi-one-dimensional systems are exciting because
ten, there is new physics to be discovered and it is also
ideal opportunity to verify exact mathematical prediction
This is why so much high quality work has in the past be
devoted to studying one-dimensional band structure and
namics.

Our measurements of carrier transits and photoconduc
ity are therefore presented with a focus on demonstrating
3063 © 1998 The American Physical Society
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existence of one-dimensional~1D! random walk effects.
There are a number of rigorous theoretical predictions
photocurrent behavior in 1D which one can use to ver
one-dimensionality ~see Refs. 8–10!. Anomalies which
typify 1D behavior are, paradoxically, related to the prese
of traps and disorder. In the liquid crystalline phase, u
equivocal evidence of one-dimensionality is difficult to o
tain. The reason is that in the ‘‘liquidlike state’’ all carrie
experience roughly the same trajectory; dimensionality
lated effects in stochastic transport are however relate
quantities which involve deviations from perfect order, su
as for example the time to trap,8,9 or the drift velocity in the
presence of bond disorder.10 Let us begin by specifying som
basic band and transport properties which typify dlc’s. Th
later we shall see how to extract the relevant informat
from the photocurrent data.

II. FACTORS GOVERNING CHARGE TRANSPORT
IN COLUMNAR LIQUID CRYSTALS

A. Energy bands

In HAT6, the separation between the molecular cores
columns is;3.5 Å and 20 Å, respectively. There is therefo
considerable overlap ofp orbitals between the adjacent ar
matic rings in a column. The molecules have a highest
cupied molecular orbital–lowest unoccupied molecular
bital gap in the range 2–4 eV. Extra charges or exci
separated charges have a narrow quantum band stru
along the molecular columns with bandwidths,;0.2 eV.
The resonance energyt i j along the columnar stacks can b
written in the usual form

FIG. 1. HAT6: K ~67!; D ~98!; I ~phase transition tempera
tures!. This figure illustrates a typical discotic liquid crystal HAT6
n
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t5t0e2auRi2Rj u, ~1!

with a21;2 Å and t0;1.0 eV. This estimate refers to th
resonance integral between a charged molecule and a n
boring neutral molecule and the vectors$Ri ,Rj% refer to the
center of the molecular core. When the molecules are ti
with respect to each other, see Fig. 1, then one needs m
than one variable to describe the overlap energy. The
quantity in tunneling is the distance of closest approach
tween thep orbitals.13 In the present temperature rang
~300–400 K! and for the present purposes, it suffices to u
the approximate overlap integral given in Eq.~1!.

The mobility m i
e,h parallel to the columns for electron

and holes has been measured as a function of the ele
field and temperature.3,4,13 Writing

m i5
eDi

kT
, ~2!

D i5~ l in!2Wnn8 , ~3!

wherel in is the average inelastic mean free path. Definin
coherent domain as ‘‘n,’’ Wnn8 is the transition rate betwee
two such domains$n,n8% along a column; see Fig. 1.

At zero temperature, we can expect all states in a DLC
be localized and the macroscopic conductivity to vani
Even in highly ordered samples, the localization length w
be short compared to 1D metal, because we are dealing
extremely narrow bands. From the estimates given
Allen,14 we have roughly (aa)21;2(8/p)1/2D/2t, where
‘‘2 t ’’ is half the bandwidth andD is the energy disorde
width. The polarization fluctuation width is at least;0.01
eV and ‘‘t’’ is at most ;0.2 eV in the HATn, so the local-
ization length is at most;14 lattice constants. In the pur
stochastic limit,l in[ai , and at room temperature and abov
we can consider the transport along the columns to be es
tially stochastic or diffusive with a coherence lengthl in
which is >ai .

B. Defects and traps

In a columnar liquid crystal, one can expect the followin
types of defect:~a! chemical impurities which lead to th
trapping of charge;~b! structural defects, such as large am
plitude displacements of molecules which can also be p
duced thermally, and can therefore also self-repair~see Fig.
1!.

In undoped materials, there are very few ionized chem
impurities (,1010 cm3) at room temperature. The number
impurities which can act as traps for free charges is of cou
well in excess of that number.

Most of the charged chemical defects will be due to re
tion with the metal electrodes. Most defects in general
structural and can self-repair. This is the reason why one
have well defined, Gaussian transits in an otherwise, hig
unfavorable topological situation. The density of the stru
tural traps can be estimated as follows: ifV0 is a typical
energy required to generate a substantial break in a colu
0.3,V0,1.0 eV, then the coherence length in one dime
sion is given by

j~T!;aieV0/2kT. ~4!
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At T5300 K and in a strictly one-dimensional approxim
tion, j(T);102721024 cm. The time to create or repa
such a defect is known from NMR linewidth and anisotro
measurements. In theDh phase of HAT5,td;1025 to
1026 s. We expecttd(T) to decrease with increasing sid
chain length.The melting temperature Tm(n) is a decreasing
function of n as shown in Table 1 of Ref. 15.

A typical electron or hole transit across a distanced takes
a timetT given by

tT;
d

mF
. ~5!

With d;1023 cm, m;1024 cm2 V21 s21, and F;104

V cm21, tT;1023 s, so thattT@td in the Dh phase. The
main scattering event for a carrier moving in a column the
fore consists of a combination of displacements as show
Fig. 1. In the crystalline phase, sideways structural displa
ments are ‘‘permanent’’ on the time scale of a transit a
therefore give rise to real long-time traps or barriers with
distribution of energyPn(«v) which depends on the sid
chain length. In the liquid crystallineDh phase, the structura
traps self-anneal so that carriers do not suffer any long t
trapping.

To quantitatively characterize a given material, a ma
ematical model of the transport process is required. T
model can then be compared with experiment from which
can extract the parameters which measure the degree o
order.

In quasi-three-dimensions, the disorder is contained in
quantitiesWi(p) andW'(p) which characterize the effectiv
frequency dependent jump rates in the two main directi
along and perpendicular to the columns. The ac conduc
ties (p5 iv) then become16,17

s i5
nce

2

kT
ai

2Wi~ iv!, ~6!

s'5
nce

2

kT
a'

2 W'~ iv!, ~7!

which can always be represented to a good approximatio
a semiempirical scaling law which includes anisotropy,
dc limit ‘‘ pdc,’’ high frequency saturation at ‘‘n1 ,’’ and the
effect of the ordered domain length ‘‘l c’’ ~aggregate coher
ence size! would be

D~p!5@~ l c
2!/2#@pdc#@11$~p1 /pdc!%

s#, ~8!

p15pn1 /~p1n1!. ~9!

The time-dependent diffusion in strictly 1D systems w
disorder is however highly anomalous as shown rigorou
in Ref. 17. The time-dependent part of the drift becom
sublinear with applied field and linear response theory bre
down. We shall come back to this point later in the text
Sec. III C. The present class of materials is in some resp
ideal to verify such predictions.
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C. The influence of inhomogeneities:
Trapping versus dynamic disorder

The scaling laws of type 13 apply to uniform disord
models. Experiment shows that the crystalline state can
be characterized by uniform disorder only. There is disor
caused by misalignment, grain boundaries, and polycrys
linity.

The effect is to make the ac conductivity frequency d
pendent where it should in principle still be constant. Th
type of disorder causes structural traps and has to be tre
differently than homogeneous disorder. There are vari
ways we can model this kind of disorder. One can allow
trapping contribution to the random walk as shown in R
18. The simplest way is to allow a particular group of mo
ecules to be locally frozen into configurations of the ty
shown in Fig. 1. This causes a larger than normal Gaus
broadening for the molecular displacements from equi
rium and, consequently, a larger local resistance. One
treat such situations exactly but, in order to simplify the
gebra, we assume that processes which give rise
trapping18,19 return to the transport path, and molecular ro
tions and motions, i.e., all events which delay the carrier,
be treated using a single delay time function:

mi~p!5p^S j$Wi j /~Wji 1p!%& ~10!

such that we now simply have to replace the frequencp
with $p1m(p)% and carry out the configuration average ov
all possible delay processes that the carriers encounter in
crystalline phase. The average introduces an order param
h(T) which goes to ‘‘0’’ or strongly decreases when th
system enters theD phase.20 We can write m(p)
5h(T)C(p), where h(T)5$@TD2T#/TD%s. This waiting
time function enhances the dispersion and gives a lower
fective static diffusivity. Naturally we can give the configu
ration shown in Fig. 1 a mathematically rigorous treatment
necessary: allow both bonds to be distorted and also
clude rigorously the change in the inter and intracolum
jump process. The delay time function procedure is howe
elegant and in some way more general since it allows c
sical as well as quantum processes to be integrated in
single function with a universal shape. See Appendix A a
the work of Scher and Lax.18

Using the universal ac structure~8! we now have, for the
diffusivity, the form

D~p!5$1/„11h~T!C~p!…%D$p@11h~T!C~p!#%,
~11!

where we simply replace the frequency variable ‘‘p’’ with
„p1m(p)… and multiply the diffusivity byp/„p1m(p)…. If
the trap free diffusivity was frequency independent, then
effect of the traps is only due to the latter factor. Finally, th
factor has to be squared, if we do not count the traps as
of the diffusion sites where the particle can be found.

This analysis now allows different kinds of disorder pr
cesses: dynamic and static ones which can be integr
into a single function. Depending on purity, and speed a
nature of the dynamics, a given discotic material might e
hibit transits while another will show pure dispersion. T
diffusivity ~11! is plotted in Fig. 2 for three different value
of trap density, using the waiting time functionC(p)
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5Nt$11(p/nt)
k%21. The figure clearly illustrates the differ

ence between the homogeneous disorder case and the
when the carrier encounters the occasional deep trap ca
by serious structural deformations as in the polycrystall
state of HAT and most discotic liquid crystals. The diffusi
ity is needed to evaluate the photocurrent transits.

III. THEORETICAL BACKGROUND
FOR UNDERSTANDING PHOTOCURRENTS IN DLC’S

A. The time decay of the bulk photocurrent

The photocurrentI p contains information on the distribu
tion of traps in a nonequilibrium situation, the influence
boundaries as in a transit experiment3,4 and also on the di-
mensionality of the carrier motion and dimensionality cro
over with time (t) and temperature (T). Consider the bulk
photocurrent in the absence of absorbing boundaries, wit
effective time-dependent mobilitym(t) or diffusivity D(t)

m~ t !5
eD~ t !

kT
~12!

and a carrier survival fractionn(t). The carriers can be de
layed by structural traps. They can however also fall in
deep traps from which they do not escape during transit~re-

FIG. 2. Plot of the theoretical diffusivity Re$D(iv)% vs v ob-
tained from Eq.~11!, illustrating the change that occurs when t
system goes from the state of Gaussian overlap disorder (Dh phase!
to the situation where in addition we now also have structural tr
with long delay times~crystalline phase!. The upper curve: N
50; middle: N55; lower: N510; N5equally accessible non
transporting trapping sites per molecule.
ase
sed
e

f

-

an

o

combination centers!. Assuming these centers do not allo
escape, then we can discuss this situation in the contex
deep trap models.

First we have

I p~ t !5Gtw

eF

kT
n~ t !D~ t !, ~13!

where G and tw are the generation rate and laser pu
length, respectively, from which it follows that for consta
diffusivity D(t), the time dependence ofI p(t) is entirely due
to the survival fractionn(t). The latter can be evaluate
exactly as a function ofW6(p), the effective with~1! and
against~2! field jump rates. For most situations of intere
the density of recombination centers is low so that car
diffusion to those centers can be assumed to take place in
steady state. In general,16,17,21,22 for experimental timest
.tw , the pulse time, and free carrier generation time,
have

D~ t !5D0~ t !1
D1

tb , 0,b,1 ~14!

where the time dependence covers the region up to the c
cal hop frequency.16,17Assuming here thatD(t);D0 , a con-
stant for all times, we can write to a good approximation

n~ t !'ni~ t !n'~ t !, ~15!

wheren' is the survival probability due exclusively to dif
fusive motion in the anisotropic network~whenh,x) ~Refs.
17 and 23! ~the caseh.x is given in Appendix B!

ni~ t !5
4

p2 e2h2Dt/a2E
0

`

dS
S

@11~hS/px!2#2 e2p2x2~Dt/a2S2!

3F e2S

12e2S1
e2S~12h/x!

2~11e2S~12h/x!!

1
e2S~11h/x!

2~11e2S~11h/x!!
G ~16!

and

n'5exp@2xct$D iD'%1/2/~ai
21a'

2 !# ~17!

is the first passage time~FPT! ~Ref. 17! result. Herex is the
concentration of deep traps;c a constant;1. For a strictly
one-dimensional random walkD'[0, and we have the exac
one-dimensional result which has a very characteristic t
and electric-field scaling behavior as discussed in Ref.
The term~17! is a way of taking into account approximate
the trapping events caused by the sideways walks of the
ticle when it moves on the anisotropic network. The com
nation ~15! of course somewhat overcounts the trappi
events but the reader should note that the term~17! only
manifests itself in the long time limit and at low fields, the
it controls the decay.

Here we note that a strictly one-dimensional walk giv
rise to the long time law

n1D~ t ! t→`;e23@~p2x2t/4a2!D#1/3
316S x2tD

3pa2D 1/2

, ~18!

s
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when h,x. When h.x the recombination is drift limited
and a simple exponential is given by Eq.~A2! in the Appen-
dix.

By using the information we have from dc and ac cond
tivity, we can determinex and the dimensionality crossove
from a detailed study of the photocurrent. Clearly theDh
phase is the ideal phase in which to studyx since here we can
distinguish shallow from deep traps. The former determ
D0(T); the latter the long time decay ofI p(t).

The two factors in Eq.~15! describe one-dimensional~ex-
act! and anisotropic three-dimensional transport in the fram
work of the first passage time method. Equation~15! de-
scribes the competition between three-dimensional and
dimensional motion. Three dimensionality dominates at lo
times in low fields.

B. The theory of photoconductive transits:
The influence of an absorbing boundary

Now we consider transient mobility experiments a
show how one can calculate the experimental photocur
knowing the frequency dependent diffusivityD(p). We in-
troduce an absorbing boundary atL and using the derivation
in Refs. 23 and 24 we arrive at the following form for th
Laplace transformed photocurrent:

I p~p!5E
0

`

e2ptI p~ t !dt, ~19!

I ~p1!/Nc5~eF/kT!D~p1!/p1

3@12exp$2Np1 /„p112hD~p1!/a2
…%#,

~20!

whereN5L/a, and the quantity 1/p1 is given by the Laplace
transform of the survival fractionn(t) also referred to as
n(p); when recombination has no time to intervene, we c
replacep15p; for details of how to calculaten(p) see Ref.
23. The replacement 1/p with n(p) is basically saying tha
the transport process can be cut off by the deep trapp
events. The factor in the square bracket is the effect of
boundary. The initial light generated free carrier density
Nc . This number depends on the details of the light induc
generation process near the electrode boundary of the li
crystal/metal contact. For HAT-n the penetration depth of th
l5335 nm light is;0.1 mm.

The frequency dependence ofD(p) in Eq. ~20! is typi-
cally as shown in Fig. 2 for theK andD phase.25 Measure-
ments ofD(p) using ac conduction in undoped samples
difficult to interpret because electrode polarization effe
and ionic contributions mask the weaker dispersion along
columns.

C. The time dependence of the transient photocurrentI „t…:
analytical results

Equation~20! can be numerically inverted and allows
frequency dependent jump rate. Analytical results can
found in several limits. In order to obtain the time depe
dence of Eq.~20!, we consider several limiting cases.
-

e

-

e-
g

nt

n

g
e

s
d
id

e
s
e

e
-

~a! Dispersion parameters ‘‘a ’ ’ 50, D(p)5D0 , and trap
concentrationx50. Here we have, in the limit that bac
diffusion can be neglected@vd52hD/a, N5L/a#,

I ~ t,x50!5$eFNc /kT%D0~T!exp@2tvd /L#

3H (
n50

N

~vdt/L !n/n! J ~21!

or to a good approximation with back diffusion

I ~ t,x50!5~eNc!d/dtH E
0

L

dy~4pDt !21/2y

3exp@2~y2mFt !2/4Dt#J . ~22!

This formula assumes that the boundary does not influe
the propagator while the carrier is still on its way and rep
sents therefore a slightly more classical picture, which
indeed probably more appropriate to liquid crystals than
exact semiclassical random-walk result. Within our pres
measurement accuracy, the difference between Eqs.~21! and
~22! is however insignificant. The same applies to the ex
formula which includes both back diffusion and bounda
effects and which is given in Ref. 17 and in the Appendix
Ref. 23 in Laplace space. Deviations from Eq.~22! should be
insignificant in the present time regime.

~b! Now let us allow a finitex.0; this introduces a sur
vival fraction n(t) so that

I ~ t !5I ~ t;x50!n~ t !. ~23!

The boundary gives rise to a fast decay of the surviv
carriers which get there.

~c! The dispersion parameter isa51/2, andx is finite:

I t~ t !5~eFNc /kT!~D1 /t1/2!@12exp$2tT /t%#n~ t !,
~24!

v~ t !;eF/kTD1 /t1/2; ~25!

the time of transit is defined by the time taken to reach
boundary (2h5eFa/kT)

E
0

tT
dt8vd~ t8!5L; tT5@L/4hD1#2. ~26!

In this formula it is assumed thatD(t) is still time dependent
on the scale of the transit time defined above; strictly spe
ing n(t) must now also be evaluated using a time-depend
diffusivity. We do not have an exact analytical formula f
this situation. It is however reasonable to suppose that
can replaceDt with *0

t dt8D(t8) in Eq. ~16!. A better way is
to use the FPT method instead and write

n~ t !5n~o!exp@2x~ t/t0!g#. ~27!

This then treatsg as the time exponent of the number of ne
sites visited24,26 and accounts for dispersion, electric fiel
dimensionality, and temperature. IfD(t) or more precisely
vd(t) reaches the steady state value before the boun
~weak dispersion! then~a! applies in the long time limit and
n(t) can be computed using the exact formula~16!.
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~d! Same as~c! but with a general dispersion paramet
‘‘ a’’ and finite trap concentrationx:

I t~ t,x!5$eFNc /kT%D0~T!n~ t !$D1 /ta%

3@12exp$2~ tT /t !2~12a!%#, ~28!

tT5$L~12a!/2hD1%
~1/12a!. ~29!

giving, assuming linear response to apply~see note below!,

~ i! I t~ t !;eFa/kTn~ t !1/ta for vdt!L, ~30!

~ ii ! I t~ t !;F ~2a21!n~ t !1/ta1/t2~12a! for vdt@L,
~31!

with n(t) given by the FPT formula~27!. If we put a51
2k, we have the characteristic Scher-Montroll dispers
transit law.27

Comment

Note that the factorn(t) only intervenes if the carrier ha
a good chance to be trapped before reaching the electr
i.e., whenx.(a/L). Since Eq.~31! assumes that the drift i
dispersive for long times compared to the transit, the cor
survival fraction in the presence of dispersion would be
FPT form given by Eq.~27! rather than the exactn(t) given
by Eq. ~16!.

Note thatNc is the number of photocarriers escaping
combination in the generation zone. This quantity also
pends onT andF and determines the magnitude of the s
nal.

Note.In strictly 1D with dispersion, the drift velocity wa
shown rigorously to be sublinear with field21~b!,22 as long as
the drift is still time dependent. Linear response is no lon
valid in the time-dependent regime and this would have c
sequences on the behavior of Eq.~26! since we have

vd~ t !;2hD2 /~hn0t !a ~one-dimensional transport!.
~32!

The sublinearity with field simply means that the drift in o
direction is also enhancing the number of new sites~bonds!
visited and therefore also the probability of encounterin
worse hop which slows down the carrier. Normality or line
response is only recovered when the carrier has encoun
the worst situation on its way to the electrode. The anom
lous field dependence has consequences for the field de
dence of the transit time evaluated for example in Eq.~26!
where it was assumed that the drift is linear in field in t
dispersive regime.

Now that we have given the reader the necessary tools
interpreting mobilities and photocurrents in quasi-on
dimensional systems, let us consider the experimental re
obtained for HAT6.

IV. EXPERIMENTAL METHODS

A. Transient photocurrent measurements

In order to measure the hole mobility in the mesophase
the HAT6 technique due to Kepler and Leblanc, time
flight transit was employed. In this technique, the sample
contained between two electrodes separated byd, in this case
e
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defined by a 20mm mylar spacer. One of these electrodes
semitransparent and, further, the skin depth for absorptio
the light used to excite carriers~337 nm from a 6 nsnitrogen
laser pulse! is less than one micron. A pulse of light incide
on the semitransparent electrode immediately creates ca
pairs in the material, one sign of which is swept out imm
diately at the semitransparent electrode while the remain
sign of carriers drifts towards the counter electrode. Up
arrival at the counter electrode, the current will fall rapidly
the carriers discharge. The current is measured as a vo
drop across a load resistor whose magnitude is chose
reflect the time response required for the particular exp
ment always keepingRCs less than the transit time whereCs
is the sample capacitance. Thus

RCs!TTr5d2/mV, ~33!

wherem is the mobility of the carrier. A variety of pream
plifiers have been used where necessary again ensuring
the time does not affect the measurement.

In the case of HAT6 transits are observed only from ho
in the mesophase and featureless decays are observe
electrons and from holes in the crystalline phases. These
due to trapping/recombination of the carriers before arriva
the counter electrode. Such decays are however fitted to
termine other transport properties concerned with
trapping/recombination. To carry out such fitting the sign
are captured using a digitizing oscilloscope and subseque
analyzed. The asymmetry concerning electrons and hole
due to the fact that in the present materials there are m
more electron traps (O2 and oxidation products! than hole
traps.

In taking measurements great care was taken to avoid
possible problems.

~i! Where there is carrier trapping~crystalline phase for
holes and all phases for electrons! it is essential to apply the
electric field and take the measurements immediately.
field is then reduced to zero while pulsing the light. Th
ensures that there is no buildup of trapped charge in
sample acting to distort the electric field. It is found that
this procedure is not followed the measured signal rapi
reduces to zero after a few pulses.

~ii ! It is necessary to ensure that there are no space ch
distortions of the electric field due to the transiting unipo
charge. This involves keeping the light intensity down su
that the photocharge is always at least a factor 100 below
space charge limit. From the measurement of the peak p
tocurrent in the current decay regimes the mobility may
found in the absence of transits provided the total cha
created is known, using

I 5qmE/d. ~34!

B. Comparison theory experiment: Analysis of transient
photocurrents in the ‘‘ordered’’ liquid crystalline phases

Looking for proof that the motion is quasi-one
dimensional is not a trivial task. The theoretical formalis
developed in the previous section for the transit current t
us that dimensionality of the transport can actually only
seen in the trapping function or in the anomalous drift ter
Both imply disorder in some form. A regular random wa
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has no special characteristics even in the presence of w
dispersion. The information on dimensionality in the liqu
crystal phase must therefore be sought in the decay curv
long times or in the sublinear electric field dependence of
drift velocity as was shown in the previous section~III !. Here
in this section we verify the existence of a remarkably w
behaved transit by looking at Figs. 3~a! and 3~b!. As shown
in Fig. 3~a!, the fit to the formulas~21! and ~22! which as-
sume direct drift into the boundary is far superior than to
dispersive law~28! in the limit of weak dispersion; Fig. 3~b!.
Allowing regular drift and diffusion into a region which be
comes disordered only near the absorbing boundary wo
we believe, give the best possible model. This will be co
sidered in a future paper. This dramatic change in going fr
the C to the D phase in the HAT’s is connected with th
rapid self-annealing of structural traps as illustrated by
change in the ac conductivity shown in Fig. 2.

C. Analysis of the photocurrent decay in the disordered
crystalline state

Consider now the crystalline state. The photocurren
strongly dispersive so we do not see a well defined kne
the transit curves.

Figures 4~a!–4~c! are a plot ofI p(t) versus time using Eq
~16! to fit the experimental data~solid lines are theory! for
the following parameters: F51.5 MV/m; 2.5 MV/m; 5
MV/m, T5300 K, W51.231010 Hz. Fit values of trap con-
centration arex5 ~a! 0.0014,~b! 0.0011, and~c! 0.001, re-
spectively. This corresponds to a value of mobility

FIG. 3. ~a! The photocurrent transit in theDh phase of HAT6 at
a field of 5 MV/m; the solid curve is the theory given by Eq.~16!
and which assumes no dispersion at all. This accounts for the so
what too rapid decay at arrival.~b! A comparison with Eq.~28!
strictly applicable only to dispersive transport~Scher and Montroll
limit ! in the limit of weak dispersion (a;0).
ak
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eDi

kT
5331024 cm2 V21 s21. ~35!

The crossover from one-dimensional to three-dimensio
motion should take place when

xt~D iD'!1/2$ai
21a'

2 %21;1. ~36!

This defines the time windowst,tc and t.tc . The cross-
over from diffusion to drift limited recombination take
place when$eFai /kT.2x%.

The photocurrent decay in a crystal as a function of fi
with a relatively large number of traps is an ideal situation
principle to verify the 1D kinetic laws as predicted by E
~16!. Excellent agreement is found between 1D theory a
experiment with a consistent trap density ofx;1023. Agree-
ment is better at low fields than at high fields when looki

e-

FIG. 4. The time decay of the pulsed transient photocurren
HAT-6 in the crystalline phase: a comparison of experiment
theory ~solid line!. The best parameters are forT5300 K. ~a! 1.5
MV/m, W51.231010 s, andx50.000 27;~b! 2.5 MV/m, W51.2
31010 s, and x50.000 22; ~c! 5 MV/m, 1.231010 s, and x
50.000 15. Figure 3~b! illustrates the strong dependence of t
time decay on the field: a signature of low dimensional transp



no
ha
an
w
to

a
th
la

we
ch
will

is
to

to a
ra-

ior

the

py

r

-

r

e-
cted
h
ce
harge
y at

ta-
ter-
do-
q.

it’’
und-
e
m-

of
t

ys

be

o
ec

3070 PRB 58NEVILLE BODEN et al.
at long times. This is a strong indication that traps are
infinitely deep on the experimental long-time scale and t
some carriers can detrap with field and temperature
reach the electrodes. Figure 5 shows that even the 1D la
somewhat too fast at long times. The log-log plot of pho
current does not however exhibit a convincing transit knee
can be seen in Fig. 6. At the largest fields measured,
decay in the crystalline phase obeys a simple exponential
at long times with a time constant which is given by;1/xvd
as predicted by the exact 1D formula~B2! in Appendix B.

FIG. 5. Log-log plot of the crystalline photocurrent transient
HAT6 for F55 MV/m under ~c! in Fig. 2. Note that one canno
identify a genuine knee in the transit plot at all.

FIG. 6. The transient photocurrent decay of HAT6 in the cr
talline phase is plotted against the FPT type laws ‘‘exp@2xbtg#’’ for
F51.5, MV/m, g50.75 and forF50.5 MV/m g50.61. The ex-
ponentg is a measure of dimensionality and within FPT would
0.5 for a perfect 1D walk. The variation ofg with the field is
probably of no great significance; the increase ofb with the field
however is, and signifies that we are not dealing with a two
three-dimensional random walk, since this would not give a det
able field dependence in this range.
t
t
d
is

-
s
e
w

To account for the constant long time photocurrent,
would need to allow for more complex considerations su
as detrapping processes or electrode polarization. This
be discussed in a future paper.

D. Can we observe dimensionality crossover laws?

We are in reality dealing with a transport process which
not purely one-dimensional. We might be able therefore
detect at later times a crossover from a one-dimensional
three-dimensional random walk. Given the fact that tempe
ture decreases the anisotropy ratio (W' /Wi), and the fact
that the one-dimensional to three-dimensional behav
changes the exact asymptotice2t1/3

law into ane2t/t0 law,
we might therefore expect to see a fit to a scaling law of
form

I p~ t !5I p~0!e2~ t/t0!g~T!
. ~37!

The exponentg(T) depends on temperature, the anisotro
of the material, and the time regime. We expectg(T);1/3
in the crystalline and discotic phases and then crossoveg
→1 asT→.Tc . The change fromg,1 to g;1 should be
clearly visible at theD to I phase transition in the time win
dow 0,t,tc . Figures 7~a! and 7~b! show a comparison
between experiment and Eq.~28!; the experimental behavio
is not as expected from this discussion. Equation~27! can be
made to fit the data, with a value ofg;0.6 with little varia-
tion. This would normally signify a ‘‘two- to three-
dimensional’’ kinetics, but the fact that the electric field d
pendence of the decay function comes earlier than expe
for such a dimensionality (d.2) suggests that the fit thoug
obviously good is probably of no great physical significan
because, in the absence of boundary effects and space c
effects, the principle mechanism for field-dependent deca
small fields (h,kT) is one dimensionality of carrier motion
so that the exact 1D law is very likely the better represen
tion. This at least appears to be so for the short and in
mediate time domains. The very long time decay in the
main eF/2kT@x is purely exponential as predicted by E
~B2! and ‘‘the almost constant value ofI p’’ is consistent
with shallow traps. In this case we should expect a ‘‘trans
when the steady state long time current reaches the bo
ary; this will be studied in a future experiment. Long tim
very weakly decaying photocurrents are however very co

-

r
t-

FIG. 7. Plot of the measured mobilitym(T) of HAT6 in theDh

phase versus temperatureT.



id
he
Th

e
an
ca

s
f
o

ity

m
n
e

ict

it
w
o

n
a
th
d
t

p
f
s
E

er

of

th

n
s
g

’
er
th
a

of
ng
r

new

s of
ons
ea-
rent

ses

d by
the
ones
atic
id
he
ich

ed
eri-
m-

s

is

ns
le
a-

in
bar-
to

ong
an
the
n

ore.

we

op-
ped
de.

e to

um
ur-

rise

r

be

PRB 58 3071CHARGE DYNAMICS AND RECOMBINATION KINETICS . . .
mon in organic materials and also in smectic liqu
crystals.28 They could be due to polarization changes in t
medium, especially at the boundary of the electrodes.
dielectric changes induced by the light pulse causes a low
ing or change in the electronic barrier between metal
organic and this gives an increase in the current which
take a very long time to decay.

E. Discussion: The temperature dependence of the carrier
mobility and the role of phase transitions

The measured mobility in theDh versus temperature i
shown in Fig. 7. We did not measurem in the other phases o
HAT6. The photocurrent in the isotropic phase was t
small. In theK phase, it is too dispersive.

We know however from charge injection and resistiv
measurements on HAT6~Ref. 6! that the phase transitionsC
~70! to D ~100! to I affect the mobility.4,5 Theoretically, the
mobility in each phase can in principle be calculated fro
first principles, provided we know the distribution functio
of the molecular positions. The distribution can only be d
fined to the phases, not to the phase transitions. In str
1D, we can also use exact results for the conductivity
necessary. For practical purposes, in analyzing the data,
useful to attempt to give a semiempirical relationship. Kno
ing that when disorder sets in, it is resistances that add,
might write

1/D~T!5@12G~T!#S~T!/D i1G~T!@12S~T!#/DI ,
~38!

whereS(T) is the short range order parameter,D i ,I are the
diffusivities along the column and in the isotropic phase, a
G(T) is a geometric weighting factor which gives us a me
sure of the number of broken columns or aggregate leng
The combinationG andS in Eq. ~38! can also be considere
to be the effective transport order parameter measuring
number ofnormal ~along the column! and anomalous~per-
pendicular or at a defect! hop processes. SinceD(T,v) and
S(T) can be measured in all three phases, the latter by o
cal methods for example,25 we can estimate the number o
‘‘normal’’ and ‘‘anomalous’’ jumps that the carrier perform
on its way to the electrode, at a given temperature, using
~38!. Comparison to experiments in discotic materials wh
such data exist3~b!,18 suggests remarkably that, with Eq.~38!,
the break in the order must be extremely sharp withs(T)
undergoing a very abrupt change from ‘‘1 to 0.’’ In terms
m in Eq. ~16!, it implies a value close to ‘‘0’’~;0.05!. The
apparent sharpness of the conductivity requires some fur
discussion.

In quasi-one-dimensional systems, simple averages
sums can be misleading because the fluctuations are not
essarily on an intermolecular scale only4 and such system
are not always self-averaging on the experimental len
scale. It might be better under certain circumstances~ideal
interface and order! to average the ‘‘resistance’
logarithmically.29 In this case the transition will be sharp
and in the exponent of the conductance rather than in
conductance itself, with the transition from normal to anom
lous hops with

W21;exp@2aRopt#, ~39!
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whereRopt has to be evaluated with a model distribution
disorder29 and will undergo a sharp transition at the cleari
temperature~D to I!. At the phase transition all molecula
coordinates change simultaneously and give rise to a
average molecular separation so that we haveRopt5Ri@1
2s(T)#1RIs(T).

These subtle differences that may exist between way
averaging disorder when we are far from phase transiti
depend very much on sample quality and width of the m
suring cell. We have not been able to observe a photocur
transit in theI or C phases of HAT-n at all. Adamet al.,3

however, have measured the mobility in all three pha
~glass at lowT! of related materials~HHTT and HPAT2!; the
mobility changes seen by these authors can be describe
Eq. ~38! only if the order parameter changes abruptly at
phase transition, i.e., has a smaller exponent than the
measured by Phillips and Jones on discotic nem
mixtures.25 This is to be expected for a pure discotic liqu
crystal. Interestingly it also allows us to conclude that t
pretransitional large amplitude thermal fluctuations wh
must occur in the liquid crystal phase of HAT-n, and which
would support a smoother transition in mobility, are inde
self-repairing on a time scale which does not appear to s
ously slow down the carriers. This is a remarkable pheno
enon indeed.

Adam, Rohmhildt, and Haarer19 have measured mobilitie
in discotics of the type HPAT2 which become glasses at low
T, over a wide range of temperatures. Here the mobility
stronglyT dependent at lowT.

Finally, the authors in Ref. 2 have shown that electro
and holes in HAT5 have very different mobilities: the ho
mobility agrees with Fig. 7 and the electronic mobility me
sured by Adamet al.3 is activated withEa;0.6 eV. This
difference we believe is due to the fact that electrons are
antibonding states and see a relatively small polarization
rier which can be surmounted thermally, but the coupling
the neutral neighbor is weak. A hole however sees a str
long range Coulomb field into which a negative charge c
tunnel. The tunneling electron cannot thermally surmount
Coulomb potential, but it can find an efficient fluctuatio
assisted tunneling path over the 3.5 Å or so to the next c

F. Origin of deep traps

Deep traps for holes can arise basically either because
have some hole~impurity or boundary! traps in the material,
or there are structural defects which give rise to long h
ping times, or we have double injection and holes are trap
by electrons that are also injected from the other electro
Since in general theD phase has good transits and theC
phase has not, we conclude that the change can be du
either of two effects; we assume that either~I! in the Dh
phase we have fewer chemical deep traps or~II ! the Dh
phase has self-repairing structural properties and optim
wetting contact to the electrodes. Note: the electrode s
faces are not necessarily perfectly flat and this can give
to strong misalignment effects in the crystalline phase.

It is unlikely that theDh phase has substantially fewe
hole scavengers than theC phase. Argument~II ! however
makes good sense; polycrystallinity is present and can
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TABLE I. Weak dispersion–linear response.

Dimensionality Bias strength Photocurrent decay

~a! h,x
d51

h5
eFa

2kT
Ip~t!t→`;e23@~p2x2t/4a2!D#1/3

x5trap concentration ~exact analytic!
~b!

d51 n.x Ip~t!t→`;e22h~D1 /a2!t

~exact analytic!
~c!

d53 h,x Ip~t!t→`;e2@xtAD'D i# /~a'
2

1ai
2

~first passage time!
~d! t<W'

21 as in ~a!

d51→3 h,x t@W'
21 as in ~c!

Diffusion

Doped: UD~t!5D0~T!1D1St0t D
s

, s;0.8, `.t.t0

D0~T!5Dce
2~T0 /T!g

, s;const, 0,g,1
U

low T diffusivity behavior due to barrier fluctuations

Undoped: UD~t!5Du~T!1Dm
~1!Ft0t G

a

Du~t!5Dce
2~T0 /T!2, 0,b,1, T05s

U
D(T) due to Gaussian fluctuations of polarization energy.
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seen by comparing the optical transmissivity of the t
phases. We can conclude that the dispersion inC phases is
mainly a result of grain boundaries and alignment. Ho
injected in theC phase thermalize into the valence band t
where they encounter a distribution of deep structural tra
The spread in release times gives rise to Eq.~14! and also to
dispersive transport. When the system enters theD phase,
these traps appear and disappear in time on a rapid
scale; indeed the collective molecular motion associated w
this dynamic ejects the particle back into the transport ch
nel on the time scale of a microsecond or less and this s
averages the trap and release process giving us app
mately what appears to be a slow but uniform charge mot
Each carrier then experiences, on average, the same tr
tory despite the many scattering processes and delays
countered on the way. The trapping process can be expre
as an additional term in the stochastic self-energy as sh
in Eq. ~10!. This term arises as a result of carriers bei
caught and released by rigidly displaced molecules fr
neighboring columns. If the release times are longer than
transit time as is the case in theC phase, the structural trap
are effectively deep traps.

V. SUMMARY AND CONCLUSIONS

~i! We have presented a rigorous set of formulas to try
describe the photocurrent and photocurrent transits in col
nar discotic liquid crystal.

~ii ! We have shown that the degree of disorder can
characterized empirically and theoretically by a dispers
s
l
s.
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parametera. This is shown in Eq.~28! and this paramete
can in turn be related to the distribution of jump ratesP(W)
or trap rates. We have considered a variety of different s
narios, but on their own, none of the limits considered ac
ally can be said to exactly describe the real situation. Th
are a number of reasons why this is so and these will bec
clear as we conclude~see Table I!.

~iii ! The long time photocurrent decays very slowly;
appears to reach a steady state at long times in theC phase.
This suggests trap release and needs special theoretical
ment in 1D. This will be discussed elsewhere.

~iv! As it turns out, we are effectively always in the dri
limited regime of decays so that appropriate simple expon
tial laws @Eq. ~B3! in Appendix B# essentially suffice to fit
the data and we have not been able to verify, in these exp
mental ranges, the subtle crossover between the diffu
and the drift limited decay regime predicted by exact the
for one-dimensional transport.

~v! Though dispersion must exist even in the liquid crys
phase, i.e., the transport along the columns is hindered
scattering from dynamical structural obstructions, the ti
scale of the frequency dependence or the scale of the dis
sive region is short compared to our present experime
time so that, in the transit experiment, the drift appears to
perfectly regular except near the boundary at arrival. H
there appear to be traps, possibly injected space cha
which give a longer decay than diffusion theory~22! pre-
dicts. Again this needs special treatment.

~vi! We have been able to extract the trap density wh
immobilizes the carriers at least on a 10ms time scale and is
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characterized by a concentration ‘‘x.’’ In order to compare
with exact results on trapping kinetics these traps have b
assumed to have no release time on the time scale of
experiment. We have therefore not distinguished betw
deep traps and recombination centers in this paper. Exp
ment however shows that not all traps are scavengers; s
carriers can escape. This is clearly a reasonable scenari
needs a special mathematical treatment. The concentratio
structural traps can be extracted by comparing the photo
rent decay in theC crystalline and liquid crystallineD
phases; we foundx;1023.

~vii ! Dimensionality crossover from 1D to 3D motio
should occur on a time scale of an intercolumnar hop, wh
is roughly 103 to 106 times longer than an intracolumna
jump time.30 This implies a time of order 1026 s and there-
fore shorter than the actual transit time measured in Fig
We could however not convincingly demonstrate crosso
effects; see Figs. 2 and 4.

~viii ! Motion in more than 1D manifests itself by a fast
than ‘‘t1/3’’ law in the long time limit in small fields, but it
also has a weakly field dependent trapping rate.23 We have
been able to fit these faster decay laws using a stretc
exponential with an empirical parameter ‘‘g;0.65;’’ no spe-
cial significance could however be assigned to these
since the corresponding parameters do not agree with t
of the FPT theory which would exactly predict such a law

~ix! We have shown that 1D motion cannot be deduc
from the Gaussian transit behavior itself because the dim
sionality can only manifest itself when ‘‘something unusu
happens,’’ i.e., when there is deviation from perfect stoch
tic motion.
en
he
n
ri-
me
but
of
r-

h

6.
r

ed

ts
se

d
n-
l
s-

~x! Finally, we have shown how one could extract a ‘‘m
bility order parameter’’ using rigorous transport theory a
the data by Adamet al.2

Main conclusions for future work.The differences in the
1D to 3D kinetics appear in the following.~a! The trap con-
trolled photocurrent decay and field dependence. This
cludes the shape of the photocurrent decay in transit exp
ments when there is a critical concentration of traps. It
therefore ironically theC phase which provides proof of 1D
behavior. This is shown convincingly in Fig. 4. Future wo
will needed to examine the diffusion region whenh,x. ~b!
One-dimensional shallow trap limited mobility is known
have an anomalous electric-field dependence21 as long as the
drift still depends on time; steady state drift is again norm
and obeys linear response at small fields. These predict
may be verifiable in short glassy columnar materials; carr
stay on and around the same column on the experime
time scale while being ‘‘dragged’’ into barriers and traps
the field and one should initially observe sublinear drift v
locities with field. This interesting effect needs to be inve
tigated in detail in a future paper.

In this paper we have examined the photocurrent ass
ing normal linear response mobility; that is, we have cons
ered case~a! or case~b! in the steady state. Anomalous tra
sits need short pulses or ultrathin discotic films, and will,
hope, be studied in a future publication.
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APPENDIX A

The waiting time function can be simply estimated assuming~a! the traps are spatially distributed withW5n exp
@22aRij#, and a maximum accessible numberNt , or ~b! the trap is spatial as above but release needs activation over an e
barrierEt with a constant distributionn(Et)51/B. We obtain, after a simple integral, the following.

Case~a!:

C~p!54pa2dNt$ ln@n/~p1p0!#%d, ~A1!

whered is the dimensionality of the distribution, andp0 fixes the maximum number of lattice points on which the particle
reside in each transport site. For example, it means that if there is 1 extra site, then the dc diffusivity is reduced by a
~1/4!, etc.

Case~b!: fix distance toRc for simplicity and vary the energy of the trap,

C~p!5@kT/B#~n/p!ln$@11p/n exp~2aRc1B/kT!#/@11p/n exp~2aRc!#%; ~A2!

assuming a scaling form, we can writeC(p)5Nt(1/@(p/ne)
k11#), wherene is a frequency which characterizes the del

process andk is an exponent which characterizes the waiting time distribution. This is the form used to calculate Fig

APPENDIX B

Survival fraction in 1D in the regime of strong bias, i.e.,eFa/kT.x ~trap density!

n~ t !5n1~ t !1L~ t !, ~B1!

wheren1(t) is still given by Eq.~21! and now the new termL can be written

L~ t !5†$8x2~h2x!2 exp@2h2Dt/a2#‡H(
0

`

~n11/2!exp@Dt/a2$~h2x!/~2n11!%2#/$~2nh1x!~2nh12h2x!%2J .

~B2!
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The reader should consult Refs. 16 and 17 for the asymptotic behavior of these functions. In the limith@x, andx!1, the
n50 term in the sum dominates and we have a simple exponential law

n~ t !;$4~h2x!2/~2h2x!2%exp@2xvdt#, where vd52hD/kT. ~B3!
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