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Charge dynamics and recombination kinetics in columnar discotic liquid crystals
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The time-dependent quasi-one-dimensional transport of electrons or holes along the molecular columns in
columnar liquid crystals has been studied. Recent mobility measurements on the tryphenylene-based HAT-
materials have revealed Gaussian transits in the liquid crystalline phases but dispersion in the crystalline
phases. In this work the factors governing the photoconductivity are rigorously analyzed using random-walk
methods. Strong evidence for one dimensionality is found in the time- and electric-field-dependent photocur-
rent decays. The field begins to affect the decay for values of field energy per hop which are wek belod/
comparable with trap concentration as predicted by theory. The trap concentration in the crystalline phase is
governed by structural disorder. The traps however appear “shallow” and the long time current disagrees with
the deep trap theory. In the liquid crystalline phase, these traps are annealed out by thermal fluctuations and, as
consequence, no direct kinetic proof of one-dimensional kinetics is obtainable. This observation of quasi-one-
dimensional transport of charge is in keeping with earlier findings for exciton motion in these materials.
[S0163-182698)04330-9

I. INTRODUCTION best ordered quasi-one-dimensional “transporters” of both
charge and excitorfsThis is because the liquidlike fluctua-

The charge transport properties of the columnar phases aibns in columnar order which take place on a time scale of
discotic liquid crystals are not only of fundamental interest,less than 10° s provide an effective self-repairing mecha-
but make these materials potentially useful in applicationsiism. Previous studies of one-dimensional kinetics have
ranging from sensing devices to high resolutionbeen carried out in the pioneering works of Haarer and
xerography:~® These properties stem from their unique ar-Moehwald® Hunt, Bloor, and Movaghat, Seiferheld,
chitecture. They are comprised of disordered stacks of diskBaessler, and Movagh&rfor charge transport and by Dlott,
like molecules, such as the hexa-alkoxy-triphenylenesayer, and Wietin} and Rughoputhet al? for exciton
(HATn) arranged on a two-dimensional lattice; see Fig. 1. transport.

The fluctuations in columnar order are sufficient to sup- In this paper, we have to begin by presenting to the reader
press inhomogeneously distributed structural traps and give number of rigorous mathematical results necessary to un-
rise instead to a uniform “liquidlike” dynamic disorder. As derstand one-dimensional charge transport in columnar lig-
a consequence, the individual molecular columns can transsid crystalline phases. The theoretical formalism needed to
port electronic charge with well defined Gaussian trarfsits. understand the aspect contained in the data cover the dc and
Charge carrier mobilities along the columns can be as higlac conductivities. We examine the nature of the stochastic
as 102 cn? V- 1s !t and are typically 1dgreater than in the motion in DLC's, the origin of dispersion, the type of disor-
perpendicular direction. In HATg,~4x 10 *cn?V st der, and defects expected. We then present the theory of
and the intra and intercolumnar distances @re3.5 A and  photoconductivity in the bulk and examine the transient pho-
d~19.5A so that, usingt=eD/kT, we calculate thaD,  tocurrents with absorbing electrode boundaries in the pres-
~10 % cné/s and D, ~10 ® cné/s. The latter compares ence of structural disorder and trapping.
with the value of 108 cné/s measured by NMRRef. 6) for Quasi-one-dimensional systems are exciting because, of-
the molecular self-diffusion coefficient perpendicular to theten, there is new physics to be discovered and it is also the
column axis. Thus the charge carrier transport from columndeal opportunity to verify exact mathematical predictions.
to column is assisted by the occasional molecular hop. This is why so much high quality work has in the past been

We can therefore expect discotic liquid crystéld C's) devoted to studying one-dimensional band structure and dy-
to exhibit, in a restricted but accessible time domain, trulynamics.
one-dimensional transport characteristics. In g (self- Our measurements of carrier transits and photoconductiv-
repairing mesophase, these materials should be amongst thty are therefore presented with a focus on demonstrating the
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v with & 1~2 A andty~1.0 eV. This estimate refers to the
\ resonance integral between a charged molecule and a neigh-
\ \ \ Y A \ boring neutral molecule and the vectdf?; ,R;} refer to the

j I }<—> | center of the molecular core. When the molecules are tilted

) / with respect to each other, see Fig. 1, then one needs more
S,(M Se) than one variable to describe the overlap energy. The key
\ ) guantity in tunneling is the distance of closest approach be-

/ \ | tween the 7 orbitals?® In the present temperature range
‘ / (300—-400 K and for the present purposes, it suffices to use
. “\\ ‘ . the approximate overlap integral given in Ed).
W \“ | ‘ A The mobility «"" parallel to the columns for electrons
) | and holes has been measured as a function of the electric
YA ¥ field and temperaturé® 13 Writing

eD,

M= T 2
CH3(CHy)s0 O(CH,)sCH; KT

CHb(CH0 QQO O(CHe)CHy D)= (1) Wiy )

wherel;, is the average inelastic mean free path. Defining a
' coherent domain asn;” W, is the transition rate between
two such domaingn,n’} along a column; see Fig. 1.
At zero temperature, we can expect all states in a DLC to
HATS6 be localized and the macroscopic conductivity to vanish.
Even in highly ordered samples, the localization length will
FIG. 1. HAT6: K (67); D (98); | (phase transition tempera- be short compared to 1D metal, because we are dealing with
tureg. This figure illustrates a typical discotic liquid crystal HAT6. extremely narrow bands. From the estimates given by
Allen,** we have roughly §a) " 1~2(8/m)Y?A/2t, where
existence of one-dimensiondllD) random walk effects. “2t” is half the bandwidth andA is the energy disorder
There are a number of rigorous theoretical predictions onvidth. The polarization fluctuation width is at leasD.01
photocurrent behavior in 1D which one can use to verifyeV and “t” is at most ~0.2 eV in the HATh, so the local-
one-dimensionality (see Refs. 8-10 Anomalies which ization length is at most-14 lattice constants. In the pure
typify 1D behavior are, paradoxically, related to the presencétochastic limit}i,=a,, and at room temperature and above,
of traps and disorder. In the liquid crystalline phase, un-we can consider the transport along the columns to be essen-
equivocal evidence of one-dimensionality is difficult to ob- tially stochastic or diffusive with a coherence length
tain. The reason is that in the “liquidlike state” all carriers which is=a,.
experience roughly the same trajectory; dimensionality re-
lated effects in stochastic transport are however related to B. Defects and traps
guantities which involve deviations from perfect order, such

as for example the time to tr&p,or the drift velocity in the types of defecti(a) chemical impurities which lead to the

presence of bond disord&tLet us begin by specifying some .
basic band and transport properties which typify dic’s. Ther{'aPPINg of charge(b) structural defects, such as large am-

later we shall see how to extract the relevant information(‘;:'fé':(;a tﬁgﬁ:}ijﬁ mae:ésczfnr?r?;g%?: ;’Ysholcgeﬁir:a (;'I?g It:)ie pro-
from the photocurrent data. Y, g.

CH;3(CHy)sO O(CH,);CH;

In a columnar liquid crystal, one can expect the following

1).
In undoped materials, there are very few ionized chemical
Il. FACTORS GOVERNING CHARGE TRANSPORT impurities (< 10'° cm®) at room temperature. The number of
IN COLUMNAR LIQUID CRYSTALS impurities which can act as traps for free charges is of course

well in excess of that number.
Most of the charged chemical defects will be due to reac-
In HAT®6, the separation between the molecular cores antdon with the metal electrodes. Most defects in general are
columns is~3.5 A and 20 A, respectively. There is therefore structural and can self-repair. This is the reason why one can
considerable overlap of orbitals between the adjacent aro- have well defined, Gaussian transits in an otherwise, highly
matic rings in a column. The molecules have a highest ocunfavorable topological situation. The density of the struc-
cupied molecular orbital-lowest unoccupied molecular ortural traps can be estimated as follows: Vi§ is a typical
bital gap in the range 2—4 eV. Extra charges or excitedenergy required to generate a substantial break in a column,
separated charges have a narrow quantum band structude3<V,<1.0 eV, then the coherence length in one dimen-
along the molecular columns with bandwidtks~0.2 eV.  sion is given by
The resonance enerdy along the columnar stacks can be
written in the usual form E(T)~aeVoT, (4

A. Energy bands
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At T=300K and in a strictly one-dimensional approxima- C. The influence of inhomogeneities:

tion, £(T)~10 '—10"* cm. The time to create or repair Trapping versus dynamic disorder

such a defect is known from NMR linewidth and anissotropy The scaling laws of type 13 apply to uniform disorder
measurements. In th®, phase of HATS,74~10"> 10 models. Experiment shows that the crystalline state cannot
107" s. We expectry(T) to decrease with increasing side pe characterized by uniform disorder only. There is disorder
chain lengthThe melting temperature,{n) is a decreasing  cayused by misalignment, grain boundaries, and polycrystal-

function of n as shown in Table 1 of Ref.. 15 linity.
A typical electron or hole transit across a distaddakes The effect is to make the ac conductivity frequency de-
a time 71 given by pendent where it should in principle still be constant. This
type of disorder causes structural traps and has to be treated
d differently than homogeneous disorder. There are various
T M_F ®) ways we can model this kind of disorder. One can allow a

trapping contribution to the random walk as shown in Ref.

With d~10"3 cm. u~10"2% cn2 V-'s ! and F~10* 18- The simplest way is to allow a particular group of mol-
vem !l 7~103 's'uso thatr> 74 in the [’)h phase. The ecules to be locally frozen into configurations of the type

y 1T y T . . . . .
main scattering event for a carrier moving in a column thereS1OWn in Fig. 1. This causes a larger than normal Gaussian

fore consists of a combination of displacements as shown iRroadenlng for the molecular displacements from equilib-

Fig. 1. In the crystalline phase, sideways structural displacer-Ium and, consequently, a larger local resistance. One can

ments are “permanent” on the time scale of a transit andreat such situations exactly but, in order to simplify the al-

therefore give rise to real long-time traps or barriers with agebra, we assume thal processes which give rise to

distribution of energyP,(e,) which depends on the side trappingla'lg return to the transport pqth, b molecula_r rota-
chain length. In the liquid crystallinB,, phase, the structural tions and motions, 1.€., all events_wh|ch de_Iay.the carrier, can
traps self-anneal so that carriers do not suffer any long terr‘!?e treated using a single delay time function:

trapping.

g"()) qguantitatively characterize a given material, a math- M;(P) =P {Wis /(Wyi+P)}) (10
ematical model of the transport process is required. Thguch that we now simply have to replace the frequepcy
model can then be compared with experiment from which wawith {p+m(p)} and carry out the configuration average over
can extract the parameters which measure the degree of disHl possible delay processes that the carriers encounter in the
order. crystalline phase. The average introduces an order parameter

In quasi-three-dimensions, the disorder is contained in th&(T) which goes to “0” or strongly decreases when the
quantitiesw, (p) andW, (p) which characterize the effective system enters theD phas€® We can write m(p)
frequency dependent jump rates in the two main directions=h(T)W(p), where h(T)={[Tp—T]/Tp}5. This waiting
along and perpendicular to the columns. The ac conductivitime function enhances the dispersion and gives a lower ef-

ties (0=iw) then becom@&*’ fective static diffusivity. Naturally we can give the configu-
ration shown in Fig1l a mathematically rigorous treatment if

n.e? _— necessary: allow both bonds to be distorted and also in-

=T ayW,(iw), (6) clude rigorously the change in the inter and intracolumnar

jump process. The delay time function procedure is however
elegant and in some way more general since it allows clas-
€7 2 _ sical as well as quantum processes to be integrated into a
=7 AW, (lw), (7) " single function with a universal shape. See Appendix A and
the work of Scher and LaX
Using the universal ac structu(8) we now have, for the
iffusivity, the form

D(p)={1/(A+h(TM)¥(p)D{p[1+h(T)¥(p)]}, ar

o

which can always be represented to a good approximation b
a semiempirical scaling law which includes anisotropy, the
dc limit * pgc,” high frequency saturation at#;,” and the
effect of the ordered domain lengtH.” (aggregate coher-
ence sizgwould be
where we simply replace the frequency variablg’ ‘with
—r(12 s (p+m(p)) and multiply the diffusivity byp/(p+m(p)). If
D(P=[(e)/2)Pacll+{(Pr/Pac)}”], ® the trap free diffusivity was frequency independent, then the
effect of the traps is only due to the latter factor. Finally, this
P1=pvi/(p+v1). (9)  factor has to be squared, if we do not count the traps as part
of the diffusion sites where the particle can be found.
The time-dependent diffusion in strictly 1D systems with  This analysis now allows different kinds of disorder pro-
disorder is however highly anomalous as shown rigorouslcesses: dynamic and static ones which can be integrated
in Ref. 17. The time-dependent part of the drift becomesnto a single function. Depending on purity, and speed and
sublinear with applied field and linear response theory breaksature of the dynamics, a given discotic material might ex-
down. We shall come back to this point later in the text inhibit transits while another will show pure dispersion. The
Sec. Il C. The present class of materials is in some respectiffusivity (11) is plotted in Fig. 2 for three different values
ideal to verify such predictions. of trap density, using the waiting time functioW(p)
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L e e combination centejs Assuming these centers do not allow
escape, then we can discuss this situation in the context of
deep trap models.

First we have

109

108

~ 107 eF
g l()=Gr, KT n(t)D(t), (13
2 106 -
105 - 1 where G and 7, are the generation rate and laser pulse
............... length, respectively, from which it follows that for constant
L 1 diffusivity D(t), the time dependence bf(t) is entirely due
108 L to the survival fractionn(t). The latter can be evaluated
100 101 102 103 104 105 106 107 108 109 101010711012 1013 exactly as a function oW=(p), the effective with(+) and
(a) fiHz against(—) field jump rates. For most situations of interest,
© the density of recombination centers is low so that carrier
10 T T T T T diffusion to those centers can be assumed to take place in the
10°F steady state. In gener®t!"?122for experimental times
108 | >7,, the pulse time, and free carrier generation time, we
107k have
61
s 105 D(t)=D (t)nLE 0<B<1 (14
g 10°F 0 v B
T 10t
0L | where the time dependence covers the region up to the criti-
A cal hop frequency®!’ Assuming here thdd(t)~D,, a con-
107 £ 1 stant for all times, we can write to a good approximation
1 1 t 1 L 1 1 I I 1 1 1 L
0 1 2 3 4 5 6 7
o 10° 10" 10? 10° 10* 10 10f/H1zo 10° 10° 1010 10"2 10" n(t)=~n,(tHHn, (1), (15)

_ - _ wheren, is the survival probability due exclusively to dif-
FIG. 2. Plot of the theoretical diffusivity RB(iw)} vs w ob- fusive motion in the anisotropic netwofwhen »<x) (Refs.

tained from Eq.(12), illustrating the change that occurs when the 17 and 23 (the casep>x is given in Appendix B
system goes from the state of Gaussian overlap disoRigphase

to the situation where in addition we now also have structural traps 4 o o [
with long delay times(crystalline phase The upper curve: N nt)y=—e7 Dua f ds
=0; middle: N=5; lower: N=10; N=equally accessible non- 77 0
transporting trapping sites per molecule.

g — m2x2(Dt/a2s?)
[1+ (7SI mXx)7]

e S e~ S(1—7/x)

X +
1-e > 2(1+e S1-7X)

=Nd1+(p/w)} L. The figure clearly illustrates the differ-

ence between the homogeneous disorder case and the case e S(1+7/x)
when the carrier encounters the occasional deep trap caused + —STT 0 (16)
by serious structural deformations as in the polycrystalline 2(1+e )
state of HAT and most discotic liquid crystals. The diffusiv- 54
ity is needed to evaluate the photocurrent transits.
n, =exg —xct{D,D, }¥¥(af+a?)] 17

Ill. THEORETICAL BACKGROUND

FOR UNDERSTANDING PHOTOCURRENTS IN DLC'S is the first passage tim&PT) (Ref. 17 result. Herex is the

concentration of deep traps;a constant-1. For a strictly
A. The time decay of the bulk photocurrent one-dimensional random wallk, =0, and we have the exact
one-dimensional result which has a very characteristic time
sand electric-field scaling behavior as discussed in Ref. 22.
The term(17) is a way of taking into account approximately
the trapping events caused by the sideways walks of the par-
ticle when it moves on the anisotropic network. The combi-
Jpation (15) of course somewhat overcounts the trapping
events but the reader should note that the téiT) only
manifests itself in the long time limit and at low fields, then
eD(t) it controls the decay.
u(t)= T (12 Here we note that a strictly one-dimensional walk gives
rise to the long time law
and a carrier survival fraction(t). The carriers can be de- ) "™
layed by structural traps. They can however also fall into —3[(n®x2t/4a2)D]V3 XD
. . . Nip(t)i_~€ X1 , (18
deep traps from which they do not escape during tranesit 1DV 37a’

The photocurrent,, contains information on the distribu-
tion of traps in a nonequilibrium situation, the influence o
boundaries as in a transit experimehand also on the di-
mensionality of the carrier motion and dimensionality cross
over with time ¢) and temperatureT)). Consider the bulk
photocurrent in the absence of absorbing boundaries, with
effective time-dependent mobility(t) or diffusivity D(t)
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when »<x. When »>x the recombination is drift limited (a) Dispersion parameters&’’ =0, D(p)=Dg, and trap
and a simple exponential is given by E&2) in the Appen-  concentrationx=0. Here we have, in the limit that back
dix. diffusion can be neglected 4=27D/a, N=L/a],
By using the information we have from dc and ac conduc-
tivity, we can determine and the dimensionality crossover I(t,x=0)={eFN./KT}Do(T)exf —tvgy/L]
from a detailed study of the photocurrent. Clearly thg N
phase is the ideal phase in which to studsince here we can
distinguish shallow from deep traps. The former determine X|r§0 (Udt/L)n/n!] (22)
Do(T); the latter the long time decay of(t). o _ -
The two factors in Eq(15) describe one-dimension@x-  Or to a good approximation with back diffusion
ach and anisotropic three-dimensional transport in the frame- .
work of the first passage time method. Equatid® de- I(t,x=0):(eNc)d/dt{J dy(4mDt)~ Y2y
scribes the competition between three-dimensional and one- 0
dimensional motion. Three dimensionality dominates at long
times in low fields. Xexr:[—(y—,uFt)Z/4Dt]]. (22)
B. The theory of photoconductive transits: This formula assumes that the boundary does not influence
The influence of an absorbing boundary the propagator while the carrier is still on its way and repre-

Now we consider transient mobility experiments angsSents therefore a slightly more classical picture, which is
show how one can calculate the experimental photocurrerffdeed probably more appropriate to liquid crystals than the
knowing the frequency dependent diffusivi(p). We in- exact semiclassical random-walk result. Within our present
troduce an absorbing boundarylagnd using the derivation Measurement accuracy, the difference between @gsand

in Refs. 23 and 24 we arrive at the following form for the (22) is however insignificant. The same applies to the exact
Laplace transformed photocurrent: formula which includes both back diffusion and boundary

effects and which is given in Ref. 17 and in the Appendix of
. Ref. 23 in Laplace space. Deviations from E2R) should be
IP(p):J e—ptlp(t)dt, (19) insignificant in the present ti_me regim(_a. _
0 (b) Now let us allow a finitex>0; this introduces a sur-
vival fraction n(t) so that

I(p1)/Ne=(eF/kT)D(p1)/p1 [(t)=1(t;x=0)n(t). (23

X[1—exp{—Npy/(p1+27D(py)/a)}], The boundary gives rise to a fast decay of the surviving
(20) carriers which get there.
(c) The dispersion parameter is= 1/2, andx is finite:

whereN=L/a, and the quantity J; is given by the Laplace
transform of the survival fractiom(t) also referred to as
n(p); when recombination has no time to intervene, we can
replacep, =p; for details of how to calculata(p) see Ref. v(t)~eF/kTD, /tY2 (25)

23. The replacement g/with n(p) is basically saying that ) o ] )

the transport process can be cut off by the deep trappinfle time of transit is defined by the time taken to reach the
events. The factor in the square bracket is the effect of th@oundary (Z=eFa/kT)

boundary. The initial light generated free carrier density is .

N¢. This number depends on the details of the light induced f Tdt’vd(t’)z L; tr=[L/49D,]% (26)
generation process near the electrode boundary of the liquid 0

crystal/metal contact. For HATthe penetration depth of the
A =335 nm light is~0.1 um.

The frequency dependence Bf(p) in Eq. (20) is typi-
cally as shown in Fig. 2 for th& andD phas&® Measure-
ments ofD(p) using ac conduction in undoped samples ar
difficult to interpret because electrode polarization effects
and ionic contributions mask the weaker dispersion along th
columns.

I(t)=(eFN./KT)(D/t¥?)[1—exp{—t7/t}In(t),
(29

In this formula it is assumed th&x(t) is still time dependent

on the scale of the transit time defined above; strictly speak-
ing n(t) must now also be evaluated using a time-dependent
diffusivity. We do not have an exact analytical formula for
his situation. It is however reasonable to suppose that one
an replacét with f})dt’D(t’) in Eq. (16). A better way is

0 use the FPT method instead and write

n(t)=n(o)exd —x(t/tg)"]. (27)

This then treaty as the time exponent of the number of new
sites visited*?® and accounts for dispersion, electric field,

Equation(20) can be numerically inverted and allows a dimensionality, and temperature. If(t) or more precisely
frequency dependent jump rate. Analytical results can bey(t) reaches the steady state value before the boundary
found in several limits. In order to obtain the time depen-(weak dispersionthen(a) applies in the long time limit and
dence of Eq(20), we consider several limiting cases. n(t) can be computed using the exact form(18).

C. The time dependence of the transient photocurrent (t):
analytical results
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(d) Same adc) but with a general dispersion parameter defined by a 2Qum mylar spacer. One of these electrodes is

“ " and finite trap concentration: semitransparent and, further, the skin depth for absorption of
the light used to excite carrief837 nm from a 6 naitrogen
[e(t,x) ={€FNc/KT}Do(T)n(t){D1 /t*} laser pulsgis less than one micron. A pulse of light incident
X [1— exp — (tr /)21 0} ], 29) on the semitransparent electrode immediately creates carrier

pairs in the material, one sign of which is swept out imme-
_ diately at the semitransparent electrode while the remaining

_ _ (11-a) h ; )
tr={L(1=a)/2yD} : (29 sign of carriers drifts towards the counter electrode. Upon

giving, assuming linear response to apfsge note beloyy  arrival at the counter electrode, the current will fall rapidly as
the carriers discharge. The current is measured as a voltage

(i) ly(t)~eFalkTn(t)14« for v4t<<L, (30 drop across a load resistor whose magnitude is chosen to
reflect the time response required for the particular experi-
(i) 1 ()~FC Unt)1h* 14219 for vat>L, ment always keepinB C, less than the transit time whe®
(31 is the sample capacitance. Thus
with n(t) given by the FPT formuld27). If we put a=1 T — 2
—k, we have the characteristic Scher-Montroll dispersive RC<Tr=dTnV, 33
transit law?’ where u is the mobility of the carrier. A variety of pream-
plifiers have been used where necessary again ensuring that
Comment the time does not affect the measurement.

Note that the facton(t) only intervenes if the carrier has In the case of HAT6 transits are observed only from holes
a good chance to be trapped before reaching the electrod®, the mesophase and featureless decays are observed for
i.e., whenx>(a/L). Since Eq(31) assumes that the drift is €l€ctrons and from holes in the crystalline phases. These are
dispersive for long times compared to the transit, the correciue to trapping/recombination of the carriers beforg arrival at
survival fraction in the presence of dispersion would be théh® counter electrode. Such decays are however fitted to de-

FPT form given by Eq(27) rather than the exact(t) given termine other transport properties concerned with the
by Eq. (16). trapping/recombination. To carry out such fitting the signals

are captured using a digitizing oscilloscope and subsequently
combination in the generation zone. This quantity also de@nalyzed. The asymmetry conceming electrons and holes is
pends onl andF and determines the magnitude of the sig-due to the fact that in the present materials there are many
nal. more electron traps (£and oxidation producisthan hole
Note.In strictly 1D with dispersion, the drift velocity was TaPs- ,
shown rigorously to be sublinear with fié?22 as long as In taking measurements great care was taken to avoid two

the drift is still time dependent. Linear response is no longeP0SSible problems. , . _
valid in the time-dependent regime and this would have con- (1) Where there is carrier trappingrystalline phase for

Note thatN, is the number of photocarriers escaping re-

sequences on the behavior of E6) since we have holes_anq all phases for electrrisis essenti_al to apply the
electric field and take the measurements immediately. The
va(t)~25D,/(vet)®  (one-dimensional transport field is then reduced to zero while pulsing the light. This

(32 ensures that there is no buildup of trapped charge in the
. . o . I sample acting to distort the electric field. It is found that if
The sublinearity with field simply means that the drift in one s nrocedure is not followed the measured signal rapidly
direction is also enhancing the number of new siteEnds reduces to zero after a few pulses.
visited and therefore also the probability of encountering a i) 1t js necessary to ensure that there are no space charge
worse hop which slows down the carrier. Normality or linear gisiortions of the electric field due to the transiting unipolar

response is only recovered when the carrier has encountergfi, e This involves keeping the light intensity down such
the worst situation on its way to the electrode. Th? anomagy ot the photocharge is always at least a factor 100 below the
lous field dependencg has consequences for the.fleld depegbace charge limit. From the measurement of the peak pho-
dence of the transit time evaluated for example in 88 40 rent in the current decay regimes the mobility may be
where it was assumed that the drift is linear in field in the;y 4 in the absence of transits provided the total charge

dispersive regime. created is known, using
Now that we have given the reader the necessary tools for

interpreting mobilities and photocurrents in quasi-one- | =quE/d. (34)
dimensional systems, let us consider the experimental results

obtained for HAT®6.
B. Comparison theory experiment: Analysis of transient

V. EXPERIMENTAL METHODS photocurrents in the “ordered” liquid crystalline phases

Looking for proof that the motion is quasi-one-
dimensional is not a trivial task. The theoretical formalism

In order to measure the hole mobility in the mesophase ofleveloped in the previous section for the transit current tells
the HAT6 technique due to Kepler and Leblanc, time ofus that dimensionality of the transport can actually only be
flight transit was employed. In this technique, the sample iseen in the trapping function or in the anomalous drift term.
contained between two electrodes separated, iy this case  Both imply disorder in some form. A regular random walk

A. Transient photocurrent measurements
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Current HA Current pA

(@)
(@)
Current pA
Current pA
(b) Time us (b) ’ ‘ Time us ' ’ ’
FIG. 3. (a) The photocurrent transit in tHe,, phase of HAT6 at Current pA
a field of 5 MV/m; the solid curve is the theory given by Ed6)
and which assumes no dispersion at all. This accounts for the some e

what too rapid decay at arrivalb) A comparison with Eq(28)
strictly applicable only to dispersive transp@®&cher and Montroll
limit) in the limit of weak dispersion¢~0). 60

has no special characteristics even in the presence of wea

dispersion. The information on dimensionality in the liquid
crystal phase must therefore be sought in the decay curves ¢
long times or in the sublinear electric field dependence of the © ? " Timeps : w0

drift velocity as was shown in the previous sectitlh). Here

in this section we verify the existence of a remarkably well FIG. 4. The time decay of the pulsed transient photocurrent of
behaved transit by looking at Figs(a® and 3b). As shown HAT-6 in the crystalline phase: a comparison of experiment to
in Fig. 3(a), the fit to the formulag21) and (22) which as- theory(solid ling). The best parameters are fo=300 K. (a) 1.5
sume direct drift into the boundary is far superior than to theMV/m, W=1.2x10'" s, andx=0.000 27;(b) 2.5 MV/m, W=1.2
dispersive law(28) in the limit of weak dispersion; Fig.(B). ~ X10°s, and x=0.00022; (c) 5 MV/m, 1.2x10"s, and x
Allowing regular drift and diffusion into a region which be- =0.000 15. Figure ®) illustrates the strong dependence of the
comes disordered only near the absorbing boundary wouldime decay on the field: a signature of low dimensional transport.
we believe, give the best possible model. This will be con-

sidered in a future paper. This dramatic change in going from _eD 4 1.1

the C to the D phase in the HAT’s is connected with the M= =3%10 cmP Vs (35
rapid self-annealing of structural traps as illustrated by the

change in the ac conductivity shown in Fig. 2. The crossover from one-dimensional to three-dimensional

motion should take place when

C. Analysis of the photocurrent decay in the disordered

U2 a2 A2y-1_
crystalline state xt(DyD,) " qaj+ai} "~1. (36)

Consider now the crystalline state. The photocurrent isThis defines the time windows<t. andt>t.. The cross-
strongly dispersive so we do not see a well defined knee iover from diffusion to drift limited recombination takes
the transit curves. place when{eFa, /kT>2x}.

Figures 4a)—4(c) are a plot ofl (t) versus time using Eq. The photocurrent decay in a crystal as a function of field
(16) to fit the experimental datésolid lines are theopyfor  with a relatively large number of traps is an ideal situation in
the following parameters:F=1.5MV/m; 2.5 MV/m; 5 principle to verify the 1D kinetic laws as predicted by Eq.
MV/m, T=300 K, W=1.2x 10'° Hz. Fit values of trap con- (16). Excellent agreement is found between 1D theory and
centration arex= (a) 0.0014,(b) 0.0011, andc) 0.001, re- experiment with a consistent trap densityxef 10 3. Agree-
spectively. This corresponds to a value of mobility ment is better at low fields than at high fields when looking
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FIG. 5. Log-log plot of the crystalline photocurrent transient of
HAT6 for F=5 MV/m under(c) in Fig. 2. Note that one cannot FIG. 7. Plot of the measured mobiligy(T) of HAT6 in theD,,
identify a genuine knee in the transit plot at all. phase versus temperatufe

at long times. This is a strong indication that traps are noff© account for the constant long time photocurrent, we
infinitely deep on the experimental long-time scale and thatvould need to allow for more complex considerations such
some carriers can detrap with field and temperature ands detrapping processes or electrode polarization. This will
reach the electrodes. Figure 5 shows that even the 1D law g discussed in a future paper.

somewhat too fast at long times. The log-log plot of photo-

current does not however exhibit a convincing transit knee as D. Can we observe dimensionality crossover laws?

can be seen in Fig. 6. At the largest fields measured, the

decay in the crystalline phase obeys a simple exponential IaW0
at long times with a time constant which is given byl/xv 4
as predicted by the exact 1D formulB2) in Appendix B.

We are in reality dealing with a transport process which is
t purely one-dimensional. We might be able therefore to
detect at later times a crossover from a one-dimensional to a
three-dimensional random walk. Given the fact that tempera-
ture decreases the anisotropy ratW,(/W,), and the fact
Current pA ) that the one-dimensional to three-dimensional behavior
Lrep changes the exact asymptosic!”” law into ane™ ! law,
15 we might therefore expect to see a fit to a scaling law of the

12.5 form
10

7.5
5
2.5

1p(D)=1p(0)e """, (37)

The exponenty(T) depends on temperature, the anisotropy
of the material, and the time regime. We expe€T)~1/3
in the crystalline and discotic phases and then crossgver
—1 asT—>T.. The change fromy<1 to y~1 should be
clearly visible at theD to | phase transition in the time win-
Current pA dow O<t<t.. Figures Ta) and 1b) show a comparison

80 between experiment and E@8); the experimental behavior
is not as expected from this discussion. Equat®# can be
60 made to fit the data, with a value ¢f~0.6 with little varia-
tion. This would normally signify a “two- to three-
40 dimensional” kinetics, but the fact that the electric field de-
pendence of the decay function comes earlier than expected
20 for such a dimensionalityd™>2) suggests that the fit though

; obviously good is probably of no great physical significance

because, in the absence of boundary effects and space charge
. effects, the principle mechanism for field-dependent decay at
(b) Time ps small fields ¢7<kT) is one dimensionality of carrier motion
FIG. 6. The transient photocurrent decay of HAT6 in the crys-so that the exact 1D law is very likely the better representa-

talline phase is plotted against the FPT type laws Texxbt]” for tion._ Thi_s at least appears to be so fo_r the short_and inter-
F=1.5, MV/m, y=0.75 and forF=0.5 MV/m y=0.61. The ex- mediate time domains. The very long time decay in the do-

ponenty is a measure of dimensionality and within FPT would be Main EF/2|‘(‘T>X is purely exponential as”predicted_ by Eg.
0.5 for a perfect 1D walk. The variation of with the field is  (B2) and “the almost constant value of" is consistent

probably of no great significance; the increasebafiith the field ~ With shallow traps. In this case we should expect a “transit”
however is, and signifies that we are not dealing with a two orwhen the steady state long time current reaches the bound-

three-dimensional random walk, since this would not give a detectary; this will be studied in a future experiment. Long time
able field dependence in this range. very weakly decaying photocurrents are however very com-

(@) Time us

2 4 6 8 10
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mon in organic materials and also in smectic liquidwhereR,, has to be evaluated with a model distribution of
crystals?® They could be due to polarization changes in thedisordef® and will undergo a sharp transition at the clearing
medium, especially at the boundary of the electrodes. TheemperatureD to I). At the phase transition all molecular
dielectric changes induced by the light pulse causes a lowegoordinates change simultaneously and give rise to a new
ing or change in the electronic barrier between metal an(&verage molecular separation so that we hByg=R[1
organic and this gives an increase in the current which can 1)1+ R,s(T).
take a very long time to decay. These subtle differences that may exist between ways of
averaging disorder when we are far from phase transitions
E. Discussion: The temperature dependence of the carrier depend very much on sample quality and width of the mea-
mobility and the role of phase transitions suring cell. We have not been able to observe a photocurrent

The measured mobility in th®,, versus temperature is transit in thel or C phases of HATh at all. Adamet al.’
shown in Fig. 7. We did not measugein the other phases of however, have measured the mobility in all three phases
HAT6. The photocurrent in the isotropic phase was too(glass atlowr) of related material$HHTT and HPATZ; the
small. In theK phase, it is too dispersive. mobility changes seen by these authors can be described by

We know however from charge injection and resistivity Eq. (38) only if the order parameter changes abruptly at the
measurements on HAT@ef. 6 that the phase transitios  phase transition, i.e., has a smaller exponent than the ones
(70) to D (100) to | affect the mobility*® Theoretically, the measured by Phillips and Jones on discotic nematic
mobility in each phase can in principle be calculated frommixtures?® This is to be expected for a pure discotic liquid
first principles, provided we know the distribution function crystal. Interestingly it also allows us to conclude that the
of the molecular positions. The distribution can only be de-pretransitional large amplitude thermal fluctuations which
fined to the phases, not to the phase transitions. In strictlyyust occur in the liquid crystal phase of HAT-and which
1D, we can also use exact results for the conductivity ifwould support a smoother transition in mobility, are indeed
necessary. For practical purposes, in analyzing the data, it ig|f-repairing on a time scale which does not appear to seri-

useful to attempt to give a semiempirical relationship. Know-oysly slow down the carriers. This is a remarkable phenom-
ing that when disorder sets in, it is resistances that add, ongyon indeed.

might write Adam, Rohmhildt, and HaarErhave measured mobilities
in discotics of the type HPAJwhich become glasses at low
1B(T)=[1-G(MIS(T)/Dy+G(T)[1-S(T) /Dy, T, over a wide range of temperatures. Here the mobility is

strongly T dependent at oWl

Finally, the authors in Ref. 2 have shown that electrons
detnd holes in HAT5 have very different mobilities: the hole
_mobility agrees with Fig. 7 and the electronic mobility mea-

whereS(T) is the short range order parametey,, are the

diffusivities along the column and in the isotropic phase, an
G(T) is a geometric weighting factor which gives us a mea 3 ) : X
sure of the number of broken columns or aggregate lengthSUred by Adametal” is activated withE,~0.6 eV. This

The combinatiorG andSin Eq. (38) can also be considered d|ff(_erencg we believe is due to th_e fact that electrons_ are in
to be the effective transport order parameter measuring th%ntlbor!dmg states and see a relatively small poIarlzathn bar-
number ofnormal (along the columpand anomalous(per- rier which can.be surmounted thermally, but the coupling to
pendicular or at a defechop processes. Sin@(T, ) and the neutral neighbor is weak. A hole however sees a strong

S(T) can be measured in all three phases, the latter by opt|9ng range Coulor_nb field into which a negative charge can
cal methods for exampf&,we can estimate the number of tunnel. The tunneling electron cannot thermally surmount the

“normal” and “anomalous” jumps that the carrier performs Coqlorr:jb poteFtlaI, erllt it carr]] f|gd5 aAn eff|C|enthquctuat|on
on its way to the electrode, at a given temperature, using EfSS'Sted tunneling path over the 3.5 A or so to the next core.

(38). Comparison to experiments in discotic materials where
such data exid?"8 suggests remarkably that, with E&8),
the break in the order must be extremely sharp wgitfh)
undergoing a very abrupt change from “1 to 0.” In terms of ~ Deep traps for holes can arise basically either because we
win Eq. (16), it implies a value close to “0"(~0.05. The  have some holémpurity or boundarytraps in the material,
apparent sharpness of the conductivity requires some further there are structural defects which give rise to long hop-
discussion. ping times, or we have double injection and holes are trapped
In quasi-one-dimensional systems, simple averages diy electrons that are also injected from the other electrode.
sums can be misleading because the fluctuations are not nesince in general th® phase has good transits and tGe
essarily on an intermolecular scale dhnd such systems phase has not, we conclude that the change can be due to
are not always self-averaging on the experimental lengtteither of two effects; we assume that eitler in the Dy,
scale. It might be better under certain circumstan@gsal phase we have fewer chemical deep traps(lbr the Dy,
interface  and order to average the ‘“resistance” phase has self-repairing structural properties and optimum
logarithmically?® In this case the transition will be sharper wetting contact to the electrodes. Note: the electrode sur-
and in the exponent of the conductance rather than in th&aces are not necessarily perfectly flat and this can give rise
conductance itself, with the transition from normal to anoma-o strong misalignment effects in the crystalline phase.
lous hops with It is unlikely that theD,, phase has substantially fewer
hole scavengers than th@ phase. Argumentll) however
W‘1~exp:2aROm], (39 makes good sense; polycrystallinity is present and can be

F. Origin of deep traps
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TABLE I. Weak dispersion—linear response.

Dimensionality Bias strength Photocurrent decay
(@ n<X

d=1 eFa |p(t)t%~e—3[<w2x2t/4a2)ml’3

T 2kT
x=trap concentration (exact analytig
(b)
— _ 2
d=1 n>x |p(t)tﬂx~ 279D, fa®)t

(exact analytit

d=3 <X | p(t)t_mfve—[xt\jr[)u] I(a% +a?
(first passage time
(d) t<w,'asin(@
d=1-3 7<X t>W, ! as in(c)
Diffusion

D(t)=Dy(T)+D;

to\®
-1, S"’O.S, °C>t>t0
Doped: t

Do(T)=De To/M’  s~const, Gxy<1

to|”
t

Du(t)che—%/T)Z, 0<pB<1, To=0c

low T diffusivity behavior due to barrier fluctuations

D(t)=Dy(T)+D{’

Undoped:

D(T) due to Gaussian fluctuations of polarization energy.

seen by comparing the optical transmissivity of the twoparametera. This is shown in Eq(28) and this parameter
phases. We can conclude that the dispersiof iphases is can in turn be related to the distribution of jump raR3w)
mainly a result of grain boundaries and alignment. Holesor trap rates. We have considered a variety of different sce-
injected in theC phase thermalize into the valence band tailnarios, but on their own, none of the limits considered actu-
where they encounter a distribution of deep structural trapsglly can be said to exactly describe the real situation. There
The spread in release times gives rise to @) and also to  are a number of reasons why this is so and these will become
dispersive transport. When the system entersRhphase, cjear as we concludesee Table )L

these traps appear and disappear in time on a rapid time (i) The long time photocurrent decays very slowly; it
scale; indeed the collective molecular motion associated Wit'&ppears to reach a steady state at long times itCtphase.

this dynamic ejects the particle back into the transport chanrhis suggests trap release and needs special theoretical treat-
nel on the time scale of a microsecond or less and this Se”r‘nent in 1D. This will be discussed elsewhere.

averages the trap and release process giving us approxi- (i) As it turns out, we are effectively always in the drift
mately what appears to be a slow but uniform charge motionimited regime of decays so that appropriate simple exponen-
Each carrier then experiences, on average, the same trajggg| |aws [Eq. (B3) in Appendix B| essentially suffice to fit
tory despite the many scattering processes and delays effe data and we have not been able to verify, in these experi-
countered on the way. The trapping process can be expressgghnia| ranges, the subtle crossover between the diffusion
as an addltlona}l term in t_he stochastic self—energy as sh_owgnd the drift limited decay regime predicted by exact theory
in Eq. (10). This term arises as a result of carriers beingsr one-dimensional transport.
caught and released by rigidly displaced molecules from ) Though dispersion must exist even in the liquid crystal
nelgh_bqrmg co!umns. If thg release times are longer than thﬁhase, i.e., the transport along the columns is hindered by
transit time as is the case in tkiephase, the structural traps gcattering from dynamical structural obstructions, the time
are effectively deep traps. scale of the frequency dependence or the scale of the disper-
sive region is short compared to our present experimental
time so that, in the transit experiment, the drift appears to be
perfectly regular except near the boundary at arrival. Here

(i) We have presented a rigorous set of formulas to try tahere appear to be traps, possibly injected space charge,
describe the photocurrent and photocurrent transits in columwhich give a longer decay than diffusion theo32) pre-
nar discotic liquid crystal. dicts. Again this needs special treatment.

(i) We have shown that the degree of disorder can be (vi) We have been able to extract the trap density which
characterized empirically and theoretically by a dispersioimmobilizes the carriers at least on a 46 time scale and is

V. SUMMARY AND CONCLUSIONS
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characterized by a concentratiox.” In order to compare (x) Finally, we have shown how one could extract a “mo-
with exact results on trapping kinetics these traps have bedpility order parameter” using rigorous transport theory and
assumed to have no release time on the time scale of thée data by Adanet al?
experiment. We have therefore not distinguished between Main conclusions for future workrhe differences in the
deep traps and recombination centers in this paper. ExpertD to 3D kinetics appear in the followinga) The trap con-
ment however shows that not all traps are scavengers; sontlled photocurrent decay and field dependence. This in-
carriers can escape. This is clearly a reasonable scenario btitides the shape of the photocurrent decay in transit experi-
needs a special mathematical treatment. The concentration ofents when there is a critical concentration of traps. It is
structural traps can be extracted by comparing the photocutherefore ironically theC phase which provides proof of 1D
rent decay in theC crystalline and liquid crystallineD behavior. This is shown convincingly in Fig. 4. Future work
phases; we found~ 103, will needed to examine the diffusion region wher<x. (b)

(vii) Dimensionality crossover from 1D to 3D motion One-dimensional shallow trap limited mobility is known to
should occur on a time scale of an intercolumnar hop, whicthave an anomalous electric-field dependéhas long as the
is roughly 18 to 1C° times longer than an intracolumnar drift still depends on time; steady state drift is again normal
jump time° This implies a time of order I¥f s and there- and obeys linear response at small fields. These predictions
fore shorter than the actual transit time measured in Fig. Gnay be verifiable in short glassy columnar materials; carriers
We could however not convincingly demonstrate crossovestay on and around the same column on the experimental
effects; see Figs. 2 and 4. time scale while being “dragged” into barriers and traps by

(viii) Motion in more than 1D manifests itself by a faster the field and one should initially observe sublinear drift ve-
than “t¥* law in the long time limit in small fields, but it locities with field. This interesting effect needs to be inves-
also has a weakly field dependent trapping faté/e have tigated in detail in a future paper.
been able to fit these faster decay laws using a stretched In this paper we have examined the photocurrent assum-
exponential with an empirical parametey* 0.65;” no spe-  ing normal linear response mobility; that is, we have consid-
cial significance could however be assigned to these fitered caséa) or case(b) in the steady state. Anomalous tran-
since the corresponding parameters do not agree with thosits need short pulses or ultrathin discotic films, and will, we
of the FPT theory which would exactly predict such a law. hope, be studied in a future publication.

(ix) We have shown that 1D motion cannot be deduced
fr_om t_he Gaussian tran_sit b_ehavior itself becaus_e the dimen- ACKNOWLEDGMENT
sionality can only manifest itself when “something unusual
happens,” i.e., when there is deviation from perfect stochas- One of the authors, B.M., would like to thank the Lever-
tic motion. hulme Trust for support.

APPENDIX A

The waiting time function can be simply estimated assumiaigthe traps are spatially distributed witW=» exp
[—2aR;], and a maximum accessible numbgr, or (b) the trap is spatial as above but release needs activation over an energy
barrier E; with a constant distributiom(E;)=1/B. We obtain, after a simple integral, the following.

Case(a):

V(p)=4ma NJ{In[v/(p+po)]}°, (A1)

whered is the dimensionality of the distribution, apg fixes the maximum number of lattice points on which the particle can
reside in each transport site. For example, it means that if there is 1 extra site, then the dc diffusivity is reduced by a factor of
(1/4), etc.

Case(b): fix distance toR; for simplicity and vary the energy of the trap,

W (p)=[KT/B](v/p)In{[1+p/v exp2aR.+B/KT)]/[1+p/v exp2aR,)1}; (A2)

assuming a scaling form, we can wride(p) =N, (1] (p/ve)“+1]), wherev, is a frequency which characterizes the delay
process and is an exponent which characterizes the waiting time distribution. This is the form used to calculate Fig. 2.

APPENDIX B
Survival fraction in 1D in the regime of strong bias, i.eFa/kT>x (trap density
n(t)=ny(t)+L(1), (B1)

wheren,(t) is still given by Eq.(21) and now the new terrh can be written

L(t)=[{8x2%(p—x)? exd — »°Dt/a?]] 20‘, (n+1/2)exp[Dt/a2{(n—x)/(2n+1)}2]/{(2n77+x)(2nr;+277—x)}2].
(B2
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The reader should consult Refs. 16 and 17 for the asymptotic behavior of these functions. In thgslkmiandx<1, the
n=0 term in the sum dominates and we have a simple exponential law

n(t)~{4(n—x)%/(29—x)%texd —xv4t], where vy=27D/KT. (B3)
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