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Peculiarities of coexistence of phases with different electric conductivities under the influence
of an electric current

Yu. Dolinsky* and T. Elperin†

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

~Received 11 March 1998!

In this study, using a Ginzburg-Landau model, we show that in the domain of coexistence of phases under
the influence of the electric current, the phase equilibrium curve splits into two different curves for the direct
and inverse phase transitions. We derived equations for spinodal and binodal lines in a current-carrying system
taking into account the difference of electric conductivities of the phases. It is demonstrated that there exist
thermodynamic regions where both phases are metastable simultaneously. The latter effect occurs due to the
dependence of the nucleus formation work upon the relation between the conductivities of the phases and to the
shift of the phase equilibrium curves for the direct and inverse phase transitions. At small electric currents, the
region where both phases are metastable simultaneously corresponds to the coexistence of kink and antikink
solutions.@S0163-1829~98!03830-2#
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I. INTRODUCTION

In our recent studies,1–4 we investigated peculiarities o
phase transitions in current-carrying systems when such t
sitions are accompanied by a change of electric conductiv
It was demonstrated that the location of the phase equ
rium curve significantly depends not only upon the relat
between the electric conductivities of phases, but also u
the geometry of a system. The case of when a phase tra
tion begins at the surface and propagates into the condu
differs strongly from the case of when a phase transit
begins inside the conductor and propagates towards its
face. At the initial stage of the surface phase transition
phase with a lower conductivity propagates not only witho
additional work,3 but ponderomotive forces promote prop
gation of this phase. Conversely, ponderomotive forces
vent the propagation of the phase with a higher electric c
ductivity into the conductor from its surface.3,4 The situation
is completely reversed in the case of an internal nucleat
Here, the nucleation of a phase with a lower electric cond
tivity requires additional energy, while nucleation of a pha
with a higher conductivity occurs partially due to the wo
performed by the ponderomotive forces. These results
pertinent to such cases where a phase transition is desc
by a zero-dimensional Doering-Volmer-Zeldovich nuc
ation theory. That is the reason why the above results
expressed through the parameters that are commonly
for the description of these systems, e.g., latent heat of p
transition, specific volume, overheat, etc. On the other ha
several recent studies5–8 have reported a strong effect of th
electric current on phase transitions in alloys when a ph
transition is accompanied by a change of an electric cond
tivity. Such systems like binary alloys can be described us
the continual models for the order parameter, whereby on
the most commonly used and simple models is the Ginzb
Landau model.9 In this connection it is of interest to con
struct a model for the description of the above phenom
employing the Ginzburg-Landau model. The latter probl
is solved in this study.
PRB 580163-1829/98/58~6!/3008~7!/$15.00
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II. DESCRIPTION OF THE MODEL

In order to construct a continual model of a phase tran
tion accompanied by a change of electric conductivity in
presence of electric currentj , we will use the Ginzburg-
Landau model for the Gibbs potentialV. In the regime with
a prescribed magnitude of electric current,10 V can be written
as

V5V02Vm , ~1!

whereV0 is a thermodynamic potential of a current-free sy
tem that is determined below andVm is an addition to the
thermodynamic potential due to the interaction of elect
currents

Vm5
1

2c2 E j ~r ! j ~r 8!

ur2r 8u
d3r d3r 8. ~2!

Now, let us representV0 as

V05E @ f 0~h!2mh#d3r1Vs , ~3!

whereVs5(x/2)*(“h)2d3r is the surface energy (x.0),
f 0(h) is the specific free energy, andm is the chemical po-
tential. It was shown in Ref. 11 that equations

ḣ52
1

Gn

dV

dh
, ḣ5

1

Gs
DS dV

dh D , ~4!

where Gn and Gs are the kinetic coefficients, allow us t
describe the relaxation of the order parameter from a m
stable phase to a stable phase. The first equation in Eqs~4!
describes a case where the order parameter is not conse
while the second equation describes a case where the o
parameter is conserved. In the latter case, it has the form
continuity equation.
3008 © 1998 The American Physical Society
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Thus, the problem is reduced to the problem of determ
ing the explicit dependence of the potentialVm upon the
order parameterh. In order to solve the latter problem, w
use the following model.

Assume that a spherical nucleus with a conductivitys1 is
formed in a current-carrying host medium with a conduct
ity s0 . A change of electric conductivity is related to
change of the order parameter, whereby magnitudes of
order parameter inside the nucleus and far from the nuc
areh1 andh0 , respectively. Assume for simplicity that th
function s~r ! is spherically symmetrical with respect to th
center of the nucleusra .

Configuration of an electric current can be determin
from equations of magnetostatics~see Ref. 10!:

“• j50, j5s“w, ~5!

and their validity at time scales of phase transitions is d
cussed in Ref. 1. For a given dependences~r !, and boundary
conditions for the potentialw~r !, Eq. ~5! determines the den
sity of an electric currentj ~r ! and, consequently, the poten
tial Vm .

Determining the concrete dependences~r ! complicates
the analysis of the problem, and it is of little expedien
from the physical point of view since the nucleus can
characterized by an electric conductivity only when its siza
is much larger than the mean-free-pathl, a@ l , and much
larger than the width of the skin layerd, a@d. In the zero-
order approximation in parameterd/a,

“s5n~s02s1!d~a2ur2rau!, ~6!

wheren is a unit normal vector to a nucleus surface.
The solution of the magnetostatics problem~5! and~6! in

this case is well known~see Ref. 1!, andj5 j01d j , wherej0
is the electric current far from the nucleus and

d j52 j0jF2u~a2ur2rau!

1
a3

ur2rau3 ~3m221!u~ ur2rau2a!G
23e' j 0jmA12m2

a3

ur2rau3 u~ ur2rau2a!. ~7!

Here,

m5
~r2ra!j0

ur2rau j 0
, u~x!5 H1,

0,
x>0
x,0, j5

s02s1

s112s0
.

Equation~7! is valid, provided thatj0 is a constant vecto
of electric current far away from the nucleus, so that
characteristic size of regionb where a nucleus is formed,b
@a. When the configuration of electric current is more i
volved, it can be partitioned into ‘‘linear’’ domains and th
nucleus is assumed to be formed in one of these domain

According to Eq.~2!, the energy of the magnetic field ca
be represented as follows:

Vm5Vm
0 1Vm

1 ,

where Vm
0 is a part of the magnetic energy that does n

depend upon the nucleus size,
-

-

he
us

d

-

e

e

.

t

Vm
0 5

j0
2

2c2 E 1

ur2r 8u
d3r d3r 8,

and

Vm
1 5

1

c2 E j0d j

ur2r 8u
d3r d3r 8.

Here, in the expression forVm , we neglected a contribution
of the term

Vm
2 5E d j ~r !d j ~r 8!

ur2r 8u
d3r d3r 8

since

Vm
2 5

a3

b3 Vm
1 !1.

For the case when a nucleus is formed in a cylindri
conductor with radiusr0 and lengthl 0, the detailed calcula-
tions of Vm can be found in Ref. 3. In this case, in th
leading approximation in parametersa/r0!1 and r0 / l 0

!1, an expression forVm
1 reads:

Vm
1 522jpmVaF~ra!, pm5

I 2

c2pr0
2 , ~8!

whereI is the total electric current,Va is the volume of the
nucleus, andF(ra) is the geometrical factor depending upo
the length of the conductor and location of the center of
nucleus in the conductor. When configuration of the elec
current j0 is more involved, the magnitude ofVm

1 changes
only due to the change of the geometrical factorF(ra). The
geometrical factor can be assumed to be independent o
size of the nucleus and its conductivity, and hereafter i
assumed to be constant.

It is known ~see, e.g., Ref. 11! that when a boundary
separating phases with different values of the order par
eter is sharp, it is possible to transfer from a continu
Ginzburg-Landau model to a Doering-Volmer-Zeldovic
nucleation model~see, e.g., Ref. 12! using ad-like variation
of the gradient of the order parameter. Similarly, using E
~6! one can rewrite the formula~8! for Vm

1 as follows:

Vm
1 52

p̃m

3~s02s1!
E @~r2ra!“s#d3r , p̃m52jFpm .

~9!

Equation~9! is invariant with respect to the choice of th
origin of a coordinate system, since the additional energyVm

1

is related only to the gradient of electric conductivity, a
substituting Eq.~6! into integral~9! yields Eq.~8!.

Hereafter we assume that the electron free path lengt
the smallest length scale in the system, and the spatial pr
of electric conductivity coincides with a spatial profile of th
order parameter, i.e.,

“s5
s02s1

h02h1
“h,

whereh0 andh1 are the magnitudes of the order parame
far from the boundary between phases. Since, under va
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tion of the order parameter, its values far from the interfa
are considered constants, after integration by parts in Eq.~9!,
and using Eqs.~1! and ~3!, we find that

dV

dh
52S xDh1m2

] f 0

]h
1

p̃m

h02h1
D . ~10!

Coexisting values of the order parameter far from
boundary between phasesh0 andh1 are determined from the
system of equations that can be derived from Eqs.~4! and
~10!, taking into account that far from the frontDh→0 and
ḣ→0.

In the Ginzburg-Landau model,f 05ah2/21bh4/4. Sub-
stituting the latter expression into Eq.~10!, and using the
conditiondV/dh50, yields the system of equations for c
existing values ofh0 andh1 :

m1
p̃m

h02h1
5ah01bh0

3,
~11!

m1
p̃m

h02h1
5ah11bh1

3.

Subtracting the second equation in Eqs.~11! from the first
yields

h0
21h1h01h1

252
a

b
. ~12!

As generally accepted, assume thatb.0, and then the do-
main of coexisting phases is determined by the conditiona
,0. Introducing the dimensionless variableC, h
5(uau/b)1/2C, we find from Eq.~12! that for a givenC0
there are two possible values forC1 :

C152
C0

2
6A12

3

4
C0

2. ~13!

According to Eqs.~4! and ~10!, a condition for the thermo-
dynamic stability of a phase is]2f /]h2>0 or uC0,1u
.1/). From Eq.~13! it can be easily seen that there is
unique thermodynamically stable solutionC1 that corre-
sponds to the thermodynamically stable solutionC0 and vice
versa. In the range 1/),C0,2/), the thermodynamically
stable solution reads

C152
C0

2
2A12

3

4
C0

2,

and in the range22/),C0,21/) the stable solution is

C152C0/21A12 3
4 C0

2. Using these relations and Eq
~11!, we arrive at the equations for parameterC0 :

p̃m

E1~C0!
5C0

32C02h,
1

)
,C0,

2

)
,

p̃m

E2~C0!
5C0

32C02h, 2
2

)
,C0,2

1

)
, ~14!

E6~C0!5
3

2
C06A12

3

4
C0

2,
e

e

wherep̃m5(b/uau2) p̃m , h5(b1/2/uau3/2)m.
Similarly, determiningC0 from Eqs.~11!–~12!, we arrive

at the equations for determining the thermodynamica
stable value of the internal phaseC1 :

p̃m

Ẽ1~C1!
5C1

32C12h,
1

)
,C1,

2

)
,

p̃m

Ẽ2~C1!
5C1

32C12h, 2
2

)
,C1,2

1

)
, ~15!

Ẽ6~C1!52F3

2
C16A12

3

4
C1

2G .
In finding the approximate solutions of these equatio

one must take into account that the derivatives of functio
E6(C) and Ẽ6(C) have singularities atuCu→2/). Far
from these points, an approximate expression forC0 andC1
can be obtained using Eqs.~14! and Eqs.~15!, respectively.
For p̃m!1 we have

C05C̃01
p̃m

E6~C̃0!~3C̃0
221!

,

C15C̃11
p̃m

E6~C̃1!~3C̃1
221!

,

whereC̃1,0 are solutions of the corresponding equations
p̃m50. The valuesC̃1,0 can be taken as basic solutions on
far away from the boundary of the coexistence of phases

In order to determine the critical values of the chemic
potentialh that determine the domain of the coexistence
phases, we take into account that the thermodynamically
stable phase must be considered as an external phase.
the critical value ofh at which the phase loses thermod
namic stability under a given magnitude of electric curre
can be determined from Eq.~14!. Hereafter, the phases wit
negative and positive values of the order parameter are ca
the negative and the positive phases, respectively. Then
a positive phase setting in Eq.~14! C051/), s05s1 , h
5hc

1 , we find that

hc
152hc

01
2

)

k21

k12
A, hc

05
2

3)
, k5

s2

s1
, ~16!

whereA5pmFb/uau2>0, s1 , ands2 , are conductivities
of the positive and negative phases, respectively. The
main of the thermodynamic stability of the positive phase
determined by the relationh.hc

1 .
Similarly, for the negative phaseC0521/), s05s2 ,

h5hc
2 from Eq. ~14!, we find

hc
25hc

01
2

)

k21

112k
A. ~17!

The domain of stability of the negative phase is det
mined by the conditionh,hc

2 , and the domain of the coex
istence of phases is determined by the conditionhc

1,h
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,hc
2 . The critical value of the electric currentAc , whereby

at A.Ac phases cannot coexist at any value ofh, can be
found from the conditionhc

25hc
1 or

Ac5
2

)

~k12!~112k!

~k21!2 >
4

)
. ~18!

For the electric currentA.Ac , the phase transition can
not be realized as a phase transition of the first kind.

It is shown below that the equilibrium value of a chemic
potential is determined by the following condition:

p̃m

C02C1
1h50. ~19!

According to Eqs.~14! and ~15!, the latter condition can be
satisfied only at the pointsuC0u5uC1u51.

In order to determine the value of the chemical poten
h5h2 corresponding to the equilibrium with respect to t
transition from a positive phase to a negative phase,
must take into account that in this case the negative pha
the internal phase, i.e.,C051, C1521. Substitutings0
5s1 , s15s2 in Eq. ~19!, we find that

h25
k21

k12
A. ~20!

Similarly, one can determine the potentialh5h1 corre-
sponding to the equilibrium with respect to the inverse ph
transition from the negative phase to the positive phase
settingC0521, C151, ands05s2 , s15s1 :

h15
k21

112k
A. ~21!

It follows from Eqs.~20! and~21! that the phase equilib
rium curves for the direct and inverse phase transition
shifted in the same direction, i.e., sgn(h1)5sgn(h2). Here,
one of the phases becomes more stable than in the cur
free case, while the other phase destabilizes since part o
domain where this phase is stable in a current-free case
comes metastable. Equations~20! and ~21! show that stabi-
lizes the phase with a higher electric conductivity. T
physical meaning of the domainh1,h,h2 is elucidated by
the following general considerations. In a current-free s
tem,h.0 is a region of stability of the positive phase, whi
h,0 is a domain of the stability of the negative phas
Therefore, in a current-carrying system for sufficiently lar
but negativeh, the negative phase is stable. Whenh in-
creases and attains the pointh1 where the nuclei of a posi
tive phase can form, the negative phase loses stability
transfers into a metastable state. However, a positive pha
still metastable since, forh,h2, nuclei of a negative phas
can form inside a positive phase, and only ath.h2 the
positive phase becomes stable. Thus, in the domainh1,h
,h2, both phases are metastable simultaneously. In the
lowing we will show that in this domain the sizes of th
critical nuclei for a transition from a negative phase to
positive phase, and for the inverse phase transition, are p
tive and finite values. Note that we discussed a possibility
the existence of the domain of simultaneous metastab
l
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~DSM! of both phases in Ref. 1 using the zero-dimensio
model. However, instead of the coefficientA arising in the
present study, the corresponding coefficient in Ref. 1
pends upon the specific volume of the internal phase.
latter provides us with an additional possibility whereby
hysteresis can occur instead of the domain of simultane
metastability of both phases. In the situation that is cons
ered in this study,h1,h2 always, i.e., hysteresis does n
occur and only DSM occurs. Thus, the pointshc

1 ,h1,h2,hc
2

partition the domain ofh into the regions of varying thermo
dynamic stability of phases. Mutual location of these regio
depends upon the parameterk5s2 /s1 and the magnitude
of the ‘‘electric current’’A. According to Eqs.~16! and~18!,
in the domain of the coexistence of phaseshc

2.hc
1 , and

according to Eqs.~20!, and ~21!, h2.h1. Taking into ac-
count these conditions, it can be easily seen that there e
six different sequences of the domains:

~a! hc
1,h1,h2,hc

2 , ~b! h1,hc
1,h2,hc

2 ,

~c! hc
1,h1,hc

2,h2, ~d! h1,hc
1,hc

2,h2, ~22!

~e! hc
1,hc

2,h1,h2, ~ f! h1,h2,hc
1,hc

2 .

In order to determine the conditions on electric curre
where each of the above six cases can be realized, it is
venient to divide the domain of the parameterk into four
regions: 0,k,d, d,k,1, 1,k,1/d, andk.1/d where
d52()21)/(42))'0.65. However, the region 0,k
,d is equivalent to the regionk.1/d, where a positive
phase is replaced with a negative one. Thus, all the con
sions concerning the positive phase in the domain 0,k,d
are valid for the negative phase in the domaink.1/d and
vice versa. A similar situation occurs in the domaind,k
,1, and, correspondingly, in the domain 1/d.k.1. There-
fore, it is sufficient to analyze only the case withk.1.

Consider first a domain 1,k,1/d. The conditionh2

,hc
2 and Eqs.~17! and ~20! yield

~k21!~42) !

~k12!~112k!
~kd21!A,

2

3
. ~23!

Thus, in this domain, the condition~23! is always valid
(kd,1), and only three cases~a!, ~b!, ~f! can occur in com-
pliance with the inequalities~22!. The condition for the oc-
currence of case~a! is obtained from the conditionh1.hc

1

and Eqs.~16! and ~21!:

A,R5
2

3~42) !

~k12!~112k!

~k21!~k2d!
. ~24!

For the occurrence of case~b!, apart from the conditionh1

,hc
1(A.R), the conditionh2.hc

1 must be satisfied. The
latter condition yields

A,P5
2

3~22) !

k12

k21
.

For all k.1, P.R. Therefore, in the range of electri
currents R,A,P, case ~b! occurs. In the rangeAc.A
.P, case~f! occurs.
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Before the analysis of the domaink.1/d, consider ther-
modynamic situation in each of the domains. When case~a!
occurs, DSM is completely embedded in the region of
coexistence of phases. To the left of this domain,hc

1,h
,h1, the negative phase is stable while the positive phas
metastable. Athc

2.h.h2 the negative phase is metastab
while the positive phase is stable~see Fig. 1!.

When case~b! occurs, the DSM borders from the left wit
a spinodal line of the positive phase. In this case, in
whole range of the coexistence of phases the negative p
is metastable, and the positive phase is stable in the ra
h2,h,hc

2 . Case ~f! describes a situation where in th
whole of the coexistence of phases (hc

1,h,hc
2) the nega-

tive phase is metastable and the positive phase is stable.
situation occurs because, at large electric currentsAc.A
.P, the coexistence of phases is realized deep inside
region with positiveh, such that in a current-free system th
negative phase there was thermodynamically unstable. In
presence of an electric current this phase is partially st
lized and it transforms into a metastable state.

Now consider a case withk.1/d. In this case the condi
tion ~23! yields an additional restriction to Eq.~24!:

A,R
k2d

kd21
5R1 . ~25!

Thus, fork.1/d, R1.R, case~b! is realized only when
the following condition is satisfied:

R1.A.R. ~26!

For A.R1 , h2.hc
2 and case~f! cannot be realized. Sinc

hc
1.h1 and h2.hc

2 in the range of electric currentsA
.R1.R, Eq. ~22! shows that in the rangeAc.A.R1 case
~d! occurs. In the latter case, DSM extends over the wh
range of the coexistence of phases. In Fig. 2, we show
schematically, this situation forA51.

Similarly, we can consider the casek,1. In the ranged
,k,1, conditionhc

1,h1 yields

FIG. 1. Diagram of coexistence of phases at small electric c
rents: ~1! DSM; ~2! stable positive phase;~3! stable negative
phase;h1 is a binodal line for the1⇒2 phase transition;h2 is a
binodal line for the2⇒1 phase transition.
e

is

e
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~42) !~12k!~d2k!

~112k!~k12!
A,

2

3
. ~27!

In the ranged,k,1, inequality~27! is valid without restric-
tions on the magnitude of the electric current. Thus, in t
range ofk, there occur cases~a!, ~c!, ~e!, and all the conclu-
sions concerning the positive and negative phases in c
~b! and ~f! are valid for the negative and positive phase
respectively, in cases~c! and ~e!. In the range ofu,k,d,
instead of cases~a!, ~b!, ~d!, cases~a!, ~c!, ~d!, occur, and so
on.

Thus, the most significant effect of the electric current
the occurrence of the domain of the simultaneous metasta
ity of two phases. Inside this domain the nuclei of a pha
with a higher electric conductivity are formed due to t
work of ponderomotive forces, i.e., due to the extern
source of electric current, while the nuclei of a phase wit
smaller electric conductivity are formed due to the surplus
chemical energy.

III. RELAXATION OF THE ORDER PARAMETER

Now, using the approach suggested in Ref. 11, we c
sider the peculiarities of the relaxation of the order parame
in the presence of an electric current. Using the dimensi
less variablesw,h,p̃m defined above, and the dimensionle
lengthx and timet,

r 5&S x

a D 1/2

x, t5S 2

Gna D t,

we restrict ourselves to the analysis of a nonconserved o
parameter in an isotropic case.

Using Eq.~10!, we can rewrite Eq.~4! in the new vari-
ables as

]C

]t
5

]2C

]x2 1
2

x

]C

]x
12~C2C3!1h̃, h̃5h1

p̃m

C02C1
.

~28!

Let us look for the solution of Eq.~28! in the form

r-
FIG. 2. Diagram of coexistence of phases, case~d!: ~1! DSM;

hc
2 is a spinodal line of the negative phase;hc

1 is a spinodal line of
the positive phase.
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C5C@x2x0~t!#,

wherex0(t) is the location of a front.
Assume that forx2x0!x0 and x0@1, solution C is a

kink, while for x2x0;x0 it is close to a constant. Following
Ref. 11, the first derivative is taken into account only forx
2x0!x0 . Then, Eq.~28! can be rewritten as
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]x2 1
2

x0

]C

]x
12~C2C3!1h̃. ~29!

For p̃m→0, Eq. ~29! coincides with Eq.~13! of Ref. 11 if
one neglects in the latter the angular dependence of the o
parameterC.

In Ref. 11 it was shown that ath̃5h, with the accuracy
o(h2) ando(e2(x2x0)) in the domainx2x0@1, and with the
accuracyo(h2) in the domainx2x0!1, the solution of Eq.
~29! can be written as follows:

C56tanh@x2x0~t!#1
1

4
h, 2 ẋ05

2

x0
6

3h

2
, ~30!

where signs6 in Eq. ~30! correspond to the formation o
nuclei of the negative and positive phases, respectiv
Equations~14! and ~15! imply that at h̃→0, C02C1→
62. Therefore, without losing accuracy, in Eq.~30! we can
replaceh by h̃65h1p̃m

6/s, wheres522 in the case of the
formation of nuclei of the positive phase,s512 in the case
of the formation of the negative phase, and formulas forp̃m

6

are written below. Thus, in the case of the formation o
nucleus of the negative phase, the solution of Eq.~29! reads:

C5tanh@x2x0
2~t!#1
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2 D ,
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2 S h1
p̃m

2

2 D , ~31!

where x0
2(t) is the radius of the nucleus of the negati

phase andp̃m
25@2(12k)/(k12)#A.

In the case of the formation of the nucleus of the posit
phase, instead of Eq.~29! we obtain

C52tanh@x2x0
1~t!#1
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2 D ,
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2 D , ~32!

wherep̃m
15@2(k21)/112k#A.

The sizes of the critical nuclei are determined from t
conditionsẋ0

650:
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A

. ~33!

The conditions x0
2.0, x0

1.0 or h1@(12k)/(k12)#A
,0, h1@(12k)/(112k)#A.0 determine DSM, while
conditions 1/x0

650 determine the phase equilibrium curv
~20! and ~21!.
er
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The conditions~33! yield the following relation between
the sizes of the critical nucleix0

1 andx0
2 :

x0
15

x0
2

gx0
221

, g5
)

2

A

Ac
,

whereAc is determined by Eq.~18!. Expressing the sizes o
the nucleix0

6 in units Ac /A @x0
65(Ac /A)l6#, we find that

l15l2/@()/2)l221#.
The latter relation shows that when the size of the nucl

of the negative phase increases,l2→`, the size of the
nucleus of the positive phasel1 decreases,l1→2/) and
vice versa. If the considered mechanism of the phase tra
tion could have been realized without the influence of ot
effects, in the DSM the system would transfer periodica
from one state into the other since the increase of the crit
nucleus for the phase transition1⇒2 causes a reduction o
the critical nucleus for the transition2⇒1. In reality, dis-
persion of a system into small particles can prevent the
currence of such a process. In Fig. 1 we plotted a diagram
the coexistence of phases for case~a! and for uh2u!uhc

2u,
uh1u!uhc

1u. As can be seen from this figure, DSM occu
without a threshold at arbitrary small values of an elect
current A. However, as a magnitude of an electric curre
decreases the range of values,h, where DSM occurs, shrinks

Thus, taking into account the change of electric cond
tivity in current-carrying conductors, there results a mo
diversified behavior of the system. The most significant d
ference in comparison with the case of a current-free c
ductor is the existence of the domain of parameters wh
both phases are metastable. The existence of such a do
may be characteristic for a wide class of systems subjecte
the external forces where the parameters determining the
sponse of the system to the external field differ for bo
phases. Such a situation may occur due to the effect of
electric field where the dielectric permeabilities of bo
phases are different~see, e.g., Refs. 13 and 14!, due to the
external pressure~see Ref. 15!, etc. At present, it is not clea
whether this effect can occur in systems with a strong m
netic response or segnetoelectrics.

Stochastic behavior of the system in DSM is significan
different from that in the domain where one of the phase
stable, and is not considered here. It is natural to expect
dispersed structures are formed in DSM. The physical rea
for the occurrence of DSM is related to the openness of
system with respect to the source of the electric current.
was pointed out above, transition from the phase with
higher electric conductivity to the phase with a lower elect
conductivity occurs due to the surplus of chemical ene
accumulated in a phase with a high electric conductivity, a
ponderomotive forces act to prevent this transition. The
verse phase transition occurs due to the ponderomotive
ergy, and the work is performed by the source of an elec
current. Outside the DSM, the stochastic description of
system may be performed using the traditional appro
~see, e.g., Ref. 11!.

Due to the strong sensitivity of the behavior of the syst
with respect to the initial parameters and the physical var
of such systems, comparison of the obtained results with
available experimental data~see Refs. 5–8! is not straight-
forward. In these studies the following effects of an elect
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current on the structure of alloys and upon the crystallizati
were found: ~1! reduction of grain size;8 ~2! strong depen-
dence of the rate of change of Ohmic resistanceṘ upon the
magnitude of electric current;7 and~3! high magnitude of the
undercooling at which crystallization begins.

Qualitatively, these observations are in accord with t
results obtained in Refs. 1, 2, 4, and in the present study
order to perform a quantitative comparison, the proble
must be solved on a more detailed level of description, a
the model employed in this study is not sufficient for com
parison with the experiments.

As we noted above, comparison of the results obtain
with the Ginzburg-Landau model with experiments is qui
involved. However, it is expedient to develop this model fo
the description of phase transitions in current-carrying sy
tems since zero-dimensional nucleation theory~see Refs. 1
and 4! cannot explain the experimentally observed effects
the relatively small electric currents on crystallization. In th
following we present some estimates that can be obtain
using our previous results obtained with a zero-dimensio
model. According to Refs. 1 and 4, the magnitude of t
undercooling with respect to the internal crystallization
determined by the following equation:

mS~p1 p̃m1ps ,T!5mL~p,T!, ~34!

where subscriptsS and L correspond to solid and liquid
phases, respectively, p̃m5@(12k̄)/(k̄12)#pmF, k̄
5sS /sL.1, and theps is the pressure due to surface ten
sion. The magnitude of theDT/T0 can be determined from
Eq. ~34! in the limit ps→0 and

DT

T0
52

v0p̃m

l0
,

wherev0 , l0.0, andT0 are a specific volume, a latent hea
of melting, and a crystallization temperature, respectively

Equation~34! yields the following expression for the size
of the critical nucleusac :
te
n

e
In

d
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f

d
al

ac5ac
0 1

12 p̃m/ps
0 , ~35!

whereac
0 is a size of the critical nucleus without an electr

current,ps
052as /ac

0, andas is a coefficient of the surface
tension. Since the nucleation rateJ}exp(24pasac

2/3T),
while the rate of change of the Ohmic resistanceṘ}J, Eq.
~35! yields

Ṙ}expS 2
4pas~ac

0!2

3T

1

~12I 2F/I 0
2!2D ,

whereI 0 is determined by the following formula:

I 0
25pr 0

2c2
2as

ac
0 .

Usually, the latter quantity is very large, sinceas

;103– 104 dyn/cm,ac
0;1026 cm, and for a cylindrical con-

ductor with a radiusr 051 cm, I 0;102 kA. Experiments
show that the characteristic values of the electric curren
which the above discussed effects occur are of the orde
I 0;1 kA.7 Therefore, the effect of the electric current wi
such a magnitude can be explained only by the anoma
behavior of the coefficient of the surface tension that m
assume the valuesas;102121 dyn/cm. It is conceivable
that such anomalous behavior of the coefficient of the s
face tension is caused by the proximity of the region wh
there occurs a phase transition to the critical tempera
~which is the reason why it is expedient to describe t
phenomenon using a Ginzburg-Landau model! and because
the phase transition occurs in an undercooled state. Anyw
the employed model is the only model that allows us
describe correctly the behavior of the system qualitatively
must be noted also that, according to our results,3 the surface
crystallization in the presence of an electric current does
occur in an undercooled state but requires an additional o
cooling that plays a significant role in the development of
internal phase transition.
.
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