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Peculiarities of coexistence of phases with different electric conductivities under the influence
of an electric current
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In this study, using a Ginzburg-Landau model, we show that in the domain of coexistence of phases under
the influence of the electric current, the phase equilibrium curve splits into two different curves for the direct
and inverse phase transitions. We derived equations for spinodal and binodal lines in a current-carrying system
taking into account the difference of electric conductivities of the phases. It is demonstrated that there exist
thermodynamic regions where both phases are metastable simultaneously. The latter effect occurs due to the
dependence of the nucleus formation work upon the relation between the conductivities of the phases and to the
shift of the phase equilibrium curves for the direct and inverse phase transitions. At small electric currents, the
region where both phases are metastable simultaneously corresponds to the coexistence of kink and antikink
solutions.[S0163-1828)03830-3

I. INTRODUCTION Il. DESCRIPTION OF THE MODEL

In order to construct a continual model of a phase transi-

phase transitions in current-carrying systems when such trartll-o n accompanied by a change of electric conductivity in the

sitions are accompanied by a change of electric conductivity’li;isde;uciqggeﬁzl]%it;'ﬁecgiréigt V(\)Iteerzlrigl lIJr?E'B[htehfe (;Trlgébvv;[?{
It was demonstrated that the location of the phase equilib- P : 9

rium curve significantly depends not only upon the relation® prescribed magnitude of electric curr&hg) can be written
between the electric conductivities of phases, but also upoﬁs
the geometry of a system. The case of when a phase transi-
tion begins at the surface and propagates into the conductor

differs strongly from the case of when a phase transition hereQ.- is a th d . tential of f
begins inside the conductor and propagates towards its sufiheréslo IS a thermodynamic potential of a currént-irée Sys-
m that is determined below arfdl, is an addition to the

face. At the initial stage of the surface phase transition, %‘ha q . tential due to the int i f electri
phase with a lower conductivity propagates not only without uei:rennotsynamlc potential due to the interaction ot electric

additional work® but ponderomotive forces promote propa- ¢
gation of this phase. Conversely, ponderomotive forces pre- o
vent the propagation of the phase with a higher electric con- Q _ 1 i)
ductivity into the conductor from its surfadé.The situation m2c? Ir—r’|
is completely reversed in the case of an internal nucleation.

Here, the nucleation of a phase with a lower electric conduc- Now, let us represer2, as
tivity requires additional energy, while nucleation of a phase

with a higher conductivity occurs partially due to the work

perf_ormed by the ponderomotive forces. Thgse .results are Qozf [fo(m)— mn]d3r+Qq, 3
pertinent to such cases where a phase transition is described

by a zero-dimensional Doering-Volmer-Zeldovich nucle- _ 203,
ation theory. That is the reason why the above results a?hereﬂs—(X/Z)f(V 7)°d°r is the surface energyy(>0),

In our recent studiek;* we investigated peculiarities of

0=00—OQp, @

d3r d3r’. )

expressed through the parameters that are commonly us a( 7.7) is the specific free energy, andis th? chemical po-
for the description of these systems, e.g., latent heat of pha gntlal. It was shown in Ref. 11 that equations

transition, specific volume, overheat, etc. On the other hand,

several recent studigg have reported a strong effect of the .1 @ 1 @
electric current on phase transitions in alloys when a phase = r, én’ K I's '\ én
transition is accompanied by a change of an electric conduc-

tivity. Such systems like binary alloys can be described usingvhere I', and I' are the kinetic coefficients, allow us to

the continual models for the order parameter, whereby one alescribe the relaxation of the order parameter from a meta-
the most commonly used and simple models is the Ginzburgstable phase to a stable phase. The first equation in(Egs.
Landau model. In this connection it is of interest to con- describes a case where the order parameter is not conserved,
struct a model for the description of the above phenomenahile the second equation describes a case where the order
employing the Ginzburg-Landau model. The latter problemparameter is conserved. In the latter case, it has the form of a
is solved in this study. continuity equation.

: 4
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Thus, the problem is reduced to the problem of determin- jé 1
ing the explicit dependence of the potentfd},, upon the 0= d3r d3r’,
2c [r=r']
order parameter,. In order to solve the latter problem, we
use the following model. and
Assume that a spherical nucleus with a conductivityis
formed in a current-carrying host medium with a conductiv- 0l= 1 Jodi 43 d3r’
ity op. A change of electric conductivity is related to a ) Jr—r']

change of the order parameter, whereby magnitudes of t

order parameter inside the nucleus and far from the nucle ere, in the expression fd2y,, we neglected a contribution

are 74 and 7y, respectively. Assume for simplicity that the of the term
function o(r) is spherically symmetrical with respect to the ; .
, [ dO&r)
center of the nucleus, . Qm:J ————— d°r d°r
Configuration of an electric current can be determined [r=r'|
from equations of magnetostatitsee Ref. 10 since
V'j:O, j:UV(,D, (5) a_3
I . L 02=—>5 0l <1.
and their validity at time scales of phase transitions is dis- m—p3 *m
cussed in Ref. 1. For a given dependent®, and boundary
conditions for the potentiab(r), Eq(5) determines the den- For the case when a nucleus is formed in a cylindrical
sity of an electric curreni(r) and, consequently, the poten- conductor with radiug, and lengthly, the detailed calcula-
tial O, tions of (), can be found in Ref. 3. In this case, in the

Determlnlng the concrete dependeneé) complicates leading approximationlin parametees po<1 and py/lo
the analysis of the problem, and it is of little expedience<<1, an expression fofl, reads:
from the physical point of view since the nucleus can be 2
characterized by an electric conductivity only when its size Ol=—2p V. _ 8
is much larger than the mean-free-patra>1, and much m EPmVa®(ra),  Pm cmps’ ®
larger than the width of the skin layé a> 6. In the zero-

order approximation in parametéfa wherel is the total electric curreny/, is the volume of the

nucleus, andb(r,) is the geometrical factor depending upon
Vo=n(oy—oy)d(a—|r—ry), (6) the length of the conductor and location of the center of the
nucleus in the conductor. When configuration of the electric
currentjq is more involved, the magnitude cﬂﬁ1 changes
only due to the change of the geometrical factdr,). The
geometrical factor can be assumed to be independent of the
size of the nucleus and its conductivity, and hereafter it is
assumed to be constant.

Si=—jo& 260(a—|r—ry)) It is known (see, e.g., Ref. 11lthat when a boundary
separating phases with different values of the order param-
eter is sharp, it is possible to transfer from a continual

wheren is a unit normal vector to a nucleus surface.

The solution of the magnetostatics probl€m and(6) in
this case is well knowisee Ref. 1, andj=j,+ &j, wherej,
is the electric current far from the nucleus and

3

+ [=ra (Bu?=1)6(|r—r,|—a) Ginzburg-Landau model to a Doering-Volmer-Zeldovich

a nucleation mode(see, e.g., Ref. J2ising aslike variation
ad of the gradient of the order parameter. Similarly, using Eq.

—3ejoéuVl—n |3 O(Ir—ra—a).  (7)  (6) one can rewrite the formuléd) for O as follows:
Here, [s -
Qp=- m J [(r=r)Vaold®, Pm=2iPppy,.
. 3(0’0_0'1)
_Urallo L X200 oo on ©
a |I’—I'a|j0' 0, x<0O o1+20°

Equation(9) is invariant with respect to the choice of the
Equation(7) is valid, provided thal, is a constant vector origin of a coordinate system, since the additional enébgy

of electric current far away from the nucleus, so that theis related only to the gradient of electric conductivity, and

characteristic size of region where a nucleus is formeth, ~ substituting Eq(6) into integral(9) yields Eq.(8).

>a. When the configuration of electric current is more in- Hereafter we assume that the electron free path length is

volved, it can be partitioned into “linear” domains and the the smallest length scale in the system, and the spatial profile

nucleus is assumed to be formed in one of these domains.of electric conductivity coincides with a spatial profile of the
According to Eq.(2), the energy of the magnetic field can order parameter, i.e.,

be represented as follows:

0 1 Vo= 70" %1 Vg
Q,=02+0:, no—m

where Q% is a part of the magnetic energy that does notwhere 5, and 5, are the magnitudes of the order parameter
depend upon the nucleus size, far from the boundary between phases. Since, under varia-
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tion of the order parameter, its values far from the interfacevhere 7= (8/|@|?)Pm. h=(8Y%|a|*?) u.

are considered constants, after integration by parts if®gq. Similarly, determining¥, from Egs.(11)—(12), we arrive
and using Egs(1) and(3), we find that at the equations for determining the thermodynamically
- stable value of the internal phade; :
o0 At Do Pm (10)
ST T\ XAt —— : ~
1) d - T 1
n 7 Mo T _™m :‘I’i_‘l’l_h, Sep< s
Coexisting values of the order parameter far from the E (V) v3 V3
boundary between phaseg and », are determined from the _
system of equations that can be derived from Egs.and Tm T_w.—h 2 < (15
i i —_ d = 1_ 1_ 1 - 1 T
(.nlg),otlaklng into account that far from the froat—0 and E (¥, V3 V3
In the Ginzburg-Landau modélg= a n%/2+ B7*4. Sub- 5 3 3
stituting the latter expression into E¢L0), and using the E.(V)=—|-V,=\/1—~ «yg}
condition 6Q0/ 6n=0, yields the system of equations for co- 2 4

xisting val f n : - . . .
existing values ofo and 7, In finding the approximate solutions of these equations,

[ . one must take into account that the derivatives of functions
mt o7 =ano+ B, E.(¥) and EL (V) have singularities at¥|—2A#3. Far
o 7 (1))  from these points, an approximate expressiorifgrand ¥ ;
P can be obtained using Eq4.4) and Eqgs.(15), respectively.
u+t e =an+B7. For <1 we have
0~ 1
Subtracting the second equation in E¢kl) from the first ~ T
yields Vo=V, + = ~ ,
E.(Wo)(3¥5—1)
Pt ot = — . (12 ~ %
0 ! B ‘I’lz‘yl"‘ m y

E.(¥,)(3P2—1
As generally accepted, assume tigat 0, and then the do- =(F)(3¥1—1)

main of coexisting phases is determined by the condition Whereﬁ'm are solutions of the corresponding equations for

<0. Intrl%ducing the dimensionless variable¥, 7 7 =0. The valuesl, ,can be taken as basic solutions only
=(lal/p)"*¥, we find from Eq.(12) that for a givenWo  far away from the boundary of the coexistence of phases.

there are two possible values fir;: In order to determine the critical values of the chemical
potentialh that determine the domain of the coexistence of
Vo= — \Ij_ /1_ § P2 (13) phases, we take into account that the thermodynamically un-
! 2 4 "0 stable phase must be considered as an external phase. Then

the critical value ofh at which the phase loses thermody-
namic stability under a given magnitude of electric current
can be determined from E¢l4). Hereafter, the phases with
negative and positive values of the order parameter are called
the negative and the positive phases, respectively. Then, for
a positive phase setting in E¢qL4) Vy=1N3, ocg=0,, h
=h/, we find that

According to Egs(4) and(10), a condition for the thermo-
dynamic stability of a phase i9°f/dn*=0 or |W,
>1W3. From Eq.(13) it can be easily seen that there is a
unique thermodynamically stable solutiok; that corre-
sponds to the thermodynamically stable solutiopand vice
versa. In the range ¥3 <V <23, the thermodynamically
stable solution reads

\PO 3 +_ _ Ko EK_l O—L —0;
MRS ng=—hl g AL hR= k= 19

and in the range- 23 << —1/3 the stable solution is whereA= Pm® Bl a|?=0, o, , ando_, are conductivities

W= — W2+ [1—3y2 Using these relations and Egs. ©f the positive and negative phases, respectively. The do-
(11), we arrive at thAe eoquations for parameties: main of the thermodynamic stability of the positive phase is
' ' determined by the relation>h_ .

T ot 1 o > ) Shir_ni]!arly, éor (t?;:) negaf?ivde phas®,=—1N3, cg=0_,
— M w3y, —h — —, = rom Eq. (14), we fin
EL(Wg 0 O 5T o o
~ 2 1 ho—hos = <71 4 (17)
Tm 3 c T He™ :
=W3i-W,—h, - —<P;<——, (14 v3 142«
E (¥ © °° sy @

The domain of stability of the negative phase is deter-

3 3 5 mined by the conditiom<h_ , and the domain of the coex-
Ei(‘yo):_qfoi 1--v y . . . r
2 4 istence of phases is determined by the conditign<h
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<h, . The critical value of the electric curreAt,, whereby (DSM) of both phases in Ref. 1 using the zero-dimensional
at A>A, phases cannot coexist at any valuehpfcan be model. However, instead of the coefficieftarising in the

found from the conditiorh, =h_ or present study, the corresponding coefficient in Ref. 1 de-
pends upon the specific volume of the internal phase. The

2 (k+2)(1+2x) 4 latter provides us with an additional possibility whereby a
CZ%T—DQ_B 73 (18 hysteresis can occur instead of the domain of simultaneous

metastability of both phases. In the situation that is consid-
ered in this studyh™ <h™ always, i.e., hysteresis does not
occur and only DSM occurs. Thus, the poihfs,h*,h~ h
partition the domain oh into the regions of varying thermo-
dynamic stability of phases. Mutual location of these regions
depends upon the parameter o_ /o, and the magnitude
o of the “electric current”A. According to Eqs(16) and(18),
T—v +h=0. (19 in the domain of the coexistence of phases>h_ , and
0 1 according to Eqgs(20), and (21), h~>h*. Taking into ac-

According to Egs(14) and(15), the latter condition can be count these conditions, it can be easily seen that there exist
satisfied only at the pointslo|=|W¥,|=1. six different sequences of the domains:

In order to determine the value of the chemical potential e e
h=h" corresponding to the equilibrium with respect to the (& he <h"<h"<hg, (b) h"<h;<h"<h_,
transition from a positive phase to a negative phase, one o e e
must take into account that in this case the negative phase is  (€¢) he <h"<hg<h™, (d) h"<h; <h;<h", (22
the internal phase, i.e¥,=1, ¥,=—1. Substitutingog
=o0,., oy=o0_ in Eq. (19), we find that

For the electric currenA>A., the phase transition can-
not be realized as a phase transition of the first kind.

It is shown below that the equilibrium value of a chemical
potential is determined by the following condition:

(e) h<h;<h®<h~, (f)h*<h <hl<h_.

k—1 In order to determine the conditions on electric current
(200  where each of the above six cases can be realized, it is con-
venient to divide the domain of the parameteiinto four
regions: < k<d, d<k<1, 1<k<1/d, and x> 1/d where

Similarly, one can determine the potentra=h™ corre- - - VNG X
sponding to the equilibrium with respect to the inverse phaséj_z.(‘/3 1.)/(4 v3)~0.65. _However, the region <Q.K
<d is equivalent to the regiom>1/d, where a positive

transition from the negative phase to the positive phase b%hase is replaced with a negative one. Thus, all the conclu-

setingWo=—1,";=1, andoo=0_, o1=0 sions concerning the positive phase in the domair8<d
k—1 are valid for the negative phase in the domain 1/d and

(22 vice versa. A similar situation occurs in the domair «
<1, and, correspondingly, in the domaird%/ «>1. There-

It follows from Egs.(20) and (21) that the phase equilib- fOr€ it is sufficient to analyze only the case witt?1.
rium curves for the direct and inverse phase transition are COnsider first a domain 4« <1/d. The conditionh
shifted in the same direction, i.e., shij=sgnf"). Here, <Nc and Eqs(17) and(20) yield
one of the phases becomes more stable than in the current- (k—1)(4—V3)
free case, while the other phase destabilizes since part of the = Tk
domain where this phase is stable in a current-free case be- (k+2)(1+2k)
comes metastable. Equatiof®)) and (21) show that stabi-
lizes the phase with a higher electric conductivity. The
physical meaning of the domain” <h<h~ is elucidated by
the following general considerations. In a current-free sys
tem,h>0 is a region of stability of the positive phase, while
h<0 is a domain of the stability of the negative phase.
Therefore, in a current-carrying system for sufficiently large
but negativeh, the negative phase is stable. Whernin- __ 2 (k+2)(A+2k)
creases and attains the pomt where the nuclei of a posi- 3(4—v3) (k=1)(k—d) "
tive phase can form, the negative phase loses stability and

I
transfers into a metastable state. However, a positive phase iQ" the occurrence of casb), apart from the conditiom

still metastable since, fdi<h~, nuclei of a negative phase <Nc (A>R), the conditionh™>h{" must be satisfied. The
can form inside a positive phase, and onlyhath~ the latter condition yields

positive phase becomes stable. Thus, in the dorairh

<h™, both phases are metastable simultaneously. In the fol- A<P= 2 K+2_

lowing we will show that in this domain the sizes of the 3(2-v3) k—1

critical nuclei for a transition from a negative phase to a

positive phase, and for the inverse phase transition, are posi- For all k>1, P>R. Therefore, in the range of electric
tive and finite values. Note that we discussed a possibility ofurrents R<A<P, case(b) occurs. In the rangé\.>A
the existence of the domain of simultaneous metastability> P, case(f) occurs.

h7:

k+2

+=
h 1+2« A.

2
d-1)A<3. (23)

Thus, in this domain, the conditiof23) is always valid
(kd<1), and only three casda), (b), (f) can occur in com-
pliance with the inequalitie§22). The condition for the oc-
currence of caséa) is obtained from the conditioh+>hc+
and Egs(16) and(21):

(24)
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FIG. 1. Diagram of coexistence of phases at small electric cur- , . ]
rents: (1) DSM; (2) stable positive phase3) stable negative B I_:IG. 2'_ Dlagra_m of coemstenge of phase_s, C@l_a (1) D_SM’
h; is a spinodal line of the negative pha®g; is a spinodal line of

phaseh* is a binodal line for thet=— phase transitionfy™ is a c >
binodal line for the—=+ phase transition. the positive phase.

Before the analysis of the domain>1/d, consider ther- (4—v3)(1—x)(d—«) <E 27)
modynamic situation in each of the domains. When dase (1+2k)(k+2) 3’

occurs, DSM is completely embedded in the region of the ) ] ] o .
coexistence of phases. To the left of this domaiﬁi,<h Ip the ranged< K<:.|., inequality(27) is yalld without restr_lc- _
<h*, the negative phase is stable while the positive phase ilons on the magnitude of the electric current. Thus, in this
metastable. Ah_ >h>h" the negative phase is metastable '4N9€ ofr, there occur casé@), (¢), (€), and all the conclu-
while the positi\C/e phase is stabisee Fig. 1 sions concerning the positive and negative phases in cases
When caséb) occurs, the DSM borders from the left with (b) and.(f) are valid for the negative and positive phases,
a spinodal line of the positive phase. In this case, in théestpe(;;lvizly, In cas:ta)@) ;nd(e). In the ragge Of0<K<dd’
whole range of the coexistence of phases the negative pha%s ead of case@), (b), (d), caseda), (c), (d), occur, and so
is metastable, and the positive phase is stable in the ran
h™<h<h, . Case(f) describes a situation where in the
whole of the coexistence of phasds (<h<h_) the nega-

Thus, the most significant effect of the electric current is
the occurrence of the domain of the simultaneous metastabil-

) . S : ity of two phases. Inside this domain the nuclei of a phase
tive phase is metastable and the positive phase is stable. T th a higher electric conductivity are formed due to the

situation occurs because, at large electric currS A oy of ponderomotive forces, ie., due to the external

>P, the coexistence of phases is realized deep inside thg, .o of electric current, while the nuclei of a phase with a

region with positiveh, such that in a current-free system the g, 5jjer electric conductivity are formed due to the surplus of
negative phase there was thermodynamically unstable. In t%emical energy.

presence of an electric current this phase is partially stabi-
lized and it transforms into a metastable state.
Now consider a case witk>1/d. In this case the condi- lll. RELAXATION OF THE ORDER PARAMETER

tion (23) yields an additional restriction to EqR4): Now, using the approach suggested in Ref. 11, we con-

sider the peculiarities of the relaxation of the order parameter
k—d in the presence of an electric current. Using the dimension-

A<R wd—1 Ry (29 |ess variablesp,h, 7, defined above, and the dimensionless
lengthx and timer,

Thus, fork>1/d, R;>R, case(b) is realized only when 2 5
the following condition is satisfied: r=v2 X X, t=|—0oH 7r
a ' INa/”’

Ri>A>R. (26)  we restrict ourselves to the analysis of a nonconserved order
) ) parameter in an isotropic case.

For A>Ry, h™>h and casdf) cannot be realized. Since  ysing Eq.(10), we can rewrite Eq(4) in the new vari-
hy>h" and h~>h_ in the range of electric currenta ables as
>R;>R, Eq.(22) shows that in the rang&.,>A>R; case
(d) occurs. In the latter case, DSM extends over the wholeg¥ §2¥% 2 g¥ g T
range of the coexistence of phases. In Fig. 2, we showed;—= -7+ -~ +2(V—¥")+h, h=h+ Voo,
schematically, this situation fok=1. (28)

Similarly, we can consider the cage<1. In the rangel

< k<1, conditionh] <h* yields Let us look for the solution of Eq28) in the form
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W=WP[x—Xq(7)], The conditions(33) yield the following relation between

: _ the sizes of the critical nucleij andx, :
wherexy(7) is the location of a front.

Assume that forx—Xo<<Xy and xy>1, solutionV is a Xg 3 A
kink, while for x—xq~Xq it is close to a constant. Following Xg =——, =5 A
Ref. 11, the first derivative is taken into account only %or Y% —1 c
~Xo<Xo. Then, Eq.(28) can be rewritten as whereA, is determined by Eq18). Expressing the sizes of
oV PV 2 g - th+e nugleixa in urlitsAC/A [xg =(A/A)NT], we find that
— = +— —+2(¥—¥3)+h. (29 AN"=NI(VI2NT 1]
IT X" Xo X The latter relation shows that when the size of the nucleus

For 7,—0, Eq.(29) coincides with Eq.(13) of Ref. 11 if  of the negative phase increases, —«, the size of the

one neglects in the latter the angular dependence of the ordBkcleus of the positive phase” decreases) " —2/3 and
parameteny. vice versa. If the considered mechanism of the phase transi-

In Ref. 11 it was shown that Etzh, with the accuracy tion coul.d have been realized without the influence. of'other
o(h?) ando(e~ >0 in the domairx— x> 1, and with the effects, in the DSM the system Would_ transfer perlodlc_a_lly
accuracyo(h?) in the domainx—x,<1, the solution of Eq. from one state into the othe_r_smce the increase of th_e critical
(29) can be written as follows: nuclqu for the phase transition=— causes a red_uctlo_n of

the critical nucleus for the transition=+. In reality, dis-
1 ) persion of a system into small particles can prevent the oc-
W =xtantx—xo(n]+ 7 h  —X=_~*7, (30  currence of such a process. In Fig. 1 we plotted a diagram of
0 the coexistence of phases for cdsg and for |h~|<|h_]|,
where signs* in Eq. (30) correspond to the formation of |h*|<|hf|. As can be seen from this figure, DSM occurs
nuclei of the negative and positive phases, respectivelywithout a threshold at arbitrary small values of an electric
Equations(14) and (15) imply that ath—0, V;—¥;— current A. However, as a magnitude of an electric current
*2. Therefclre, without losing accuracy, in E§0) we can  decreases the range of valueswhere DSM occurs, shrinks.
replaceh by h*=h+7 /s, wheres=—2 in the case of the Thus, taking into account the change of electric conduc-
formation of nuclei of the positive phase= + 2 in the case tivity in current-carrying conductors, there results a more
of the formation of the negative phase, and formu|as';-fﬁr diversified behavior of the SyStem. The most SigniﬁCant dif-
are written below. Thus, in the case of the formation of aférence in comparison with the case of a current-free con-

nuc|eus of the negative phase, the so'ution of(EQ) reads: ductor is the existence of the domain of parameters where
both phases are metastable. The existence of such a domain

B 1 T may be characteristic for a wide class of systems subjected to
W=tantix—xo (1)]+ 7 | h+ =~/ the external forces where the parameters determining the re-
sponse of the system to the external field differ for both
~— phases. Such a situation may occur due to the effect of the
.2 3 Tm o . . o
—Xg=—+5|h+—], (3D electric field where the dielectric permeabilities of both
Xg 2 2 phases are differensee, e.g., Refs. 13 and )]14lue to the

where x; (7) is the radius of the nucleus of the negative external pressurésee Ref. 1§ etc. At present, it is not clear
phase andr-=[2(1— k)/(x+2)]A whether this effect can occur in systems with a strong mag-
m . ; .
In the case of the formation of the nucleus of the positivene'[IC response or sggnetoelectncs. . L
hase, instead of EG29) we obtain Stochastic behavior of the system in DSM is significantly
P ' different from that in the domain where one of the phases is

1 =t stable, and is not considered here. It is natural to expect that
W=—tanfx—xq (7)]+ = | h— —m) , dispersed structures are formed in DSM. The physical reason
4 2 for the occurrence of DSM is related to the openness of the

system with respect to the source of the electric current. As

_X+:i_§( _W_r;) (32) was pointed out above, transition from the phase with a
0 Xg 2 2 ) higher electric conductivity to the phase with a lower electric
~ conductivity occurs due to the surplus of chemical energy
wherem, =[2(xk—1)/1+2«]A. _ accumulated in a phase with a high electric conductivity, and
The sizes of the critical nuclei are determined from theponderomotive forces act to prevent this transition. The in-

conditionsxy =0: verse phase transition occurs due to the ponderomotive en-
ergy, and the work is performed by the source of an electric

o= — f 1 x*=i 1 (33) current. Outside the DSM, the stochastic description of the

0 1-x ' 70 ' system may be performed using the traditional approach

h+mA h+1+2KA (see, e.g., Ref. 11

Due to the strong sensitivity of the behavior of the system
The conditionsxy, >0, x>0 or h+[(1—«)/(x+2)JA  with respect to the initial parameters and the physical variety
<0, h+[(1-«)/(1+2«)]JA>0 determine DSM, while of such systems, comparison of the obtained results with the
conditions 1x, =0 determine the phase equilibrium curves available experimental dai@ee Refs. 5-38is not straight-
(20) and(21). forward. In these studies the following effects of an electric
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current on the structure of alloys and upon the crystallization 1
were found: (1) reduction of grain siz&;(2) strong depen- a;=a) —=—, (39
. . . 1- pm/ps
dence of the rate of change of Ohmic resistaRcepon the
magnitude of electric curredtand(3) high magnitude of the Whereag is a size of the critical nucleus without an electric
undercooling at which crystallization begins. current,pe=2ag/ag, andas is a coefficient of the surface
Qualitatively, these observations are in accord with theension. Since the nucleation ratexexp(—4ma@d/3T),
results obtained in Refs. 1, 2, 4, and in the present study. lwhile the rate of change of the Ohmic resistafted, Eq.
order to perform a quantitative comparison, the problem35) yields
must be solved on a more detailed level of description, and 0\ 2
the model employed in this study is not sufficient for com- Rmexp{ _Amaga;) 1
parison with the experiments. 3T (1-12®/15)?)"
_As we noted above, comparison of the results obtainegore| is determined by the following formula:
with the Ginzburg-Landau model with experiments is quite
involved. However, it is expedient to develop this model for 2 >
the description of phase transitions in current-carrying sys- 0= TroC 0
tems since zero-dimensional nucleation the(sge Refs. 1 o _
and 4 cannot explain the experimentally observed effects ofJsually, the latter quantity is very large, sinces
the relatively small electric currents on crystallization. In the~10°—10* dyn/cm,ag~10" cm, and for a cylindrical con-
following we present some estimates that can be obtaineductor with a radiusro=1cm, I,~10° kA. Experiments
using our previous results obtained with a zero-dimensionaghow that the characteristic values of the electric current at
model. According to Refs. 1 and 4, the magnitude of thewhich the above discussed effects occur are of the order of
undercooling with respect to the internal crystallization islo~1 kA.” Therefore, the effect of the electric current with

|2_

determined by the following equation: such a magnitude can be explained only by the anomalous
_ behavior of the coefficient of the surface tension that must
“s(P+PmtPs, T)=pu(p,T), (34 assume the valuea~10"1—1 dyn/cm. It is conceivable

where subscriptsS and L correspond to solid and liquid that such_ an<_)malous behavior of t_he_ coefficient qf the sur-
phases, respectively, P=[(1—x)/(x+2)]pn®, « face tension is caused by thg_proxmlty of _the region where
=og/o >1, and thepg is the pressure due to surface ten-ther_e occurs a phase transition to th? critical temperature
sion. The magnitude of thAT/T, can be determined from (which is the reason why it is expedient to describe this

- . henomenon using a Ginzburg-Landau mp@eld because
Eq. (34) in the | P ! '

a. (34) in the fimit ps—0 and the phase transition occurs in an undercooled state. Anyway,
AT VoPm the employed model is the only model that allows us to
= == ' describe correctly the behavior of the system qualitatively. It
To Ao

must be noted also that, according to our restite surface
wherevy, A >0, andT, are a specific volume, a latent heat crystallization in the presence of an electric current does not
of melting, and a crystallization temperature, respectively. occur in an undercooled state but requires an additional over-
Equation(34) yields the following expression for the size cooling that plays a significant role in the development of the

of the critical nucleus : internal phase transition.
*Electronic address: yuli@menix.bgu.ac.il 9L. D. Landau and E. M. LifshitzStatistical Physic§Pergamon,
"Electronic address: elperin@menix.bgu.ac.il Oxford, 1980.
1Yu. Dolinsky and T. Elperin, Phys. Rev. &7, 14 778(1993. 0L, D. Landau and E. M. LifshitzElectrodynamics of Continuous
2Yu. Dolinsky and T. Elperin, J. Appl. Phy33, 5283(1993. Media (Pergamon, Oxford, 1984
3Yu. Dolinsky and T. Elperin, Phys. Rev. B0, 52 (1994). 1A, Z. Patashinsky and B. I. Shumilo, Zh. Eksp. Teor. HZ,
4Yu. Dolinsky and T. Elperin, J. Appl. Phy80, 38 (1996. 1417(1979 [Sov. Phys. JETBO, 712 (1979].
5J. P. Barnak, A. F. Sprecher, and H. Conrad, Scr. Metall. Mater!?V. P. Scripov,Metastable Liquid§Wiley, New York, 1974.

32, 879(1995. Byu. L. Dolinsky and N. A. Yavorovsky, Sov. Phys. Tech. Phys.
6R. Takemoto and H. Mizubayashi, Acta Metall. MatéB, 1495 35, 765(1990.

(1995. 14p, L. Martson and R. E. Apfel, Phys. LeB0A, 225 (1977.
"H. Mizubayashi and S. Okuda, Phys. Rev48 8057 (1989. 15|, M. Lifshitz and L. S. Gulida, Dokl. Akad. Nauk SSS&, 377

8A. K. Misra, Metall. Trans. A16, 1354(1985. (1952.



