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Probability distribution of internal stresses in parallel straight dislocation systems

I. Groma and B. Bako´
Department of General Physics, Eo¨tvös University Budapest, Budapest Mu´zeum krt. 6-8, POB 323, H-1445, Hungary

~Received 18 December 1997; revised manuscript received 11 March 1998!

The collective behavior of a system of straight parallel dislocations is investigated. It is found by numerical
simulation that the internal stresst created by the dislocation has a stochastic component. In order to describe
this stochastic character the form of the probability distribution function of the internal stress is determined. It
is shown that the mean value of the distribution function is the self-consistent field created by the dislocation
and the distribution function decays with 1/t3. @S0163-1829~98!05230-8#
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INTRODUCTION

It is well known that during plastic deformation of crys
talline materials the dislocation distribution does not rem
homogeneous. Because of the long-range character o
dislocation interaction the dislocations can form many diff
ent type patterns, such as dislocation walls and vein
ladder structures. In spite of the increasing experimental
theoretical activity in this field~for a broad overview see
Refs. 1,2!, we are far from understanding these typically se
organizatory phenomena.

A possible approach for the modeling of these patt
formation processes is the continuum approximation
which the system is described by continuous variable. In
models of Kulhman-Wilsdorf and van der Merve,3 Holt,4 and
Ricman and Vinals5 thermodynamical analogies are use
which lead to quasistatic descriptions. In contrast to th
models, Walgreaf and Aifantis,6 Aifantis,7 and Schiller and
Walgraef8 adopt reaction-diffusion equations originally d
veloped for oscillating chemical reactions. In the models
Kratochvil and Libovicky,9,10 and Franek, Kalus, and
Kratochvil11 a dislocation-dipole, mobile-dislocation intera
tion mechanism is proposed to predict pattern formation.
series of papers Ha¨hner12,13 introduced the concept of sto
chastic dislocation dynamics using a statistical mechan
analogy. Each model is able to predict the formation of
homogeneous dislocation distribution, but their comm
shortcoming is that they are based onad hocassumptions.

Another possibility is to investigate the collective beha
ior of systems consisting of individual dislocations by co
puter simulation. During the past few years several tw
dimensional ~2D! ~Refs. 14–23! and 3D ~Refs. 24–26!
simulations were carried out. In many of them evidence
pattern formation was reported, but due to the long-ra
nature of the dislocation-dislocation interaction macrosco
properties could be investigated only in a very limited wa

Recent investigations of Groma and Balogh27,28 have
shown that the individual and the continuum approaches
be linked through the construction of a hierarchy of evo
tion equations of the different order dislocation distributi
functions. By neglecting the dislocation-dislocation corre
tions a self-consistent field description has been deri
which can be considered as a zero order approximat
However, as was pointed out by Wilkens29 the elastic energy
of an uncorrelated dislocation system diverge logarithmica
PRB 580163-1829/98/58~6!/2969~6!/$15.00
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with the crystal size, therefore the dislocation-dislocati
correlation cannot be completely neglected. The aim of
investigation presented in this paper is to obtain a metho
which correlation effects are also take into account.

SHORT TIME BEHAVIOR OF A SYSTEM
OF PARALLEL DISLOCATION INVESTIGATED

BY NUMERICAL SIMULATION

In most of the 2D simulations performed earlier the b
havior of dislocation systems has been investigated on a
scale longer than the relaxation time of the system. In or
to determine further properties of the internal stress crea
by the dislocations short time~much shorter than the relax
ation time! simulations were carried out. In the simulations
system of a few hundreds of parallel edge dislocations w
considered. Each dislocation had the same Burgers vectbW
parallel to thex axis with equal number of positive and neg
tive signs. As in the simulations reported in Refs. 21,22 ov
dumped dislocation motion was assumed, i.e., the velocit
the dislocations was proportional to the force acting on the
This leads to the system of equations of motions21

dxi

dt
5Bbi(

j Þ i
t ind

j ~xj2xi ,yj2yi !1Bbitext, j 51,N,

~1!

where (xi ,yi) denotes the position of thei th dislocation,B is
the dislocation mobility,text is the external shear stress, an

t ind
j ~x,y!5

mbj

2p~12n!

x~x22y2!

~x21y2!2
~2!

is the shear stress created by an edge dislocation where
shear modulusm and the Poisson ration were introduced.

It was observed for several different dislocation config
rations that besides an average value the stress created b
dislocations has a stochastic component. The Fourier spe
of the time evolution of the internal stress at a given point
the simulation area obtained on a system containing 500
domly distributed dislocation dipoles is plotted on Fig.
Similar results were obtained for many other dislocation c
figurations too. In the figure each frequency appears w
more or less the same amplitude~there is no characteristic
2969 © 1998 The American Physical Society
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2970 PRB 58I. GROMA AND B. BAKÓ
decay or maximum!, showing that the stochastic stress co
ponent has a white noise character.

GENERAL FORM OF THE PROBABILITY DISTRIBUTION
OF THE INTERNAL SHEAR STRESS

For describing the properties of the stochastic compon
of the internal stress observed in computer simulations
probability distribution function has to be determined. Let
consider a system ofN parallel straight edge dislocation
positioned at the pointsrW i , i 51,N̄ in the xy plane perpen-
dicular to the dislocation lines. For the sake of simplicity, w
assume that each dislocation has the same Burgers vectbW .
As it will be shown later, the generalization of the results
systems consisting of dislocations with different Burge
vectors is straightforward. The internal shear stress at
point rW is the sum of the stress fields of the individual dis
cations

t~rW !5(
i 51

N

t ind~rW2rW i !. ~3!

@Since in the following only one type of dislocation is co
sidered for the sake of simplicity the upper index int ind(rW) is
omitted.#

The problem addressed in this paper is to determine
P(t0)dt0 probability of occurrence oft in the range

t02
dt0

2
<t~rW !<t01

dt0

2
, ~4!

wheret0 is a preassigned value fort. P(t0) can be obtained
as a direct application of Markoff’s method30 applied for
several problems, such as the problem of random flight
for the determination of the distribution of forces in gravit
tionally interacting random systems. In contrast with the t
problems mentioned, in case of dislocation theN particle
distribution function cannot be built up from the one partic
distribution functions since as it will be shown later it wou
lead to system size dependent internal stress distribu
functionP(t0). To avoid this the dislocation-dislocation co
relation must be taken into account.

FIG. 1. Fourier spectrum of the time-evolution of the intern
shear stress created by the dislocation system.~The units are arbi-
trary.!
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Denoting theN particle dislocation density function b
wN(rW1 ,rW2 , . . . ,rWN) the internal stress distribution can be e
pressed as

P~t0!dt05E •••E wN~rW1 ,rW2 , . . . ,rWN!drW1drW2•••drWN ,

~5!

where the integration is effected only over that part of co
figuration space for which the inequalities~4! are satisfied.
By the introduction of the factor

D~rW1 ,rW2 , . . . ,rWN!

5H 1 whenever t02
dt0

2
<t<t01

dt0

2
,

0 otherwise,

~6!

the integral in Eq.~5! can be extended over 2N-dimensional
spaceR2N:

P~t0!dt05E
2`

`

•••E
2`

`

D~rW1 ,rW2 , . . . ,rWN!

3wN~rW1 ,rW2 , . . . ,rWN!drW1drW2•••drWN . ~7!

For the determination on the structure of expression~7! one
has to consider the integral

d5
1

pE2`

` sin~an!

n
exp@ ign#dn, ~8!

which is the well-known discontinuous integral of the D
richlet function with the properties

d5H 1 whenever 2a,g,a,

0 otherwise.
~9!

By taking

a5
dt0

2
and g5(

i 51

N

t ind~rW2rW i !2t0 ~10!

from Eq.~6! one gets thatD5d. With the substitution of the
Eq. ~8! form of d into Eq. ~7!, we obtain that

P~t0!dt05
1

pER

dnE
R

2N
drW1drW2•••drWNwN

3~rW1 ,rW2 , . . . ,rWN!
sin@~1/2!dt0n#

n

3expH i F(
i 51

N

t ind~rW2rW i !n2t0nG J . ~11!

It can be seen from the structure of the above expression
the Fourier transform of the internal stress distribution

AN~rW,n!5FP~t0! ~12!

has the form

l
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AN~rW,n!5E wN~rW1 ,rW2 , . . . ,rWN!

3)
j 51

N

exp$ int~rW2rW j !%drW1drW2•••drWN . ~13!

If we introduce the function

B~rW,n!512exp$ i t ind~rW !n% ~14!

expression~13! can be rewritten into a power series
B(rW,n)

AN~rW,n!5E drW1drW2•••drWNwN~rW1 ,rW2 , . . . ,rWN!

3)
j 51

N

@12B~rW2rW j ,n!#

512E r1~rW1!B~rW2rW1 ,n!drW11
1

2E r2~rW1 ,rW2!

3B~rW2rW1 ,n!B~rW2rW2 ,n!drW1drW21•••, ~15!

where

rk~rW1 ,rW2, . . . ,rWk!5N~N21!¯~N2k11!

3E wN~rW1 ,rW2 , . . . ,rWN!

3drWk11drWk12•••drWN ~16!

is the kth order dislocation-density function. Equation~15!
can be transformed into an exponential form

AN~rW,n!5exp$E~n,rW !%, ~17!

where

E~n,rW !52E r1~rW1!B~rW2rW1 ,n!drW1

1
1

2E D2~rW1 ,rW2!B~rW2rW1 ,n!B~rW2rW2 ,n!drW1drW2

1••• ~18!

in which

D2~rW1 ,rW2!5r2~rW1 ,rW2!2r1~rW1!r1~rW2! ~19!

is the dislocation-dislocation correlation function.

THE MOMENTS AND THE ASYMPTOTIC BEHAVIOR
OF P„t…

Since dislocations form strongly inhomogeneous distri
tions the explicit form ofP(t) cannot be determined analyt
cally. Nevertheless, analytical results can be obtained
some of its properties. An important characteristic value
the distribution functionP(t) is its first moment̂ t(rW)&. By
applying the relation
-

r
f

^t~rW !&5
i

A~rW,0!

dA~rW,n!

dn
U

n50

~20!

we obtain that

^t~rW !&52 i E r~rW !
dB

dn U
n50

drW15E r~rW !bt ind~rW2rW1!drW1 ,

~21!

which is the self-consistent field created by the dislocat
system at the pointrW. As it is shown in Ref. 27 for edge
dislocations it fulfills the field equation

D2^t~rW !&52
mb

12n

]3

]x]y2
r~rW !. ~22!

The second moment ofP(t) can be determined from th
relation

^t2~rW !&52
1

A~rW,0!

d2A~rW,n!

dn2 U
n50

. ~23!

However, from Eqs.~17!, ~18! one gets that

d2A

dn2 U
n50

52E r~rW !b2t ind
2 ~rW2rW1!drW11•••

52E r~rW2rW1!b2t ind
2 ~rW1!drW11•••, ~24!

in which, due to the 1/r type decay of the stress field of
straight dislocation, the integrand has a 1/r 1 singularity, and
consequently the second moment ofP(t) is infinite. There-
fore to determine further characteristic properties of the d
tribution function P(t) its asymptotic behavior has to b
investigated. First the behavior ofAN(n) has to be analyzed
in the regime of smalln values. Let us consider the first term
in expression~18!

f 0~rW,n!5E r~rW2rW1!B~rW1 ,n!drW1 . ~25!

For the same reason as in expression~24! its second deriva-
tive at n50

d2f 0

dn2 U
n50

5E r~rW2rW1!b2t ind
2 ~rW1!drW1 ~26!

is singular. However, ifr(rW) was zero at the pointrW the
integral would be finite.~If the dislocation density has a fi
nite value at infinity the integral is divergent forr 1→`, too.
For avoiding this problem it has to be assumed that the
location density goes to zero at infinity. However, this r
striction will be lifted later.! So, if instead off 0(rW,n) the
expression

f 1~rW,n!5E @r~rW2rW1!2r~rW22rW1!#B~rW1 ,n!drW1 ~27!
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is considered the above singularity in the second deriva
of f 1(rW,n) does not appear becauser(rW2rW1)2r(rW22rW1)
50 for rW150. The newly definedf 0 and f 1 are not indepen-
dent from each other:

f 1~rW,n!5 f 0~rW,n!2E r~rW22rW1!B~rW1 ,n!drW1 . ~28!

Since,t ind(r );x(x22y2)/r 4, if we takeB at the point 1/2rW1,
we find that

BS 1

2
rW1 ,nD5B~rW1,2n!. ~29!

Using this relation with arW1→2rW1 variable substitution in
the second term of Eq.~27! we arrive at

f 1~rW,n!5 f 0~rW,n!2
1

4
f 0~rW,2n!. ~30!

Because of the regular behavior of the second derivativ
f 1(rW,n) it can be approximated with a parabolic expressi

f 1~rW,n!'a8~rW !n1b~rW !n2. ~31!

Equations~30! and ~31! determine a function equation fo
f 0(rW,n), the solution of which is

f 0~rW,n!5a~rW !n2
b~rW !

ln 2
n2ln

n

R
, ~32!

where a(rW)5 i ^t& and R is a parameter which cannot b
determined from the function equation. It corresponds to
an2 solution of the homogeneous equation

05 f 0~rW,n!2
1

4
f 0~rW,2n!. ~33!

According to Eqs.~26! and ~31! the actual value ofb(rW)
can be given by the expression

b~rW!5
1

2

d2f1

dn2 U
n50

5
1

2E@r~rW2rW1!2r~rW22rW1!#b
2tind

2 ~rW1!drW1 . ~34!

The stress field created by a straight dislocation has the
lowing form:

t ind~rW !5
K~w!

urWu
, ~35!

where w is the angle between thex axis and the position
vectorrW andK(w) is a trigonometric polynomial ofw deter-
mined by the actual type of the dislocation under consid
ation. Introducing polar coordinates (r 1 ,w) for the variable
rW1, Eq. ~34! gets the form

b~rW !5 lim
«→0

1

2E0

2p

dwE
«

`

dr1@r~rW2rW1!2r~rW22rW1!#b2
K2~w!

urW1u
~36!
e

of

e

l-

r-

in which in order to avoid the singularity in the integran
aroundr 150 a circular area with radius« is excluded from
the integral. After splitting it into two integrals, with th
2rW1→rW1 variable substitution in the second one we find th

b~rW !5
1

2E0

2p

dwE
«/2

«

dr1r~rW2rW1!b2
K2~w!

urW1u
. ~37!

Since the integral has to be carried out for an area clos
the origin of the coordinate system,r(rW2rW1) can be approxi-
mated by its value atrW150

b~rW !5
1

2
r~rW !E

0

2p

dwE
«/2

«

dr1b2
K2~w!

urW1u
~38!

from which

b~rW !5r~rW !ln~2!C, ~39!

where

C5
b2

2 E
0

2p

K2~w!dw ~40!

is a constant determined by the type of dislocation un
consideration, and by the elastic moduli. In an isotropic m
dium for edge dislocations

C5
~mb!2

8p2~12n!2E0

2p

cos2~w!cos2~2w!dw5
~mb!2

16p~12n!2
.

~41!

According to Eqs.~32! and~39! we conclude that up to sec
ond order termsf 0(rW,n) can be approximated with the ex
pression

f 0~rW,n!' i ^t~rW !&n2Cr~rW !n2ln
n

R
. ~42!

As was mentioned earlier the actual values of parameteR
cannot be determined by the method described above. It
be obtained from the analysis of expression~25! that it is
proportional to the crystal size, consequentlyf 0(rW,n) di-
verges logarithmically with the crystal size. However,
taking into account the dislocation-dislocation correlati
described by the functionD2(rW1 ,rW2), the divergence can be
canceled. Namely, for smalln values the second term i
expression~18! can be approximated by

E D2~rW1 ,rW2!B~rW2rW1 ,n!B~rW2rW2 ,n!drW1drW2'2G~rW !n2.

~43!

Assuming thatG(rW) diverges also logarithmically with the
crystal size, the sum of the two terms in Eq.~18! becomes
crystal size independent. So up to second order terms
Fourier transform of the stress distribution has the form

A~rW,n!5expH i ^t~rW !&n1Cr~rW !n2ln
n

Reff
1•••J , ~44!
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whereReff can be regarded as effective outer cutoff radius
is important to emphasize that in order to avoid crystal s
dependence inP(t) the dislocation-dislocation correlatio
has to be taken into account.

For obtaining the connection between the asymptotic
havior ofP(t) andA(rW,n) let us consider the variance of th
stress distribution function

v~t!5E
2t

t

t82P~t8!dt8. ~45!

As was mentioned earlier the second order moment ofP(t)
is infinite, so limt→`v(t)5`. However, introducing the
function

A1~rW,n!5A~rW,n!2
1

4
A~rW,2n! ~46!

and its Fourier transform

P1~rW,t!5F@A1~rW,n!#, ~47!

from Eq. ~44! we obtain that

lim
t→`

E
2t

t

t82P1~rW,t8!dt852
d2A1

dn2 U
n50

5 ln 2Cr~rW !.

~48!

This means that for large stress values the variance
P1(rW,t8) can be approximated by

E
2t

t

t82P1~rW,t8!dt8' ln 2Cr~rW !, ~49!

i.e., its second moment is finite. On the other hand from E
~46! and ~47! one finds that

E
2t

t

t82P1~rW,t8!dt85E
2t

t

dt8E
2`

`

dnt82FA~n!

2
1

4
A~2n!Gexp$2p int8%. ~50!

After splitting the integral into two terms, and performin
the n→2n variable substitution in the second one we arr
at

E
2t

t

t82P1~rW,t8!dt8

5E
2t

t

dt8t82FP~t8!2
1

8
P~t8/2!G

5E
2t

t

dt8t82P~t8!2E
2t/2

t/2

dt8t82P~t8!

5v~t!2v~t/2!. ~51!

From Eqs.~49! and~51! the following function equation can
be concluded for the variancev(t):

v~t!2v~t/2!52 ln 2Cr~rW !, ~52!

the solution of which is
It
e

-

of

s.

v~t!52Cr~rW !ln
t

t8
, ~53!

wheret8 is a parameter which cannot be determined fro
Eq. ~52!. It follows that the asymptotic behavior of the prob
ability distribution has the form

P~t!'Cr~rW !
1

t3
. ~54!

The results obtained above can be generalized for the
in which dislocations with opposite sign Burgers vectors
allowed. Without going into detail we mention that in th
first moment of the distribution functionP(t) given by the
expression~21!, and in the asymptotic form~54! the disloca-
tion densityr(rW) has to be replaced byr1(rW)2r2(rW) and
r1(rW)1r2(rW), respectively, wherer1(rW) andr2(rW) denote
the density of dislocations with positive and negative s
Burgers vectors.

CONCLUSIONS

The collective behavior of a system of parallel edge d
locations was investigated. Results of numerical simulati
show that the stress field created by the dislocations can
approximated as the sum of a slowly varying and a stocha
component. According to our numerical observations the s
chastic component can be well described as white noise.
determining the probability distribution of the stochas
stress component Markoff’s method was applied. Since
avoiding crystal size dependence of the distribution funct
the dislocation-dislocation correlation function defined
expression ~19! cannot be neglected Markoff’s origina
formula30 applied for several other systems and was gen
alized. It was found that the first order moment of the dis
bution function is equal to the self-consistent field of t
dislocation system. The same stress field was obtained f
the BBGKY hierarchy of different order dislocation distribu
tion functions by neglecting dislocation correlations.27 Fur-
thermore, it was obtained that the probability distributi
asymptotically decays with the inverse third power of t
stress. For the homogeneous dislocation distribution~apart
from a constant! this behavior can be easily obtained fro
dimensional analysis. Namely, the only expression which
the required inverse stress dimension and is proportiona
the dislocation density iscb2m2r/t3, wherec is a constant.
It is important to note, however, that the obtained asympto
behavior is valid for an inhomogeneous dislocation distrib
tion too, and depends only on the local dislocation dens
i.e., it is independent from the nonlocal properties of t
dislocation configuration and from the dislocatio
dislocation correlation. The actual form of the correlati
function D2(rW1 ,rW2) determines the half width of the prob
ability distribution function through the correlation param
eterReff ~which can be approximated by the dipole width!. A
further important consequence of the;1/t3 asymptotic de-
cay is that the second and higher order moments of the
tribution function are infinite.

The results obtained make it possible to set up the fra
work of an O(N) dislocation dynamics simulation metho
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based on the stochastic approximation. The numerical si
lations above show that each dislocation experiences a s
field with random character~see Fig. 1!. According to ex-
pression~44! this random stress is described by the distrib
tion functionP(t) which depends on the smoothed out d
location densities r1(rW), r2(rW), and the correlation
parameterReff(rW). @Since expression~44! determines only
the Fourier transform ofP(t) for small Fourier parameters
P(t) needs to be approximated by a function the Fou
transform which follows the form~44!.# So, for the numeri-
cal investigation of the dynamic properties of an assembly
N dislocations the following stochastic algorithm is pr
posed.

~1! With an appropriate coarse-grain size the simulat
area is divided into cells.

~2! In each cell the values of the smoothed out parame
r(rW), ^t(rW)&, andReff(rW) are determined.

~3! Each dislocation is displaced by a random value g
erated according to the local stress distribution funct
P(t).

~4! Go to 2.
The advantage of the method compared to the direct

merical integration of the equations of motion of dislocatio
demandingO(N2) calculation is that it requires only aO(N)
iv
e

la-
d

g

t-
u-
ss

-
-

r

f

n

rs

-
n

u-
s

calculation. In addition the algorithm can be very efficien
implemented on parallel computers. Preliminary results sh
that the algorithm is able to reproduce similar dislocati
configurations as the direct integration.

The method outlined above leads to a stochastic dislo
tion dynamics, but it needs to be stressed that it diff
strongly from the one proposed by Ha¨hner.12,13In that model
the dislocation system is described by a single variable,
dislocation density time evolution of which is governed by
Langevin type equation. To determine the connection
tween the two approaches requires further investigations
nally we mention that since in the derivation of the formu
the 1/r nature of the dislocation interaction was used, rat
than the special properties, the obtained expression ca
generalized for other similarly interacting objects such as,
example, vortices in liquids.
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