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Probability distribution of internal stresses in parallel straight dislocation systems
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The collective behavior of a system of straight parallel dislocations is investigated. It is found by numerical
simulation that the internal stresscreated by the dislocation has a stochastic component. In order to describe
this stochastic character the form of the probability distribution function of the internal stress is determined. It
is shown that the mean value of the distribution function is the self-consistent field created by the dislocation
and the distribution function decays withr3/[S0163-182008)05230-9

INTRODUCTION with the crystal size, therefore the dislocation-dislocation
correlation cannot be completely neglected. The aim of the

l.t is well Ifnown tha}t dunng p"'?‘s“.c dgformanon of crys- investigation presented in this paper is to obtain a method in
talline materials the dislocation distribution does not remain, hich correlation effects are also take into account

homogeneous. Because of the long-range character of the
dislocation interaction the dislocations can form many differ-
ent type patterns, such as dislocation walls and vein and
ladder structures. In spite of the increasing experimental and
theoretical activity in this fieldfor a broad overview see
Refs. 1,2, we are far from understanding these typically self-  |n most of the 2D simulations performed earlier the be-
organizatory phenomena. havior of dislocation systems has been investigated on a time
A possible approach for the modeling of these patterrscale longer than the relaxation time of the system. In order
formation processes is the continuum approximation ino determine further properties of the internal stress created
which the system is described by continuous variable. In théy the dislocations short timgnuch shorter than the relax-
models of Kulhman-Wilsdorf and van der Mervélolt,*and  ation time simulations were carried out. In the simulations a
Ricman and Vinals thermodynamical analogies are used,System of a few hundreds of parallel edge dislocations were
which lead to quasistatic descriptions. In contrast to theseonsidered. Each dislocation had the same Burgers vbctor
models, Walgreaf and AifantfsAifantis,” and Schiller and parallel to thex axis with equal number of positive and nega-
Walgraef adopt reaction-diffusion equations originally de- tive signs. As in the simulations reported in Refs. 21,22 over-
veloped for oscillating chemical reactions. In the models ofdumped dislocation motion was assumed, i.e., the velocity of
Kratochvil and Libovicky>!® and Franek, Kalus, and the dislocations was proportional to the force acting on them.
Kratochvil! a dislocation-dipole, mobile-dislocation interac- This leads to the system of equations of motfdns
tion mechanism is proposed to predict pattern formation. In a

SHORT TIME BEHAVIOR OF A SYSTEM
OF PARALLEL DISLOCATION INVESTIGATED
BY NUMERICAL SIMULATION

series of papers Hmer?? introduced the concept of sto- dx; : L —
chastic dislocation dynamics using a statistical mechanical E=Bbi_§_ Thd(Xj = Xi,Yj—Yi) + BbiTeqr,  j=1,N,
analogy. Each model is able to predict the formation of in- o 1)

homogeneous dislocation distribution, but their common

shortcoming is that they are based @ hocassumptions.  \ynere §; ,y;) denotes the position of thiéh dislocationB is

_Another possibility is to investigate the collective behav-ihe gislocation mobility, 7. is the external shear stress, and
ior of systems consisting of individual dislocations by com-

puter simulation. During the past few years several two- s o
dimensional (2D) (Refs. 14—28 and 3D (Refs. 24—-2B ()= ubj  x(x*—y%)
simulations were carried out. In many of them evidence for AT 2m(1-v) (x24y2)2
pattern formation was reported, but due to the long-range
nature of the dislocation-dislocation interaction macroscopigs the shear stress created by an edge dislocation where the
properties could be investigated only in a very limited way.shear modulug. and the Poisson ratio were introduced.
Recent investigations of Groma and Balég#f have It was observed for several different dislocation configu-
shown that the individual and the continuum approaches carations that besides an average value the stress created by the
be linked through the construction of a hierarchy of evolu-dislocations has a stochastic component. The Fourier spectra
tion equations of the different order dislocation distributionof the time evolution of the internal stress at a given point of
functions. By neglecting the dislocation-dislocation correla-the simulation area obtained on a system containing 500 ran-
tions a self-consistent field description has been derivedomly distributed dislocation dipoles is plotted on Fig. 1.
which can be considered as a zero order approximatiorSimilar results were obtained for many other dislocation con-
However, as was pointed out by WilkéRshe elastic energy figurations too. In the figure each frequency appears with
of an uncorrelated dislocation system diverge logarithmicallynore or less the same amplitudthere is no characteristic

2

0163-1829/98/58)/29696)/$15.00 PRB 58 2969 © 1998 The American Physical Society



2970 I. GROMA AND B. BAKO PRB 58

—~

Denoting theN particle dislocation density function by

Wn(r1,T2, ... Iy) the internal stress distribution can be ex-
0.8 pressed as
3 0.6} Lo o R
§ P(To)dTo:f o f WN(T1,r, ..o ry)dradry- - -dry,
£o4 5
0.2 where the integration is effected only over that part of con-

figuration space for which the inequaliti¢$) are satisfied.
By the introduction of the factor

2.0 4.0 6.0 8.0 10.0
Jfrequency

A(rq,ro, ... rn)
FIG. 1. Fourier spectrum of the time-evolution of the internal
shear stress created by the dislocation systdime units are arbi- 1 whenever r,— %g r<To+ %
trary) = 2 2 (6)

_ _ _ 0 otherwise,
decay or maximum showing that the stochastic stress com-

ponent has a white noise character. the integral in Eq(5) can be extended ovem\2dimensional
spaceR?N:

GENERAL FORM OF THE PROBABILITY DISTRIBUTION » . A
OF THE INTERNAL SHEAR STRESS P(To)dfozf f IN(ZTHZ Y

For describing the properties of the stochastic component .. ... .
of the internal stress observed in computer simulations its XWy(rq,lg, oo r)drdry:--dry. (7)
probability distribution function has to be determined. Let us

consider a system ofl parallel straight edge dislocations For the determination on the structure of expresgigrone

has to consider the integral

positioned at the pointEi, i=1N in the xy plane perpen-
dicular to the dislocation lines. For the sake of simplicity, we 1 (= sin(an)
assume that each dislocation has the same Burgers \Bctor =~ " exdiyn]dn, (8)

As it will be shown later, the generalization of the results for

systems _consisting of dislocations with different Burgersyich is the well-known discontinuous integral of the Di-
vectors is straightforward. The internal shear stress at thgchlet function with the properties

pointr is the sum of the stress fields of the individual dislo-

cations 1 whenever —a<y<a,
" |0 otherwise. ©
(r)= ;1 Tind(T = T1). (3 By taking
d N
[Since in the following only one type of dislocation is con- a= % and y=, Ting(f—17)— 7 (10)
sidered for the sake of simplicity the upper index-jgy(r) is =1
omitted]

from Eq.(6) one gets that = §. With the substitution of the

The problem addressed in this paper is to determine tth (8) form of & into Eq. (7), we obtain that

P(r9)d7 probability of occurrence of in the range

1 - - -
R P(r d7=—JdnJ drodry- - -dryw
To—?ST(I’)$TO+%, (4) e 2 mo Jon 12 NN
.. _ sif(1/2)dmn]
wherer, is a preassigned value for P(7,) can be obtained X(Flg o I
as a direct application of Markoff's methtfdapplied for \
several problems, such as the problem of random flights or . - -
for the determination of the distribution of forces in gravita- ><exp{| ;1 Ting(F —Ti)N— 70N ] - (1)

tionally interacting random systems. In contrast with the two

problems mentioned, in case of dislocation theparticle It can be seen from the structure of the above expression that

distribution function cannot be built up from the one particlethe Fourier transform of the internal stress distribution
distribution functions since as it will be shown later it would

lead to system size dependent internal stress distribution An(F,n) = FP(7g) (12)
functionP( 7). To avoid this the dislocation-dislocation cor-
relation must be taken into account. has the form



PRB 58 PROBABILITY DISTRIBUTION OF INTERNAL ... 2971

(20

AN(F,n)=J W(FiiFar - FN) (7(F)) = ——

N
[T explinr(r —7)}dr,dr,- - -dry. (13)  We obtain that
j=1

. . - ..dB - - . e s
If we introduce the function <T(I’)>=—if p(r)% dr1=f p(r)brng(r—rydry,
n=0
B(r,n)=1— expli Ting( F)n} (149 (21)
expression(13) can be rewritten into a power series of which is the self—co»nsistent field created by the dislocation
B(r,n) system at the point. As it is shown in Ref. 27 for edge
’ dislocations it fulfills the field equation
AN(F,n):J drydry - drgwn(ry,fo, - ) A2 () ub &3 ) 22
(r)=—— r).
N 1-v ax&yzp
X[ [1-B(r—r;,m] .
j=1 The second moment &#(7) can be determined from the
1 relation
:1_f p1(r1)B(r—rq,n)dr;+ EJ p2(ri,ra) . 1 d?AG)
. (D)= (23
XB(r—rq,n)B(r—ry,n)drydro+---, (15 A(r,00 dn® | |
where However, from Eqs(17), (18) one gets that
P(FLl2 o M) =N(N=1)--«(N=k+1) d?A g e e
b e G G A
S KGR o
- - - = — -)— " 2 2 - r ...
XAF i -diy (16 [ T ALASEE
is the kth order dislocation-density function. Equati¢tb) in which, due to the 1/type decay of the stress field of a
can be transformed into an exponential form straight dislocation, the integrand has &,;1gingularity, and
consequently the second momentRifr) is infinite. There-
An(r,n)=exp(E(n,N)}, (17)  fore to determine further characteristic properties of the dis-
tribution function P(7) its asymptotic behavior has to be
where investigated. First the behavior 8§(n) has to be analyzed
in the regime of smalh values. Let us consider the first term
E(n,F)=—f pl(Fl)B(F_ Flrn)dFl in expression(18)
1 o o o o - - - - -
+§f D(11,72)B(F —11,MB(r —1,n)drydr, folr:) fp(r "B, ndr (29
For the same reason as in expressi4) its second deriva-
4. (18 . _
tive atn=0
in which
cil: —J F— b7 (ry)dr (26)
Dao(f1.F2) =palF1lo) = pa(Fpa(fs)  (19) are | 7 ) P r)dn

is the dislocation-dislocation correlation function. o s -

is singular. However, ifp(r) was zero at the point the

THE MOMENTS AND THE ASYMPTOTIC BEHAVIOR integral would be finite(If the dislocation density has a fi-
nite value at infinity the integral is divergent for— o, too.

OF P(7) For avoiding this problem it has to be assumed that the dis-
Since dislocations form strongly inhomogeneous distribulocation density goes to zero at infinity. However, this re-
tions the explicit form ofP(7) cannot be determined analyti- striction will be lifted later) So, if instead offo(F,n) the
cally. Nevertheless, analytical results can be obtained foexpression
some of its properties. An important characteristic value of
the distribution functiorP(7) is its first moment 7(r)). By

applying the relation fl(r:n)zf [p(r—ry)—p(r—2ry)]B(ry,n)dry (27)
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is considered the above singularity in the second derivativin which in order to avoid the singularity in the integrand
of f4(r,n) does not appear becaupgr —r,)—p(r—2r,)  aroundr;=0 a circular area with radius is excluded from

—0 for F1=0. The newly defined, andf, are not indepen- the integral. After splitting it into two integrals, with the

dent from each other: 2r,—r, variable substitution in the second one we find that
N . C e . A (e - . LK)
fi(r,n)="1o(r,n)— [ p(r—2r1)B(ry,n)dr,. (28 b(r)=§J’0 d(PJ,zdrlp(r_rl)b i (37
& 1

. 2 2 . . ~
Since, 7ing(r) ~x(x*—y?)/r%, if we takeB at the point 1/2;,  since the integral has to be carried out for an area close to
we find that the origin of the coordinate systemi(F— Fl) can be approxi-

1. . mated by its value af;=0
B zrl,n =B(rq,2n). (29
.1 (e ,K2(9)
Using this relation with a;—2r; variable substitution in b(r)= Ep(r)fo d‘PJa/zdrlb [rq| 38
the second term of Eq27) we arrive at
1 from which

fo(r,n)="fo(r,n)— =fo(r,2n). 30 . .

1) =Fo(F,) = 7 fo(F,20) (30 B() = (IN2)C, @9
Because of the regular behavior of the second derivative Qfpere
fl(F ,n) it can be approximated with a parabolic expression

b2
fi(r,n)=~a’'(r)n+b(r)n? (31 C=7% . K*(¢)de (40

Equations(30) and (31) determine a function equation for

fO(F,n), the solution of which is is a constant determined by the type of dislocation under

consideration, and by the elastic moduli. In an isotropic me-

> dium for edge dislocations
fo(r,n)=a(r b(r)2|n 32
ofr,n)=a(rn—;-—nnz, (32) (ub)2 (2 (ub)?
. :ﬁf co§(go)co§(2<p)d<p=—2.
where a(r)=i(7) and R is a parameter which cannot be 8m(1-w)°Jo 16m(1-v)
determined from the function equation. It corresponds to the (41)

2 . .
an® solution of the homogeneous equation According to Egs(32) and(39) we conclude that up to sec-

. 1 . ond order terms‘o(F,n) can be approximated with the ex-
0="fo(r,n)— 7 fo(r,2n). (33  pression
According to Egs(26) and(31) the actual value ob(r) fO(F,n)~i<r(F))n—Cp(F)n2InE. (42)
can be given by the expression R
1del As was mentioned earlier the actual values of paramter

b(r)— cannot be determined by the method described above. It can

=0 be obtained from the analysis of expressi@3) that it is
1 L . . proportional to the crystal size, consequentMF,n) di-
=§J[p(r—rl)—p(r—2rl)]b27ﬁ1d(rl)drl. (39 verges_logarithmically With_ the c_rysta_l size._ However, _by
taking into account the dislocation-dislocation correlation
The stress field created by a Stralght dislocation has the fOHescnbed by the fUnCthDz(rl,rz) the d|Vergence can bhe
lowing form: canceled. Namely, for smahll values the second term in
expressiorn(18) can be approximated by
- K(o)
Tind(F) = —=—, (39

r]
where ¢ is the angle between the axis and the position
vectorr and K(¢) is a trigonometric polynomial op deter-
mined by the actual type of the dislocation under considerAssuming thatG(r) diverges also logarithmically with the
ation. Introducing polar coordinates,(¢) for the variable crystal size, the sum of the two terms in H48) becomes

Fl, Eq. (34) gets the form crystal size independent. So up to second order terms the
Fourier transform of the stress distribution has the form

2.qre |

| D1 B B~~~ Gl
@3

2 2
b(r)=lim> J d<Pf drafp(r—ry)—p(r—2r;)1b? o) N N - n
602 |r1| A(r,n)zexpri(r(r)>n+Cp(r)n2|nR—+~-- , (44)
(36) eff
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whereR.¢ can be regarded as effective outer cutoff radius. It s
is important to emphasize that in order to avoid crystal size v(7)=2Cp(r)In—, (53
dependence iP(7) the dislocation-dislocation correlation T

has to be tqken Into account. . where 7’ is a parameter which cannot be determined from
For obtaining the connection between the asymptotic begg (57) |t follows that the asymptotic behavior of the prob-

havior of P(7) andA(r,n) let us consider the variance of the apjlity distribution has the form

stress distribution function

-1
v(r)=f ' ?P(7')d7’. (45) P(T)%Cp(r)ﬁ' (54)
As was mentioned earlier the second order momerR (e The results obtained above can be generalized for the case
is infinite, so lim_.v(7)=. However, introducing the in which dislocations with opposite sign Burgers vectors are
function allowed. Without going into detail we mention that in the
1 first moment of the distribution functioR(7) given by the
Al(F,n)=A( F.n)— =A(F.2n) (46) gxpreSS|o.r(21)Land in the asymptotic forr(ti4) the dlsloca—
4 tion densityp(r) has to be replaced by, (r)—p_(r) and
and its Fourier transform p+(r)+p_(r), respectively, where, (r) andp_(r) denote
the density of dislocations with positive and negative sign
P.(r,7)=FA(r,n)], (47) Burgers vectors.

from Eq. (44) we obtain that
CONCLUSIONS

lim jT Terl(F, 7ydr = — d?A —In ch(;)_ Th_e coIIectiye ber_]avior of a system of par_aIIeI gdge Qis—
rwd =1 an® | locations was investigated. Results of numerical simulations
n=0 (49 show that the stress field created by the dislocations can be
i . approximated as the sum of a slowly varying and a stochastic
This means that for large stress values the variance Qfomponent. According to our numerical observations the sto-

P,(r,7') can be approximated by chastic component can be well described as white noise. For
determining the probability distribution of the stochastic

fr lepl(r*’ 7)dr ~In 2Cp(F), (49) stress component Markoff's method was _ap_plie(_j. Since_for

-7 avoiding crystal size dependence of the distribution function

Sthe dislocation-dislocation correlation function defined by
. expression(19) cannot be neglected Markoff's original
(46) and (47) one finds that formula®® applied for several other systems and was gener-
, , ° alized. It was found that the first order moment of the distri-
f 2Py (r, T’)dr’zf dr’f dn7'?| A(n) bution function is equal to the self-consistent field of the
-7 -7 - dislocation system. The same stress field was obtained from
the BBGKY hierarchy of different order dislocation distribu-
exp2mint'}. (50) tion functions by neglecting dislocation correlatidigur-
thermore, it was obtained that the probability distribution

After splitting the integral into two terms, and performing @symptotically decays with the inverse third power of the

the n—2n variable substitution in the second one we arriveStress. For the homogeneous dislocation distributegmert
at from a constantthis behavior can be easily obtained from

dimensional analysis. Namely, the only expression which has
T o 2 the required inverse stress dimension and is proportional to
J_TT Py(r,7")dr the dislocation density isb?u2p/ 73, wherec is a constant.
It is important to note, however, that the obtained asymptotic
= jT dr'r'?
-7

i.e., its second moment is finite. On the other hand from Eq

1
—ZA(ZH)

behavior is valid for an inhomogeneous dislocation distribu-
tion too, and depends only on the local dislocation density,
i.e., it is independent from the nonlocal properties of the

1
P(r')~ gP(r'12)

T 2o dislocation configuration and from the dislocation-
=f7 dr’' 7" °P(r )_J, /sz 7 °P(1") dislocation correlation. The actual form of the correlation
function Dy(r,r,) determines the half width of the prob-

=v(7)—v(7/2). (51 ability distribution function through the correlation param-

eterRqs (which can be approximated by the dipole widtA

further important consequence of thel/r® asymptotic de-

cay is that the second and higher order moments of the dis-
_ > tribution function are infinite.

v(r)=v(r2)=2In 2Cp(r), (52) The results obtained make it possible to set up the frame-

the solution of which is work of an O(N) dislocation dynamics simulation method

From Egs.(49) and(51) the following function equation can
be concluded for the varianed 7):
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based on the stochastic approximation. The numerical simwealculation. In addition the algorithm can be very efficiently
lations above show that each dislocation experiences a stressplemented on parallel computers. Preliminary results show
field with random charactefsee Fig. L According to ex- that the algorithm is able to reproduce similar dislocation
pression(44) this random stress is described by the distribu-configurations as the direct integration.

tion function P(7) which depends on the smoothed out dis- The method outlined above leads to a stochastic disloca-
location densities p.(r), p_(r), and the correlation tion dynamics, but it needs to be stressed that it differs
strongly from the one proposed by kfzer!?3In that model

the dislocation system is described by a single variable, the
Idislocation density time evolution of which is governed by a
Langevin type equation. To determine the connection be-
}Ween the two approaches requires further investigations. Fi-
nally we mention that since in the derivation of the formula

parameterReﬁ(F). [Since expressiori44) determines only
the Fourier transform oP(7) for small Fourier parameters,
P(7) needs to be approximated by a function the Fourie
transform which follows the forng44).] So, for the numeri-
cal investigation of the dynamic properties of an assembly o

N dislocations the following stochastic algorithm s pro- the 1f nature of the dislocation interaction was used, rather

posed. . X ; )
(1) With an appropriate coarse-grain size the simulationthan th? special properties, the obta_lned expression carn be
area is divided into cells generalized for other similarly interacting objects such as, for

(2) In each cell the values of the smoothed out parametergxample‘ vortices in liquids.
p(r), (r(F)), andRy(r) are determined.
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