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Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni
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The adiabatic theory of spin-density waves is developed on the basis of spin-density-functional theory. The
wave-number-dependent exchange constant matrix is obtained from spin-density-functional calculations with
constrained moment directions. The central assumption considers a fast electronic and a slow magnetic time
scale, and postulates negligible correlation of the fast motion between different ionic sites. The parameter-free
calculated magnon spectra for Fe, Co, and Ni are in excellent agreement with available experimental data. In
the case of Fe, they show strong Kohn anomalies. Using Planck statistics at low temperature, the temperature
dependence of the magnetization is well described up to half the Curie temperature. It is conjectured that
correlated local-moment clusters survive the Curie transition. On this basis, calculated Curie temperatures are
obtained within 10% deviation from experiment for Fe and Co, but 30% to low for Ni.
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I. INTRODUCTION

Spin-density-functional theory~SDFT! in local spin-
density approximation~LSDA! and beyond has proved ove
the years to yield reliable results for the ground state of la
classes of magnetic materials with collinear1–3 and
noncollinear4,5 spin alignment. Attempts of extensions to th
description of magnetic low-energy excitations and of
thermodynamic state rest on an adiabatic understanding
slow moment motion in a fast electronic medium. The d
ordered local-moment approach6–9 and the spin spiral energ
functional approach10,11employ Green’s functions and band
structure techniques, respectively, to develop a notion of
cal moments interacting with effective exchange forces
of an itinerant electron situation. Equation of motion a
molecular-dynamics approaches12–14 rest on similar adiaba
ticity ideas. Besides, more general nonadiabatic theo
pointed to the importance of low-energy transversal exc
tions for the magnetic phase diagram~for reviews, see Refs
15 and 16!. In Ref. 17, the present authors adopted an
proach close to that of Refs. 10 and 11 but put focus on sm
amplitude spin spirals instead of the 90° spirals considere
the latter work in order to study magnon dynamics in mo
detail. The results indicate that in the case of the eleme
3d ferromagnets 90° spirals with short wavelength are irr
evant even at the Curie transition. Furthermore, we do
include the intra-atomic energy terms in the adiabatic Ham
tonian.

The aim of the present paper is on the one hand to m
our approach as explicit as possible, and, on the other h
to present all the important numerical results obtained for
ferromagnetic 3d metals. In particular, we obtain all releva
exchange constants from the total-energy surface in the
cinity of the ordered magnetic ground state, i.e., for sm
PRB 580163-1829/98/58~1!/293~10!/$15.00
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spin spiral amplitudes. Our focus is on adiabatic magn
dynamics. However, it turns out that the same phase spa
relevant for the quasiclassical disordered moment dynam
at the Curie transition.

It must be emphasized that the adiabatic magnon sp
trum is a coarsened excitation spectrum with fast individ
electron spin-flip degrees of freedom integrated out. The
ternative approach18–22 via the transverse dynamical susce
tibility x21(q,v) does not rest on the adiabatic approxim
tion and hence is able to describe both the magn
dispersion and the interband spin-flip continuum as well
their interference. On the other hand, the adiabatic appro
yields the magnon stiffness with the same accuracy, bu
addition yields all the details of far reaching exchange int
actions, manifesting, e.g., in Kohn anomalies.

The paper is organized as follows. In the next section
give a full self-contained description of the adiabatic sp
dynamics. For the sake of clarity we start with defining t
lattice site spin moment, and then derive the Fourier tra
formed exchange constants directly from SDFT spin sp
results for small amplitudes. This is followed by a discuss
of central assumptions of the adiabatic approach leadin
the equations of motion of the Landau-Lifshits-type for t
moments. Linearization and quantization results in the
scription of adiabatic magnon spectra for arbitrary cryst
with collinear magnetic order. In Sec. III we analyze mome
behavior and exchange interactions for the ferromagneticd
metals, present their adiabatic magnon spectra, and ana
the appearance of Kohn anomalies in Fe and their origin
Sec. IV we apply the adiabatic magnon dynamics w
Planck statistics to treat low-temperature thermodynam
For 3d metals, the magnetization vs temperature curves
very close to experiment up to about half the Curie tempe
ture. We use our calculated exchange constants for a qu
293 © 1998 The American Physical Society
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294 PRB 58HALILOV, ESCHRIG, PERLOV, AND OPPENEER
classical mean-field treatment of the thermodynamics aro
the transition to magnetic order. The transition temperatu
compare well with results of disordered local-moment a
proaches.

II. ADIABATIC SPIN DYNAMICS

A. Lattice site spin magnetic moment

Recall that since the particle spin operator commutes w
the particle position operator in quantum theory, there i
well-defined operator of vector spin density as a function
space coordinater and timet:

ŝ~r,t !5
1

2(ss8
ĉs

†~r,t !sss8ĉs8~r,t !. ~2.1!

Here, ĉs is the s component of the spinor-field operator
the Heisenberg picture, ands5(sx,sy,sz) are the Pauli ma-
trices. The expectation value of vector spin density is

s~r,t !5^ŝ~r,t !&5 1
2 tr ~n~r,t !s!, ~2.2!

wheren(r,t) is the spin-density matrix

nss8~r,t !5^ĉs8
† ĉs& ~2.3!

and tr means the trace with respect to spin indices.
Given a partitioning of the total crystal volumeV into

disjunct cell volumesVi around lattice sitesi :

V5ø iVi , ViùVj50 for iÞ j , ~2.4!

the operator of the lattice site spin magnetic moment is n
rally defined as

M̂ i~ t !52gmBohrE
Vi

ŝ~r,t !d3r , ~2.5!

and its expectation value is

M i~ t !5^M̂ i~ t !&52
gmBohr

2
trS sE

Vi

n~r,t !d3r D . ~2.6!

Here,2gmBohr/2 is the spin magnetic moment of a free ele
tron. @In Ref. 17 the same operator~2.5! was introduced in an
alternative representation.#

From Eqs.~2.1!, ~2.4!, and ~2.5! the equal-time commu
tation relations

@M̂ ia ,M̂ j b#252 igmBohrd i j eabgM̂ ig ~2.7!

are staightforwardly obtained, whereabg are Cartesian in-
dices, andeabg is the fundamental three-form~antisymmet-
ric tensor!. These relations hold independent of itineracy
locality.

By way of contrast, a lattice site orbital moment cannot
defined properly unless the orbitals are strictly localized a
nonoverlapping. The noncommutativity of the operators
particle orbital moment and of particle position prevents
existence of an unambiguous orbital moment density.
d
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B. Spin-density-functional calculation with constrained
moment directions

SDFT provides a tool to calculate the total energy and
spin-density matrix~2.3! of the ground state in a crysta
~with fixed ion sites!. If the ground state is spin polarized
this calculation hence yields the~stationary! expectation val-
ues of the site spin magnetic moment vectors~2.6!, too. The
spin-density matrix is obtained as

nss8~r!5(
kn

occ.

fkn~r,s!fkn* ~r,s8! ~2.8!

from the Kohn-Sham spin orbitalsfkn(r,s) of Bloch states
kn corresponding to Kohn-Sham orbital energiesekn below
the Fermi level.

The 232 matrix ~2.8! may be diagonalized by an
r-dependent 232 unitaryU(r):

U~r!n~r!U†~r!5diag@n↑~r!,n↓~r!#. ~2.9!

If the vector spin density at positionr points into a direction
that has a polar angleu and an azimuth anglef with the
global xyz coordinate system, then

U5S cosu/2exp2 if/2 sinu/2expif/2

sinu/2expif/2 2cosu/2exp2 if/2D .

~2.10!

In LSDA, the effective Kohn-Sham potentialv(r) is di-
agonal together with the spin-density matrix, and its diago
entries at positionr are explicitly calculated from the two
numbersn↑(r),n↓(r). The resulting diagonalv(r) may be
rotated back to the global coordinate system by means of
unitary U†(r), into a full spin matrixvss8(r), and inserted
into the Kohn-Sham equation for the next self-consisten
cycle. The potential matrixvss8(r) and the spin-density ma
trix nss8(r) recalculated in the next iteration cycle are n
simultaneously diagonal, unless self-consistency is reach

In practical implementations4,5 one assumes the unitar
U(r) to be constant in each lattice site volumeVi and fixes
the anglesu i andf i at predefined values for each lattice s
separately. Then one attains self-consistency under th
constrained moment directions and finds the magnitudeuM i u
of the spin magnetic moment at each lattice site and the t
energy corresponding to this magnetic configuration w
predefined moment directions. In a second step, one
searches for that moment configuration that yields the m
mum of the total energy. As long as spin-orbit coupling c
be neglected, the position-dependent spin rotationU(r) does
not affect the orbital operation of the Kohn-Sha
Hamiltonian.23 Transformation of the spinor factor of th
Kohn-Sham orbitals byU(r) diagonalizes the Kohn-Sham
Hamiltonian and retains the full crystal symmetry in ea
diagonal. Spin and orbital degrees of freedom are on
level of description coupled only via the common Fer
level in Eq.~2.8! and via the LSDA expression of the pote
tial through the spin-density matrix.

A priori, there is no justification to assumeU(r) constant
inside each lattice site volume. There is, however, a la
body of successful calculations of magnetic structures
way.
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To cover the full phase space of spin configurations
would in a Fourier representation be necessary to introd
two independent wave vectors for the position dependenc
u and f. Since, however, in linear spin-wave modesu is
constant, we keep it constant on each sublatticen ~if there
are several sublattices! and consider only configurations

M i5Mi~sin u icosf i ,sin u isin f i ,cosu i !, ~2.11a!

u i5un , f i5q–Ri1fn . ~2.11b!

Then, the modulus of the spin magnetic moment and the t
energy ~per unit cell! are obtained as function
M n(um ,fm ,q),E(um ,fm ,q).

Our goal is to represent the total energy in the form

E5E0~Mi
2!2

1

2N(
iÞ j

Ji j M i–M j1•••

5E0~Mi
2!2

1

2N(
iÞ j

Ji j M iM j

3@cosu icosu j1sinu isinu jcos~f i2f j !#1•••

~2.12!

whereN is the number of unit cells in the crystal and high
than second-order terms in the anglesu are omitted. We
introduce an index notation

Ri5R1tn5R[n1R] , @n10#[n, ~2.13!

whereR is a lattice period andtn is a basis vector of the uni
cell, and define the Fourier transform of the exchange c
stantsJi j to be

Jq
mn5dmnJmm2(

R
Jm[n1R]e

iq~tm2tn2R!. ~2.14!

In Eq. ~2.12!, the Ji j may be chosen real, symmetric,Ji j
5Jji , and lattice periodic,J[m1R][ n1R]5Jmn . Hence, from
Eq. ~2.14! the symmetry relations

Jq
mn5J2q

nm , ReJq
mn5ReJ2q

mn , ImJq
mn52ImJ2q

mn

~2.15!

follow. For a collinear ferromagnetic ground state and sm
u, we have from Eq.~2.12!

E5E01
1

2(mn
MmM n@~12um

2 /22un
2/2!J0

mn

1umunRe~Jq
mnei ~fm2fn!!#1••• ~2.16!

and hence

ReJq
mn2dmn(

l

Ml

Mm
J0

lm5F 1

MmM n

]2E

]um]un
G

u50;fm2fn50

,

~2.17a!

ImJq
mn5F 1

MmM n

]2E

]um]un
G

u50;fm2fn5p/2

, mÞn.

~2.17b!
it
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From Eq.~2.15!, clearly ImJq
mm50, and later on we will only

need

J̃q
mn5Jq

mn2dmn(
l

Ml

Mm
J0

lm . ~2.18!

In this way, the Fourier transforms of the exchange co
stants,J̃q

mn for eachq are directly obtained from total-energ
calculations for a few spin spirals~2.11b! at that wave vector
q. By analogy with the frozen phonon approach to the c
culation of lattice dynamics the above approach to the ca
lation of Eq.~2.18! can be referred to as a ‘‘frozen magnon
approach. Moreover, as long as one neglects spin-orbit c
pling, the frozen magnon calculation is much simpler co
pared to frozen phonon calculations because the former d
not call for large superstructure cells and commensurabi

C. Adiabatic spin-wave Hamiltonian

The time scale of the magnetic moment dynamics in
solid is much larger than the time scale of electrons orbit
around an atom and even larger thana/vF , the lattice spac-
ing over the Fermi velocity, which is the time scale of m
tion of a Bloch electron through the crystal~typical magnon
energies for a transition metal are a few tenths of an
while thed-band width is a few eV!. Nevertheless, a system
atic adiabatic approach has not been developed for this
ation, simply because there is no large mass governing
time scale. However, on a heuristic level, the above
scribed frozen magnon approach can be given a phys
meaning. Suppose that an additionalexternal potential
vss8(r) is applied that enforces theground-statespin-density
matrix to attain the values corresponding to our constrain
moment-directions result. Then, the corresponding ene
~2.12! is the internal energy of that ground state, that is,
energy not counting the interacton energy with that ad
tional external potentialvss8(r).

If we now allow this external potential to slowly vary i
time, we may have an adiabatic situation

^M̂ i~ t !&'^M̂ i& fast~ t !, ~2.19!

where on the left the average is taken with the true non
tionary state while on the right the average is with grou
states of the fast electronic motion, parametrically depend
on time.

An itinerant system is never in an eigenstate ofM̂ i
2 , that

is, generally

^M̂ i
2&Þ^M̂ i&

2. ~2.20!

However, our central assumption will be

^M̂ i–M̂ j& fast'^M̂ i& fast–^M̂ j& fast5M i–M j for iÞ j ,
~2.21!

where the average is over parametrically time-depend
ground states of the fast electronic motion:we assume the
relevant electronic correlation hole to be essentially in t
inner part of the atomic volume.

We aim at introducing an adiabatic Hamiltonian
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Ĥad52
1

2(iÞ j
Ji j M̂ i–M̂ j1••• ~2.22!

corresponding to the electronic ground-state energiesE from
Eq. ~2.12!:

^Ĥad& fast5N~E2E0!. ~2.23!

On account of our central assumption~2.21!, this will be the
case, if the exchange constants in Eqs.~2.12! and ~2.22! are
the same.

The Heisenberg equations of motion

2 i\
dM̂ i

dt
5@Ĥad,M̂ i #2 ~2.24!

for the magnetic moment operator are now easily obtai
from Eq.~2.7!, and their adiabatic quantum average leads
using Eq.~2.19! on the left-hand side and Eq.~2.21! on the
right-hand side to the Landau-Lifshits-type equations

dMi

dt
50, ~2.25a!

sinu i

df i

dt
52

gmBohr

\ (
j ~Þ i !

Ji j M j

3@cosu isinu jcos~f i2f j !2sinu icosu j #,

~2.25b!

du i

dt
52

gmBohr

\ (
j ~Þ i !

Ji j M jsinu isin~f i2f j !,

~2.25c!

which under the assumptions~2.19! and ~2.21! are valid for
all wave vectorsq rather than only in the long-wavelengt
~hydrodynamic! limit.

Note that Eq.~2.25a! follows sinceM̂ i
2 commutes with all

M̂ j ; for this reason we need also not include theE0 term in
Eq. ~2.22!. Longitidinal moment dynamics is nonadiabatic
our approach to this type of adiabaticity. It is governed
individual electronic spin flips like Stoner excitations, whic
are fast in our understanding. The numerical results for tr
sition metals presented in the next section will support t
picture. Note further that magnetic anisotropy terms fro
crystal fields or from spin-orbit coupling can easily be inco
porated by adding anisotropic terms to Eq.~2.22!.

D. Linearization and quantization

If u!1, the equations of motion~2.25! imply immedi-
ately du/dt'0, df/dt'v5const, and in lowest order w
are left with

u iv52
gmBohr

\ (
j ~Þ i !

Ji j M j@u jcos~f i2f j !2u i #.

~2.26!

Specifyingi 5m, j 5@n1R#, and

f j5vt1q–~R1tn!1fn , ~2.27!

Eq. ~2.26! is, on account of Eq.~2.14!, cast into
d
a

y

n-
s

-

umeifmv5
gmBohr

\ (
n

M nuneifn

3S Jq
mn2dmn (

l

Ml

Mm
J0

mlD . ~2.28!

This is a linear eigenvalue problem with eigenvaluev and
eigenvector

qm5AMmumeifm, ~2.29!

and in order to yield real eigenvaluesvqn ~with branch index
n! the matrix in large parentheses must be Hermitian, wh
is true as seen from Eq.~2.15!. The final eigenvalue problem
is

qmqnvqn5
gmBohr

\ (
n

J̃q
mnqnqn . ~2.30!

Its solutions together with Eq.~2.29! yield the adiabatic spin-
wave modes (umqn ,fmqn) and their frequenciesvqn .

Equation~2.18! together with the first relation~2.15! im-
plies

(
n

J̃0
mnM n50. ~2.31!

As immediately seen from Eqs.~2.30! and ~2.29!, this ex-
presses the acoustical sum rule for a general crystal, yield
for q50 the zero frequency modeum5const, fm5const
with lattice site-independent constants. It originates from
energy expression~2.12! not containing anisotropic terms.

If we put back the spin-wave mode into the energy e
pression~2.16!, we obtain its energy that should be equal
\vqn for one magnon:

N
2 (

mn
e2 ifmqnumqnMmJ̃q

mnM nunqneifnqn5
!

\vqn .

~2.32!

The left-hand side of this condition equals the result of m
tiplying Eq. ~2.30! by (N/2)(\/gmBohr)qmqn* and summing
over m. Hence, the final quantization condition is

N

2gmBohr
(
m

Mmumqn
2 51. ~2.33!

This relation quantizes the spin-wave amplitudeumqn and
will become essential in applications to statistics at nonz
temperature in Sec. IV.

III. CALCULATED ZERO-TEMPERATURE SPIN
DYNAMICS OF TRANSITION METALS

In this section we analyze how the approach develope
the last section applies to the ferromagnetic 3d metals bcc-
Fe, fcc- and hcp-Co, and fcc-Ni. Except for hcp-Co, these
weakly anisotropic ferromagnets, and we apply the expr
sions of last section without modification due to anisotrop
A linear-muffin-tin-orbital method24 in scalar relativistic ap-
proximation~neglect of spin-orbit coupling!25 is used for the
frozen magnon calculations. The LSDA parametrization d



lines

PRB 58 297ADIABATIC SPIN DYNAMICS FROM SPIN-DENSITY- . . .
FIG. 1. Site spin momentM (u,q) and total energyDE(u,q)5E(u,q)2E(0,0) as functions ofu for spin spirals with q

5(0,0,14 ),(0,0,12 ),(0,0,1) in units ofp/a. Symbols mark calculated values and solid lines are guides for the eye. The dashed
correspond to functionsJM2(u)sin2u for fixed q. ~a! bcc-Fe,~b! fcc-Co, ~c! fcc-Ni.
s
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to von Barth and Hedin26 of the spin-density functional ha
been used.

A. Validity of the energy expression and moment behavior

In the case of a Bravais lattice as bcc or fcc, the ene
expression~2.12! ~for arbitraryu) simplifies to

E2E05
M2

2
@J0cos2u1Jqsin2u#5

M2

2
@J01 J̃qsin2u#.

~3.1!

Independent SDFT calculations ofM (u,q),E(u,q) for vari-
ous constrained spin spiral configurations have been
formed to test the validity of expression~3.1! and to analyze
the behavior ofM (u,q). The results are presented in Fig.

What is most striking about these results is the remarka
stability of the site momentM , particularly for bcc-Fe. The
moment is considerably reduced only if bothq and u are
y

r-

le

large: only if largeq ~and hence largevq) magnons have
occupation numbers;N ~that is,;1 per site!, they induce
longitidinal spin fluctuations and reduce the moment. T
longitudinal magnetization density waves should have hig
energies than transversal ones has been repeatedly sta
the literature.27,28 It is particularly this stability of the mo-
ment that justifies the whole approach of the last secti
above all, Eq.~2.21!.

The comparison of the calculated values ofDE(u) of Fig.
1 with the M2(u)sin2u curves according to Eq.~3.1! gives
strong support to the use of the energy expression~2.12! and
hence to the relevance of the exchange constant matrix~2.17!
and ~2.18!, as long as not bothu and q are simultaneously
large. On the other hand, it also indicates that the excha
constantsJq should not be determined fromu590° spin spi-
rals.

Figure 2 shows the individual contributions toDE(u) for
Ni as an example. As is seen, the total energy follows ess
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tially the exchange and correlation energy with a slight
duction by both kinetic and Coulomb energy for largeru
values, due to a slight expansion of thed shell when the
moment is reduced. It shows again that this latter int
atomic energy balance contributes little to the interatom
magnetic interaction as long as not bothq and u are large.
This gives further support to our central assumption~2.21!.

B. Adiabatic magnon spectra

The computed magnon spectra of bcc-Fe, fcc-Co,
fcc-Ni are shown in Figs. 3–5. For a Bravais lattice there
only one ~transversal! branch, and hence there is no eige
value problem left to solve in Eq.~2.30!. One simply has

vq5
gmBohr

\
J̃qM . ~3.2!

In the cases of Fe and Ni, where experimental parts of
spectra are available from the literature, the agreemen
excellent in the long-wavelength region and even good
shorter wavelengths when not considering the interferenc

FIG. 2. Individual contributions to spin spiral formation ene
giesDE(u) at q5(0,0,1)@p/a# for fcc-Ni. DE is defined as in Fig.
1. The contributions shown are: the SDFT exchange and correla
energy labeledEExchange, the electron-nuclei Coulomb energy la
beledENuclei , the Hartree energy of all electrons labeledEHartree,
and the SDFT kinetic energy labeledEKin . The total of all contri-
butions is labeledETotal .
-

-
c

d
s
-

e
is
r
of

a Stoner spin-flip excitation continuum around 150 meV
the case of Ni, which is not accounted for by our adiaba
approach. It may be obtained from a many-body treatmen
the transverse magnetic susceptibility,20 and it has sometimes
been somewhat misleadingly called an ‘‘optical magno
branch. Note that the results shown in Figs. 3–5 do not c
tain any adjustable parameter.

As an example with a true optical branch~at least in adia-
batic treatment!, we have also calculated the magnon sp
trum of hcp-Co, which is shown in Fig. 4~b!. Both the maxi-
mum frequency and the stiffness are not much different
fcc- and hcp-Co. However, the neglect of anisotropy terms
the adiabatic Hamiltonian is more problematic in the h
case, where the true spectrum has a gap at zero frequen

Note also that in all three metals the maximum adiaba
magnon frequency is roughly five times larger than the Cu
temperature. Hence, high-q magnons seem to be sparsely o
cupied even close to the Curie temperature. We will co
back to that point in Sec. IV.

FIG. 4. As Fig. 3, but for~a! fcc Co, ~b! hcp Co.

on

FIG. 3. Adiabatic magnon dispersion relations on hig
symmetry lines and magnon densities of states@in states/
~meV*cell!31022# of bcc-Fe. Solid circles mark calculated fre
quencies, lines are guides for the eye. For comparison, experim
data, for pure Fe at 10 K:( Ref. 29, and for Fe (12%Si) at room
temperature:s Ref. 30 are given. Note the Kohn anomalies~cusps!
in the adiabatic spectrum.
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C. Kohn anomalies

The direct SDFT calculation of theq-dependent exchang
constant matrix~2.18! via constrained spin spirals is capab
of accounting for arbitrarily far reaching interactions.
analogy to phonon spectra, where in metals long-range in
actions mediated by Friedel oscillations due to char
density perturbations with Fermi-surface nesting vectors l
to Kohn-Migdal anomalies in the spectra, such anomalie
the sameq positions and with the same cause are expecte
the magnon spectra as anticipated already in the original
per by Kohn.32

The calculated adiabatic magnon spectra of Fe, displa
in Fig. 3, show prominent anomalies around pointH and
weaker ones in bothG-N andG-P directions. In Fig. 6 we
present Fermi-surface cross sections with symmetry pla
for Fe, which indicate particularly strong nesting behavior
the majority-spin Fermi-surface pocket aroundG. Specifi-
cally, the plane part perpendicular to theG-H direction can
explain the strong anomalies in the magnon dispers
aroundH both inG-H andH-N directions. Nesting behavio
~small curvature! can also be assigned to some minority-sp
Fermi-surface sheets, and they can be responsible for
weaker anomalies.

The study of the magnetic susceptibility in Ref. 20 ind
cates large windows free of spin-flip continua for Fe even

FIG. 5. As Fig. 3, but for fcc Ni. The experimental data (() are
those of Ref. 31.

FIG. 6. Cross sections of the Fermi surface of Fe: solid lines
spin, dashed lines: down spin. Note the considerable nesting be
ior of the G-centered majority-spin Fermi-surface pocket.
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higher excitation energies, but lacking theoretical pred
tions, no particular experimental search for Kohn anoma
has been undertaken up to now, although several inves
tions of the high-energy magnetic excitation spectrum w
reported.29,33 Although the statistics are obviously not goo
enough, the experimental points along the lineG-P of Fig. 3
are not unlikely to show the anomaly. More precise measu
ments in this area are strongly encouraged by our result

In Fig. 7 the dependence ofJi j , which is obtained from
Eqs.~2.14! and ~2.18! as

Ji j 52
Vu.c.

~2p!3EBZ
d3qe2 iq–~Ri2Rj !J̃q

m in j , iÞ j , ~3.3!

on the site distanceRi j for Fe is displayed, demonstratin
that there is indeed an oscillating long-range exchange in
action reaching beyond the 15th neighbor in the crystal. T
constrained spin spiral approach seems to be, at presen
only technique to trace, quantitatively, such long-range
change interactions.

IV. THERMAL EXCITATION OF MAGNONS
AND PHASE DIAGRAM

Magnons should, in three dimensions, be expected to
the appropriate thermal magnetic excitations of magnetic
polarized materials at low temperaturesT. The results of the
last section encouraged us to follow this idea. As long as
magnon-magnon interaction can be neglected, that is in
harmonic regime, the average mode amplitude^unqn

2 & is ob-
tained by putting the mode energy~2.32! equal to
\vqnnqn(T) in accordance with the Planck distribution

nqn~T!5
1

exp~\vqn /kBT!21
. ~4.1!

The same reasoning that led to Eq.~2.33! now results in

N

2gmBohr
(
m

Mm^umqn
2 &5nqn , ~4.2!

and the thermal reduction of the average sublattice magn
zation is obtained as

p
av-

FIG. 7. Exchange constantsJi j of Fe as a function of neighbo
distanceRi j . Note the oscillating behavior up to beyond 15 neig
bors.
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DMm
z 5Mm(

qn
@12^cosumqn&#'

Mm

2 (
qn

^umqn
2 &. ~4.3!

Angular brackets denote thermal averaging in this sect
which comprises averaging over the slow magnetic dyna
ics. Summation of Eq.~4.3! overm and consideration of Eq
~4.2! as well as (1/N)(q5@Vu.c./(2p)3#*d3q yields

DMz5(
m

DMm
z 5gmBohr(

n

Vu.c.

~2p!3EBZ
d3qnqn ~4.4!

for the thermal reduction of the average total magnetizat
Note that the adiabatic moments have already been

ject to a quantum average over the fast electronic motion
hence are no longer quantum angular momentum opera
Consequently, they are also no longer subject to zero-p
quantum fluctuations which reduce thez component of a
quantum spinS from \@S(S11)#1/2 to <\S. The equations
of motion ~2.25! are already the quantum average of E
~2.24! and do not yield zero-point motion which was alrea
averaged out in Eq.~2.21!. This point is evocative to caution
in using the adiabatic approach and, in particular, Eq.~2.21!:
for instance, it will probably not work for very weak mag
netic materials.

At elevated temperature the occupation numbers
hence the amplitudeŝumqn& of long-wavelength modes be
come large. The modes start to interact both kinematic
~deviation from bosonic character! and anharmonically, and
finally the magnon picture is to be replaced by a picture
strong long-wavelength transverse spin fluctuations. Ind
metals, the (T50) magnon energies forq vectors close to
the Brillouin-zone boundary are much higher thankBTC , the
thermal energy at the Curie temperature, and hence spin
ters of many atoms are expected to be aligned even a
Curie temperature. Figure 1 then suggests that longitud
spin fluctuations may be neglected even up toTC . We there-
fore divide the temperature scale into two parts: the h
monic regime, roughlyT&TC/2, with well-defined quantum
excitations, and the anharmonic regime, roughlyTC/2&T
&TC , where one may call on semiclassical averag
schemes for the mean-field free energy as in Ref. 10,
since longitudinal spin fluctuations seem to be negligible a
the aligned clusters still seem to be mesoscopic, resort to
Langevin approach with an effective Weiss field

BWeiss
n 5( 8

m,R
Jn[m1R]^Mm&5(

m
J0

nm^Mm& ~4.5!

acting on the momentMn at a site of the sublatticen and
causing a thermally averaged sublattice polarization

^M n&5M ncothFM nBWeiss
n

kBT G2
kBT

BWeiss
n

~4.6!

in the direction ofBWeiss
n . The prime on the sum of Eq.~4.5!

means omission of a possible on-site term~for m5n), and
from Eq. ~3.3! one finds

J0
nm52 J̃q50

nm 1dnm

Vu.c.

~2p!3EBZ
d3qJ̃q

nme2 iq–~tn2tm!.

~4.7!
n,
-

n.
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For temperatures for which Eq.~4.6! has a nonzero solution
the material is magnetically ordered and the thermal aver
of the total magnetization~moment per unit cell! is now
obtained by summation of Eq.~4.6! over n. This approach
assumes that on the fast time scale the site momentMm is
practically temperature independent up toTC . The Langevin
formula is used because, again, this site moment is alrea
quantum average and hence may vary continuously.

In Fig. 8 the magnetization of 3d ferromagnets vs tem
peratureT calculated according to Eqs.~4.4! and ~4.6! for
T&TC/2 andTC/2&T<TC , respectively, is compared with
experimental values.~In Ref. 17 the mean-field part for N
was rescaled.! In particular, the very satisfactory agreeme
between our calculation and experiment at low temperatu
is due to our correct use of the Planck distribution of ma
nons instead of the semiclassical averaging of Ref. 10
indicates that the low-temperature excitation spectrum is
deed well represented by magnons. The mean-field treatm
for higher temperatures is only semiquantitatively correct

Within this mean-field treatment, the Curie temperatu
itself is obtained as the boundary of the solubility of E
~4.6!. This is the temperature at which the Weiss field va
ishes, and therefore Eq.~4.6! may be replaced by the lowes
order of an expansion in powers of (M nBWeiss

n /kBT) for T
'TC :

^M n&5
M n

2

3kBT
BWeiss

n 5
M n

2

3kBT(
m

J0
nm^Mm&. ~4.8!

The solubility condition of this homogeneous linear equat
system for̂ M & is

detS dnm2
M n

2

3kBTC
J0

nmD 50, ~4.9!

which simplifies for a Bravais lattice to the well-known e
pression

TC5
M2J0

3kB
~4.10!

for the classical Langevin situation.
Our calculated Curie temperatures together with exp

mental values and with other theoretical estimates from

FIG. 8. Magnetization vs temperature of Fe@squares~Ref. 34!#,
Co @full triangles hcp~Ref. 35!, open triangles fcc~Ref. 34!#, and
Ni @balls ~Ref. 36!#. Solid lines: calculated from magnon spectr
Dashed lines: mean-field results.
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TABLE I. Curie temperatures of bcc-Fe, hcp-Co, and fcc-Ni in Kelvin.

TC , present TC ~Ref. 37! TC ~Ref. 9! TC ~Ref. 10! TC , Expt. ~Ref. 38!

bcc Fe 1037 1270 1015 1095 1043
fcc Co 1250 1520 1012 1388
fcc Ni 430 450 412 627
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literature are given in Table I. Probably the first SDFT c
culation of Curie temperatures of 3d metals on the basis o
Eq. ~4.10! was reported in Ref. 39. However, these auth
doubted the applicability of the Langevin expression a
qualified the closeness to experimental values to some ex
as a matter of chance. The deviation between the calcul
Curie temperatures of Refs. 39 and 37 and ours is most p
ably due to differences in the calculation ofJ0, where those
authors summed over a finite number of neighbors in r
space rather than our Fourier space treatment. Interesti
enough, a recent improvement9 of the Korringa-Kohn-
Rostoker coherent-potential-approximation approach8 to the
paramagnetic phase aboveTC , which is based on similar
adiabaticity assumptions, resulted inTC values very close to
ours.

We stress once more that due to our analysis, in partic
the results of Fig. 1 in connection with the magnon ener
scale related toTC , the site moments remain fully develope
on the fast time scale even above the Curie temperature.
relates nicely to very recent experimental findings40 of strong
short-range ferromagnetic correlations in magnetic neutr
scattering results for fcc-Fe-Ni alloys at high temperatu
far above ordering temperatures and even for concentrat
(;20% Ni! where there is practically no low-temperatu
magnetic order. On average, over the slow time scale the
of course no moment.

V. CONCLUDING REMARKS

The adiabatic treatment of the magnetic moment dyna
ics in itinerant magnets considers two time scales: a
.

F

.

H.
-

s
d
nt

ed
b-

al
ly

ar
y

his

n-
s
ns

is

-
st

scale for the electronic motion comprising longitudinal s
fluctuations~as, e.g., Stoner excitations!, and a slow scale fo
the transversal moment motion. The force constants~ex-
change constants! governing the latter motion are obtaine
from SDFT calculations for small amplitude spin spira
only. The low-energy excitations of bcc-Fe, Co, and fcc
are well described as adiabatic magnons displaying K
anomalies in case of Fermi-surface nesting and obe
Planck statistics. On the short time scale the site mom
are stable even through the magnetic order transition. F
the stiffness atT50 in relation tokBTC , one may conjecture
that largeq modes are sparsely occupied even atTC , and
hence the ordered moment lattice melts into clusters of a
atomic distances in diameter in these metals. The individ
site moments themselves are already on-site quantum
aged quantities and move quasiclassically at elevated
perature. Hence the Langevin free energy is the cor
mean-field basis for the description of thermal behavio
elevated temperature.
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