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Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni
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The adiabatic theory of spin-density waves is developed on the basis of spin-density-functional theory. The
wave-number-dependent exchange constant matrix is obtained from spin-density-functional calculations with
constrained moment directions. The central assumption considers a fast electronic and a slow magnetic time
scale, and postulates negligible correlation of the fast motion between different ionic sites. The parameter-free
calculated magnon spectra for Fe, Co, and Ni are in excellent agreement with available experimental data. In
the case of Fe, they show strong Kohn anomalies. Using Planck statistics at low temperature, the temperature
dependence of the magnetization is well described up to half the Curie temperature. It is conjectured that
correlated local-moment clusters survive the Curie transition. On this basis, calculated Curie temperatures are
obtained within 10% deviation from experiment for Fe and Co, but 30% to low for Ni.
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[. INTRODUCTION spin spiral amplitudes. Our focus is on adiabatic magnon
dynamics. However, it turns out that the same phase space is
Spin-density-functional theory(SDFT) in local spin- relevant for the quasiclassical disordered moment dynamics
density approximatiofLSDA) and beyond has proved over at the Curie transition.
the years to yield reliable results for the ground state of large It must be emphasized that the adiabatic magnon spec-
classes of magnetic materials with collinkdr and trum is a coarsened excitation spectrum with fast individual
noncollineaf® spin alignment. Attempts of extensions to the electron spin-flip degrees of freedom integrated out. The al-
description of magnetic low-energy excitations and of theternative approacfi-??via the transverse dynamical suscep-
thermodynamic state rest on an adiabatic understanding oftibility x~ *(g,») does not rest on the adiabatic approxima-
slow moment motion in a fast electronic medium. The dis-tion and hence is able to describe both the magnon
ordered local-moment approdcfiand the spin spiral energy dispersion and the interband spin-flip continuum as well as
functional approacti'* employ Green'’s functions and band- their interference. On the other hand, the adiabatic approach
structure techniques, respectively, to develop a notion of loyields the magnon stiffness with the same accuracy, but in
cal moments interacting with effective exchange forces outiddition yields all the details of far reaching exchange inter-
of an itinerant electron situation. Equation of motion andactions, manifesting, e.g., in Kohn anomalies.
molecular-dynamics approachi&s' rest on similar adiaba- The paper is organized as follows. In the next section we
ticity ideas. Besides, more general nonadiabatic theoriegive a full self-contained description of the adiabatic spin
pointed to the importance of low-energy transversal excitadynamics. For the sake of clarity we start with defining the
tions for the magnetic phase diagrdfar reviews, see Refs. lattice site spin moment, and then derive the Fourier trans-
15 and 16. In Ref. 17, the present authors adopted an apformed exchange constants directly from SDFT spin spiral
proach close to that of Refs. 10 and 11 but put focus on smatesults for small amplitudes. This is followed by a discussion
amplitude spin spirals instead of the 90° spirals considered inf central assumptions of the adiabatic approach leading to
the latter work in order to study magnon dynamics in morethe equations of motion of the Landau-Lifshits-type for the
detail. The results indicate that in the case of the elementahoments. Linearization and quantization results in the de-
3d ferromagnets 90° spirals with short wavelength are irrel-scription of adiabatic magnon spectra for arbitrary crystals
evant even at the Curie transition. Furthermore, we do notith collinear magnetic order. In Sec. Il we analyze moment
include the intra-atomic energy terms in the adiabatic Hamilbehavior and exchange interactions for the ferromagnetic 3
tonian. metals, present their adiabatic magnon spectra, and analyze
The aim of the present paper is on the one hand to mak#e appearance of Kohn anomalies in Fe and their origin. In
our approach as explicit as possible, and, on the other han&ec. IV we apply the adiabatic magnon dynamics with
to present all the important numerical results obtained for thélanck statistics to treat low-temperature thermodynamics.
ferromagnetic 8 metals. In particular, we obtain all relevant For 3d metals, the magnetization vs temperature curves are
exchange constants from the total-energy surface in the vivery close to experiment up to about half the Curie tempera-
cinity of the ordered magnetic ground state, i.e., for smalture. We use our calculated exchange constants for a quasi-
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classical mean-field treatment of the thermodynamics around B. Spin-density-functional calculation with constrained

the transition to magnetic order. The transition temperatures
compare well with results of disordered local-moment ap-

proaches.

Il. ADIABATIC SPIN DYNAMICS

A. Lattice site spin magnetic moment

moment directions

SDFT provides a tool to calculate the total energy and the
spin-density matrix(2.3) of the ground state in a crystal
(with fixed ion site$. If the ground state is spin polarized,
this calculation hence yields thistationary expectation val-
ues of the site spin magnetic moment vect@$), too. The
spin-density matrix is obtained as

Recall that since the particle spin operator commutes with

the particle position operator in quantum theory, there is a
well-defined operator of vector spin density as a function of

space coordinate and timet:

- 1o - N
o(r0= 52 (10 oe diar (1), 2

occ.

Neg (D=2 Gun(rS) die(1.8") 29
from the Kohn-Sham spin orbitaks,,(r,s) of Bloch states
kn corresponding to Kohn-Sham orbital energigs below
the Fermi level.

The 2X2 matrix (2.8 may be diagonalized by an

Here, i is thes component of the spinor-field operator in F-dependent X2 unitary U(r):

the Heisenberg picture, ang= (o*, 0¥, 0?) are the Pauli ma-
trices. The expectation value of vector spin density is

o(r,t)=(o(r,t))=% tr (n(r,t) o), (2.2
wheren(r,t) is the spin-density matrix
nss’(ryt):<‘}ll &s) 2.3

and tr means the trace with respect to spin indices.
Given a partitioning of the total crystal volumé into
disjunct cell volumes/; around lattice sites:
V= U iVi y

the operator of the lattice site spin magnetic moment is natu

rally defined as

Mi(t)= = G1gon fv.&u,t)d?'r, 2.5
and its expectation value is

. J M Bohr

M, (1) =(M;(t))= > tr(o-fvn(r,t)d%

. (2.9

U(nn(nu'(ry=diadn,(r),n (r]. (2.9

If the vector spin density at positianpoints into a direction
that has a polar anglé and an azimuth angle with the
global xyz coordinate system, then

cosd2exp—ipl2 sindl2exp ¢/2

U= sindl2exg /2 —cosdl2exp—ipl2)
(2.10

In LSDA, the effective Kohn-Sham potential(r) is di-
agonal together with the spin-density matrix, and its diagonal
entries at positiorr are explicitly calculated from the two
numbersn,(r),n (r). The resulting diagonad(r) may be
rotated back to the global coordinate system by means of the
unitary U'(r), into a full spin matrixvsy(r), and inserted
into the Kohn-Sham equation for the next self-consistency
cycle. The potential matrix ¢y (r) and the spin-density ma-
trix ngy(r) recalculated in the next iteration cycle are not
simultaneously diagonal, unless self-consistency is reached.

In practical implementatioAs one assumes the unitary
U(r) to be constant in each lattice site voluieand fixes
the angle®; and ¢, at predefined values for each lattice site
separately. Then one attains self-consistency under these
constrained moment directions and finds the magnitijé
of the spin magnetic moment at each lattice site and the total

Here,—gupond2 is the spin magnetic moment of a free elec-energy corresponding to this magnetic configuration with

tron.[In Ref. 17 the same operat(®.5) was introduced in an
alternative representatign.

From Egs.(2.1), (2.4), and (2.5 the equal-time commu-
tation relations

(2.7

are staightforwardly obtained, whetg3y are Cartesian in-
dices, ande,;,, is the fundamental three-forfantisymmet-

[Miy Mjgl-= i ko) €apyMiy

aBy

predefined moment directions. In a second step, one then
searches for that moment configuration that yields the mini-
mum of the total energy. As long as spin-orbit coupling can
be neglected, the position-dependent spin rotatl¢r) does

not affect the orbital operation of the Kohn-Sham
Hamiltonian?® Transformation of the spinor factor of the
Kohn-Sham orbitals byJ(r) diagonalizes the Kohn-Sham
Hamiltonian and retains the full crystal symmetry in each
diagonal. Spin and orbital degrees of freedom are on this

ric tensoj. These relations hold independent of itineracy orlevel of description coupled only via the common Fermi

locality.

level in Eq.(2.8) and via the LSDA expression of the poten-

By way of contrast, a lattice site orbital moment cannot betial through the spin-density matrix.

defined properly unless the orbitals are strictly localized and A priori, there is no justification to assuni(r) constant
nonoverlapping. The noncommutativity of the operators ofinside each lattice site volume. There is, however, a large
particle orbital moment and of particle position prevents thebody of successful calculations of magnetic structures this
existence of an unambiguous orbital moment density. way.
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To cover the full phase space of spin configurations, itFrom Eq.(2.19), clearly ImJ§*=0, and later on we will only
would in a Fourier representation be necessary to introducgeed
two independent wave vectors for the position dependence of

6 and ¢. Since, however, in linear spin-wave modess ~ , My
constant, we keep it constant on each sublattidéf there Jg =34"~ 5#:;; v Jo (218
are several sublatticeand consider only configurations a
M, =M, (sin 6,cos &, ,sin 6;sin &, ,cost:), (2.11a In this way, the Fourie_r transform; of the exchange con-
stants,]g“” for eachq are directly obtained from total-energy
6.=0,, ¢=qR+do,. (2.11p  calculations for a few spin spiral®.11b at that wave vector

. By analogy with the frozen phonon approach to the cal-
Then, the modulus of the spin magnetic moment and the tOtchulation of lattice dynamics the above approach to the calcu-
energy (per unit cel) are obtained as functions |ation of Eq.(2.18 can be referred to as a “frozen magnon”
M,(6,.¢,.9).E(0,,¢,.9. approach. Moreover, as long as one neglects spin-orbit cou-
Our goal is to represent the total energy in the form  pling, the frozen magnon calculation is much simpler com-
pared to frozen phonon calculations because the former does

E=Ey(M?)— %2 IM; M - not call for large superstructure cells and commensurability.
%)
1 C. Adiabatic spin-wave Hamiltonian
=Eo(M?)— WE JijMiM; The time scale of the magnetic moment dynamics in a
7] solid is much larger than the time scale of electrons orbiting
X[ CO;COSH; + Sind; Sind; cos b — ;) 1+ - - - around an atom and even larger theo -, the lattice spac-

ing over the Fermi velocity, which is the time scale of mo-
(212 tion of a Bloch electron through the crysi@ypical magnon
energies for a transition metal are a few tenths of an eV
while thed-band width is a few ey Nevertheless, a system-
atic adiabatic approach has not been developed for this situ-
ation, simply because there is no large mass governing this
R=R+7,=R[,+r, [v+0]=v, (2.13  time scale. However, on a heuristic level, the above de-
scribed frozen magnon approach can be given a physical
whereR is a lattice period and, is a basis vector of the unit meaning. Suppose that an additionexternal potential
cell, and define the Fourier transform of the exchange cony _(r) is applied that enforces tliround-statespin-density
stantsJ;; to be matrix to attain the values corresponding to our constrained-
moment-directions result. Then, the corresponding energy
wv_ _ iq(7,~7,~R) (2.12 is the internal energy of that ground state, that is, the
Yo = Ourdup ER T €T - (219 energy not counting the interacton energy with that addi-
) tional external potentiabgg (r).
In Eq. (2.12, the J; may be chosen real, symmetrig If we now allow this external potential to slowly vary in

=Jji, and lattice periodic)y, ry,+rj=J,,- Hence, from  ime e may have an adiabatic situation
Eq. (2.14) the symmetry relations

whereN is the number of unit cells in the crystal and higher
than second-order terms in the angksare omitted. We
introduce an index notation

ReJ:'=ReJ*”,  ImJE’=—ImJ~, (Mi(0)~(M)pas(1), (2.19

HV_ Ve
Jq J -q’ q

-q q
(219 where on the left the average is taken with the true nonsta-
follow. For a collinear ferromagnetic ground state and smalfionary state while on the right the average is with ground

6, we have from Eq(2.12 states of the fast electronic motion, parametrically depending
on time.
1 An itinerant system is never in an eigenstatd\?tff, that
— _p215_ p2 v .
E=Eqp+ E,LEV M M, [(1-6,/2—6,/2)5 is, generally
+0,0,Re(J"e u )]+ .. (2.16 (NIZY# (N;)2. (2.20
and hence However, our central assumption will be
M 1 °E N - - .
ReJ;" =5, M_}\JSM: M M- 9090, : (Mi*Mj)tast= (Mi}tast (M) tas= Mi-M;  fori#J,
A M wv TTuTEvl9=0¢,~¢,=0 (2.2
(2.173

where the average is over parametrically time-dependent

1 52E ground states of the fast electronic motiame assume the
ImJ&”= *v. relevant electronic correlation hole to be essentially in the
a | M,M, 30,00 B : :
wr Yu%%vlg—0.¢ —¢ =mi2 inner part of the atomic volume.

(2.17b We aim at introducing an adiabatic Hamiltonian
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N 1 A~ A
Had:—z_z JiM; N+ - - (2.22
corresponding to the electronic ground-state enefgigem
Eq. (2.12:

(Aadras=N(E—Ep). (2.23

On account of our central assumpti¢h?21), this will be the
case, if the exchange constants in E@s12 and(2.22 are
the same.

The Heisenberg equations of motion

v .
W_[HadiMi]— (2.24

—ifh

for the magnetic moment operator are now easily obtained
from Eq.(2.7), and their adiabatic quantum average leads via

using Eq.(2.19 on the left-hand side and E¢.21) on the
right-hand side to the Landau-Lifshits-type equations

am;

W_O’ (2.253
. doy JMBohr
Slnaiﬁz_ 7 J;) J”M]
X[ cost;sing;cog ¢ — ¢;) — sing;cosv; ],
(2.25pH
de, JMBohr . .
FTE j;)JiijsmeiS'n(tﬁi—(ﬁj),
(2.259

which under the assumptiori2.19 and (2.2 are valid for
all wave vectorgy rather than only in the long-wavelength
(hydrodynamig limit.

Note that Eq(2.253 follows sincel\A/Ii2 commutes with all
I\7I,- ; for this reason we need also not include tgterm in
Eq. (2.22. Longitidinal moment dynamics is nonadiabatic in

our approach to this type of adiabaticity. It is governed by,

individual electronic spin flips like Stoner excitations, which

are fast in our understanding. The numerical results for tran
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I M Bohr

0,6 0= > M,0,e¢

14 M}\
X| 9670 2 36t (229
M

This is a linear eigenvalue problem with eigenvatweand
eigenvector

9,=M 0,6, (2.29

and in order to yield real eigenvalueg, (with branch index

n) the matrix in large parentheses must be Hermitian, which
is true as seen from EqR.15. The final eigenvalue problem

is

JMBoh ~ v
9 ann:T‘”E I . (2.30

pq

Its solutions together with E¢2.29 yield the adiabatic spin-
wave modes §,q,, ¢ ,.qn) and their frequencies, .

Equation(2.18 together with the first relatio2.15 im-
plies

0.

> ™, (2.3
As immediately seen from Eq$2.30 and (2.29, this ex-
presses the acoustical sum rule for a general crystal, yielding
for g=0 the zero frequency mode,=const, ¢,=const
with lattice site-independent constants. It originates from our
energy expressiof2.12) not containing anisotropic terms.

If we put back the spin-wave mode into the energy ex-
pression(2.16), we obtain its energy that should be equal to
fiwg, for one magnon:

M, JE"M 0, g€ Prn=tfimg,.
(2.32

The left-hand side of this condition equals the result of mul-

N .
2 % e uar 0 e

tiplying Eg. (2.30 by (N/2)(h/g,uBohr)1_‘}:;0|n and summing
over u. Hence, the final quantization condition is

sition metals presented in the next section will support this

picture. Note further that magnetic anisotropy terms from

crystal fields or from spin-orbit coupling can easily be incor-
porated by adding anisotropic terms to ER.22).

D. Linearization and quantization

If #<1, the equations of motiof2.25 imply immedi-
ately d9/dt~0, d¢/dt~w=const, and in lowest order we
are left with

I Bohr
hoj

gi(x)

(E#:i) JijM;[ 6;cod i — ;) — 6;].
(2.26
Specifyingi=u, j=[v+R], and
$j=owt+q:(R+7)+4¢,, (2.27

Eqg. (2.26 is, on account of Eq(2.14), cast into

2 _
MMHqu_

1. (2.33

ZgMBohr%

This relation quantizes the spin-wave amplitudg,, and
will become essential in applications to statistics at nonzero
temperature in Sec. V.

Ill. CALCULATED ZERO-TEMPERATURE SPIN
DYNAMICS OF TRANSITION METALS

In this section we analyze how the approach developed in
the last section applies to the ferromagnetit rBetals bcc-
Fe, fcc- and hcp-Co, and fcc-Ni. Except for hep-Co, these are
weakly anisotropic ferromagnets, and we apply the expres-
sions of last section without modification due to anisotropy.
A linear-muffin-tin-orbital methotf in scalar relativistic ap-
proximation(neglect of spin-orbit coupling® is used for the
frozen magnon calculations. The LSDA parametrization due
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FIG. 1. Site spin momentM(¢,q) and total energyAE(6,q)=E(6,0)—E(0,0) as functions ofé for spin spirals withq

=(0,0,%),(0,0,%),(0,0,l) in units ofw/a. Symbols mark calculated values and solid lines are guides for the eye. The dashed lines
correspond to functiondM?( 6)sir?é for fixed g. (a) bee-Fe,(b) fee-Co, (¢) fee-Ni.

to von Barth and Hedff of the spin-density functional has large: only if largeq (and hence larges;) magnons have

been used. occupation numbers-N (that is,~1 per sitg, they induce
longitidinal spin fluctuations and reduce the moment. That
A. Validity of the energy expression and moment behavior longitudinal magnetization density waves should have higher

>(,energies than transversal ones has been repeatedly stated in
the literature?” 28 It is particularly this stability of the mo-
ment that justifies the whole approach of the last section,
M2 M2 _ above all, Eq(2.21).
E- EOZT[‘]OCO§0+ Jgsint6]= - [Jo+ JsirPo]. The comparison of the calculated values\d( ) of Fig.
3.0 1 with the M2(8)sir?é curves according to Eq3.1) gives
strong support to the use of the energy expres&al?) and
Independent SDFT calculations bf(6,q),E(6,q) for vari-  hence to the relevance of the exchange constant n{@tfix)
ous constrained spin spiral configurations have been peand(2.18, as long as not botl# and q are simultaneously
formed to test the validity of expressi@8.1) and to analyze large. On the other hand, it also indicates that the exchange
the behavior oM (6,q). The results are presented in Fig. 1. constants], should not be determined frof=90° spin spi-
What is most striking about these results is the remarkableals.
stability of the site moment, particularly for bcc-Fe. The Figure 2 shows the individual contributions Ad=(8) for
moment is considerably reduced only if baghand # are  Ni as an example. As is seen, the total energy follows essen-

In the case of a Bravais lattice as bcc or fcc, the energ
expression2.12 (for arbitrary 6) simplifies to
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—_ —— 1 “:\\;wv FIG. 3. Adiabatic magnon dispersion relations on high-
> sol o 1s0 symmetry lines and magnon densities of stafés states/
% AEHartree /" (meV*cell)x 10 2] of bce-Fe. Solid circles mark calculated fre-
= 60 160 quencies, lines are guides for the eye. For comparison, experimental
>, 40 / 140 data, for pure Fe at 10 KD Ref. 29, and for Fe (12%Si) at room
&0 20t L 120 temperature© Ref. 30 are given. Note the Kohn anomaliessps
o in the adiabatic spectrum.
5 " 1-5
\*\ AEKm a Stoner spin-flip excitation continuum around 150 meV in
-10 “, 110 the case of Ni, which is not accounted for by our adiabatic
15} 1-15 approach. It may be obtained from a many-body treatment of
20| 120 the transverse magnetic susceptibifitygnd it has sometimes
LA~ = been somewhat misleadingly called an “optical magnon”
AE // branch. Note that the results shown in Figs. 3—5 do not con-
2l Total 12 tain any adjustable parameter.
As an example with a true optical bran@t least in adia-
Lr 11 batic treatment we have also calculated the magnon spec-
0 o 0 trum of hcp-Co, which is shown in Fig(H). Both the maxi-
0 10 20 30 40 50 60 70 80 90 mum frequency and the stiffness are not m_uch different f(_)r
Angle 0 [deg] fcc- and hcp-Co. However, the neglect of anisotropy terms in

the adiabatic Hamiltonian is more problematic in the hcp

FIG. 2. Individual contributions to spin spiral formation ener- Cas€, where the true spectrum has a gap at zero frequency.
giesAE(6) atgq=(0,0,1) w/a] for fcc-Ni. AE is defined as in Fig. Note also that in all three metals the maximum adiabatic
1. The contributions shown are: the SDFT exchange and correlatiomagnon frequency is roughly five times larger than the Curie
energy labeleEg,cnange the electron-nuclei Coulomb energy la- temperature. Hence, highmagnons seem to be sparsely oc-
beledEyyqei, the Hartree energy of all electrons labeBgaee cupied even close to the Curie temperature. We will come
and the SDFT kinetic energy labelé&g;,. The total of all contri-  back to that point in Sec. IV.
butions is labeledE 1y -

g

duction by both kinetic and Coulomb energy for larger
values, due to a slight expansion of tbeshell when the
moment is reduced. It shows again that this latter mtra—u 400
atomic energy balance contributes little to the mteratomlcw 300
magnetic interaction as long as not batland 6 are large.
This gives further support to our central assumptia2l).

tially the exchange and correlation energy with a slight re-
500 <~"‘

y [meV]

200

Ener

100

0

B. Adiabatic magnon spectra (a

>
g
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=

wWUX0 1

The computed magnon spectra of bcc-Fe, fcc-Co, anc
fcc-Ni are shown in Figs. 3-5. For a Bravais lattice there is__
only one(transversal branch, and hence there is no eigen- % 500
value problem left to solve in Eq2.30. One simply has g 400

O_

JMBohr =1
7 JqM. (3.2 E 200
In the cases of Fe and Ni, where experimental parts of the

. . . 0 1 1
spectra are available from the I|tera_ture, the agreement i, M K A L HAO 1 2
excellent in the long-wavelength region and even good for

shorter wavelengths when not considering the interference of FIG. 4. As Fig. 3, but for(@) fcc Co, (b) hcp Co.

Wq=
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FIG. 5. As Fig. 3, but for fcc Ni. The experimental data) are N
those of Ref. 31.
. 1 2 3 4
C. Kohn anomalies Rfastice

The direct SDFT calculation of thgdependent exchange g, 7. Exchange constand of Fe as a function of neighbor

constant matrix2.18) via constrained spin spirals is capable distanceR;; . Note the oscillating behavior up to beyond 15 neigh-
of accounting for arbitrarily far reaching interactions. In pgrs.

analogy to phonon spectra, where in metals long-range inter-

actions mediated by Friedel oscillations due to chargehigher excitation energies, but lacking theoretical predic-
density perturbations with Fermi-surface nesting vectors leaglons, no particular experimental search for Kohn anomalies
to Kohn-Migdal anomalies in the spectra, such anomalies aias been undertaken up to now, although several investiga-
the sameg positions and with the same cause are expected ifions of the high-energy magnetic excitation spectrum were
the magnon Spectra as anticipated already in the original paeported?®33 Although the statistics are obviously not good
per by Kohn enough, the experimental points along the lihd® of Fig. 3

The calculated adiabatic magnon spectra of Fe, displayegre not unlikely to show the anomaly. More precise measure-
in Fig. 3, show prominent anomalies around paihtand  ments in this area are strongly encouraged by our results.

weaker ones in botlh'-N andI'-P directions. In Fig 6 we In F|g 7 the dependence de , which is obtained from
present Fermi-surface cross sections with symmetry planngs (2.14 and(2.18 as

for Fe, which indicate particularly strong nesting behavior of

the majority-spin Fermi-surface pocket arouhd Specifi- Ve _ L

cally, the plane part perpendicular to theH direction can Jij=— —3f dqe” TR, i#], (3.3
explain the strong anomalies in the magnon dispersion (2m)*/82

aroundH both inT"-H andH-N directions. Nesting behavior on the site distanc®;; for Fe is displayed, demonstrating
(small curvaturican also be assigned to some minority-spinthat there is indeed an oscillating long-range exchange inter-
Fermi-surface sheets, and they can be responsible for thgtion reaching beyond the 15th neighbor in the crystal. The
weaker anomalies. constrained spin spiral approach seems to be, at present, the

The study of the magnetic susceptibility in Ref. 20 indi- only technique to trace, quantitatively, such long-range ex-
cates large windows free of spin-flip continua for Fe even athange interactions.

P

IV. THERMAL EXCITATION OF MAGNONS
AND PHASE DIAGRAM

Magnons should, in three dimensions, be expected to be
the appropriate thermal magnetic excitations of magnetically
polarized materials at low temperaturesThe results of the
last section encouraged us to follow this idea. As long as the
magnon-magnon interaction can be neglected, that is in the
harmonic regime, the average mode amplit(le‘lﬁm} is ob-
tained by putting the mode energy2.32 equal to
fiwgnNgn(T) in accordance with the Planck distribution

nqn(T) = 4.1

exff gy /KgT)— 1"

The same reasoning that led to E8.33 now results in

N
P P > M (2 =ngn, 4.2
) ) o 29 Bohr & 2 qu> a
FIG. 6. Cross sections of the Fermi surface of Fe: solid lines: up

spin, dashed lines: down spin. Note the considerable nesting behaand the thermal reduction of the average sublattice magneti-
ior of the I'-centered majority-spin Fermi-surface pocket. zation is obtained as
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M ; ; ; ;
AMZ=M,> [1—<cosa#qn>]~7"2 (0o (4.3 N‘%
an an 20+
Angular brackets denote thermal averaging in this section, ""'q._‘
which comprises averaging over the slow magnetic dynam- — B15[ " wmg %,
ics. Summation of Eq4.3) over u and consideration of Eq. 5 R “A‘IEAA .
(4.2 as well as (IN)2,=[V,./(2m)]/d%q yields s 10} TRGE e
FN
V -00.—0.—'-..‘~ ‘.‘. \\ AA
AM?=2 AMZ=0upon —— f d*qng, (4.9 NN
u n (2m)%)ez N \ = \
. A . R S
for the thermal reduction of the average total magnetization. 0 200 400 600 800 1000 1200 1400
Note that the adiabatic moments have already been sub- T K]

ject to a quantum average over the fast electronic motion and FIG. 8. Magnetization vs temperature of [EguaresRef. 34],

hence are no longer quantum angular momentum operatorg,, [ful triangles hcp(Ref. 35, open triangles fc¢Ref. 34], and

Consequently, they are also no longer subject to zero-poinj [palls (Ref. 36]. Solid lines: calculated from magnon spectra.
qguantum fluctuations which reduce tzecomponent of a pashed lines: mean-field results.

quantum spirs from [ S(S+1)]*2 to <#S. The equations

of motion (2.25 are already the quantum average of Eq.For temperatures for which E@.6) has a nonzero solution,
(2.24) and do not yield zero-point motion which was already the material is magnetically ordered and the thermal average
averaged outin EC{ZZ:D This point is evocative to caution of the total magnetizatiommoment per unit Ce)| is now
in using the adiabatic approach and, in particular, B21):  obtained by summation of E4.6) over v. This approach
for instance, it will probably not work for very weak mag- assumes that on the fast time scale the site morhgpis
netic materials. practically temperature independent upltg. The Langevin

At elevated temperature the occupation numbers anghrmula is used because, again, this site moment is already a
hence the amplitude®,,q,) of long-wavelength modes be- quantum average and hence may vary continuously.
come large. The modes start to interact both kinematically | Fig. 8 the magnetization ofd3ferromagnets vs tem-
(deviation from bosonic characjesnd anharmonically, and peratureT calculated according to Eq$4.4) and (4.6) for
finally the magnon picture is to be replaced by a picture off <7 /2 andT/2<T<T, respectively, is compared with
strong long-wavelength transverse spin fluctuations. dn 3 experimental valuedin Ref. 17 the mean-field part for Ni
metals, the T=0) magnon energies fay vectors close t0  was rescalegl.In particular, the very satisfactory agreement
the Brillouin-zone boundary are much higher thgTc, the  petween our calculation and experiment at low temperatures
thermal energy at the Curie temperature, and hence spin clug due to our correct use of the Planck distribution of mag-
ters of many atoms are expected to be aligned even at thgons instead of the semiclassical averaging of Ref. 10. It
Curie temperature. Figure 1 then suggests that longitudinghdicates that the low-temperature excitation spectrum is in-
spin fluctuations may be neglected even uf¢o We there-  deed well represented by magnons. The mean-field treatment
fore divide the temperature scale into two parts: the harfor higher temperatures is only semiquantitatively correct.
monic regime, roughlyf<Tc/2, with well-defined quantum  within this mean-field treatment, the Curie temperature
excitations, and the anharmonic regime, roughy/2<T itself is obtained as the boundary of the solubility of Eq.
=<Tc, where one may call on semiclassical averaging(4.6). This is the temperature at which the Weiss field van-
schemes for the mean-field free energy as in Ref. 10, ofishes, and therefore E¢4.6) may be replaced by the lowest
since longitudinal spin fluctuations seem to be negligible angyrder of an expansion in powers OM(,BlyeicdksT) for T
the aligned clusters still seem to be mesoscopic, resort to the 1. :

Langevin approach with an effective Weiss field
2 2

M M
, M,y =Bl a2 JoHM ). (4.9
B\’j\,eisgl; (M= JM,) (4.5 (M) BkgT ~Weiss™ 3 T4 0 (M)
, M
) ) _ The solubility condition of this homogeneous linear equation
acting on the momeni, at a site of the sublattice and  gystem for(M) is
causing a thermally averaged sublattice polarization

M2
MVBV i k T de< 51/ - = J(V)M) :01 (49)
(M,)= Mvcot}‘{ " ¥e'ss — VB (4.6) ® 3kgTc
B Buveiss which simplifies for a Bravais lattice to the well-known ex-

in the direction 0By The prime on the sum of Eg4.5  pression
means omission of a possible on-site teffior w=v), and

, M2,
from Eq. (3.3 one finds == (4.10
3kg
R Vie. d3qIzre o n ), for the classical Langevin situation.

Our calculated Curie temperatures together with experi-
4.7 mental values and with other theoretical estimates from the

(2m)®)ez
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TABLE I. Curie temperatures of bcc-Fe, hcp-Co, and fce-Ni in Kelvin.

Tc, present Tc (Ref. 37 Tc (Ref. 9 Tc (Ref. 10 Tc, Expt. (Ref. 38
bcec Fe 1037 1270 1015 1095 1043
fcc Co 1250 1520 1012 1388
fcc Ni 430 450 412 627

literature are given in Table I. Probably the first SDFT cal-scale for the electronic motion comprising longitudinal spin
culation of Curie temperatures ofl3netals on the basis of fluctuations(as, e.g., Stoner excitationand a slow scale for
Eq. (4.10 was reported in Ref. 39. However, these authorghe transversal moment motion. The force constdpts
doubted the applicability of the Langevin expression andchange constantgjoverning the latter motion are obtained
qualified the closeness to experimental values to some exteffom SDFT calculations for small amplitude spin spirals
as a matter of chance. The deviation between the calculateshly. The low-energy excitations of bce-Fe, Co, and fcc Ni
Curie temperatures of Refs. 39 and 37 and ours is most prolye well described as adiabatic magnons displaying Kohn
ably due to differences in the calculation &, where those  anomalies in case of Fermi-surface nesting and obeying
authors summed over a finite number of neighbors in reap|ancy statistics. On the short time scale the site moments
space rather than our Fourleraspace treatment. Interestinglye siaple even through the magnetic order transition. From
enough, a recent Improvem nof .the_ Korrlngaa—Kohn— the stiffness al =0 in relation tokg T, One may conjecture
Rostoker coherent-potential-approximation approdaohthe that largeq modes are sparsely occupied everiTat and

paramagnetic phase aboVie, which is based on similar . ;

. 2 . hence the ordered moment lattice melts into clusters of a few

adiabaticity assumptions, resultedTig values very close to o L . s
atomic distances in diameter in these metals. The individual

ours. . .
a§|te moments themselves are already on-site quantum aver-

We stress once more that due to our analysis, in particul " . .
the results of Fig. 1 in connection with the magnon energ)ﬁged guantities and move quasiclassically at elevated tem-

scale related td ., the site moments remain fully developed Perature. Hence the Langevin free energy is the correct
on the fast time scale even above the Curie temperature. Thfgéan-field basis for the description of thermal behavior at
relates nicely to very recent experimental findiffgsf strong ~ €levated temperature.

short-range ferromagnetic correlations in magnetic neutron-
scattering results for fcc-Fe-Ni alloys at high temperatures
far above ordering temperatures and even for concentrations
(~20% Ni) where there is practically no low-temperature
magnetic order. On average, over the slow time scale there is
of course no moment.
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