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Random-field effect on the quantum ferromagneticXY model
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The quantum version of the random-field spheri8d model on ad-dimensional hypercubic lattice is
presented in the boson space, and solved exactly. We recover the Imry-Ma result concerning the lower critical
dimensiond.=4, and calculate the critical exponents near the critical temperature. In particular, we obtain a
general phase diagram of the model with arbitrary dimendieavhend>d_. The ferromagnetic ordering is
reduced by quantum fluctuations, and destroyed completely by random-field fluctuations with sufficiently large
values of the random-field varianee The entropy and the specific heat vanishT4€ at low temperatures.

Since the model is equivalent to a Bose system, we show a superfluid-Mott insulator transition at a critical
chemical potentiak.. [S0163-182608)00925-4

In the last years, extensive attention has been lavished anuch more complicated, and few results are availdb&pe-
the theory of disordered spin systems. One of the most fureifically, a phase diagram of the short-range quanim
damental questions is to know whether these random spimodel in the presence of random fields has not been reported
systems have an ordered phase. The most fruitful method tap to now. The construction of the quantum spherical model
study disordered systems is the statistical field theoryill provide a powerful method for studying these quantum
method® which allows one to consider the infinite-range in- phase transitions of disordered spin systems. In this paper,
teraction casewhere the saddle-point method provides thewe report the exact result for the quantized spherical short-
exact solution of the problem. While a large amount of workrangedXY model with a random field. Since the sgirXY
has been focused on the infinite-range model, which is exmodel is equivalent to a hard-core boson mddéf.thinking
pected to describe the transition in a short-range system aff the spin problem in terms of the boson language, and vice
sufficiently high dimensions, the understanding of the realersa, is a fruitful way to understand the physics of X
short-ranged disordered spin systems is still an incompletodel and related boson models. We will first introduce
and interesting problem. Thus it would be very useful tohard-core boson operators to map the quantum spin system
have a model which can be solved exactly, but which stillinto a boson system plus a local hard-core boson constraint,
retains the main features of the original short-range disorand construct a quantum spherical version of the model by
dered spin model. Such a model is the spherical one whickelaxing the hard-core boson constraint in the boson space.
was first introduced by Berlin and KdcSince the classical Then it will be easy to use the coherent-state path integral to
spherical model in the spin representation can be solved esolve this equivalent boson model exactly. The phase dia-
actly for nearest-neighbor interactioh3ijt has been success- gram is obtained for arbitrary dimension, and the effects of
fully used to study a number of problems of phase transitiongluantum fluctuations and randomness on the phase transi-
associated with order-disordered phenomena in random spiions are examined. We find that the quantum fluctuations
system$ Lately, there has been renewed interest in theare to reduce somewhat the value of the magnetization, but
quantum version of disordered spin systefms,because of do not destroy the ordered ferromagnetic phase. In contrast,
its relevance to the recently discovered hihsupercon- the random fields have stronger fluctuations than quantum
ducting materials. Most theoretical work has been devoted teffects. The existence of the randomness leads to an increase
the study of the one-dimensional and infinite-range casesf the lower dimensiom, by 2 fromd.=2 of the pureXyY
These two limiting cases seem to capture some features imrodel. And ford>d.=4, the model exhibits a transition
duced by the quantum effects and randomness of the sy§om ferromagnetic to paramagnetic phases at a sufficiently
tems. However, very little is known about the phase transiarge value of the random-field variance. Contrary to the
tion behaviors of the quantum short-ranged spin systemglassical spherical model in which the entropy gives a non-
which are of experimental interest. The technical reason iphysical low-temperature behavior, the entropy and specific
that the quantum effects usually create a potentially difficultheat in the present model are always positive at finite tem-
technical problem due to the requisite noncommutativity ofperatures, and decay @& at low temperatures. The model
spin operators in the Hamiltonian. On the other hand, thean also be used to describe the superfluid-Mott insulator
disorderedXY model was introduced as a simplified model transition of a Bose system. It is displayed that, at a critical
for a variety of physical systems. Among them are vortexchemical potential, there exists a phase transition between
glass in type-Il superconductot®granular superconductors the disordered Mott insulator and the superfluid phases.
and Josephson junctioh§, and the superfluid-insulator We consider a quanturXY model on ad-dimensional
transition and boson localization in disordered bosorhypercubic lattice withN interacting spins. Its Hamiltonian
systems®1®However, this quantum-disorderé model is  is given by
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N N which is determined by requiring that My=N,ala;=1.
H=— E JiiS-§— E h-S, (1) The parameter could be seen as an effective cutoff param-
4 : eter of unphysical states in the boson space. Changing from
whereS = (S,9) is the quantunXY spin operator at sitg the site representation tq the momentum one, the Fourier
andJ;; are the strength of the exchange interactions betweeffansformation of Eq(2) with constraint(3) is given by
sites. h; is the identically distributed random field at site
with the symmetric Ga_lussian probability distribution with HZ—E J(k)alak—%E (hﬁ—ih’k’)al
zero mean and the varianeé. K K
In boson language, the spin operators in each lattice site
are replaced by the boson creatiaﬁ_and annihilationa —1> (X +ihY YDag+uY, afac—iuN, (@)
operators; Hamiltoniafl) can be rewritten as K K

wherea,, a}, andh, are the Fourier transforms of the op-

H=—-2 Jjalaj—3> (M—=ih))al-3> (h'+ih))a;, erators and the random field, respectively. The interactions
! ' ' ) J(k) are given byJ(k)=2JEi:1 cosk,, whereJ is the

strength of the nearest-neighbor interactions. The model
by an exact mathematical transformatfdrs +iS/=a/ and  Hamiltonian (4) realizes the reformulation of the initial bo-
S‘—iS/=a;. Hereh{ is the ath component of the random son Hamiltoniar(2) in terms of the standard bosons, and can
external fieldh; at sitei. From the above exact mathematical be solved exactly. This will provide a good starting point for
transformation, one obtains the hard-core boson constrairitirther study of statistical mechanics of the quantum mag-
conditionaa;=0 and 1. Since such a model defines bound-nets and related boson models. Since Xt model differs
aries in Hilbert space with physical statess@'a;<2S (1  from the Heisenberg model by the absence of the 25197
for spin4), it is extremely difficult to handle in a function which leads to nonquadratic terms in the boson Hamiltonian,
integral approach® To avoid the above difficulties, we im- Eq. (4) is a quadratic form in the boson creation and annihi-
pose the spherical constraint in the spin spacdation operatora[ﬁ anda, . Actually, the model Hamiltonian
(IN)=N  $?=124Z which, in boson language, becomes a(4) is an extended hard-core boson system with the boson

mean hard-core bosonic constraint hoppingJ;; , and the chemical potential in the strong on-
N site repulsion limitt® On the other hand, Eq4) can also be
1 E i 1 employed to describe other physical systems such as the in-
N <& a; ai_i' 3 teraction properties between atoms and the electromagnetic
field >
This means that the boson numbgr=a/a; is allowed to Once the Hamiltonian is written in terms of bosonic op-

take on any value from O te (rather than just the values O erators, we can express the partition functios Tr e £
and 1), subject only to the so-called mean hard-core bosonmsing the coherent state functional integtaf in the Mat-
constraint(3), like the original formulation of the spherical subara ‘imaginary time’ formulation. The advantage is that
model in the spin spackThe advantage is that although one in the coherent-state path-integral representation, the boson
connects the physical states witk@'a=<1 with unphysical operator will become & number, and the trace in the parti-
states having@'a>1, which may lead to unphysical results, tion function can be performed explicitly. Upon integrating
constraint(3) can effectively remove unphysical states in out the bosons and then averaging over the Gaussian random
low dimensions, and the resulting path-integral theory is apfields in the partition function, the resulting free energy per
plicable to arbitrary spit$ case and related boson systems,site, f=—(1/8N)In Z, is given by
correTspondir;g to relaxing the hard-core boson condition .
O0=<a'a=<2S.“® In particular, the technique presented here _
can be employed to study the soft-core boson Hubbard f=_’3_N - In{1—ex — Blu—I(k)]}
model with a finite on-site repulsiol,equivalent to the an-
isotropic S=31 Heisenberg model in which the expectation 1 o? 1
value of the boson number is compared to 8, and the N ; Apu—Ik)] 2 M ®
conventional spin-wave theory is no longer satisfytfidn
the present case, the boson constraint appears as the natuvhlere the summation is performed over the first Brillouin
way to eliminate the unphysical states, contrary to the modizone of the reciprocal lattice. The first term in Eg), which
fied spin-wave theor§’ in which the Mermin-Wagner comes from the integral over the quantum harmonic oscilla-
theoren® is enforced by hande.g., the total number of tors, is different from the solution of the classical spherical
Holstein-Primakoff bosons per siteSson the averageFur-  model®® It is easy to find that this quantum term also ap-
thermore, in the spin space, the mean and strict sphericglears in other quantum-mechanical probléffs;**1*3\and
constraints lead to the same results for thermodynamicglays a crucial role in determining the phase transition be-
quantitiest However, for the present case we see that théavior of the quantum systems. The Lagrange multipliés
relaxed mean boson constrai{@) can be easily extended to determined by minimizing the free energy with respect to it,
the quantum problents. dflou=0:

Now a; and aiT satisfy the standard boson commutation
relationg| a; ,ajT]= dij - The price is that the constrai(®) is
introduced into the Hamiltonian via a Lagrange multiplier
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with n,=1/(exd B(u—J(k)]—1). The energy spectrum is
given byE,= x—J(k), and exhibits an energy gapE= u B
—J(k=0). There exists a second-order phase transition [
where w sticks atJ(k=0)=2Jd. Actually, at this pointu
=2Jd, the boson condensation of tike=0 mode occurs.
This state will accumulate more and more bosons with the
decrease of temperatufe so that al =0 the ground state is
achieved by populating th&=0 mode only. Thus long-
range ferromagnetic order is achieved as a result of the Bose-
Einstein condensation of the bosons. Converting a sum into
an integral in Eq.(6) must be accomplished by adding a
Bose-Einstein condensate term corresponding to the gase
=2Jd andk=0 in the thermodynamic limit. The resultant
equation of state is obtained by calculating the spin-spin cor-
relation functionM?=(S}- S)|r_.... We have

T /J

2_1_ ddk 1 ' ' ' ' ' ' I 291-1/2
2 (2m)% exp{Blu—J(k) ]} -1 cl/J
d o? . FIG. 1. Phase diagram in the plafig/J vs o/J of the quantum
- 2m)d 4 u—I(K)]? () sphericalXY model in a random field fod>4. FM denotes the

N ] ferromagnetic phase, and PM the paramagnetic phase. The critical
The critical temperaturd . below which the ordered ferro- temperaturer’ and the random-field strengthare scaled byl.
magnetic phase appears is determined by solving Bdor

the spherical constraint in the limit=2Jd. Expanding the  of random fields; this yieldg= 1/2, =d/(d—4), v=1/(d

exp term in Eq.(7), we obtain, in the limitM —0, —4), and y=2/(d—4) for 4<d<6. Aboved,=6 we re-
5 cover the mean-field result8=1/2, 6=3, v=1/2, andy
1= T g ® =L
432 917 5 9275 In the following, we first consider the properties of the
ith phase transition at zero temperatdre 0. Equation(7) re-
Wi duces to
dk 1 ddk 1 d >
glzf d — 2> gzzf YEPaY: A ZZE_J dk i
(2m)7 2[d = (k)] (2mT d—y(k) M2=5~ | G A= I (1)

9

where y(k)=39_, cosk,. The values of the functiong, In the absence of random fields=0, Eq.(11) shows that
andg, depend only on the dimensiah Equation(8), with  the magnetization =v2/2, which differs from the classical
Eq. (9), exhibits an order-disordered phase transition, pro_resuItM =1, exhibits a quantum reduction effect. This means
vided that the integrals in E49) converge. It is straightfor- that quantum fluctuations tend to weaken the ordered ferro-
ward to see from Eq(9) that the functionsy; andg, con-  Magnetic behavior, but do not completely suppress the onset
verge ford>4 andd>2, respectively. Thus we conclude of ferromagnetic order. On the other hand, as the strength of
that the random-field fluctuations destroy the ordered ferrot® random fieldo reaches a critical strength of disorder,
magnetic phase for 2d<4, and the lower critical dimen- 9¢=23/91", the magnetizationM disappears as< (o

sion for the presenXY model isd.=4, which is in agree- )", Showing a zero-temperature transition. For o
ment with the Imry-Ma resuf? Since the random-field term the ground stable state becomes a paramagnetic one. In the
in Eq. (7) contains the stronger singularity fer-0 than the ~ Present study, we see that the random-field-induced fluctua-
second term on the right-hand side of E@), which corre- tions are stronger than quantum fluctuations, and thus the
sponds to the quantum fluctuations, the leading contributiof'tical behavior close to phase transition is dominated by the
to the critical behaviors stems from the random-field term/andom-field fluctuations; the quantum effects are displayed

The critical behavior near the critical temperatiigis de- ~ Only clearly by the reduction of the magnetization.

termined by the solution of state equatith for small but We turn to the phase transition of the system at a finite
finite AE. Expanding the exp term in E7) in k—0 and for ~ temperatureT#0. From Egs.(7)—(9) we see that at the
small AE. we have phase transition, the magnetizatidd behavesMo (T,
’ —T)Y2 In Fig. 1, we present th€— o phase diagram of the
(AE)@-92  (d<6) model ford>d,, i.e., on the left of this curve the ferromag-
IT-T]~M2+Co?{ AEINAE (d=6) (10) netic phase occurs. The ferromagnetic phas_e transition tem-
AE (d>6). peratureT, as a function ofo decreases continuously from

its maximum valuel .;=J/g,, aso grows, and vanishes for
Obviously the upper critical dimension é&,=6. From Egs. the critical value of the random-field varianog=2J/g1’?.
(10) we can determine the critical exponents of the thermodin addition, from Eq.(5) we obtained that the entropy and

dynamic quantities of the quantuXy model in the presence the specific heat behave ag¥? at low temperaturd, con-
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trary to the classical spherical modél,where the entropy fluid phase at a critical chemical potentjak u., in agree-

appraches—o and the specific heat keeps constantTas ment with the result of Pazmandi and DomariSki.

—0, respectively. This is a direct consequence of the loga- In conclusion, we have studied the phase transition and

rithmic term present in Eq5), which is due to a pure quan- the critical properties of the quantum short-rangé model

tum contribution. with random fields in the exactly soluble spherical limit. We
Finally, since the preserXY model is equivalent to a have obtained a general expression describing the phase tran-

erties of the superfluid-Mott insulator transition of the pureWas shown that the main effect of quantum fluctuations is a
Bose system. The Hamiltonian can now be written as reduction of the ferromagnetic ordering. On the other hand,

the random-field-induced fluctuations destroy the ferromag-
netic phase for 2 d<4, and, wherd>4, randomness makes
H=-2 Jjala—3> (H*—iHY)al the ferromagnetic ordering unstable, and even the boundary
g : of the ferromagnetic phase can be destroyed, which depends
strongly on the variance. At the critical pointo, the mag-
—1> (H+iH)a+u, ala. (120  netizationM disappears as (o.— o)¥2 We calculated the
: : critical exponents near the phase transition, and showed that

HereH is the ath component of the external magnetic field the random-field fluctuations rather than the quantum fluc-
I

H.. In the present case, the spherical constraint does n%ltlations dominate the critical behavior. We have seen that
[ )

; : . the entropy of this model displays the expected physical be-
appear, ?ndu in Eq. (12) becomes the cpemlcal potential havior when the temperatufe— 0. The present model also
determining the average boson densitya;'a; . The corre-

ding f £ th b b demonstrated the existence of the transition from the super-
sponding free energy of the pure boson system becomes  g,,iq into the Mott insulator phases, as the chemical potential

1 M approaches a critical valye.. The Mott insulator phase
In 2 sinh= Bl u—J(k)] has a finite energy gap— u., but for the superfluid phase
2 the energy gap vanishes for vanishing field. Replacing the
H2 1 quantum spin operators by the boson ones in the bosonic
_ —— (13) representation, the present quantum bosonic theory can be
Apu—3(k=0)] 2 applied to make contact with a set of the quant¥ivi mod-
The superfluid order parametdt is equal toM = — af/aH els with other types of disorders, and the related disordered

. ! Bose ones. In particular, generalizations to the quamim
=H/2[ x—J(k=0)]. Equation(13) gives an energy gap Is with N ; ; he inclusi ¢
AE= su—2Jd=H/2M, which vanishes in the ordered super- models with random-bond interactions and the inclusion o

fluid phase W +0) at zero field, i.eu—2Jd-0(H) for the 2 oCOPY will be straightforward.

ordered superfluid phase. In the disordered Mott insulator This work was supported by the Fifth Huo Ying-dong
phase, there exists a finite energy gap u. for u>pu. Teacher’s Foundation and the Trans-Century Training Pro-
=2Jd. The system undergoes a second-order phase trangiramme Foundation for the Talents by the State Education
tion, from a disordered Mott insulator to an ordered super<Commission.
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