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Random-field effect on the quantum ferromagneticXY model
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The quantum version of the random-field sphericalXY model on ad-dimensional hypercubic lattice is
presented in the boson space, and solved exactly. We recover the Imry-Ma result concerning the lower critical
dimensiondc54, and calculate the critical exponents near the critical temperature. In particular, we obtain a
general phase diagram of the model with arbitrary dimensiond whend.dc . The ferromagnetic ordering is
reduced by quantum fluctuations, and destroyed completely by random-field fluctuations with sufficiently large
values of the random-field variances. The entropy and the specific heat vanish asTd/2 at low temperatures.
Since the model is equivalent to a Bose system, we show a superfluid-Mott insulator transition at a critical
chemical potentialmc . @S0163-1829~98!00925-4#
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In the last years, extensive attention has been lavishe
the theory of disordered spin systems. One of the most
damental questions is to know whether these random
systems have an ordered phase. The most fruitful metho
study disordered systems is the statistical field the
method,1 which allows one to consider the infinite-range i
teraction case2 where the saddle-point method provides t
exact solution of the problem. While a large amount of wo
has been focused on the infinite-range model, which is
pected to describe the transition in a short-range system
sufficiently high dimensions, the understanding of the r
short-ranged disordered spin systems is still an incomp
and interesting problem. Thus it would be very useful
have a model which can be solved exactly, but which s
retains the main features of the original short-range dis
dered spin model. Such a model is the spherical one wh
was first introduced by Berlin and Kac.3 Since the classica
spherical model in the spin representation can be solved
actly for nearest-neighbor interactions,4,5 it has been success
fully used to study a number of problems of phase transiti
associated with order-disordered phenomena in random
systems.6 Lately, there has been renewed interest in
quantum version of disordered spin systems,7–15 because of
its relevance to the recently discovered high-Tc supercon-
ducting materials. Most theoretical work has been devote
the study of the one-dimensional and infinite-range ca
These two limiting cases seem to capture some feature
duced by the quantum effects and randomness of the
tems. However, very little is known about the phase tran
tion behaviors of the quantum short-ranged spin syste
which are of experimental interest. The technical reaso
that the quantum effects usually create a potentially diffic
technical problem due to the requisite noncommutativity
spin operators in the Hamiltonian. On the other hand,
disorderedXY model was introduced as a simplified mod
for a variety of physical systems. Among them are vor
glass in type-II superconductors,16 granular superconductor
and Josephson junctions,17 and the superfluid-insulato
transition and boson localization in disordered bos
systems.18,19However, this quantum-disorderedXY model is
PRB 580163-1829/98/58~1!/282~5!/$15.00
on
n-
in
to
y

x-
of
l
te

ll
r-
h

x-

s
in

e

to
s.
in-
s-

i-
s,
is
lt
f
e
l
x

n

much more complicated, and few results are available.20 Spe-
cifically, a phase diagram of the short-range quantumXY
model in the presence of random fields has not been repo
up to now. The construction of the quantum spherical mo
will provide a powerful method for studying these quantu
phase transitions of disordered spin systems. In this pa
we report the exact result for the quantized spherical sh
rangedXY model with a random field. Since the spin-1

2 XY
model is equivalent to a hard-core boson model,21,22thinking
of the spin problem in terms of the boson language, and v
versa, is a fruitful way to understand the physics of theXY
model and related boson models. We will first introdu
hard-core boson operators to map the quantum spin sys
into a boson system plus a local hard-core boson constr
and construct a quantum spherical version of the mode
relaxing the hard-core boson constraint in the boson sp
Then it will be easy to use the coherent-state path integra
solve this equivalent boson model exactly. The phase
gram is obtained for arbitrary dimension, and the effects
quantum fluctuations and randomness on the phase tra
tions are examined. We find that the quantum fluctuatio
are to reduce somewhat the value of the magnetization,
do not destroy the ordered ferromagnetic phase. In cont
the random fields have stronger fluctuations than quan
effects. The existence of the randomness leads to an incr
of the lower dimensiondc by 2 from dc52 of the pureXY
model. And for d.dc54, the model exhibits a transition
from ferromagnetic to paramagnetic phases at a sufficie
large value of the random-field variance. Contrary to t
classical spherical model in which the entropy gives a n
physical low-temperature behavior, the entropy and spec
heat in the present model are always positive at finite te
peratures, and decay asTd/2 at low temperatures. The mode
can also be used to describe the superfluid-Mott insula
transition of a Bose system. It is displayed that, at a criti
chemical potential, there exists a phase transition betw
the disordered Mott insulator and the superfluid phases.

We consider a quantumXY model on ad-dimensional
hypercubic lattice withN interacting spins. Its Hamiltonian
is given by
282 © 1998 The American Physical Society
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H52(
i j

N

Ji j Si•Sj2(
i

N

hi•Si , ~1!

whereSi5(Si
x ,Si

y) is the quantumXY spin operator at sitei ,
andJi j are the strength of the exchange interactions betw
sites.hi is the identically distributed random field at sitei
with the symmetric Gaussian probability distribution wi
zero mean and the variances2.

In boson language, the spin operators in each lattice
are replaced by the boson creationa† and annihilationa
operators; Hamiltonian~1! can be rewritten as

H52(
i j

Ji j ai
†aj2

1
2 (

i
~hi

x2 ihi
y!ai

†2 1
2 (

i
~hi

x1 ihi
y!ai ,

~2!

by an exact mathematical transformation,22 Si
x1 iSi

y5ai
† and

Si
x2 iSi

y5ai . Herehi
a is the ath component of the random

external fieldhi at sitei . From the above exact mathematic
transformation, one obtains the hard-core boson constr
conditionai

†ai50 and 1. Since such a model defines boun
aries in Hilbert space with physical states 0<ai

†ai<2S ~1
for spin-12!, it is extremely difficult to handle in a function
integral approach.23 To avoid the above difficulties, we im
pose the spherical constraint in the spin spa
(1/N)( i 51

N S251,24,25 which, in boson language, becomes
mean hard-core bosonic constraint

1

N (
i 51

N

ai
†ai5

1

2
. ~3!

This means that the boson numberni5ai
†ai is allowed to

take on any value from 0 tò ~rather than just the values
and 1!, subject only to the so-called mean hard-core bo
constraint~3!, like the original formulation of the spherica
model in the spin space.4 The advantage is that although on
connects the physical states with 0<a†a<1 with unphysical
states havinga†a.1, which may lead to unphysical result
constraint ~3! can effectively remove unphysical states
low dimensions, and the resulting path-integral theory is
plicable to arbitrary spin-S case and related boson system
corresponding to relaxing the hard-core boson condit
0<a†a<2S.26 In particular, the technique presented he
can be employed to study the soft-core boson Hubb
model with a finite on-site repulsion,18 equivalent to the an-
isotropic S5 1

2 Heisenberg model in which the expectatio
value of the boson numbern is compared to 2S, and the
conventional spin-wave theory is no longer satisfying.26 In
the present case, the boson constraint appears as the n
way to eliminate the unphysical states, contrary to the mo
fied spin-wave theory,27 in which the Mermin-Wagner
theorem28 is enforced by hand~e.g., the total number o
Holstein-Primakoff bosons per site isS on the average!. Fur-
thermore, in the spin space, the mean and strict sphe
constraints lead to the same results for thermodynam
quantities.4 However, for the present case we see that
relaxed mean boson constraint~3! can be easily extended t
the quantum problems.29

Now ai and ai
† satisfy the standard boson commutati

relations@ai ,aj
†#5d i j . The price is that the constraint~3! is

introduced into the Hamiltonian via a Lagrange multiplierm
n
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which is determined by requiring that (1/N)( i 51
N ai

†ai5
1
2 .

The parameterm could be seen as an effective cutoff para
eter of unphysical states in the boson space. Changing f
the site representation to the momentum one, the Fou
transformation of Eq.~2! with constraint~3! is given by

H52(
k

J~k!ak
†ak2 1

2 (
k

~hk
x2 ihk

y!ak
†

2 1
2 (

k
~h2k

x 1 ih2k
y !ak1m(

k
ak

†ak2 1
2 mN, ~4!

whereak , ak
† , andhk are the Fourier transforms of the op

erators and the random field, respectively. The interacti
J(k) are given byJ(k)52J(a51

d coska , where J is the
strength of the nearest-neighbor interactions. The mo
Hamiltonian~4! realizes the reformulation of the initial bo
son Hamiltonian~2! in terms of the standard bosons, and c
be solved exactly. This will provide a good starting point f
further study of statistical mechanics of the quantum m
nets and related boson models. Since theXY model differs
from the Heisenberg model by the absence of the termJSi

zSj
z

which leads to nonquadratic terms in the boson Hamiltoni
Eq. ~4! is a quadratic form in the boson creation and anni
lation operatorsak

† andak . Actually, the model Hamiltonian
~4! is an extended hard-core boson system with the bo
hoppingJi j , and the chemical potentialm in the strong on-
site repulsion limit.18 On the other hand, Eq.~4! can also be
employed to describe other physical systems such as th
teraction properties between atoms and the electromagn
field.30

Once the Hamiltonian is written in terms of bosonic o
erators, we can express the partition functionZ5Tr e2bH

using the coherent state functional integral23,26 in the Mat-
subara ‘imaginary time’ formulation. The advantage is th
in the coherent-state path-integral representation, the bo
operator will become ac number, and the trace in the part
tion function can be performed explicitly. Upon integratin
out the bosons and then averaging over the Gaussian ran
fields in the partition function, the resulting free energy p
site, f 52(1/bN)ln Z, is given by

f 52
1

bN (
k

ln$12exp@2b„m2J~k!…#%21

2
1

N (
k

s2

4@m2J~k!#
2

1

2
m, ~5!

where the summation is performed over the first Brillou
zone of the reciprocal lattice. The first term in Eq.~5!, which
comes from the integral over the quantum harmonic osci
tors, is different from the solution of the classical spheric
model.4,5 It is easy to find that this quantum term also a
pears in other quantum-mechanical problems,23,26,12–14,31and
plays a crucial role in determining the phase transition
havior of the quantum systems. The Lagrange multiplierm is
determined by minimizing the free energy with respect to
] f /]m50:

1

N (
k

nk1
1

N (
k

s2

4@m2J~k!#22
1

2
50, ~6!
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284 PRB 58YU-QIANG MA
with nk51/„exp@b(m2J(k)#21…. The energy spectrum i
given byEk5m2J(k), and exhibits an energy gapDE5m
2J(k50). There exists a second-order phase transi
wherem sticks atJ(k50)52Jd. Actually, at this pointm
52Jd, the boson condensation of thek50 mode occurs.
This state will accumulate more and more bosons with
decrease of temperatureT, so that atT50 the ground state is
achieved by populating thek50 mode only. Thus long-
range ferromagnetic order is achieved as a result of the B
Einstein condensation of the bosons. Converting a sum
an integral in Eq.~6! must be accomplished by adding
Bose-Einstein condensate term corresponding to the cam
52Jd and k50 in the thermodynamic limit. The resultan
equation of state is obtained by calculating the spin-spin c
relation functionM25^S0

x
•SR

x &uR→` . We have

M25
1

2
2E ddk

~2p!d

1

exp$b@m2J~k!#%21

2E ddk

~2p!d

s2

4@m2J~k!#2 . ~7!

The critical temperatureTc below which the ordered ferro
magnetic phase appears is determined by solving Eq.~7! for
the spherical constraint in the limitm52Jd. Expanding the
exp term in Eq.~7!, we obtain, in the limitM→0,

12
s2

4J2 g12
Tc

J
g250, ~8!

with

g15E ddk

~2p!d

1

2@d2g~k!#2 , g25E ddk

~2p!d

1

d2g~k!
,

~9!

whereg(k)5(a51
d coska . The values of the functionsg1

andg2 depend only on the dimensiond. Equation~8!, with
Eq. ~9!, exhibits an order-disordered phase transition, p
vided that the integrals in Eq.~9! converge. It is straightfor-
ward to see from Eq.~9! that the functionsg1 and g2 con-
verge for d.4 and d.2, respectively. Thus we conclud
that the random-field fluctuations destroy the ordered fe
magnetic phase for 2,d<4, and the lower critical dimen
sion for the presentXY model isdc54, which is in agree-
ment with the Imry-Ma result.32 Since the random-field term
in Eq. ~7! contains the stronger singularity fork→0 than the
second term on the right-hand side of Eq.~7!, which corre-
sponds to the quantum fluctuations, the leading contribu
to the critical behaviors stems from the random-field ter
The critical behavior near the critical temperatureTc is de-
termined by the solution of state equation~7! for small but
finite DE. Expanding the exp term in Eq.~7! in k→0 and for
small DE, we have

uT2Tcu;M21Cs2H ~DE!~d24!/2

DE ln DE
DE

~d,6!

~d56!

~d.6! .
~10!

Obviously the upper critical dimension isdu56. From Eqs.
~10! we can determine the critical exponents of the therm
dynamic quantities of the quantumXY model in the presence
n

e

e-
to

r-

-

-

n
.

-

of random fields; this yieldsb51/2, d5d/(d24), n51/(d
24), andg52/(d24) for 4,d,6. Above du56 we re-
cover the mean-field resultsb51/2, d53, n51/2, andg
51.

In the following, we first consider the properties of th
phase transition at zero temperatureT50. Equation~7! re-
duces to

M25
1

2
2E ddk

~2p!d

s2

4@m2J~k!#2 . ~11!

In the absence of random fields,s50, Eq. ~11! shows that
the magnetizationM5&/2, which differs from the classica
resultM51, exhibits a quantum reduction effect. This mea
that quantum fluctuations tend to weaken the ordered fe
magnetic behavior, but do not completely suppress the o
of ferromagnetic order. On the other hand, as the strengt
the random fields reaches a critical strength of disorde
sc52J/g1

1/2, the magnetizationM disappears as}(sc

2s)1/2, showing a zero-temperature transition. Fors.sc
the ground stable state becomes a paramagnetic one. I
present study, we see that the random-field-induced fluc
tions are stronger than quantum fluctuations, and thus
critical behavior close to phase transition is dominated by
random-field fluctuations; the quantum effects are displa
only clearly by the reduction of the magnetization.

We turn to the phase transition of the system at a fin
temperatureTÞ0. From Eqs.~7!–~9! we see that at the
phase transition, the magnetizationM behavesM}(Tc
2T)1/2. In Fig. 1, we present theT2s phase diagram of the
model ford.dc , i.e., on the left of this curve the ferromag
netic phase occurs. The ferromagnetic phase transition t
peratureTc as a function ofs decreases continuously from
its maximum valueTc5J/g2 , ass grows, and vanishes fo
the critical value of the random-field variancesc52J/g1

1/2.
In addition, from Eq.~5! we obtained that the entropy an
the specific heat behave as}Td/2 at low temperatureT, con-

FIG. 1. Phase diagram in the planeTc /J vs s/J of the quantum
sphericalXY model in a random field ford.4. FM denotes the
ferromagnetic phase, and PM the paramagnetic phase. The cr
temperatureTc

i and the random-field strengths are scaled byJ.
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trary to the classical spherical model,4,5 where the entropy
appraches2` and the specific heat keeps constant asT
→0, respectively. This is a direct consequence of the log
rithmic term present in Eq.~5!, which is due to a pure quan-
tum contribution.

Finally, since the presentXY model is equivalent to a
boson system, we would like to shed some light on the pro
erties of the superfluid-Mott insulator transition of the pu
Bose system. The Hamiltonian can now be written as

H52(
i j

Ji j ai
†aj2

1
2 (

i
~Hx2 iH y!ai

†

2 1
2 (

i
~Hx1 iH y!ai1m(

i
ai

†ai . ~12!

HereHi
a is theath component of the external magnetic fiel

H i . In the present case, the spherical constraint does
appear, andm in Eq. ~12! becomes the chemical potentia
determining the average boson densityn5ai

†ai . The corre-
sponding free energy of the pure boson system becomes

f 5
1

bN (
k

ln 2 sinh
1

2
b@m2J~k!#

2
H2

4@m2J~k50!#
2

1

2
m. ~13!

The superfluid order parameterM is equal toM52] f /]H
5H/2@m2J(k50)#. Equation ~13! gives an energy gap
DE5m22Jd5H/2M , which vanishes in the ordered supe
fluid phase (MÞ0) at zero field, i.e.,m52Jd10(H) for the
ordered superfluid phase. In the disordered Mott insula
phase, there exists a finite energy gapm2mc for m.mc
52Jd. The system undergoes a second-order phase tra
tion, from a disordered Mott insulator to an ordered supe
2

n

.

-

-

ot

r

si-
r-

fluid phase at a critical chemical potentialm5mc , in agree-
ment with the result of Pazmandi and Domanski.33

In conclusion, we have studied the phase transition
the critical properties of the quantum short-rangeXY model
with random fields in the exactly soluble spherical limit. W
have obtained a general expression describing the phase
sition of the model with arbitrary dimensiond for d.4. It
was shown that the main effect of quantum fluctuations i
reduction of the ferromagnetic ordering. On the other ha
the random-field-induced fluctuations destroy the ferrom
netic phase for 2,d<4, and, whend.4, randomness make
the ferromagnetic ordering unstable, and even the bound
of the ferromagnetic phase can be destroyed, which depe
strongly on the variances. At the critical pointsc , the mag-
netizationM disappears as}(sc2s)1/2. We calculated the
critical exponents near the phase transition, and showed
the random-field fluctuations rather than the quantum fl
tuations dominate the critical behavior. We have seen
the entropy of this model displays the expected physical
havior when the temperatureT→0. The present model als
demonstrated the existence of the transition from the su
fluid into the Mott insulator phases, as the chemical poten
m approaches a critical valuemc . The Mott insulator phase
has a finite energy gapm2mc , but for the superfluid phase
the energy gap vanishes for vanishing field. Replacing
quantum spin operators by the boson ones in the bos
representation, the present quantum bosonic theory ca
applied to make contact with a set of the quantumXY mod-
els with other types of disorders, and the related disorde
Bose ones. In particular, generalizations to the quantumXY
models with random-bond interactions and the inclusion
anisotropy will be straightforward.
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