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The statistical mechanics of the flux-line lattice in extreme type-Il superconductors is studied within the
framework of the uniformly frustrated anisotropic three-dimensiofidlmodel. It is assumed that the exter-
nally applied magnetic field is low enough to invalidate the lowest Landau-level approach to the problem. A
finite-field counterpart of an Onsager vortex-loop transition in extreme type-ll superconductors renders the
vortex liquid phase incoherent when the Abrikosov vortex lattice undergoes a first-order melting transition. For
the magnetic fields considered in this paper, corresponding to filling fractiongiven by 1f
=12,14,16,20,25,32,48,64,72,84,96,112, and 128, the vortex liquid phase is not describable as a liquid of
well-defined field-induced vortex lines. This is due to the proliferation of thermally induced closed vortex
loops with diameters of the order of the magnetic length in the problem, resulting in a “percolation transition”
driven by non-field-induced vortices als@nsverseo the direction of the applied magnetic field. This imme-
diately triggers flux-line lattice melting and loss of phase coherence along the direction of the magnetic field.
Due to this mechanism, the field-induced flux lines lose their line tension in the liquid phase, and cannot be
considered to be directed or well defined. In a nonrelativistic two-dimensional boson-analogy picture, this latter
feature would correspond to a vanishing mass of the bosons. Scaling functions for the specific heat are
calculated in zero and finite magnetic field. From this we conclude that the critical region is of order of 10%
of T, for a mass anisotropyM,/M =3, and increases with increasing mass anisotropy. The entropy jump at
the melting transition is calculated in two ways as a function of magnetic field for a mass anisotropy slightly
lower than that in YBgCu;0; (YBCO), namely, with and without &-dependent prefactor in the Hamiltonian
originating at the microscopic level and surfacing in coarse-grained theories such as the one considered in this
paper. In the first case, it is found to B&S=0.1kg per pancake vortex, roughly independent of the magnetic
field for the filling fractions considered here. In the second case, we find an enhance&tiy# factor that
is less than 2, increasing slightly with decreasing magnetic field. This is still lower than experimental values of
AS~0.4kg found experimentally for YBCO using calorimetric methods. We attribute this to the slightly lower
mass anisotropy used in our simulatiof80163-182@8)02329-7

[. INTRODUCTION At issue here is to what extent the well-defined flux lines
of the low-temperature FLL phase retain their integrity in the
The physics of vortex matter represents a new field ohigh-temperature molten phase. In this paper, we address the
research that has opened up after the discovery of large fluissue of the character of the vortex liquid via extensive
tuation effects in the extreme type-Il high- superconduct- Monte Carlo simulations of the uniformly frustrated 30¢
ors. In particular, the work of Gammet al and NelsoA ~ model.
were important milestones in the field, suggesting for the An issue of fundamental importance is whether or not a
first time that the Abrikosov vortex lattice might meliell  vortex liquid (the molten phase of the Flllis a supercon-
below the zero-field critical temperature. This extension ofductor or not when the vortex system is not pinned. It is clear
ideas originally proposed by Eilenberddras proved to be that the superfluid response to a current applied transversely
fruitful. The melting of the flux-line latticéFLL) well below  to the field-induced vortices is zero at all temperatures, pro-
the upper critical field crossover line due to large anisotropyided that pinning is absent. In the perfect FLL there will,
combined with extreme nonlocality of vortex-vortex however, be a superfluid response to a current applied paral-
interactions' as well as its first-order character, are now well lel to the magnetic field. There remains the possibility that a
established both on theoretical and experimental groundginite superfluid response might remain even in the liquid
Nonetheless, the nature of the molten phase remains tantaliphase for this geometry, and that it may vanish only deep in
ingly elusive. Obviously, there exists a two-dimensionalthe vortex liquid as suggested originally by Feigel'man
(2D) boson analogy picture of the low-temperature phase oét al'?> A main point of this paper is to show that for the
the FLL, where the corresponding boson system is an insunoderate mass anisotropy and large range of magnetic fields
lating one. This is nothing but Abrikosov's mean-field solu- considered here, this in fact does not appear to be the case.
tion to the problent. There is, however, mounting analytical Moreover, the reason that this is so has important conse-
and numerical evidence that a similar, intuitively appealing,quences for the physical picture of the vortex liquid phase.
picture of the molten phase via a 2fnrelativisticsuper-  Below, we give a summary of the main results of this paper.

fluid boson systefimay need a substantial revisidf® As The specific heat is calculated for filling fractiorfs
far as experimental results are concerned, the situation alse1/12, . ..,1/128,0, and the results are found to be in good
appears quite intriguind: agreement with the experimental results of Salarebal®
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and more recent experiments of Roudinal!* and Schilling  the model, the approximations involved, and the physical
and co-workers®® In particular, we find that the near- quantities considered, as well as an update of the procedure
logarithmic singularity in zero magnetic fielghe specific- and the parameters used in our Monte Carlo simulations. In
heat exponent= —0.007) is converted to a broad crossoverSec. Il we present and discuss detailed results for the filling
with a peak value suppressed rapidly compared to the zerdraction f=1/20. In Sec. IV we present results in a broad
field case. This crossover defines, somewhat arbitrarily, theange of filling fractions #/e[12, . . .,128]. Section V pre-
upper critical magnetic field. The entropy associated with thesents the conclusions of this paper.

suppression of the specific heat at the crossover is partly

compensated by the appearance af function anomaly in Il. MODEL
the specific heat at temperatures well below the zero-field ) ) o
critical temperature. Such &function peak is identified un- The phenomenological model considered in this paper for

ambiguously with the first-order melting transition of the the highT. cuprates is the uniformly frustrated 3D aniso-
FLL. The field dependence of the temperature at which thiropic XY model on a lattice;’~>**°defined by the Hamil-
appears defines the melting line of the FLL in thetonian
(B-T)-phase diagram of the superconductor. The field de-
pendence of the entropy of the transition is found toAf® H{{6(N}=— X J,c0§V,0(r)—A,n], (1)
~ B, consistent with the suppression of the broad main cross- rusxyz b . .
over peak in the specific heat. This implies that the entrop)(N
per vortex per layer is essentially field independent in the
field range and anisotropy range investigated here. We e
phasize that the anisotropy considergt¥) ,/M =3, is mod-
erate and somewhat smaller than what is found in 2 2.2
YBa,Cu;0; (YBCO). Nonetheless, the qualitative aspects of Jo=J = Pod - J.= Posan
our results conform well with those found in YBCO. Y eaZ, T T 1ert\d
We find that in the field regime we have considered, i.e., ] ] )
fields down toB~1-5 T, the melting of the vortex lattice is Here ®o is the flux quantumé,,, is the superconducting
triggered by a proliferation of thermally induced closed vor-coherence length within the CuO planes, ahds the dis-
tex rings of order of the magnetic length of the system. Thidance between two CuO layers adjacent unit cells Fur-
immediately leads to a “percolation” of vortex loops tra- thermore\,, andA . are the magnetic penetration lengths in
versing the entire system in any given direction, and in parthe CuO planes and along the crystal'sixis, respectively.
ticular in a direction perpendicular to the applied magneticn Ed. (1), A, is related to thejuenched/ector potential,,
field. Hence, flux lines that are field induced will traverse theby
entire system as they weave their way from the bottom to the A
top of the system. In technical terms, in a simulation one A (r)EZ_W ’+eﬂdr,'A (r'
needs to apply periodic boundary conditions at least once in u Dy ) vpRt
the (x,y) directions before a flux line starting at the center of R
the bottom layer has reached the top layiérerefore, it does wheree,, is the unit vector along thg. axis. This 3DXY
not make sense to view the vortex liquid phase as a collegnodel is dual to the anisotropic London model in the limit of
tion of well-defined field-induced flux lineEhe above pic- (Nap,Ae)— .21 This limit should be taken with the under-
ture effectively means that the flux-line tension has vanishedtanding that the coupling energigs andJ, are maintained
in the liquid phase. Within the 2D boson analogy picture, arfinite. When {,,,Ac)—>, gauge fluctuations are com-
equivalent statement would be that the boson mass, which {@etely suppressed, leaving a quenched vector potential and
the analog of the line tension, has vanishéd. uniform magnetic induction. Thus, the 30Y model should
Scaling functions for the specific heat are calculated, irgive an adequate description of the physics of extreme
zero field as well as in finite field. From the regime wheretype-Il single-crystal superconductors in the field regime
scaling is found in zero field, we find the width of the critical B.;<<B<B,. The conditionB;;<B ensures that the contri-
region to be]T—T¢|/T,~0.1 for a mass-anisotropy ratld  bution to the magnetic induction from individual flux lines
=yM,/M=3. This is considerably wider than what one overlaps strongly giving a uniform magnetic induction. The
would naively obtain using the Ginzburg criterion. More- conditionB<B,, ensures that details of the internal structure
over, this is slightly wider than what we have found for the of the vortex cores are not essential. Moreover, theX3D
isotropic case. The width of the critical region therefore in-model should give an adequate description of the physics of
creases slightly with mass anisotropy for the moderate valueaxtreme type-Il single-crystal superconductors in zero mag-
of I' we have considered. Vortex loops are expected to beetic field when gauge fluctuations are not important.
particularly important for the statistical mechanics of the In this paper we consider simple tetragonal systems with
FLL, provided that the melting line is found in the proximity dimensionsL,=L,=L, and L,. The coordinate X,y,z)
of the critical region. From the obtained melting curve andaxes are taken to be parallel to the crystalb(c) axes,
the width of the critical region, we find that the melting respectively. We measure the in-plane length scales
curve crosses the critical region curve at a field of ofer (x,y,Ly,Ly) in units of§,, and the length scales along the z
=1 T for I'=3. Below this field, vortex loops will com- axis (z, L) in units ofd. Our unit cell is a simple tetragonal
pletely dominate the physics at the melting transition. system with dimensionse,=e,=¢,,, €,=d. Periodic
This paper is organized as follows. In Sec. Il we presenboundary conditions are used in all directions throughout.

here ¢ is the local phase of the superconducting complex
rder parameter an¥l is a lattice derivative. Furthermore,
he coupling energy along the axis J, is defined by
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A. Internal energy and specific heat For the zero-field finite-size scaling of the specific heat,
The specific heat per sit@ is obtained using the standard W€ have used cubic sampled xXLXL with L
fluctuation formula =16,32,48,64,72,96 to avoid spurious geometric effects. To
investigate the possibility that the width of the critical region
C 1 (H2)—(H)2 may depend on anisotropy, we have considered the two cases
—= , (2 TI'=1andl'=3.
ke Lil: (kgT)? The finite-size scaling function for the specific heat may

whereks is Boltzmann’s constant. Results for most tempera-in general be obtained in standard fashion from the singular

6
tures are checked for consistency by differentiating the repart of the free energy &°

sults for the internal energy with respect to temperature. To C(t,L)=L® . (|t|LY")
estimate the latent heé&ntropy jump at a first-order phase _ ' - ’
transition, we consider the internal energy per te or equivalently
1 C(t,L) u
— ——=G.(|t|L™"),
E= T (H)- @ ity =Gl

— 1/v
This expression holds as long as we do not include &ny Where |1'fl|,_|T_Tc|/TC_’ and where ®.([t|L™") and
dependence in the Hamiltonian. SucfT alependence could CG=([t|L™) are analytic functions of their arguments. Here,
conceivably arise in effective coarse-grained theories such & IS the specific-heat critical exponent, ands the critical
the Ginzburg-Landau theory, as first pointed out in Ref. 228XPonent of the superconducting correlation length; hyper-
At a first-order phase transition there is a discontinuity in the3caling yieldse=2-Dw in aD-dimensional system. As dis-
internal energy per SitdA E associated with coexistence of cussed in detail in Ref. 26, a more convenient scaling form
the Abrikosov FLL phase and the vortex liquid. This in turn fOf numerical purposes is given by

gives rise to as-function peak in the specific hebt.For the _

- v _ _ ! C(t,L)—C(0»)
melting transition of a vortex line lattic&E is related to the ———— —=G.(|t|L). (6)
entropy jump per vortex lines per layarS by C(OL)—C(0)

We will use this scaling form to determine the width of the

A_S= AE 4) critical region.
ks fkgTy' In the presence of a general fie¥dwith scaling dimen-
. Y : . -
whereT,, is the melting temperature arids the vortex-line ﬁl—:\?ex ¢, where s the correlation lengtf~t|™”, we
density defined below in Ed8). For consistency, one may
also check this result by extracting the entropy jump at the C(t,X)=t| =G (X|t] ).
melting transition from the scaling of the height of the ) o . .
s-function anomaly in the specific hé&#° Subtracting out the zero-field part, and introduciryg
=X|t] 7" and AC(t,X)=C(t,X) — C(t,0), we find
L[ as |° SAC(t,X) = ~G.(0
C:C0nSH‘Z m (5) |t| (tv )_[gi(y) gi( )],
B
XAC(E,X) =y MG (y) = G (0)]=Hou(y).
B. Scaling functions for the specific heat ChoosingX=B, the induction, implies that the scaling di-

An issue of principle importance is whether or not closedmens'om‘.: 2 when.gauge fluctuations are suppressed, as is
thermally induced vortex loops, i.e., the critical fluctuations,N® €ase in the uniformly frustrated 3KY model. Under
will influence the melting of the FLL. Naively, one expects such circumstances, the |ndupt|BnN|II not acquire anoma-
this to be the case provided that the melting temperaturdus scaling. Hence, we obtain
Tm(B) is within the critical region of the zero-field transi- al2v _yal2y _ -
tion. It is therefore a matter of interest to establish the width BYFACHB)=y™ 0. (1)~ G=(0)]=H-(y), (D
of the critical region of the anisotropic 3BY model. To this wherey=B|t| ~2”. We will use the above scaling forfEq.
end, we consider finite-size scaling of the specific heat. Thé€7)] to determine the width of the crossover region around
region of data collapse of the specific heat evaluated at varthe upper critical field as a function &f. Note, however, that
ous system sizes identifies the width of the critical region. Itthis scaling form is not specific to the 3RY model. By
is also of interest to find the extension of this critical regionplotting appropriate ratios of temperature and field deriva-
to finite fields, i.e., the width of the crossover region aroundtives of these scaling functions, one may extract directly the
the upper critical field, and how it depends on the anisotropyritical exponents of the system as the slopes of the quanti-
ratio I'. If the melting line is located within this crossover ties being plotted; see, for instance, the very detailed analysis
region or close to it, one expects a vortex-loop “blowolf”  of this by Schilling and co-worker¥. It is conceivable that
to dominate the physics at the melting transition, analogousuch a procedure would yield a curve with a kink in it when
to what was suggested to happen in superfluidt g  t>0, as claimed to be observed by Schilling and co-workers.
Onsager’* This is particularly important at very low mag- This in itself does not invalidate the 3RY scaling of high-
netic fields, like those considered in the experiments of ZelT . cuprates. Conceivably, it could be due to a crossover from
dov et al!! an XY fixed point to another fixed point, possibly with an
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anomalously large value af~ 1.5, based on magnetization tial, the effect of which is more serious in a three-
data. (Note that the specific-heat data of Schilling and co-dimensional system than in a two-dimensional one. In the
workers in fact show an opposite trend, more consistent withatter case, the effect of the potential may in principle be
a crossover to a Gaussian fixed point. This is to be expecteentirely avoided by considering low enough filling
if amplitude fluctuations of the order parameter were tofractions?’ whereas this is not possible in three dimensions
dominate the phase fluctuationg:or more details, see the in the thermodynamic limit. The sizke, of systems must
discussion below. therefore be tailored to the filling fractidnin order to avoid
We note immediately that the above implies tHét  spurious pinning effects.
~BY? for finite fields, i.e., the width of the crossover region ~ The thus introduced pinning potential will, at a low
widens asB increases. Using the estimate=2/3 in three  enough temperature, pin the flux lines in their positions, and
dimensions, we havi|~B%¥“ implying that the crossover cause ¥,.Y,)#0 up to a depinning temperatui;. To
region around the upper critical on the low-temperature sidensure that this artificially introduced pinning potential
has a positive curvature in th&{T) phase diagram, which caused by the numerical lattice does not affect the FLL melt-
is also true for the melting curve, for which we halté, ing transition, we should consider systems with much
~B7, with ~2/3. The widening of the crossover region is lower than all other “critical” temperatures of interedty is
of course consistent with a broadening of the remains of theontrolled mainly by the filling fractiori; we haveT4—0 as
zero-field anomaly in the specific heat, to be calculated bef—0.2"° To adequately mimic the continuum limit of inter-
low. est, low enough filling fractions must therefore be consid-

The crossover curvB(T<T,.) has a more rapid increase ered.
as a function ofT.—T than the melting curve; recall the
exponents 3/4 and 2/3, respectively. Due to the finite width D. FLL structure function
of the zero-field critical region, there should then be a field .
regime where either the melting curve and the crossove To locate the position of the vortex elements we use the

curve intersect, or where the crossover curve is to the left o llowing p_rocedure: The CO'.“mterClOCkW'SE line integral of
the melting curve in th&-T phase diagram. This depends Onthe gauge-invariant phase differences around any plaquette
the width of the zero-field critical regime. Given the size of ©f the numerical lattice with surface normal along the

this regime |t|<0.1, the former scenario appears to us to be direction must always satisfy

the more likely one, and this is also what we find in our

simulations. Hence critical fluctuations, i.e., thermally in- S B

duced vortex loops, should substantially influence the FLL & jn=2a[n,(N=1,],

melting in a finite regime of magnetic fields. From our simu- '
lations, to be presented below, we estimate the relevant field
regime to be of order 0—1 T in an extreme type-1l supercon-
ductor withT"=3.

J/(N)=V,0(r) —A,(r).

Here,C; is the closed path traced out by the links surround-
ing an arbitrary plaquette, and represents the Cartesian
components of the current in the directions of the links that
As a probe of global superconducting phase coherenceomprise the closed patb; . Furthermorejv(r) is the cur-

we consider various helicity modul,, Y, andY;. The  rent on the link between site and siter + e, andn,(r)
heI|C|W mOdUIUSY along the,LL d|reCt|0n |S deﬂned as the —0 -+ 1 represents a vortex Segment penetrat|ng the
second der|Vat|Ve Of the fl‘ee energy W|th reSpeCt tO a glob%|aquene enclosed by the pm Here f is the vortex-line

the anisotropic uniformly frustrated 3RY model

C. Helicity modulus

Z n,(r)

Y,L=LLILZ< 2 choivye<r>—Ay(r>]<éy~éﬂ>2>

r,v=xyy,z fMZT- (8)
1 .
- kBTLJ_Lz< [r’VZX’y,Z 3,8V, 0(r) = A,(r)] To probe the structural order of the vortex system, we con-
sider the in-plane structure function fay vortex segments
-~ o~ P within the same plang,
X(e, e, ).
e 1 . 2
WhenY ,, is finite, the system can carry a supercurrent along Sk, )= <2 > ny(r, ,z)eke > .
the w1 direction. WhenY ,, vanishes, resistivity along the foLTL,\ 2 |

direction becomes finite. In systems with finite applied field

along thez axis, we expecl,=Y,=0 for all temperatures In the FLL phase we expect to see a periodic array of sharp
in the continuum limit. In this case, any applied currentBragg peaks in th&, plane. In the vortex liquid phase we
along thexy plane will move the unpinned flux lines and expect to see Bragg rings with radids =2x/a, and
dissipate energy. Discretization introduces a potentially sinds/a,, characteristic of a liquid. Hereg, is the average
gular perturbation by introducing an artificial pinning poten- distance between neighboring vortex lines.
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E. Monte Carlo procedure 1 ; r .

The Monte Carlo updating procedure used in this paper is
the following. The numerical lattice is stepped through in a 087}
systematic manner. At each site a change of the local phase
of the superconducting condensate is attempted by a randomo.s |
amountA#e[—m, 7). The attempt is accepted or rejected
according to the standard Metropolis algorithm. 04|

If the accepted phase change causes the current on a link 1
j .(r) to exceed the rangg,(r) €[ — m,7r), an amountt 2 oz | f
is added to the current such thia(r) is brought back into ’ |
the primary intervalj ,(r) €[ — ,7). An important point is i . e .
that this operation can only generate a closed unit vortex 91 P pebe gt eedetentisaagetgageod
loop around the link where the current is changed, thereby
conserving the net induction of the system. No net vorticity
is ever introduced by the procedure, and the procedure also
guarantees that no vortex line can start or end within the 5 Specific hea€ per site, in-plane structure facts(k,

sample. One sweep refers kG L, attempts to change the =27/5,714), helicity modulus along axisY,, and helicity modu-
phase angle. lus alongx axis Y, as functions of temperature for the system with
We fix the height of our systems tio,=40 and letL,  vortex-line densityf = 1/20. The in-plane structure functid(k, )
vary from 40 to 128 depending on the flux-line density underjumps discontinuously from 0.2 to 0 precisely B},=0.531], in-
consideration. In Refs. 8 and 9, it was noted that for systemeicating that the FLL melts in a first-order phase transition. At the
with moderate anisotropyI(~3), finite-size effects are same temperaturéy, also shows a discontinuity from 0.6 to O,
rather small when the linear dimension of the system and thidicating thatthe FLL melts directly into the incoherent vortex
total number of flux lines exceed 40. Thus, we believe that liquid with no global phase coherence along the applied magnetic-
finite-size effects will not affect the conclusions in this paper field direction. At temperatures aboi, there is no global phase
Likewise, it was observed by the same authors that finite-sizeoherence in any direction. The specific heat also shows a
effects were negligible wheh, was increased beyond,  é-function anomaly, precisefyy, . The broad specific-heat anomaly

= 40 for the anisotropy considered heFes 3. This has mo- at Tg»~1.08], represents the remains of the zero-field Onsager
tivated our choice of..= 40 vortex loop blowout. Note that for temperaturBg<T<Tg,, local
7 .

. - . superconducting phase coherence still exists, giving strong diamag-
In this paper we fix the anisotropy parameleto netic fluctuations in the liquid phase. The FLL depins from the

e+

Clkp
Sk =[2u/5,7/af o

f=1/20

02 | 04 |06 08 1 12 14 16
T Ty TAG ToealJyL

3 r.d numerical lattice aff4<T,,, whereY, vanishes. Thus, the FLL
I'= R e 3 melting transition af,,> T is not affected by the numerical lattice.
Jz Aabgab

in most simulations. Occasionally, comparison is made fothe gauge-invariant phase differences on each link. Note that
the isotropic casd'=1. The magnetic fieldB is applied ~We do not need tassumeany ground-state configuration by

along the crystat axis, giving a vortex-line densitf, this procedure. Extremely long simulations, typically 4
X 10°-6x 10° sweeps, are, however, required in order to
B&2, capture the correct physics at the FLL melting transition and

fi=1y,=0, f=f= B, 9  toreveal anys-function anomalies in the specific heat at the

melting transition, particularly at low filling fractions.
The flux-line densitiesf considered are 1£12 (48),

14 (56), 16 (48), 20 (40), 25 (50), 32 (64), 48 (48), i RESULTS: f=1/20
64 (64), 72 (72), 84 (84), 96 (96), 112 (112),
128 (128), (64). The numbers in the parentheses denote A. FLL melting and phase coherence

L, for the corre_sponding vortex-line de.n.sity. No'Fe th_at We To identify the possible different phases and phase
have chosen, with our gauge, for each filling fractionf in  ransitior(s)/crossovefs) in a system with finite flux-line
such a way that we ensure that an integer number of magtensity, we first concentrate on results for the system
netic Brillouin zones will fit on the reciprocal lattice of each — 1,20 similar results are found in all other finite flux-line
system, enabling us to use periodic boundary conditions ijensities considered in this papeo be detailed below. We
the x,y directions. As will be observed,, is an integer pave measured temperatures in units wheye 1.
multiple of 1f in each case. . _ Figure 1 shows the specific heat per stethe helicity
The value off is prescribed by loading the following moqulus along the applied-field directiori,, the helicity
phase-difference pattern onto the numerical lattiosing  moqulus perpendicular to the applied-field directiop, and
Landau gauge a system withg(r)=0 for allr, the in-plane structure functioB(k,) as functions of tem-
perature. Figure 1 shows that the in-plane structure function
S(k, =2m/5,7/4) has a sharp drop from 0.2 to O precisely at
The system is then heated to a temperature well above anl,,=0.531], , indicating that the FLL melts &k, in a first-
transition/crossover temperatures of interest, at which poinorder phase transition. For a more global view, Fig. 2 illus-
slow cooling is started. The filling fractiohis conserved by trates the density plot d&(k, ) for k, .k, e[ — 7] at four
our Monte Carlo procedure, and the moves are carried out odifferent temperaturesy/J, =0.450, 0.530, 0.531, 0.532.

Ay(Xx,y,z)=2mfx.
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f=1/20 o °
-0.44 | °
L
° L]
L2
-0.444 o 1
L
T =0.450J, < Ty, T =0.530], ~Tp, -0.448 |- o T 1
f = 1/20 ° °
L
° e
-0.452 L° T,
° 1 1 1
0.52 0.525 0.53 0.535 0.54
T/,
FIG. 3. Internal energy per sité as a function of temperature
for the system with vortex line densiti=1/20. The data are ob-

T=0.531J, =Ty, T =0.532T, & Tp, tained from a cooling sequence using 3 000 000 sweeps per tem-
perature. The internal energy has a discontinuous junip,andi-
FIG. 2. Intensity plots of the structure functi®k, ) for vari-  cating a first-order transition from an ordered stéfL) to a

ous temperatures for the system with flux-line den$ity1/20. k, disordered statéphase-incoherent vortex liqyidThis jump in the
e[ —,m] andk,e[ —, 7] are along the horizontal and the ver- internal energy is used to determine the latent ljeatropy jump
tical direction, respectively. The brightness in the plots is a measurat the FLL melting transition. The jump i here corresponds to a
of the magnitude oB(k, ). To enhance features we put all points jump in the entropy per vortex line per layekS(f=1/20)
where S(k,)<0.01 (noise level to black and all points where =0.1kg.

S(k,)>0.05 to white. Precisely af,, the sharp Bragg peaks in

S(k,) are converted into Bragg rings, characteristic of a ”qUid-Figure 1 shows that the anomaly occursTa{=0.531], ,
Thus, the FLL melts into a vortex liquid within a temperature re- precisely where the structure function and the helicity modu-
gion of AT=0.001, . lus vanish. These results are in complete agreement with
those of Ref. 8 obtained on the uniformly frustrated ¥

It is clearly seen that the periodic array of sharp Bragg peaksodel forf =1/25, as well as those found in Ref. 9 using the
is converted into a ring precisely @t,=0.531, , within a  uniformly frustrated 3D anisotropic Villain model fof
narrow temperature region &fT=0.001, aroundT,,. =1/32. Below we consider filling fractions down tb

To clarify whether the phase coherence along the direc=1/128, finding that these results still hold.
tion of the applied magnetic field is finite in the vortex liqguid  The latent heat of the first-order FLL melting transition at
phase, we consider the helicity modulus alongzlaisY, . T, is obtained from the jump in the internal energy shown in
In Fig. 1 it is clearly seen that', shows a sharp jump from Fig. 3 using Eq(4). Here, the entropy jump per vortex line
0.6 to 0 atT,, precisely where the FLL melts. This shows per layer is estimated to h&S=0.1kgz . To obtain the spike
that the FLL melts directly into aimncoherent vortex liquid in the specific heat we mugt) ensure that the transition
in a first-order phase transition. We will return to this impor- temperature is located very accurately, typically to within
tant point later, since it has important consequences for thene part in 18 and (i) increase the simulation length to at
physical picture of the vortex liquid phase. The above resulteast 6 000 000 sweeps over the lattice for each temperature.
is in complete agreement with the work of Ref. 8 using theThe extreme length of the simulations is necessary to allow
3D XY model, the work of Ref. 22 using the lowest Landau-the system to switch back and forth between the ordered
level approximation, and earlier work by us using the 3Dphase and disordered phase at the phase transition an ad-
anisotropic Villain mode?. In all these works, it was found equate number of times, typically at least ten times.
that longitudinal phase coherence is lost as soon as the vor-
tex lattice melts in the thermodynamic limit. We emphasize
that opposite conclusions were drawn in earlier work by us
and others:1*2°We believe that this discrepancy may be due  The specific heat has a broad anomalyTat,=1.05],
to one or several of the following three facto(®: In earlier ~ >T,, indicating a crossover. This broad crossover was un-
work, the system size in the direction may not have been ambiguously identified in our previous work as the remains
large enough, particularly for the isotropic cag#) the of a zero-field Onsager vortex loop “blowout?® that de-
simulations were not run for a long enough time, &iiid the  stroyed superconductivity on all length scales. However,
results were obtained upon heating only. Our more recergince the remains of the zero-field vortex loop “blowout”
results in Ref. 9 and in the present paper are obtained updakes place first alg>T,,, superconductivity still exists
heatingand cooling. locally in finite domains in the incoherent vortex liquid

A first-order phase transition is manifest in the form of aphase, giving strong diamagnetic fluctuatiéhsSince the
S-function anomaly in the specific heat. From the height ofglobal phase coherence in all directions is destroyed in the
this anomaly one may deduce the latent heat of the transitiomncoherent vortex liquid phase, the superfluid stiffness is zero

B. Breakdown of the 2D boson analogy
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FIG. 5. The in-plane structure functid®(k,) as a function of
FIG. 4. Snapshots of the vortex configuration for the systenmtemperature for several vortex-line densitiegor a givenf, S(k;, )

with vortex-line density f=1/20 for four temperaturesy/J, with the corresponding value &f, shows a sharp drop from 0.2
=0.26,0.50,0.54,0.70. For clarification we have shown only a parto O at a well-defined FLL melting temperatufg,(f).
of the systemx,ye[0:20] andze[0:40]. For T=0.26), <T,,,
the flux lines form a hexagonal lattice. Although there are manymany intersections between flux lines, vortex loops have pro-
thermally induced defects attached to each flux line, they are nongiferated, and there exists at least one way to percolate from
theless well-defined quantities. Fa=0.500, =Tn, the FLL is  one side of the sample to the opposite side in any direction.
still intact. Although the flux lines now contain many larger defects, Thys, for any given direction there always exists at least one
they are still well defined. Foif=0.54], =Ty, the FLL has  infinitely” long vortex line perpendicular to it, and any
melted. ForT=0.54], , it is seen that the flux lines are no longer applied current will move these “perpendicular” vortex
well-defined quantities. There exists at least one way for a flux Iinqines and dissipate energy. Note that in this picture vortex
to thread the system in any direction. For any vortex configurationIines in the incoherent vortex liquid cannot be described as
therefore, there exists at least one flux line threading the sample in d li f2 lativistich 2 Th
the direction perpendicular to the magnetic field vyor_ ines of 2Dnonrelativistic o;on - Thus, one vortex

' line in the center of the system will meander all the way to
in all directions in this phase, and any applied Currentthe boundary surfacéwith surface normal perpendicular to

through the system will dissipate energy. Thus, in the inCO_the applied-field directionand back as a field-induced flux

herent vortex liquid phase the system has both finite resisti\)_—;_?f weaves its (\;\@[/ from tr;f b(?_tton; to 'ghe top gf the syjtem.
ity in all directions, as well as strong diamagnetic fluctua- IS corresponds 1o zero Tux-iine tension, and a wandering

tions exponent; of the flux line that isf=1 or, equivalently, zero

The numerical lattice is a singular perturbation in a three-bosonlc mass in the 2D boson analogy.

dimensional system, and one may ask whether the first-orderhNOte ]Ehat. thet ZRIquantltlmf tl)?osfor; system Wel ht.a‘.’et.i” mind
FLL melting transition atT, is affected by the artificially when referring 1o the work of Rel. 21S a nonrelativisic sys-

introduced pinning potential. To address this issue we cont—em' The picture we have in mind for the liquid phase is

sider the helicity modulus along thxeaxisY . In Fig. 1, itis more ak_in to _arelativistic 2D quantum boson system, where
scen ha he ety moduls along this Y, rops o 1 PONeraton ofvorte loops and evertange 1 e fox
zero already al4=0.1), <Tp,. From this we conclude that tem. This cc?nnection has been nicely exposed in Ref 28y
above T4 the system exhibits a “floating solid” phagé. ' y exp e

Thus the FLL melting transition &k, is not affected by the

pinning potential caused by the numerical lattice. IV. RESULTS: 1/fe[12,...,12§]
Snapshots of the FLL, the incoherent vortex liquid phase,

and the normal metal phase of the system1/20 for four

temperaturesT/J, =0.26, 0.50, 0.54, 0.70 are shown in  We show in Fig. 5 the in-plane structure functi(k )

Fig. 4. For clarity only a part of the system,y[0:20],z  as a function of temperature for several vortex line densities

e[0:40], is shown. For the systerin=1/20, we have found f; 1f=12(k, =57/12,57/12), 16K, =3#/8,—ml3),

Tn=0.53), and Tg,=1.05), . For T=0.26), <T,,, the 20(k, =2#/5,7/4), 25k, =67/25,97/25), 32k, =57/16,

flux lines form a hexagonal lattice. Although there are many— 77/32), 48k, = w/6,7/4), 72K, =w/9,—2w/9), 96(K,

thermally induced defects attached to each flux line, they=37/16,57/58), 128k, =7m/64,57/32). For a given vor-

remain well-defined entities. F6F=0.50], <T,,, though tex line density,S(k ) with the corresponding value &

the flux lines now fluctuate substantially, they nonethelesshows a sharp drop from-0.2 to zero defining a field-

remain intact. So does the FLL, as evidenced by the resultdependent FLL melting temperatufg,(f). This clearly

for the structure function; see Figs. 1 and 5. For a slightlyshows that, for all values df considered here, the FLL melts

more elevated temperaturB=0.54), =T,,, the FLL has in a first-order phase transition. For decreadinge transi-

melted. A key observation is that, immediately upon melting,tion temperaturerl ,(f) increases toward3. as expected;

the flux lines are no longer well-defined entities; there aresee Fig. 7.

A. Structure function S(k,)
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FIG. 7. The helicity modulu&’, along the field direction as a
FIG. 6. Monte Carlo results for the specific heat per site of thefunction of temperature for several flux-line densitiesFor all
anisotropic 3DXY model as a function of temperature for several densitiesY', shows a sharp drop towards zero precisely at the cor-
vortex-line densitie$. The system sizes depends on filling fraction, responding FLL melting temperatuf@,(f). Thus, the FLL melts
as explained in the text, anid=3. For clarity thenth curves are directly into an incoherent vortex liquid.
shifted by an amount OrRupwards. For each there is a spike at a

f-dependent critical temperaturé,(f) indicating a first-order . . . L .
phase transition. The main conclusion of the above discussion is that in the

thermodynamic limit, no phase coherence exists in the vortex
liquid phase. This conclusion is consistent with mounting
evidence from numerical simulatiofi€;*° obtained however

In Fig. 6 the helicity modulusy', along the direction of only in a limited filling range if'e [25-36. Our present
the magnetic field is shown as a function of temperature foresults extend this conclusion to much lower filling fractions.
the same set of flux-line densities as for the case of the in-
plane structure function. A$ is varied,Y, shows a sharp
drop towards zero precisely at the corresponding FLL melt- C. Specific heat

ing temperaturd ,(T). Thus, we may conclude that for all For all filling fractions down tdf =1/32, we have found a

filling fractions considered, the FLL melts directly into an s-function anomaly in the specific heatBg(f), indicating a

incoherent vortex liquid. The temperature region where th i <t-order phase transition: see Fia. 7. For smaller fillin
vortex liquid and the phase coherence along the applied fieﬁi ) P Hsition, '9. 1. er Ting
ractionsf=1/48 we find no clear evidence of a spike in the

coexist, found previously by several authdt$%”?is not o _ _ _
found for any flux-line densityf considered in this paper. SPecific heat. Note that in passing from the system With
We believe that the temperature regime, where the vortex 1/32 to the system wittf =1/48, the number of field-
liquid exists with phase coherence along the field directioninduced flux lines is reduced from 128 to 48. We believe that
pertains to thin-film geometries, or it is otherwise an artifactthe observed “nonexistence™ of th&function anomalies at
of short simulations and hysteretic behavior in the heatingthe FLL melting temperature in the system with very low
cooling sequence of the vortex system. The phase-coherefiux-line densities is attributable to two factord) for the
vortex liquid does not exist in the thermodynamic limit of an system withf=<1/48 we have too few field-induced vortex
equilibrium system, at least in systems with moderate anisotines in our systems an() the contribution to the specific
ropy and moderate magnetic induction. The possibility of theheat from the field-induced flux lines for these filling frac-
existence of a very small magnetic-field inducti8p,.,  tions is too small compared to the “spin-wave” and vortex-
[dependent on the anisotroBi,we(I')] below which the loop contributions to be detected by our simulations.
phase coherence along the field direction can exist in the In Fig. 8, we show the specific heat as a function of tem-
vortex liquid is not completely ruled out by this work. perature for the same set of corresponding system sizes and
Note thatT () is correlated with the temperature where flux-line densities as previously used in calculating the in-
the corresponding’, starts to fall sharply towards zero, not plane structure function and the helicity modulus along the
the lowest temperature wheMe, vanishes. One may ques- direction of the applied magnetic field. For decreadirtiye
tion whether it is correct to take the temperature whére crossover temperatuiBs,(f) increases and moves towards
starts to show a sharp drop as the temperature where phathe zero-field critical temperatur@g,(f=0)=T.. The
coherence along the applied field vanishes. For moderateroad anomaly in the specific heat sharpens and the maxi-
vortex-line densities this poses no problem, since the drop imum height of the cusp increases, evolving smoothly to-
Y, is very sharp. However, fof <1/48, the transition ex- wards the zero-field specific-heat singularityTat Tg., de-
tends over a small temperature region. By experience, waotes the crossover temperature at which the remains of the
know that when the system size and the number of vortexero-field vortex-loop “blowout” takes place. In a finite
lines in the system increase, the dropYip sharpens and the magnetic field the vortex-loop “blowout” at g (f) causes
tail in Y, disappears. We believe therefore that this tail isonly a crossover and the actual phase transition takes place at
only a finite-size effect. a lower temperatur&,(f), where the FLL undergoes a first-

B. Helicity modulus along the field directionY,
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' . while Ref. 16 makes the point that 30Y scaling does not
25 rt= 12 . v appear to describe well the experimental results aliQvie
20 . single-crystal YBaCuz;O; in the field range 0.75-7 T, it
2 gg . 7 does appear to work well beloW;,. The reason for this may
48 o g be that for an optimally doped compound, the temperature at
& 15 ;g : it which a pseudogap opens up may not be much higher than
© 128 - the T, at which phase coherence is established. The results
< are therefore likely to be influenced by amplitude fluctua-
1r i, tions aboveT.. This should not be the case beloly.
T Hence, we believe that the field range considered is not the
05 | pwet¥eissoTee T ] only issue; there is also the observation of a crossover from
0 o2 04 06 08 1 12 12 16 an XY critical point to a Gaussian critical point when in-

creasing the temperature aboWe, approaching a mean-
field-like temperatureTy e where preformed pairs start to
FIG. 8. Monte Carlo results for the specific heat of the aniso-disSociate. An obscuring factor is that the specific-heat data
tropic 3D XY model as a function of temperature for several flux- 2nd magnetization data of Schilling and co-workers show
line densities. For decreasifigdecreasing magnetic-field induction OPPOSite trends in their deviation froKiY scaling. Note that

B) the crossover temperatuifg(f) increases and moves towards the analysis of Ref. 16 isot specific to theX'Y model; the

the zero-field critical temperatur@g,(f=0)=T.. The broad scaling forms that are used are quite general. Were the tem-
anomaly(cusp in the specific heat becomes sharper and the maxiperature scale$. and Ty, well separatedXY critical scal-
mum height of the cusp increases. Thus, for decreabitige spe-  ing would presumably persist abovi,. This would, for

cific heat evolves smoothly to the zero-field specific-heat singularityinstance, be the case imderdopect:uprates°’.2

at T.. The spike in the specific heat &},(f) <Tgc2(f) in each At any rate, it is the width of the critical regidmelow T,
graph is hidden in the noise of the other graphs and is therefore haiighat is of interest in establishing the importance of interplay
to recognize in this particylar figure. Wh@le in zero magnetic field petween vortex loops and FLL melting. The width of the
the vortex loop blowout is the mechanism for the second-ordegyitical region should increase with underdoping, and hence

phase transition &, in finite magnetic field the vortex loop blow- ya interplay between vortex loops and FLL melting is ex-
out atTg,(f) is only a crossover. The phase transition in system‘a

T,

e ) » ected to be more pronounced when the cuprates become

with finite vortex-line densltles tgkes place at a lower temperatur ore underdopeﬁe.
Tn(f), where the vortex-line lattice melts. We note that the scaling is better abolg than below,
again because nonsingular contributions to the free energy,
order melting transition triggered by a proliferation of vortex in this case also arising from the FLL, contribute signifi-
loops with diameters at least of the order of the magneticantly. The spikes in the finite-field scaling function are due
length in the system. to the specific-heat anomalies at the FLL melting transition.

Scaling functions for the specific heat both for zero field
and finite field are shown in Figs. 9 and 10. For the zero-field
case, using Eq6), it is seen from Fig. 9 that data collapse is
obtained over a wide region out to values of the scaling The latent heat, or equivalently the discontinuity in en-
variable|t|LY”>10 for L=32 on the low-temperature side tropy at the FLL melting transition, has been much focused
of T.. Note also that the width of the scaling regime ison in recent experiments:>*1%1%n Fig. 11, the entropy
slightly larger forI'=3 than forl'=1. We expect this trend discontinuity at the first-order FLL melting transition is
to persist with increasing@’; in the extreme case where the shown as a function of the flux-line density. The results ob-
layers may be considered completely decoupled,li.ez2,  tained using the Hamiltonian in Eql) are shown in filled
the entire low-temperature regime is known to be critféal. circles. We find that the entropy discontinuity per flux line
For smallel_, it appears from our simulations that we do not per layerAS(f) ~0.1kg. The fact thatAS is essentially in-
obtain scaling. Using the value=0.6692° we find that the ~dependent of the applied magnetic fiefdr the moderate
width of the critical region is given bjt|~0.1. anisotropyl’ =3 considered in this papeis consistent with

The critical scaling of the specific heat is also considerthe experimental results obtained by Schilliegal *® and
ably better abovd  than below. This is due to the fact that Roulin et all* They foundAS(B)~0.5g, independent of
vortex loops, i.e., the critical fluctuations, to a much largerB. The values ofAS=0.1kg are similar to the values found
extent dominate the free energy abdecompared to below by Hu et al® We attribute the difference between our values
T.. Below T, there is a nonsingular contribution to the free for AS(f)~0.1kg and the experimental valuelS(B)
energy, and hence specific heat, due to spin-wave fluctua~0.5g to the difference in the anisotropy. YBCO has an
tions of the local phase of the order parameter. anisotropyI’~7, while the anisotropy in this paper S

The scaling function of the specific heat in a finite field, =3. As shown in our previous pap&gnd also by Hiet al.®
given above in Eq(7), is also calculated for filling fractions the entropy jump at the FLL melting transition increases with
f given by 1f=12,16,20,25,32,48,72,96,128 with corre- increasing anisotropy.
ponding system sizes identical to those used for the structure To ensure that the artificial pinning potential introduced
function above. The anisotropy I=3. The scaled results by the numerical mesh does not affect the FLL melting tran-
are in good agreement with the works of Salanetral,'®>  sition at T,,(f), we must ensure that the helicity modulus
Roulin et al,** and Schilling and co-worker. Note that  perpendicular to the applied field vanishes at a temperature

D. Entropy discontinuity at the FLL melting transition
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FIG. 10. Monte Carlo results for the specific heat of the aniso-
oal I'=3 ﬂ#wr‘-ﬁ*“*”_ tropic 3D XY model for a number of filling fraction$ given by
N @?"""ﬁ‘ 1/f=12,...,128 with corresponding system sizes as explained in
text, and anisotrop¥ = 3, scaled according to . The results
ole ™ d ani 3 led di Eq7). Th I
e 1035 s } are in good agreement with the experimental results of Schilling
SRR RN g. et al. and Junockt al.
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1 & . B Te=134J, | where H is an effective T-dependent Hamiltonian{H)
: (T 00) = 438 = (1/Z)SHexp(—H/ksT), and Z=Sexp(—H/kgT) is the ca-
0.99 . ' - : ' nonical partition function. For a derivation of this result, see
-60 -40 -20 20 40 60

tL(i/” the Appendix.
In extreme type-Il superconductors, as modeled by the 3D

FIG. 9. Monte Carlo results for the specific heat of the aniso-XY model or the London model in the—o limit, the T
tropic 3DXY model in zero magnetic field, for various system sizesdependence described above appears exclusively as a prefac-
LXLXL with L=32,48,64,72,96, and two values of the anisotropy,tor in the HamiltonianH=Ey(7)H,, where Hy has no
I'=1 and I'=3, scaled according to Eq(6). Here, t=(T  T.dependent prefactors=T/T.yr With Toyr @ mean-field
—Tc)/T.. The region of data collapse gives the width of the critical zaro-field transition temperature, afig(7)= [)\(0)/)\(7.)]2_
reglyion. Note that this region is slightly wider fér=3 than forl' s to be identified with the Hamiltonian used in this paper

0.3 T
T4(f) significantly belowT ,(f). Under such circumstances, r=3 3
the low-temperature phase fog(f)<T<T.(f) is charac- 025 | yon o Ez:
terized by a “floating solid phase,” mimicking the con- ASUKG - on- Fs
tinuum limit. In Fig. 12, the helicity modulus along the 02t os
directionY, is shown as a function of temperature for the 0 o7 o7 o8 o8
same set off used for the specific heat, structure function, g¢.1s5} . ‘ 7! i
andY,. Figure 12 shows that for each flux-line density con- . T
sidered,Y, vanishes at a temperatuig(f) significantly R )
lower than the corresponding FLL melting temperature e T e .
Tm(f). Thus, we have shown that in all systems considered o5 | b
in this paper, the depinning crossoverTg(f) does not af-

fect the FLL melting atT,(f)>Ty(f). Although we have 0
not shown it explicitly here, we have checked tha{(T) is
essentially identica;l t&,, as required by symmetry.

In r.ecent Work3, It was pomted O.L!t that Calculat.ed en- FIG. 11. The entropy jump per vortex line per layk8(f) at
tropy Jump§AS at the melting transn'lon of the Ab”kOSOY the FLL melting transition for several vortex-line densitiesThe
vortex lattice could be brought into agreement Withfyieq circles represent the results obtained witi-andependent
experiment¥’ by introducing temperature-dependent param-jamittonian, Eq(1). The open circles represent the results obtained
eters in the theory, reflecting fluctuations at a microscopiGnciuding aT-dependent prefactor in the Hamiltonian. We see that
level surfacing in coarse-grained theories. The idea of using s(f) essentially does not depend énin this regime of filling
such a procedure was first introduced in Ref. 22 within the&ractions f, regardless of whetheF-dependent prefactors are in-
lowest Landau-level approach to the same problem, i.e., theluded in the Hamiltonian or not. The inset shows the enhancement
high-field limit. This leads to an internal energy factor in Eq.(14).

14
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S ' , , Y the low-field regime, in agreement with experiments. The
main factor in the enhancement is the denominaterrd,

08 2 2 - which vanishes a3 — Ty -
» 32 » Note that the above procedure of substitutidg with
o6 | ¥ .o B Eo(7)H, does not in itself in any way assume that the phys-
>< fx‘; Lo ics of the vortex system in the low-field regime is determined
— M v

follow Ref. 35 and in addition assume that in the low-field
regime there only exists one relevant length scale in the
problem, namely, the magnetic lengig~ 1/\/B, we would

be assuming that only field-induced vortices are relevant de-
. grees of freedom on the melting line. Our main point is that
0 02 o4 06 08 1 12 14 16 this may be questionable in the low-field regime, and we will
Ty therefore refrain from utilizing such an assumption.

If we insist on comparing\So(T’) with results obtained

04 o 3 1 exclusively by field-induced flux lines. However, were we to
A'ig,x
%,

02 r

FIG. 12. The helicity modulus perpendicular to the field direc- using Ho, and notH 35 then we must fixT’ to values ob-
tion Y, as a function of temperature for several vortex-line densities[ained f((;,r the meltin, line in such calculatiof@hus. + can-
f. For eachf, Y, vanishes at a temperatufig(f) significantly 9 g

lower than the corresponding FLL melting temperatlipg€f). The not vary arbitrarily betwe,erO and1 Wh"? fi,xi_ngASO inde-
artificial pinning potential of the numerical lattice therefore doespendenFly'Rather’T andT are related vial ' =T/Eq(7). In
not affect the FLL melting transition &(f)>Ty(f). calculations of ASy using Hg, we must therefore have

T /Towe<l. Using Ex(7)=1— 72, we find r<(y/5—1)/2.
so far. For instance, in the two-fluid modgl(r)=1—+*, ~ This gives enhancement factors 4(1'2_)/(1—72)<\/§,
while the simplest mean-field approximation yielfig(r) ~ Within this model. If we express Eq13) in terms of 7
=1-r. Using the above, we find the internal energy given=T'/Tc, we obtain
by

AS=\1+472ASy(T'); 7' €[0,D). (14)
dEo(7)

U=<EO( =T aT )Uo ", Similar enhancement factors may be found using the sim-
plest mean-field approximatidf,(7)=1— 7, that is, for in-

1 stance, used in Ref. 30. It would yield an enhancement factor
Uo(T)==3 Hoexp —Ho/ksT'), 11 in Eq. (14 given by 1+ 7-’.. In Flg.' 11 we have also plotted
o(T") Z2 o®XH(—Ho/ksT") (1 the entropy jump as obtained usinglradependent prefactor
in the Hamiltonian. We have used the results obtained using
T Ho and enhanced them by the prefactor in Bdf). The inset
“E T of the figure shows the enhancement factor on the melting
0 line obtained in our simulations. It varies quite slowly as a
This leads to an entropy jump at the first-order melting tranfunction of 7’ in the entire interval. Hence, even if we in-

!

sition of the Abrikosov vortex lattice clude the effect ofEy(7) on AS, we obtain an essentially
field-independent entropy jump in the field regime consid-
AU dEq(7)]AUG(T) ered in Fig. 11. For specificity, we have chosgg(7) =1
AS= - = Eo(r)—T aT T — 72, and ignored the difference betwe&p and the mean-

field critical temperature. We note also in this context that

dEy(7) Ref. 22 finds an entropy jump of the magnitude we have
:m[ Eo(n) = T—7|AS(T"), (120 found here within the lowest Landau-level approximation.

Furthermore, Ref. 29 finds similar results using the isotropic

whereASy(T')=AUy(T')/T’ is the entropy jump obtained XY model withf=1/6, in.agrgeement with earlier simulations
without anyT-dependent parameters in the Hamiltonian, butof the same filling fractiort’ Note the large difference in
where the quantity is to be evaluated at the temperakre filling fractions between the present WOY!( and the work of
—T/Ey(7). Note that the prefactor relatingSto AS, would ~ Refs. 29 and 18. Fof=1/6, commensuration effects due to
always be 1 irrespective of whay(7) is, if we had not the numer_lcal lattice are severe, and cou_ld conceivably lead
included the contribution-T(JH/JT) to U. Using Eo(7) to overestimates of the mfagnltude_zbS. Tk_us has been part
=1— 72, we find of the motivation for pushing the simulations to the low fill-
ing fractions used in this paper.

+ 7

2
5AS(T), (13 E. B-T phase diagram

To estimate the real magnetic-field inducti@n corre-
precisely as in Ref. 35. Note the difference in the argumentsponding to the flux-line densities considered in this paper,
of AS(T) andAS,(T'). Reference 35 concludes that within we use Eq(8) and take&,,=12-15 A. With this value of
a line-liquid model with moderate values &fS;, substan- &, we find the magnetic field corresponding to the smallest
tially enhanced values foAS are obtained, particularly in flux-line densities consideredf£1/128) to be approxi-

1
AS(T)= 1

- T
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V. CONCLUSION

In this paper, we have investigated characteristics of the
molten phase of the Abrikosov flux-line lattice via Monte
Carlo simulations on the three-dimensional uniformly frus-
trated XY model. Bragg peaks in the static structure factor
and phase coherence along the direction of the applied mag-
netic field are both lost simultaneously, rendering the vortex
liquid phase incoherent. This behavior is triggered by ther-
mal excitations of closed vortex loops of diameters of the
order of the average distance between flux lines in the low-
temperature lattice phase. On the melting line, this mecha-
nism suffices to produce highly nontrivial vortex configura-
tions with appreciable statistical weighh the template of
field-induced vorticesThese configurations are characterized
by a “percolation” of closed vortex loops threading the en-
tire sample in any direction. In particular, this is the case for
directions transverse to the direction of the applied magnetic

FIG. 13. Thef-T phase diagram for the uniformly frustrated 3D field, which is tantamount to a loss of line tension of the

XY model. The applied field is along the crystahxis, the anisot- field-induced flux I[nes. It_ren'ders a plcture'of .the molten
ropy parameted’=3. The FLL exhibits global phase coherence Phase of the flux-line lattice in terms of a liquid of well-
along the applied-field direction. The FLL phase is separated fronflefined, separated, and directed line objects, invalid. Equiva-
the incoherent flux-line liquid phase by the melting lihg(f). The  lently, a picture in terms of world lines of 2D nonrelativistic
melting transition is a first-order phase transition with an entropysuperfluid bosons is invalid in the liquid phase. An effective
jump AS(f)~0.1kg for the anisotropy’ =3 and field regime con- theory of the flux-line lattice melting and the vortex-liquid
sidered in this paper. In the incoherent vortex-liquid ph@géf) phase thus appears to present a formidable challenge involv-
<T<Tge(f), there is only local, but no global, phase coherence ining the solution of a self-consistent coupled theory of field-
any direction. At finite fields, between the incoherent vortex liquidinduced flux-line objects, and thermally induced closed vor-
and the normal metal phase, there exists a broad crossover regioax loops®~8 This coupling must evidently render the flux-
where a blowout of thermally induced closed vortex loops takegine tension equal to zero in the liquid phase. Unfortunately,
place, eventually also destroying superconductivity on short lengthx s therefore doubtful that the intuitively appealing physics
scales. The width of the crossover regime is obtained from scalingf directed polymers is particularly relevant for the vortex-
behavior of the specific heat. Another, consistent, method of obtainnquid phase.

ing this width, is to estimate the temperature regime, which corre- Scaling functions for the specific heat are calculated, both

ponds to an uncertainty of 10% in the maximum value of thej, ;a1 and finite magnetic field. The zero-field results yield

specific-heat anomaly dlge,(f). Since this anomaly becomes , i) apia critical regionT—T.|/T,~0.1, corroborating the
broader with increasing field, the crossover region becomes wider

This is also confirmed from the scaling results for the specific heatrlo'[Ion th.at eritical ﬂUCtuatlor.]S .Of exireme type-ll supercon-
ductors, i.e., vortex loops, will influence such phenomena as
flux-line lattice melting over an appreciable range of mag-

mately 5-7 T. In Fig. 13 we show theT phase diagram netic inductions, possibly up to fields of ordé T in mod-

originating from simulations of thXY model. The flux-line  erately anisotropic superconductors. The field range will de-
densities f considered are 1~12,14,16,20,25,32,48,64, pend on mass anisotropy, since the width of the critical
72,84,96,112,128. We see that the overall behavior of thi§egion and the low-field shape of the melting curve both
phase diagram is consistent with the phase diagram in YBC@PPear to be influenced by the layeredness of the supercon-
measured by Schillingt al’® and Junodet al* The FLL ~ ductor. _ _

melting line atT,(f) separates the superconducting Abriko- The finite-field results for the scaling functions for the

sov FLL phase from the incoherent vortex liquid phase, theXPeCific heat, as well as the obtained phase diagram for an

latter being characterized by finite resistivity and strong dia_amsotropy parametdr =3, are consistent with experiments

magnetic fluctuations, with simultaneous loss of Bragg peakgﬂcigf jg%gly Vr\:;t(;]aia~a;1|sotroplc cuprate higg-supercon-
in the FLL structure factor, flux-line integrity, and global Finally we1note that c.olumnar defects will not be particu-
phase coherence in all directions. The remains of the zerqy !

field | “pl ” qTe () d h y efficient in enhancing the critical current density in a
ield vortex loop “blowout” aroundTg,(f) destroys phase g ,herconductor where the FLL melting line is strongly influ-

coherence on all length scales, and thus separates the iNGQ5.eq by thermally excited closed vortex loopEhe influ-
herent vortex liquid phase from the normal metal phase. Thgnce of columnar defects on the vortex system was studied
melting lineT(f) decreases with decreasifigvith a posi-  ysing Monte Carlo simulations in Ref. 36 for a filling frac-
tive curvature. Note also that the width of the critical regiontion f=1/2) The vortex-loop susceptibility should be sensi-
is large enough to influence the FLL melting transition overtive to the phase-stiffness of the superconductor. The phase
a sizable field range. This field range is seen to extend up tetiffness is in turn largely controlled by the superfluid den-
f~1/256, which we may conservatively estimate to be atity, and therefore also by the charge-carrier density. In order
least of order 0—-1 T. to avoid the detrimental effects on transport properties in
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high-T,. superconductors from a vortex-loop “blowout,” an [F—H(V. 06 (4 AW HOV+ AV, 0+ 0]/ (9 46)
increase of the charge-carrier density appears to be essentialz € OMo=1=3 e ’ .

(A5)
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Since the orginal distribution prior to changing—V+dV
APPENDIX: INTERNAL ENERGY and 6— 6+ d @ also was normalized we obtain the following

In this appendix, we give a brief derivation of a general-constraint on the differentiadV, d6, anddV':
ized expression for the internal energy of a system with an de JH JH
effective T-dependent Hamiltonian. Consider a system in the d¥=— ¥ —(H)+ 9<_> + < _> dv. (A7)
canonical ensemble. For illustration, we will consider the o a9 N
well-known (P,V,T) system. Our result for the internal en- Here () denotes a statistical average with respect to the
ergy U does not depend on the nature of the work term. Theyriginal distribution function ex¥—H)/6]. In order to
system has a statistical distribution function given by themake the connection to thermodynamics, we now compare

canonical law the above with the “thermodynamic identity”
1 aT

p=ze ", (A1) dF=-SdT-PdV="(F-U)-PdV,  (A8)
where the normalization constastis the canonical partition whereF=U — TSis Helmholz free energys is the entropy,
function andU is the internal energy. This comparison yields directly

7= S M (A2) p=<_ﬁ>

configurations A
where 6 is a parameter of the distribution function that re- do  dT
mains to be determined, such that a6 _ — — 0=KgT (A9)

e T ’
p= 1. (A3) V= F,

configurations

We insist that this normalization is to be maintained if the 9
parametersV and # are varied differentially. The Hamil- U=<H>—T<ﬁ>.
tonian and hence the partition function will depend \én

through the wall potential of the problem. Let us, arbitrarily, Note that¥ thus identified is the only choice consistent with

write the partition function in the following way: F=—KkgTInZ. This then fixedJ. Also, the expression fdd
obtained in this fashion is identical to that obtained directly
z=e V0", (A4)  from the usual relation
whereW is a system-dependent parameter that also remains snz
to be determined. Whevi— V+dV and 86— 6+d6, we will U=———, (A10)
therefore also need to vaty— W +dW¥ in order to maintain Ip
correct normalization op. Hence, we have with an assumed -dependent Hamiltonian.
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