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Phase coherence and the boson analogy of vortex liquids
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The statistical mechanics of the flux-line lattice in extreme type-II superconductors is studied within the
framework of the uniformly frustrated anisotropic three-dimensionalXY model. It is assumed that the exter-
nally applied magnetic field is low enough to invalidate the lowest Landau-level approach to the problem. A
finite-field counterpart of an Onsager vortex-loop transition in extreme type-II superconductors renders the
vortex liquid phase incoherent when the Abrikosov vortex lattice undergoes a first-order melting transition. For
the magnetic fields considered in this paper, corresponding to filling fractionsf given by 1/f
512,14,16,20,25,32,48,64,72,84,96,112, and 128, the vortex liquid phase is not describable as a liquid of
well-defined field-induced vortex lines. This is due to the proliferation of thermally induced closed vortex
loops with diameters of the order of the magnetic length in the problem, resulting in a ‘‘percolation transition’’
driven by non-field-induced vortices alsotransverseto the direction of the applied magnetic field. This imme-
diately triggers flux-line lattice melting and loss of phase coherence along the direction of the magnetic field.
Due to this mechanism, the field-induced flux lines lose their line tension in the liquid phase, and cannot be
considered to be directed or well defined. In a nonrelativistic two-dimensional boson-analogy picture, this latter
feature would correspond to a vanishing mass of the bosons. Scaling functions for the specific heat are
calculated in zero and finite magnetic field. From this we conclude that the critical region is of order of 10%
of Tc for a mass anisotropyAMz /M53, and increases with increasing mass anisotropy. The entropy jump at
the melting transition is calculated in two ways as a function of magnetic field for a mass anisotropy slightly
lower than that in YBa2Cu3O7 ~YBCO!, namely, with and without aT-dependent prefactor in the Hamiltonian
originating at the microscopic level and surfacing in coarse-grained theories such as the one considered in this
paper. In the first case, it is found to beDS50.1kB per pancake vortex, roughly independent of the magnetic
field for the filling fractions considered here. In the second case, we find an enhancement ofDS by a factor that
is less than 2, increasing slightly with decreasing magnetic field. This is still lower than experimental values of
DS'0.4kB found experimentally for YBCO using calorimetric methods. We attribute this to the slightly lower
mass anisotropy used in our simulations.@S0163-1829~98!02329-7#
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I. INTRODUCTION

The physics of vortex matter represents a new field
research that has opened up after the discovery of large
tuation effects in the extreme type-II high-Tc superconduct-
ors. In particular, the work of Gammelet al.1 and Nelson2

were important milestones in the field, suggesting for
first time that the Abrikosov vortex lattice might meltwell
below the zero-field critical temperature. This extension
ideas originally proposed by Eilenberger3 has proved to be
fruitful. The melting of the flux-line lattice~FLL! well below
the upper critical field crossover line due to large anisotro
combined with extreme nonlocality of vortex-vorte
interactions,4 as well as its first-order character, are now w
established both on theoretical and experimental grou
Nonetheless, the nature of the molten phase remains tan
ingly elusive. Obviously, there exists a two-dimension
~2D! boson analogy picture of the low-temperature phase
the FLL, where the corresponding boson system is an in
lating one. This is nothing but Abrikosov’s mean-field sol
tion to the problem.5 There is, however, mounting analytic
and numerical evidence that a similar, intuitively appeali
picture of the molten phase via a 2Dnonrelativisticsuper-
fluid boson system2 may need a substantial revision.6–10 As
far as experimental results are concerned, the situation
appears quite intriguing.11
PRB 580163-1829/98/58~5!/2802~14!/$15.00
f
c-

e

f

y

l
s.
liz-
l
f

u-

,

lso

At issue here is to what extent the well-defined flux lin
of the low-temperature FLL phase retain their integrity in t
high-temperature molten phase. In this paper, we addres
issue of the character of the vortex liquid via extens
Monte Carlo simulations of the uniformly frustrated 3DXY
model.

An issue of fundamental importance is whether or no
vortex liquid ~the molten phase of the FLL! is a supercon-
ductor or not when the vortex system is not pinned. It is cl
that the superfluid response to a current applied transver
to the field-induced vortices is zero at all temperatures, p
vided that pinning is absent. In the perfect FLL there w
however, be a superfluid response to a current applied pa
lel to the magnetic field. There remains the possibility tha
finite superfluid response might remain even in the liqu
phase for this geometry, and that it may vanish only deep
the vortex liquid as suggested originally by Feigel’m
et al.12 A main point of this paper is to show that for th
moderate mass anisotropy and large range of magnetic fi
considered here, this in fact does not appear to be the c
Moreover, the reason that this is so has important con
quences for the physical picture of the vortex liquid pha
Below, we give a summary of the main results of this pap

The specific heat is calculated for filling fractionsf
51/12, . . . ,1/128,0, and the results are found to be in go
agreement with the experimental results of Salamonet al.13
2802 © 1998 The American Physical Society
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and more recent experiments of Roulinet al.14 and Schilling
and co-workers.15,16 In particular, we find that the near
logarithmic singularity in zero magnetic field~the specific-
heat exponenta520.007) is converted to a broad crossov
with a peak value suppressed rapidly compared to the z
field case. This crossover defines, somewhat arbitrarily,
upper critical magnetic field. The entropy associated with
suppression of the specific heat at the crossover is pa
compensated by the appearance of ad function anomaly in
the specific heat at temperatures well below the zero-fi
critical temperature. Such ad-function peak is identified un
ambiguously with the first-order melting transition of th
FLL. The field dependence of the temperature at which
appears defines the melting line of the FLL in t
(B-T)-phase diagram of the superconductor. The field
pendence of the entropy of the transition is found to beDS
;B, consistent with the suppression of the broad main cro
over peak in the specific heat. This implies that the entro
per vortex per layer is essentially field independent in
field range and anisotropy range investigated here. We
phasize that the anisotropy considered,AMz /M53, is mod-
erate and somewhat smaller than what is found
YBa2Cu3O7 ~YBCO!. Nonetheless, the qualitative aspects
our results conform well with those found in YBCO.15

We find that in the field regime we have considered, i
fields down toB;1 –5 T, the melting of the vortex lattice i
triggered by a proliferation of thermally induced closed vo
tex rings of order of the magnetic length of the system. T
immediately leads to a ‘‘percolation’’ of vortex loops tra
versing the entire system in any given direction, and in p
ticular in a direction perpendicular to the applied magne
field. Hence, flux lines that are field induced will traverse t
entire system as they weave their way from the bottom to
top of the system. In technical terms, in a simulation o
needs to apply periodic boundary conditions at least onc
the (x,y) directions before a flux line starting at the center
the bottom layer has reached the top layer.Therefore, it does
not make sense to view the vortex liquid phase as a co
tion of well-defined field-induced flux lines. The above pic-
ture effectively means that the flux-line tension has vanis
in the liquid phase. Within the 2D boson analogy picture,
equivalent statement would be that the boson mass, whic
the analog of the line tension, has vanished.17

Scaling functions for the specific heat are calculated
zero field as well as in finite field. From the regime whe
scaling is found in zero field, we find the width of the critic
region to beuT2Tcu/Tc'0.1 for a mass-anisotropy ratioG
5AMz /M53. This is considerably wider than what on
would naively obtain using the Ginzburg criterion. Mor
over, this is slightly wider than what we have found for t
isotropic case. The width of the critical region therefore
creases slightly with mass anisotropy for the moderate va
of G we have considered. Vortex loops are expected to
particularly important for the statistical mechanics of t
FLL, provided that the melting line is found in the proximit
of the critical region. From the obtained melting curve a
the width of the critical region, we find that the meltin
curve crosses the critical region curve at a field of ordeB
51 T for G53. Below this field, vortex loops will com-
pletely dominate the physics at the melting transition.

This paper is organized as follows. In Sec. II we pres
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the model, the approximations involved, and the physi
quantities considered, as well as an update of the proce
and the parameters used in our Monte Carlo simulations
Sec. III we present and discuss detailed results for the fill
fraction f 51/20. In Sec. IV we present results in a bro
range of filling fractions 1/f P@12, . . .,128#. Section V pre-
sents the conclusions of this paper.

II. MODEL

The phenomenological model considered in this paper
the high-Tc cuprates is the uniformly frustrated 3D anis
tropic XY model on a lattice,18–20,8,9defined by the Hamil-
tonian

H$@u~r !#%52 (
r ,m5x,y,z

Jmcos@¹mu~r !2Am~r !#, ~1!

whereu is the local phase of the superconducting comp
order parameter and¹ is a lattice derivative. Furthermore
the coupling energy along them axis Jm is defined by

Jx5Jy5
F0

2d

16p3lab
2

[J' , Jz5
F0

2jab
2

16p3lc
2d

.

Here F0 is the flux quantum,jab is the superconducting
coherence length within the CuO planes, andd is the dis-
tance between two CuO layers inadjacent unit cells. Fur-
thermore,lab andlc are the magnetic penetration lengths
the CuO planes and along the crystal’sc axis, respectively.
In Eq. ~1!, Am is related to thequenchedvector potentialAvp
by

Am~r ![
2p

F0
E

r

r1êm
dr 8•Avp~r 8!,

where êm is the unit vector along them axis. This 3DXY
model is dual to the anisotropic London model in the limit
(lab ,lc)→`.21 This limit should be taken with the under
standing that the coupling energiesJ' andJz are maintained
finite. When (lab ,lc)→`, gauge fluctuations are com
pletely suppressed, leaving a quenched vector potential
uniform magnetic induction. Thus, the 3DXY model should
give an adequate description of the physics of extre
type-II single-crystal superconductors in the field regim
Bc1!B!Bc2. The conditionBc1!B ensures that the contri
bution to the magnetic induction from individual flux line
overlaps strongly giving a uniform magnetic induction. T
conditionB!Bc2 ensures that details of the internal structu
of the vortex cores are not essential. Moreover, the 3DXY
model should give an adequate description of the physic
extreme type-II single-crystal superconductors in zero m
netic field when gauge fluctuations are not important.

In this paper we consider simple tetragonal systems w
dimensionsLx5Ly5L' and Lz . The coordinate (x,y,z)
axes are taken to be parallel to the crystal (a,b,c) axes,
respectively. We measure the in-plane length sca
(x,y,Lx ,Ly) in units ofjab and the length scales along the
axis (z, Lz) in units ofd. Our unit cell is a simple tetragona
system with dimensionsex5ey5jab , ez5d. Periodic
boundary conditions are used in all directions throughou
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A. Internal energy and specific heat

The specific heat per siteC is obtained using the standar
fluctuation formula

C

kB
5

1

L'Lz

^H2&2^H&2

~kBT!2
, ~2!

wherekB is Boltzmann’s constant. Results for most tempe
tures are checked for consistency by differentiating the
sults for the internal energy with respect to temperature.
estimate the latent heat~entropy jump! at a first-order phase
transition, we consider the internal energy per siteE,

E5
1

L'Lz
^H&. ~3!

This expression holds as long as we do not include anT
dependence in the Hamiltonian. Such aT dependence could
conceivably arise in effective coarse-grained theories suc
the Ginzburg-Landau theory, as first pointed out in Ref.
At a first-order phase transition there is a discontinuity in
internal energy per siteDE associated with coexistence o
the Abrikosov FLL phase and the vortex liquid. This in tu
gives rise to ad-function peak in the specific heat.8,9 For the
melting transition of a vortex line lattice,DE is related to the
entropy jump per vortex lines per layerDS by

DS

kB
5

DE

f kBTm
, ~4!

whereTm is the melting temperature andf is the vortex-line
density defined below in Eq.~8!. For consistency, one ma
also check this result by extracting the entropy jump at
melting transition from the scaling of the height of th
d-function anomaly in the specific heat23,8,9

C5const1
L3

4 S DS

kBL3D 2

. ~5!

B. Scaling functions for the specific heat

An issue of principle importance is whether or not clos
thermally induced vortex loops, i.e., the critical fluctuation
will influence the melting of the FLL. Naively, one expec
this to be the case provided that the melting tempera
Tm(B) is within the critical region of the zero-field trans
tion. It is therefore a matter of interest to establish the wi
of the critical region of the anisotropic 3DXY model. To this
end, we consider finite-size scaling of the specific heat.
region of data collapse of the specific heat evaluated at v
ous system sizes identifies the width of the critical region
is also of interest to find the extension of this critical regi
to finite fields, i.e., the width of the crossover region arou
the upper critical field, and how it depends on the anisotro
ratio G. If the melting line is located within this crossove
region or close to it, one expects a vortex-loop ‘‘blowout’’9,7

to dominate the physics at the melting transition, analog
to what was suggested to happen in superfluid He4 by
Onsager.24 This is particularly important at very low mag
netic fields, like those considered in the experiments of Z
dov et al.11
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For the zero-field finite-size scaling of the specific he
we have used cubic samplesL3L3L with L
516,32,48,64,72,96 to avoid spurious geometric effects.
investigate the possibility that the width of the critical regio
may depend on anisotropy, we have considered the two c
G51 andG53.

The finite-size scaling function for the specific heat m
in general be obtained in standard fashion from the sing
part of the free energy as25,26

C~ t,L !5La/nF6~ utuL1/n!,

or equivalently

C~ t,L !

C~ t,`!
5G6~ utuL1/n!,

where utu5uT2Tcu/Tc , and where F6(utuL1/n) and
G6(utuL1/n) are analytic functions of their arguments. Her
a is the specific-heat critical exponent, andn is the critical
exponent of the superconducting correlation length; hyp
scaling yieldsa522Dn in a D-dimensional system. As dis
cussed in detail in Ref. 26, a more convenient scaling fo
for numerical purposes is given by

C~ t,L !2C~0,̀ !

C~0,L !2C~0,̀ !
5G6~ utuL1/n!. ~6!

We will use this scaling form to determine the width of th
critical region.

In the presence of a general fieldX with scaling dimen-
sion X;j2l, wherej is the correlation lengthj;utu2n, we
have

C~ t,X!5utu2aG6~Xutu2ln!.

Subtracting out the zero-field part, and introducingy
[Xutu2ln andDC(t,X)[C(t,X)2C(t,0), we find

utuaDC~ t,X!5@G6~y!2G6~0!#,

Xa/lnDC~ t,X!5ya/ln@G6~y!2G6~0!#[H6~y!.

ChoosingX5B, the induction, implies that the scaling d
mensionl52 when gauge fluctuations are suppressed, a
the case in the uniformly frustrated 3DXY model. Under
such circumstances, the inductionB will not acquire anoma-
lous scaling. Hence, we obtain

Ba/2nDC~ t,B!5ya/2n@G6~y!2G6~0!#[H6~y!, ~7!

wherey5Butu22n. We will use the above scaling form@Eq.
~7!# to determine the width of the crossover region arou
the upper critical field as a function ofB. Note, however, that
this scaling form is not specific to the 3DXY model. By
plotting appropriate ratios of temperature and field deri
tives of these scaling functions, one may extract directly
critical exponents of the system as the slopes of the qua
ties being plotted; see, for instance, the very detailed anal
of this by Schilling and co-workers.16 It is conceivable that
such a procedure would yield a curve with a kink in it wh
t.0, as claimed to be observed by Schilling and co-worke
This in itself does not invalidate the 3DXY scaling of high-
Tc cuprates. Conceivably, it could be due to a crossover fr
an XY fixed point to another fixed point, possibly with a
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anomalously large value ofn'1.5, based on magnetizatio
data. ~Note that the specific-heat data of Schilling and c
workers in fact show an opposite trend, more consistent w
a crossover to a Gaussian fixed point. This is to be expe
if amplitude fluctuations of the order parameter were
dominate the phase fluctuations.! For more details, see th
discussion below.

We note immediately that the above implies thatutu
;B1/2n for finite fields, i.e., the width of the crossover regio
widens asB increases. Using the estimaten52/3 in three
dimensions, we haveutu;B3/4, implying that the crossove
region around the upper critical on the low-temperature s
has a positive curvature in the (B-T) phase diagram, which
is also true for the melting curve, for which we haveutuM
;Bh, with h;2/3. The widening of the crossover region
of course consistent with a broadening of the remains of
zero-field anomaly in the specific heat, to be calculated
low.

The crossover curveB̃(T,Tc) has a more rapid increas
as a function ofTc2T than the melting curve; recall th
exponents 3/4 and 2/3, respectively. Due to the finite wi
of the zero-field critical region, there should then be a fi
regime where either the melting curve and the crosso
curve intersect, or where the crossover curve is to the lef
the melting curve in theB-T phase diagram. This depends o
the width of the zero-field critical regime. Given the size
this regime,utu<0.1, the former scenario appears to us to
the more likely one, and this is also what we find in o
simulations. Hence critical fluctuations, i.e., thermally i
duced vortex loops, should substantially influence the F
melting in a finite regime of magnetic fields. From our sim
lations, to be presented below, we estimate the relevant
regime to be of order 0–1 T in an extreme type-II superc
ductor withG53.

C. Helicity modulus

As a probe of global superconducting phase cohere
we consider various helicity moduliYx , Yy , andYz . The
helicity modulusYm along them direction is defined as the
second derivative of the free energy with respect to a glo
phase twist along them direction;19 explicitly, we obtain for
the anisotropic uniformly frustrated 3DXY model

Ym5
1

L'Lz
K (

r ,n5x,y,z
Jncos@¹nu~r !2An~r !#~ ên•êm!2L

2
1

kBTL'Lz
K F (

r ,n5x,y,z
Jnsin@¹nu~r !2An~r !#

3~ ên•êm!G2L .

WhenYm is finite, the system can carry a supercurrent alo
the m direction. WhenYm vanishes, resistivity along them
direction becomes finite. In systems with finite applied fie
along thez axis, we expectYx5Yy50 for all temperatures
in the continuum limit. In this case, any applied curre
along thexy plane will move the unpinned flux lines an
dissipate energy. Discretization introduces a potentially s
gular perturbation by introducing an artificial pinning pote
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tial, the effect of which is more serious in a thre
dimensional system than in a two-dimensional one. In
latter case, the effect of the potential may in principle
entirely avoided by considering low enough fillin
fractions,27 whereas this is not possible in three dimensio
in the thermodynamic limit. The sizeLz of systems must
therefore be tailored to the filling fractionf in order to avoid
spurious pinning effects.

The thus introduced pinning potential will, at a lo
enough temperature, pin the flux lines in their positions, a
cause (Yx ,Yy)Þ0 up to a depinning temperatureTd . To
ensure that this artificially introduced pinning potent
caused by the numerical lattice does not affect the FLL m
ing transition, we should consider systems withTd much
lower than all other ‘‘critical’’ temperatures of interest.Td is
controlled mainly by the filling fractionf ; we haveTd→0 as
f→0.27,9 To adequately mimic the continuum limit of inter
est, low enough filling fractions must therefore be cons
ered.

D. FLL structure function

To locate the position of the vortex elements we use
following procedure: The counterclockwise line integral
the gauge-invariant phase differences around any plaqu
of the numerical lattice with surface normal along them
direction must always satisfy

(
Ci

j n~r !52p@nm~r !2 f m#,

j n~r !5¹nu~r !2An~r !.

Here,Ci is the closed path traced out by the links surroun
ing an arbitrary plaquette, andn represents the Cartesia
components of the current in the directions of the links t
comprise the closed pathCi . Furthermore,j n(r ) is the cur-
rent on the link between siter and siter 1 ên and nm(r )
50,61 represents a vortex segment penetrating
plaquette enclosed by the pathCi . Here,f m is the vortex-line
density along them direction, and is given by

f m5

(
r

nm~r !

L'Lz
. ~8!

To probe the structural order of the vortex system, we c
sider the in-plane structure function fornz vortex segments
within the same plane,2

S~k'!5
1

f 2L'
4 Lz

K (
z

U(
r'

nz~r' ,z!eik'•r'U2L .

In the FLL phase we expect to see a periodic array of sh
Bragg peaks in thek' plane. In the vortex liquid phase w
expect to see Bragg rings with radiusk'52p/av and
4p/av , characteristic of a liquid. Here,av is the average
distance between neighboring vortex lines.
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E. Monte Carlo procedure

The Monte Carlo updating procedure used in this pape
the following. The numerical lattice is stepped through in
systematic manner. At each site a change of the local ph
of the superconducting condensate is attempted by a ran
amountDuP@2p,p&. The attempt is accepted or rejecte
according to the standard Metropolis algorithm.

If the accepted phase change causes the current on a
j m(r ) to exceed the rangej m(r )P@2p,p&, an amount62p
is added to the current such thatj m(r ) is brought back into
the primary intervalj m(r )P@2p,p&. An important point is
that this operation can only generate a closed unit vo
loop around the link where the current is changed, ther
conserving the net induction of the system. No net vortic
is ever introduced by the procedure, and the procedure
guarantees that no vortex line can start or end within
sample. One sweep refers toL'

2 Lz attempts to change th
phase angle.

We fix the height of our systems toLz540 and letL'

vary from 40 to 128 depending on the flux-line density und
consideration. In Refs. 8 and 9, it was noted that for syste
with moderate anisotropy (G;3), finite-size effects are
rather small when the linear dimension of the system and
total number of flux lines exceed;40. Thus, we believe tha
finite-size effects will not affect the conclusions in this pap
Likewise, it was observed by the same authors that finite-
effects were negligible whenLz was increased beyondLz
540 for the anisotropy considered here,G53. This has mo-
tivated our choice ofLz540.

In this paper we fix the anisotropy parameterG to

G[AJ'

Jz
5

lzd

labjab
53

in most simulations. Occasionally, comparison is made
the isotropic caseG51. The magnetic fieldB is applied
along the crystalc axis, giving a vortex-line densityf ,

f x5 f y50, f z[ f 5
Bjab

2

F0
. ~9!

The flux-line densities f considered are 1/f 512 (48),
14 (56), 16 (48), 20 (40), 25 (50), 32 (64), 48 (48
64 (64), 72 (72), 84 (84), 96 (96), 112 (112
128 (128),̀ (64). The numbers in the parentheses den
L' for the corresponding vortex-line density. Note that w
have chosen, with our gauge,L' for each filling fractionf in
such a way that we ensure that an integer number of m
netic Brillouin zones will fit on the reciprocal lattice of eac
system, enabling us to use periodic boundary condition
the x,y directions. As will be observed,L' is an integer
multiple of 1/f in each case.

The value of f is prescribed by loading the following
phase-difference pattern onto the numerical lattice~using
Landau gauge!, a system withu(r )50 for all r ,

Ay~x,y,z!52p f x.

The system is then heated to a temperature well above
transition/crossover temperatures of interest, at which p
slow cooling is started. The filling fractionf is conserved by
our Monte Carlo procedure, and the moves are carried ou
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the gauge-invariant phase differences on each link. Note
we do not need toassumeany ground-state configuration b
this procedure. Extremely long simulations, typically
3106–63106 sweeps, are, however, required in order
capture the correct physics at the FLL melting transition a
to reveal anyd-function anomalies in the specific heat at t
melting transition, particularly at low filling fractions.

III. RESULTS: f 51/20

A. FLL melting and phase coherence

To identify the possible different phases and pha
transition~s!/crossover~s! in a system with finite flux-line
density, we first concentrate on results for the systemf
51/20. Similar results are found in all other finite flux-lin
densities considered in this paper, to be detailed below. We
have measured temperatures in units wherekB51.

Figure 1 shows the specific heat per siteC, the helicity
modulus along the applied-field directionYz , the helicity
modulus perpendicular to the applied-field directionYx , and
the in-plane structure functionS(k') as functions of tem-
perature. Figure 1 shows that the in-plane structure func
S(k'52p/5,p/4) has a sharp drop from 0.2 to 0 precisely
Tm50.531J' , indicating that the FLL melts atTm in a first-
order phase transition. For a more global view, Fig. 2 illu
trates the density plot ofS(k') for kx ,kyP@2p,p# at four
different temperatures;T/J'50.450, 0.530, 0.531, 0.532

FIG. 1. Specific heatC per site, in-plane structure factorS(k'

52p/5,p/4), helicity modulus alongz axisYz , and helicity modu-
lus alongx axisYx as functions of temperature for the system w
vortex-line densityf 51/20. The in-plane structure functionS(k')
jumps discontinuously from 0.2 to 0 precisely atTm50.531J' in-
dicating that the FLL melts in a first-order phase transition. At t
same temperature,Yz also shows a discontinuity from 0.6 to 0
indicating thatthe FLL melts directly into the incoherent vorte
liquid with no global phase coherence along the applied magne
field direction. At temperatures aboveTm there is no global phase
coherence in any direction. The specific heat also show
d-function anomaly, preciselyTm . The broad specific-heat anoma
at TBc2;1.05J' represents the remains of the zero-field Onsa
vortex loop blowout. Note that for temperaturesTm,T,TBc2 local
superconducting phase coherence still exists, giving strong diam
netic fluctuations in the liquid phase. The FLL depins from t
numerical lattice atTd!Tm , whereYx vanishes. Thus, the FLL
melting transition atTm@Td is not affected by the numerical lattice
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It is clearly seen that the periodic array of sharp Bragg pe
is converted into a ring precisely atTm50.531J' , within a
narrow temperature region ofDT50.001J' aroundTm .

To clarify whether the phase coherence along the dir
tion of the applied magnetic field is finite in the vortex liqu
phase, we consider the helicity modulus along thez axisYz .
In Fig. 1 it is clearly seen thatYz shows a sharp jump from
0.6 to 0 atTm precisely where the FLL melts. This show
that the FLL melts directly into anincoherent vortex liquid
in a first-order phase transition. We will return to this impo
tant point later, since it has important consequences for
physical picture of the vortex liquid phase. The above res
is in complete agreement with the work of Ref. 8 using t
3D XY model, the work of Ref. 22 using the lowest Landa
level approximation, and earlier work by us using the 3
anisotropic Villain model.9 In all these works, it was found
that longitudinal phase coherence is lost as soon as the
tex lattice melts in the thermodynamic limit. We emphas
that opposite conclusions were drawn in earlier work by
and others.7,19,29We believe that this discrepancy may be d
to one or several of the following three factors:~i! In earlier
work, the system size in thez direction may not have bee
large enough, particularly for the isotropic case,~ii ! the
simulations were not run for a long enough time, and~iii ! the
results were obtained upon heating only. Our more rec
results in Ref. 9 and in the present paper are obtained u
heatingand cooling.

A first-order phase transition is manifest in the form o
d-function anomaly in the specific heat. From the height
this anomaly one may deduce the latent heat of the transi

FIG. 2. Intensity plots of the structure functionS(k') for vari-
ous temperatures for the system with flux-line densityf 51/20. kx

P@2p,p# andkyP@2p,p# are along the horizontal and the ve
tical direction, respectively. The brightness in the plots is a mea
of the magnitude ofS(k'). To enhance features we put all poin
where S(k'),0.01 ~noise level! to black and all points where
S(k').0.05 to white. Precisely atTm , the sharp Bragg peaks i
S(k') are converted into Bragg rings, characteristic of a liqu
Thus, the FLL melts into a vortex liquid within a temperature r
gion of DT50.001J' .
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Figure 1 shows that the anomaly occurs atTm50.531J' ,
precisely where the structure function and the helicity mod
lus vanish. These results are in complete agreement w
those of Ref. 8 obtained on the uniformly frustrated 3DXY
model for f 51/25, as well as those found in Ref. 9 using th
uniformly frustrated 3D anisotropic Villain model forf
51/32. Below we consider filling fractions down tof
51/128, finding that these results still hold.

The latent heat of the first-order FLL melting transition a
Tm is obtained from the jump in the internal energy shown i
Fig. 3 using Eq.~4!. Here, the entropy jump per vortex line
per layer is estimated to beDS50.1kB . To obtain the spike
in the specific heat we must~i! ensure that the transition
temperature is located very accurately, typically to withi
one part in 103 and ~ii ! increase the simulation length to a
least 6 000 000 sweeps over the lattice for each temperatu
The extreme length of the simulations is necessary to allo
the system to switch back and forth between the order
phase and disordered phase at the phase transition an
equate number of times, typically at least ten times.

B. Breakdown of the 2D boson analogy

The specific heat has a broad anomaly atTBc2.1.05J'

@Tm , indicating a crossover. This broad crossover was u
ambiguously identified in our previous work as the remain
of a zero-field Onsager vortex loop ‘‘blowout’’7,9 that de-
stroyed superconductivity on all length scales. Howeve
since the remains of the zero-field vortex loop ‘‘blowout’
takes place first atTBc2@Tm , superconductivity still exists
locally in finite domains in the incoherent vortex liquid
phase, giving strong diamagnetic fluctuations.20 Since the
global phase coherence in all directions is destroyed in t
incoherent vortex liquid phase, the superfluid stiffness is ze

re

.

FIG. 3. Internal energy per siteE as a function of temperature
for the system with vortex line densityf 51/20. The data are ob-
tained from a cooling sequence using 3 000 000 sweeps per te
perature. The internal energy has a discontinuous jump atTm indi-
cating a first-order transition from an ordered state~FLL! to a
disordered state~phase-incoherent vortex liquid!. This jump in the
internal energy is used to determine the latent heat~entropy jump!
at the FLL melting transition. The jump inE here corresponds to a
jump in the entropy per vortex line per layerDS( f 51/20)
50.1kB .
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in all directions in this phase, and any applied curre
through the system will dissipate energy. Thus, in the in
herent vortex liquid phase the system has both finite resis
ity in all directions, as well as strong diamagnetic fluctu
tions.

The numerical lattice is a singular perturbation in a thr
dimensional system, and one may ask whether the first-o
FLL melting transition atTm is affected by the artificially
introduced pinning potential. To address this issue we c
sider the helicity modulus along thex axisYx . In Fig. 1, it is
seen that the helicity modulus along thex axis Yx drops to
zero already atTd50.1J'!Tm . From this we conclude tha
above Td the system exhibits a ‘‘floating solid’’ phase.27

Thus the FLL melting transition atTm is not affected by the
pinning potential caused by the numerical lattice.

Snapshots of the FLL, the incoherent vortex liquid pha
and the normal metal phase of the systemf 51/20 for four
temperaturesT/J'50.26, 0.50, 0.54, 0.70 are shown
Fig. 4. For clarity only a part of the system,x,yP@0:20#,z
P@0:40#, is shown. For the systemf 51/20, we have found
Tm50.53J' and TBc251.05J' . For T50.26J'!Tm , the
flux lines form a hexagonal lattice. Although there are ma
thermally induced defects attached to each flux line, th
remain well-defined entities. ForT50.50J'&Tm , though
the flux lines now fluctuate substantially, they nonethel
remain intact. So does the FLL, as evidenced by the res
for the structure function; see Figs. 1 and 5. For a sligh
more elevated temperatureT50.54J'*Tm , the FLL has
melted. A key observation is that, immediately upon meltin
the flux lines are no longer well-defined entities; there

FIG. 4. Snapshots of the vortex configuration for the syst
with vortex-line density f 51/20 for four temperatures,T/J'

50.26,0.50,0.54,0.70. For clarification we have shown only a p
of the system;x,yP@0:20# and zP@0:40#. For T50.26J'!Tm ,
the flux lines form a hexagonal lattice. Although there are ma
thermally induced defects attached to each flux line, they are n
theless well-defined quantities. ForT50.50J'&Tm , the FLL is
still intact. Although the flux lines now contain many larger defec
they are still well defined. ForT50.54J'*Tm , the FLL has
melted. ForT*0.54J' , it is seen that the flux lines are no long
well-defined quantities. There exists at least one way for a flux
to thread the system in any direction. For any vortex configurat
therefore, there exists at least one flux line threading the samp
the direction perpendicular to the magnetic field.
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many intersections between flux lines, vortex loops have p
liferated, and there exists at least one way to percolate f
one side of the sample to the opposite side in any direct
Thus, for any given direction there always exists at least
‘‘infinitely’’ long vortex line perpendicular to it, and any
applied current will move these ‘‘perpendicular’’ vorte
lines and dissipate energy. Note that in this picture vor
lines in the incoherent vortex liquid cannot be described
world lines of 2Dnonrelativisticbosons.2 Thus, one vortex
line in the center of the system will meander all the way
the boundary surface~with surface normal perpendicular t
the applied-field direction! and back as a field-induced flu
line weaves its way from the bottom to the top of the syste
This corresponds to zero flux-line tension, and a wander
exponentz of the flux line that isz>1 or, equivalently, zero
bosonic mass in the 2D boson analogy.

Note that the 2D quantum boson system we have in m
when referring to the work of Ref. 2 is a nonrelativistic sy
tem. The picture we have in mind for the liquid phase
more akin to arelativistic 2D quantum boson system, whe
the proliferation of vortex loops and overhangs in the fl
lines corresponds to vacuum fluctuations in the boson s
tem. This connection has been nicely exposed in Ref. 28

IV. RESULTS: 1/f P†12, . . .,128‡

A. Structure function S„k'…

We show in Fig. 5 the in-plane structure functionS(k')
as a function of temperature for several vortex line densi
f ; 1/f 512(k'55p/12,5p/12), 16(k'53p/8,2p/3),
20(k'52p/5,p/4), 25(k'56p/25,9p/25), 32(k'55p/16,
27p/32), 48(k'5p/6,p/4), 72(k'5p/9,22p/9), 96(k'

53p/16,5p/58), 128(k'57p/64,5p/32). For a given vor-
tex line density,S(k') with the corresponding value ofk'

shows a sharp drop from;0.2 to zero defining a field-
dependent FLL melting temperatureTm( f ). This clearly
shows that, for all values off considered here, the FLL melt
in a first-order phase transition. For decreasingf , the transi-
tion temperatureTm( f ) increases towardsTc as expected;
see Fig. 7.

rt

y
e-

,

e
,
in

FIG. 5. The in-plane structure functionS(k') as a function of
temperature for several vortex-line densitiesf . For a givenf , S(k')
with the corresponding value ofk' shows a sharp drop from;0.2
to 0 at a well-defined FLL melting temperatureTm( f ).
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B. Helicity modulus along the field direction Yz

In Fig. 6 the helicity modulusYz along the direction of
the magnetic field is shown as a function of temperature
the same set of flux-line densities as for the case of the
plane structure function. Asf is varied,Yz shows a sharp
drop towards zero precisely at the corresponding FLL m
ing temperatureTm( f ). Thus, we may conclude that for a
filling fractions considered, the FLL melts directly into a
incoherent vortex liquid. The temperature region where
vortex liquid and the phase coherence along the applied
coexist, found previously by several authors,19,20,7,12 is not
found for any flux-line densityf considered in this paper
We believe that the temperature regime, where the vo
liquid exists with phase coherence along the field directi
pertains to thin-film geometries, or it is otherwise an artifa
of short simulations and hysteretic behavior in the heati
cooling sequence of the vortex system. The phase-cohe
vortex liquid does not exist in the thermodynamic limit of a
equilibrium system, at least in systems with moderate ani
ropy and moderate magnetic induction. The possibility of
existence of a very small magnetic-field inductionBlower
@dependent on the anisotropyBlower(G)# below which the
phase coherence along the field direction can exist in
vortex liquid is not completely ruled out by this work.

Note thatTm( f ) is correlated with the temperature whe
the correspondingYz starts to fall sharply towards zero, no
the lowest temperature whereYz vanishes. One may ques
tion whether it is correct to take the temperature whereYz
starts to show a sharp drop as the temperature where p
coherence along the applied field vanishes. For mode
vortex-line densities this poses no problem, since the dro
Yz is very sharp. However, forf ,1/48, the transition ex-
tends over a small temperature region. By experience,
know that when the system size and the number of vo
lines in the system increase, the drop inYz sharpens and the
tail in Yz disappears. We believe therefore that this tail
only a finite-size effect.

FIG. 6. Monte Carlo results for the specific heat per site of
anisotropic 3DXY model as a function of temperature for seve
vortex-line densitiesf . The system sizes depends on filling fractio
as explained in the text, andG53. For clarity thenth curves are
shifted by an amount 0.2n upwards. For eachf there is a spike at a
f -dependent critical temperatureTm( f ) indicating a first-order
phase transition.
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The main conclusion of the above discussion is that in
thermodynamic limit, no phase coherence exists in the vo
liquid phase. This conclusion is consistent with mounti
evidence from numerical simulations,8,9,30 obtained however
only in a limited filling range 1/f P @25–36#. Our present
results extend this conclusion to much lower filling fraction

C. Specific heat

For all filling fractions down tof 51/32, we have found a
d-function anomaly in the specific heat atTm( f ), indicating a
first-order phase transition; see Fig. 7. For smaller filli
fractionsf <1/48 we find no clear evidence of a spike in th
specific heat. Note that in passing from the system withf
51/32 to the system withf 51/48, the number of field-
induced flux lines is reduced from 128 to 48. We believe t
the observed ‘‘nonexistence’’ of thed-function anomalies at
the FLL melting temperature in the system with very lo
flux-line densities is attributable to two factors:~1! for the
system withf <1/48 we have too few field-induced vorte
lines in our systems and~2! the contribution to the specific
heat from the field-induced flux lines for these filling fra
tions is too small compared to the ‘‘spin-wave’’ and vorte
loop contributions to be detected by our simulations.

In Fig. 8, we show the specific heat as a function of te
perature for the same set of corresponding system sizes
flux-line densities as previously used in calculating the
plane structure function and the helicity modulus along
direction of the applied magnetic field. For decreasingf the
crossover temperatureTBc2( f ) increases and moves toward
the zero-field critical temperatureTBc2( f 50)5Tc . The
broad anomaly in the specific heat sharpens and the m
mum height of the cusp increases, evolving smoothly
wards the zero-field specific-heat singularity atTc . TBc2 de-
notes the crossover temperature at which the remains o
zero-field vortex-loop ‘‘blowout’’ takes place. In a finite
magnetic field the vortex-loop ‘‘blowout’’ atTBc2( f ) causes
only a crossover and the actual phase transition takes pla
a lower temperatureTm( f ), where the FLL undergoes a firs

e
l

FIG. 7. The helicity modulusYz along the field direction as a
function of temperature for several flux-line densitiesf . For all
densities,Yz shows a sharp drop towards zero precisely at the c
responding FLL melting temperatureTm( f ). Thus, the FLL melts
directly into an incoherent vortex liquid.
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order melting transition triggered by a proliferation of vort
loops with diameters at least of the order of the magn
length in the system.

Scaling functions for the specific heat both for zero fie
and finite field are shown in Figs. 9 and 10. For the zero-fi
case, using Eq.~6!, it is seen from Fig. 9 that data collapse
obtained over a wide region out to values of the scal
variable utuL1/n.10 for L>32 on the low-temperature sid
of Tc . Note also that the width of the scaling regime
slightly larger forG53 than forG51. We expect this trend
to persist with increasingG; in the extreme case where th
layers may be considered completely decoupled, i.e.,G→`,
the entire low-temperature regime is known to be critica31

For smallerL, it appears from our simulations that we do n
obtain scaling. Using the valuen50.669,26 we find that the
width of the critical region is given byutu'0.1.

The critical scaling of the specific heat is also consid
ably better aboveTc than below. This is due to the fact tha
vortex loops, i.e., the critical fluctuations, to a much larg
extent dominate the free energy aboveTc compared to below
Tc . Below Tc there is a nonsingular contribution to the fre
energy, and hence specific heat, due to spin-wave fluc
tions of the local phase of the order parameter.

The scaling function of the specific heat in a finite fie
given above in Eq.~7!, is also calculated for filling fractions
f given by 1/f 512,16,20,25,32,48,72,96,128 with corr
ponding system sizes identical to those used for the struc
function above. The anisotropy isG53. The scaled results
are in good agreement with the works of Salamonet al.,13

Roulin et al.,14 and Schilling and co-workers.16 Note that

FIG. 8. Monte Carlo results for the specific heat of the ani
tropic 3D XY model as a function of temperature for several flu
line densities. For decreasingf ~decreasing magnetic-field inductio
B) the crossover temperatureTBc2( f ) increases and moves toward
the zero-field critical temperatureTBc2( f 50)5Tc . The broad
anomaly~cusp! in the specific heat becomes sharper and the m
mum height of the cusp increases. Thus, for decreasingf the spe-
cific heat evolves smoothly to the zero-field specific-heat singula
at Tc . The spike in the specific heat atTm( f )!TBc2( f ) in each
graph is hidden in the noise of the other graphs and is therefore
to recognize in this particular figure. While in zero magnetic fie
the vortex loop blowout is the mechanism for the second-or
phase transition atTc , in finite magnetic field the vortex loop blow
out atTBc2( f ) is only a crossover. The phase transition in syste
with finite vortex-line densities takes place at a lower tempera
Tm( f ), where the vortex-line lattice melts.
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while Ref. 16 makes the point that 3DXY scaling does not
appear to describe well the experimental results aboveTc in
single-crystal YBa2Cu3O7 in the field range 0.75–7 T, i
does appear to work well belowTc . The reason for this may
be that for an optimally doped compound, the temperatur
which a pseudogap opens up may not be much higher
the Tc at which phase coherence is established. The res
are therefore likely to be influenced by amplitude fluctu
tions aboveTc . This should not be the case belowTc .
Hence, we believe that the field range considered is not
only issue; there is also the observation of a crossover f
an XY critical point to a Gaussian critical point when in
creasing the temperature aboveTc , approaching a mean
field-like temperatureTMF where preformed pairs start t
dissociate. An obscuring factor is that the specific-heat d
and magnetization data of Schilling and co-workers sh
opposite trends in their deviation fromXY scaling. Note that
the analysis of Ref. 16 isnot specific to theXY model; the
scaling forms that are used are quite general. Were the t
perature scalesTc andTMF well separated,XY critical scal-
ing would presumably persist aboveTc . This would, for
instance, be the case inunderdopedcuprates.32

At any rate, it is the width of the critical regionbelow Tc
that is of interest in establishing the importance of interp
between vortex loops and FLL melting. The width of th
critical region should increase with underdoping, and he
the interplay between vortex loops and FLL melting is e
pected to be more pronounced when the cuprates bec
more underdoped.32

We note that the scaling is better aboveTc than below,
again because nonsingular contributions to the free ene
in this case also arising from the FLL, contribute signi
cantly. The spikes in the finite-field scaling function are d
to the specific-heat anomalies at the FLL melting transiti

D. Entropy discontinuity at the FLL melting transition

The latent heat, or equivalently the discontinuity in e
tropy at the FLL melting transition, has been much focus
on in recent experiments.33,34,11,15,14In Fig. 11, the entropy
discontinuity at the first-order FLL melting transition
shown as a function of the flux-line density. The results o
tained using the Hamiltonian in Eq.~1! are shown in filled
circles. We find that the entropy discontinuity per flux lin
per layerDS( f );0.1kB . The fact thatDS is essentially in-
dependent of the applied magnetic field,for the moderate
anisotropyG53 considered in this paper, is consistent with
the experimental results obtained by Schillinget al.15 and
Roulin et al.14 They foundDS(B);0.5kB , independent of
B. The values ofDS50.1kB are similar to the values found
by Hu et al.8 We attribute the difference between our valu
for DS( f );0.1kB and the experimental valueDS(B)
;0.5kB to the difference in the anisotropy. YBCO has a
anisotropyG;7, while the anisotropy in this paper isG
53. As shown in our previous paper,9 and also by Huet al.,8

the entropy jump at the FLL melting transition increases w
increasing anisotropy.

To ensure that the artificial pinning potential introduc
by the numerical mesh does not affect the FLL melting tra
sition at Tm( f ), we must ensure that the helicity modulu
perpendicular to the applied field vanishes at a tempera
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Td( f ) significantly belowTm( f ). Under such circumstance
the low-temperature phase forTd( f ),T,Tm( f ) is charac-
terized by a ‘‘floating solid phase,’’ mimicking the con
tinuum limit. In Fig. 12, the helicity modulus along thex
direction Yx is shown as a function of temperature for t
same set off used for the specific heat, structure functio
andYz . Figure 12 shows that for each flux-line density co
sidered,Yx vanishes at a temperatureTd( f ) significantly
lower than the corresponding FLL melting temperatu
Tm( f ). Thus, we have shown that in all systems conside
in this paper, the depinning crossover atTd( f ) does not af-
fect the FLL melting atTm( f )@Td( f ). Although we have
not shown it explicitly here, we have checked thatYy(T) is
essentially identical toYx , as required by symmetry.

In recent work,35 it was pointed out that calculated en
tropy jumpsDS at the melting transition of the Abrikoso
vortex lattice could be brought into agreement w
experiments15 by introducing temperature-dependent para
eters in the theory, reflecting fluctuations at a microsco
level surfacing in coarse-grained theories. The idea of us
such a procedure was first introduced in Ref. 22 within
lowest Landau-level approach to the same problem, i.e.,
high-field limit. This leads to an internal energy

FIG. 9. Monte Carlo results for the specific heat of the ani
tropic 3DXY model in zero magnetic field, for various system siz
L3L3L with L532,48,64,72,96, and two values of the anisotro
G51 and G53, scaled according to Eq.~6!. Here, t5(T
2Tc)/Tc . The region of data collapse gives the width of the critic
region. Note that this region is slightly wider forG53 than forG
51.
,
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U~T!5^H&2TK ]H

]T L , ~10!

where H is an effective T-dependent Hamiltonian,̂H&
5(1/Z)(Hexp(2H/kBT), and Z5(exp(2H/kBT) is the ca-
nonical partition function. For a derivation of this result, s
the Appendix.

In extreme type-II superconductors, as modeled by the
XY model or the London model in thel→` limit, the T
dependence described above appears exclusively as a pr
tor in the HamiltonianH5E0(t)H0, where H0 has no
T-dependent prefactors,t5T/TcMF with TcMF a mean-field
zero-field transition temperature, andE0(t)5@l(0)/l(t)#2.
H0 is to be identified with the Hamiltonian used in this pap

-

,

l

FIG. 10. Monte Carlo results for the specific heat of the ani
tropic 3D XY model for a number of filling fractionsf given by
1/f 512, . . .,128 with corresponding system sizes as explained
text, and anisotropyG53, scaled according to Eq.~7!. The results
are in good agreement with the experimental results of Schil
et al. and Junodet al.

FIG. 11. The entropy jump per vortex line per layerDS( f ) at
the FLL melting transition for several vortex-line densitiesf . The
filled circles represent the results obtained with aT-independent
Hamiltonian, Eq.~1!. The open circles represent the results obtain
including aT-dependent prefactor in the Hamiltonian. We see t
DS( f ) essentially does not depend onf in this regime of filling
fractions f , regardless of whetherT-dependent prefactors are in
cluded in the Hamiltonian or not. The inset shows the enhancem
factor in Eq.~14!.
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2812 PRB 58A. K. NGUYEN AND A. SUDBO”
so far. For instance, in the two-fluid modelE0(t)512t4,
while the simplest mean-field approximation yieldsE0(t)
512t. Using the above, we find the internal energy giv
by

U5S E0~t!2T
dE0~t!

dT DU0~T8!,

U0~T8!5
1

Z( H0exp~2H0 /kBT8!, ~11!

T85
T

E0~t!
.

This leads to an entropy jump at the first-order melting tr
sition of the Abrikosov vortex lattice

DS5
DU

T
5FE0~t!2T

dE0~t!

dT GDU0~T8!

T

5
1

E0~t!FE0~t!2T
dE0~t!

dT GDS0~T8!, ~12!

whereDS0(T8)5DU0(T8)/T8 is the entropy jump obtained
without anyT-dependent parameters in the Hamiltonian, b
where the quantity is to be evaluated at the temperatureT8
5T/E0(t). Note that the prefactor relatingDS to DS0 would
always be 1 irrespective of whatE0(t) is, if we had not
included the contribution2T^]H/]T& to U. Using E0(t)
512t2, we find

DS~T!5
11t2

12t2
DS0~T8!, ~13!

precisely as in Ref. 35. Note the difference in the argume
of DS(T) andDS0(T8). Reference 35 concludes that with
a line-liquid model with moderate values ofDS0, substan-
tially enhanced values forDS are obtained, particularly in

FIG. 12. The helicity modulus perpendicular to the field dire
tion Yx as a function of temperature for several vortex-line densi
f . For eachf , Yx vanishes at a temperatureTd( f ) significantly
lower than the corresponding FLL melting temperatureTm( f ). The
artificial pinning potential of the numerical lattice therefore do
not affect the FLL melting transition atTm( f )@Td( f ).
-

t

ts

the low-field regime, in agreement with experiments. T
main factor in the enhancement is the denominator 12t2,
which vanishes asT→TcMF .

Note that the above procedure of substitutingH0 with
E0(t)H0 does not in itself in any way assume that the ph
ics of the vortex system in the low-field regime is determin
exclusively by field-induced flux lines. However, were we
follow Ref. 35 and in addition assume that in the low-fie
regime there only exists one relevant length scale in
problem, namely, the magnetic lengtha0;1/AB, we would
be assuming that only field-induced vortices are relevant
grees of freedom on the melting line. Our main point is th
this may be questionable in the low-field regime, and we w
therefore refrain from utilizing such an assumption.

If we insist on comparingDS0(T8) with results obtained
using H0, and notH,35 then we must fixT8 to values ob-
tained for the melting line in such calculations.Thus,t can-
not vary arbitrarily between0 and 1 while fixingDS0 inde-
pendently.Rather,t andT8 are related viaT85T/E0(t). In
calculations of DS0 using H0, we must therefore have
T8/TcMF,1. Using E0(t)512t2, we find t,(A521)/2.
This gives enhancement factors (11t2)/(12t2),A5
within this model. If we express Eq.~13! in terms of t8
5T8/Tc , we obtain

DS5A114t82DS0~T8!; t8P@0,1&. ~14!

Similar enhancement factors may be found using the s
plest mean-field approximationE0(t)512t, that is, for in-
stance, used in Ref. 30. It would yield an enhancement fa
in Eq. ~14! given by 11t8. In Fig. 11 we have also plotted
the entropy jump as obtained using aT-dependent prefacto
in the Hamiltonian. We have used the results obtained us
H0 and enhanced them by the prefactor in Eq.~14!. The inset
of the figure shows the enhancement factor on the mel
line obtained in our simulations. It varies quite slowly as
function of t8 in the entire interval. Hence, even if we in
clude the effect ofE0(t) on DS, we obtain an essentially
field-independent entropy jump in the field regime cons
ered in Fig. 11. For specificity, we have chosenE0(t)51
2t2, and ignored the difference betweenTc and the mean-
field critical temperature. We note also in this context th
Ref. 22 finds an entropy jump of the magnitude we ha
found here within the lowest Landau-level approximatio
Furthermore, Ref. 29 finds similar results using the isotro
XY model with f 51/6, in agreement with earlier simulation
of the same filling fraction.18 Note the large difference in
filling fractions between the present work and the work
Refs. 29 and 18. Forf 51/6, commensuration effects due
the numerical lattice are severe, and could conceivably l
to overestimates of the magnitude ofDS. This has been par
of the motivation for pushing the simulations to the low fi
ing fractions used in this paper.

E. B-T phase diagram

To estimate the real magnetic-field inductionB corre-
sponding to the flux-line densities considered in this pap
we use Eq.~8! and takejab512–15 Å. With this value of
jab , we find the magnetic field corresponding to the small
flux-line densities considered (f 51/128) to be approxi-
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mately 5–7 T. In Fig. 13 we show thef -T phase diagram
originating from simulations of theXY model. The flux-line
densities f considered are 1/f 512,14,16,20,25,32,48,64
72,84,96,112,128. We see that the overall behavior of
phase diagram is consistent with the phase diagram in YB
measured by Schillinget al.15 and Junodet al.14 The FLL
melting line atTm( f ) separates the superconducting Abrik
sov FLL phase from the incoherent vortex liquid phase,
latter being characterized by finite resistivity and strong d
magnetic fluctuations, with simultaneous loss of Bragg pe
in the FLL structure factor, flux-line integrity, and glob
phase coherence in all directions. The remains of the z
field vortex loop ‘‘blowout’’ aroundTBc2( f ) destroys phase
coherence on all length scales, and thus separates the
herent vortex liquid phase from the normal metal phase.
melting lineTm( f ) decreases with decreasingf with a posi-
tive curvature. Note also that the width of the critical regi
is large enough to influence the FLL melting transition ov
a sizable field range. This field range is seen to extend u
f '1/256, which we may conservatively estimate to be
least of order 0–1 T.

FIG. 13. Thef -T phase diagram for the uniformly frustrated 3
XY model. The applied field is along the crystalc axis, the anisot-
ropy parameterG53. The FLL exhibits global phase coheren
along the applied-field direction. The FLL phase is separated f
the incoherent flux-line liquid phase by the melting lineTm( f ). The
melting transition is a first-order phase transition with an entro
jump DS( f );0.1kB for the anisotropyG53 and field regime con-
sidered in this paper. In the incoherent vortex-liquid phaseTm( f )
,T,TBc2( f ), there is only local, but no global, phase coherence
any direction. At finite fields, between the incoherent vortex liqu
and the normal metal phase, there exists a broad crossover r
where a blowout of thermally induced closed vortex loops ta
place, eventually also destroying superconductivity on short len
scales. The width of the crossover regime is obtained from sca
behavior of the specific heat. Another, consistent, method of obt
ing this width, is to estimate the temperature regime, which co
ponds to an uncertainty of 10% in the maximum value of
specific-heat anomaly atTBc2( f ). Since this anomaly become
broader with increasing field, the crossover region becomes w
This is also confirmed from the scaling results for the specific h
is
O

e
-
s

o-

co-
e

r
to
t

V. CONCLUSION

In this paper, we have investigated characteristics of
molten phase of the Abrikosov flux-line lattice via Mon
Carlo simulations on the three-dimensional uniformly fru
tratedXY model. Bragg peaks in the static structure fac
and phase coherence along the direction of the applied m
netic field are both lost simultaneously, rendering the vor
liquid phase incoherent. This behavior is triggered by th
mal excitations of closed vortex loops of diameters of t
order of the average distance between flux lines in the lo
temperature lattice phase. On the melting line, this mec
nism suffices to produce highly nontrivial vortex configur
tions with appreciable statistical weighton the template of
field-induced vortices.These configurations are characteriz
by a ‘‘percolation’’ of closed vortex loops threading the e
tire sample in any direction. In particular, this is the case
directions transverse to the direction of the applied magn
field, which is tantamount to a loss of line tension of t
field-induced flux lines. It renders a picture of the molt
phase of the flux-line lattice in terms of a liquid of wel
defined, separated, and directed line objects, invalid. Equ
lently, a picture in terms of world lines of 2D nonrelativist
superfluid bosons is invalid in the liquid phase. An effecti
theory of the flux-line lattice melting and the vortex-liqu
phase thus appears to present a formidable challenge inv
ing the solution of a self-consistent coupled theory of fie
induced flux-line objects, and thermally induced closed v
tex loops.6–8 This coupling must evidently render the flux
line tension equal to zero in the liquid phase. Unfortunate
it is therefore doubtful that the intuitively appealing physi
of directed polymers is particularly relevant for the vorte
liquid phase.

Scaling functions for the specific heat are calculated, b
in zero and finite magnetic field. The zero-field results yie
a sizable critical regionuT2Tcu/Tc'0.1, corroborating the
notion that critical fluctuations of extreme type-II superco
ductors, i.e., vortex loops, will influence such phenomena
flux-line lattice melting over an appreciable range of ma
netic inductions, possibly up to fields of order 1 T in mod-
erately anisotropic superconductors. The field range will
pend on mass anisotropy, since the width of the criti
region and the low-field shape of the melting curve bo
appear to be influenced by the layeredness of the super
ductor.

The finite-field results for the scaling functions for th
specific heat, as well as the obtained phase diagram fo
anisotropy parameterG53, are consistent with experimen
on the slightly more anisotropic cuprate high-Tc supercon-
ductor YBCO, withG'7.

Finally, we note that columnar defects will not be partic
larly efficient in enhancing the critical current density in
superconductor where the FLL melting line is strongly infl
enced by thermally excited closed vortex loops.~The influ-
ence of columnar defects on the vortex system was stu
using Monte Carlo simulations in Ref. 36 for a filling frac
tion f 51/2.! The vortex-loop susceptibility should be sens
tive to the phase-stiffness of the superconductor. The ph
stiffness is in turn largely controlled by the superfluid de
sity, and therefore also by the charge-carrier density. In or
to avoid the detrimental effects on transport properties
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high-Tc superconductors from a vortex-loop ‘‘blowout,’’ a
increase of the charge-carrier density appears to be esse
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APPENDIX: INTERNAL ENERGY

In this appendix, we give a brief derivation of a gener
ized expression for the internal energy of a system with
effectiveT-dependent Hamiltonian. Consider a system in
canonical ensemble. For illustration, we will consider t
well-known (P,V,T) system. Our result for the internal en
ergyU does not depend on the nature of the work term. T
system has a statistical distribution function given by
canonical law

r5
1

Z
e2H/u, ~A1!

where the normalization constantZ is the canonical partition
function

Z5 (
configurations

e2H/u, ~A2!

whereu is a parameter of the distribution function that r
mains to be determined, such that

(
configurations

r51. ~A3!

We insist that this normalization is to be maintained if t
parametersV and u are varied differentially. The Hamil-
tonian and hence the partition function will depend onV
through the wall potential of the problem. Let us, arbitrari
write the partition function in the following way:

Z5e2C/u, ~A4!

whereC is a system-dependent parameter that also rem
to be determined. WhenV→V1dV andu→u1du, we will
therefore also need to varyC→C1dC in order to maintain
correct normalization ofr. Hence, we have
r-
e

tial.

e
.

r

-
n
e

e
e

,

ns

( e[C2H~V,u!]/u515( e[C1dC2H~V1dV,u1du!]/ ~u1du!.

~A5!

Note that we have allowedH to depend on the statistica
parameteru. Expanding to first order in all differentials, w
obtain

( e[C2H~V,u!]/uH 11
1

uFdC2S ]H

]V
dV1

]H

]u
du D

2
du

u
~C2H !G J 51. ~A6!

Since the orginal distribution prior to changingV→V1dV
andu→u1du also was normalized we obtain the followin
constraint on the differentialsdV, du, anddC:

dC5
du

u FC2^H&1u K ]H

]u L G1 K ]H

]V L dV. ~A7!

Here, ^]& denotes a statistical average with respect to
original distribution function exp@(C2H)/u#. In order to
make the connection to thermodynamics, we now comp
the above with the ‘‘thermodynamic identity’’

dF52SdT2PdV5
dT

T
~F2U !2PdV, ~A8!

whereF5U2TS is Helmholz free energy,S is the entropy,
andU is the internal energy. This comparison yields direc

P5 K 2
]H

]V L ,

du

u
5

dT

T
→u5kBT, ~A9!

C5F,

U5^H&2TK ]H

]T L .

Note thatC thus identified is the only choice consistent wi
F52kBTlnZ. This then fixesU. Also, the expression forU
obtained in this fashion is identical to that obtained direc
from the usual relation

U52
] lnZ

]b
, ~A10!

with an assumedT-dependent Hamiltonian.
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