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Quantum magnetoresistance
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~Received 26 September 1997; revised manuscript received 9 March 1998!

An explanation is proposed of the unusual magnetoresistance, linear in magnetic field and positive, observed
recently in nonstoichiometric silver chalcogenides. The idea is based on the assumption that these substances
are basically gapless semiconductors with a linear energy spectrum. Most of the excess silver atoms form
metallic clusters which are doping the remaining material to a very small carrier concentration, so that even in
a magnetic field as low as 10 Oe, only one Landau band participates in the conductivity.
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I. INTRODUCTION

Recently an interesting phenomenon has been obse
by Xu et al.1 in two doped silver chalcogenides Ag21dSe and
Ag21dTe, withd;0.01, the magnetoresistance depended
early on magnetic field starting from approximately 10 O
and going on to 55 kOe without any sign of saturation. T
took place at temperatures ranging from 4.5 to 300 K. T
slope of the linear field dependence decreased with incr
ing temperature in this range approximately three times.
Hall constant did not depend on temperature atT,100 K
and decreased at higher temperatures.

With ideal stoichiometry,d50, or small nonstoichiom-
etry, at low temperatures these substances are intrinsic s
conductors with a narrow direct gap.2,3 The gap is sample
dependent and lies in the range of several tens of meV.
effective mass of carriers is of the order of 1022m0 , where
m0 is the free electron mass.4 At higher temperatures (T
5133 °C for Ag2Se) these substances undergo a phase t
sition into a phase which behaves more similar to a me
Contrary to that, for nonstoichiometric~or doped! com-
pounds, from the finite value of the Hall constant we c
conclude that at any temperature they are more similar to
high-temperature phase of the stoichiometric compounds

According to conventional theory~see, e.g., Ref. 5! the
magnetoresistance in a metal with nonequal densities of e
trons and holes behaves as

Dr;H r0~Vt!2, Vt!1

r0 , Vt@1
~1!

where V5eH/(m1c) is the Larmor frequency,m1 is the
cyclotron mass,t is the collision time, andr0 is the resis-
tance at zero field. This means that first it grows quadr
cally with field and then reaches saturation. With equal d
sities of electrons and holes~this can hardly correspond t
the present case!, the limit atVt@1 is quadratic inV. None
of these laws resembles the observations. There exists a
tain possibility of a linear magnetoresistance, namely
polycrystalline metal with an open Fermi surface~see in Ref.
5! but this is definitely not the present case. Therefore i
clear that the conventional approach, based on the quasi
sical treatment of electrons, cannot explain the phenome
Exotic mechanisms, such as constant and variable range
PRB 580163-1829/98/58~5!/2788~7!/$15.00
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ping in semiconductors~see Ref. 6! also do not lead to a
linear dependence of the resistivity on magnetic field. B
sides, the substances in question behave as metals, and
semiconductors.

In an old and thoroughly forgotten~including the author
himself! paper,7 published almost 30 years ago, the pres
author developed a more general approach to the theor
galvanomagnetic phenomena in metals, based on the e
quantum description of electrons in a magnetic field. T
real goal of that paper was to establish the truth concern
the amplitude of the Shubnikov-deHaas oscillations~this
problem caused great confusion in the scientific commun
of those days!, however, for generality, the limiting quantum
case, with electrons only in one Landau band, was also c
sidered. The formulas obtained in that work were

rxx5ryy5
NiH

pn2ec
, rxy5RH5

H

nec
, ~2!

whereNi is the density of scattering centers,n is the electron
density,R is the Hall constant, and it was assumed thaT
50. To my knowledge, this was the only possible case o
linear positive magnetoresistance.

In formula~2! rxx5ryy is the total resistance, whereas th
experimental result1 can be described as

r5r01aH, ~3!

and this formula is valid not only at magnetic fields of se
eral T but down to 10 Oe. According to what was said befo
@formula ~1!#, there is no way to explain such a behavi
assuming that the metal is homogenous. Indeed the cond
for only one Landau level to participate is~we include\ in
the numerical estimates; otherwise, units are used w
\51!

n,~eH/c\!3/2. ~4!

If we substitute the electron concentration obtained from
Hall measurementsn;1017 cm23, we getH.2 T. The only
possibility is to assume that the real samples used in
experiments are highly inhomogenous, so that they con
small regions with a large concentration of excess silver
oms and, correspondingly, higher electron concentration,
bedded into regions with a much smaller electron concen
tion where the extremal quantum situation takes place.
2788 © 1998 The American Physical Society
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PRB 58 2789QUANTUM MAGNETORESISTANCE
such a structure one could get the formula~3!, however, one
would have to assume that the concentration in the po
doped regions has the order of 1012 cm23, i.e., ;10210 per
atom, or less. This can be obtained from the condition~4!
and the experimental result that the dependence of the m
netoresistance deviates from linearity only atH,10 Oe.
Since the atomic concentration of excess silver atoms i
the order of 1%, it seems that these atoms form meta
clusters, which are doping the rest of the material with el
trons.

For an inhomogenous system the calculation of the H
constant requires a more precise characterization of the
terial, and therefore the experimentally obtained ‘‘effecti
concentrations’’ of the order of 1017 cm23 cannot be calcu-
lated unambiguously. However, even these concentrat
corresponding to;1025 electrons per atom are much le
than the concentration of the excess silver atoms; this sh
the trend.

There are, however, other concerns. At small fields
Landau level spacing becomes smaller thanT. For a qua-
dratic energy spectrum at 10 Oe it is~in K!

\eH

m1ckB
;1023S m0

m1
D K,

wherekB is the Boltzmann constant andm0 is the mass of
the free electron. If one uses the value ofm1 /m0;1022

given in the literature,4 one gets 1021 K, which is too small,
since the linear magnetoresistance at 10 Oe was observ
T54.5 K. The other assumption in Ref. 7, namely, that
electrons are degenerate, is even more difficult to achiev
the required densities.

II. MODEL

Since the problem seems completely hopeless for an
dinary approach, some very unusual path has to be take
Ref. 3 an idea was proposed about the high-temperatua
phase of Ag2Se. Due to the increased mobility of silver ion
a substantial disorder appears which creates ‘‘tails’’ in b
the conduction band and the valence band. Eventually
bands overlap, and the substance becomes metallic. It sh
be mentioned that according to experimental data the ga
direct. In Ref. 8 it was concluded that in Ag2Te with increas-
ing temperature a phase transition from a narrow-gap se
conductor to a gapless semiconductor takes place. One c
guess that since the main reason for this change of the s
trum is disorder, the same could happen as result of dop
and not of increased mobility~the ions move slowly, and
they are always static from the viewpoint of electrons!; this
conclusion is supported by the finite Hall constant. Und
these conditions the nonstoichiometric compound canno
treated as a semiconductor with carriers in the bands re
ing from doping such as, e.g., Ge and Si, but the start m
be done from a different phase, which is closer to a gap
semiconductor.9,10 The latter is a substance where atT50 a
completely filled valence band matches an empty conduc
band. From the small value of the effective mass4 it looks
more likely that the energy spectrum in both bands is line
Indeed, since a small effective mass can appear only in s
restricted regions of the momentum space, it has to g
ly
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with energy~momentum!. If the valence band contacts th
conduction band, or slightly hybridizes with it, the spectru
becomes even closer to linearity.

The possibility of a linear spectrum was analyzed in R
11 ~type I!. It can be a consequence of cubic symmetry wi
out an inversion center and can also happen at some ran
point in the reciprocal space at proper ‘‘tuning’’, e.g., b
pressure or doping. An example of the latter was analyze
Ref. 12.

We will consider here the simplest spectrum of this kin
just in order to have an example of what can happen in s
a substance. The spectrum corresponds to a double repr
tation of cubic groupT or O, and its Hamiltonian can be
written as

H5E c1vFsS p2
e

c
AD GcdV, ~5!

wheres are the Pauli matrices andp is the momentum op-
erator. The velocityv can be assumed of the usual order
magnitudev;108 cm/sec. In the absence of magnetic fie
we get two branches of the spectrum with energies«5vp,
2vp. Suppose that the magnetic field is alongz, and we
chose the vector potentialAy5Hx. The electronic wave
functions will have two components satisfying the equatio

2 i
]

]z
c11S 2 i

]

]x
2

]

]y
1 i

eH

c
xDc25

«

v
c1 ,

S 2 i
]

]x
1

]

]y
2 i

eH

c
xDc11 i

]

]z
c25

«

v
c2 . ~6!

Since the equations contain explicitly onlyx, we will search
for solutions of the usual form

c1,25c1,2~x!e~ ipyy1 ipzz!. ~7!

The eigenvalues of Eqs.~6! are

«n
~1 !5vS pz

21
2eHn

c D 1/2

,

«n
~2 !52vS pz

21
2eHn

c D 1/2

. ~8!

Corresponding normalized eigenfunctions have the form

cn1
~1 !5

1

&
S 11

pz

~pz
212neH/c!1/2D 1/2

cn ,

cn2
~1 !52

i

&
S 12

pz

~pz
212neH/c!1/2D 1/2

cn21 ,

cn1
~2 !5

1

&
S 12

pz

~pz
212neH/c!1/2D 1/2

cn ,

cn2
~2 !5

i

&
S 11

pz

~pz
212neH/c!1/2D 1/2

cn21 , ~9!

wherecn are the usual normalized eigenfunctions of a fr
electron in a magnetic field:



te
tiv
e
n

te
s

on

t

te
tr

to
io

g
1
n-
-

tion
ec-
all
tiv-

mes

c-

,
e

il-

r
er-

two
the

2790 PRB 58A. A. ABRIKOSOV
cn5~2nn! !21/2~b/p!1/4e2~b/2!@x2~py /b!#2

3Hn@Ab~x2py /b!#. ~10!

Hereb5eH/c andHn are Hermite polynomials.
Formulas~9! describe the eigenfunctions fornÞ0. In the

casen50 the eigenfunctions are

c01
~1 !5u~pz!c0 ,

c02
~1 !50,

c01
~2 !5u~2pz!c0 ,

c02
~2 !50. ~11!

We assume that in the undoped substance at zero
perature all the negative bands are filled and the posi
bands are empty~see Ref. 9!. We will assume also that at th
temperatures and levels of doping under consideration o
the bands«0

(1)5vupzu and«0
(2)52vupzu will contain charge

carriers. The necessary condition will be established la
Imagine that the doping corresponds to the electron den
n0 . This means that the density of electrons in the band«0

(1)

minus the density of holes in the band«0
(2) must be equal to

n0 :

eH

pc E
0

`

~@e~vpz2m!/T11#212@e~vpz1m!/T11#21!
dpz

2p
5n0 .

~12!

Here we took into account two projections of the electr
spin and the fact that the spin splittingmBH can be ne-
glected. It is also important to remember that according
Eq. ~11! only electron states withpz.0 and hole states with
pz,0 are available. From condition~12! we obtain

m5
2p2n0cv

eH
. ~13!

We see that the chemical potential does not depend on
perature, which means that at all temperatures the elec
system is described by the Fermi distribution.

Now we can obtain the condition for one Landau level
participate in kinetics. The first and rather evident condit
is ~in ordinary units!

T,vAeH\/c. ~14!

If we substituteH;10 Oe, we getT,10 K, which corre-
sponds to the measurement conditions of Ref. 1. With lar
H the lower temperature boundary also rises, so that at
we getT,300 K, which is also quite satisfactory. The co
tribution of the Landau band withn51 to the electron den
sity is

n~1!5
eH

2p2c E
0

`

@e@v~pz
2
12eH/c!1/22m#/T11#21dpz .

The contribution will be small if condition~14! is fulfilled,
provided thatm,(eH/c)1/2. Using formula~13!, we get the
condition ~4! for n0 .
m-
e

ly

r.
ity

o

m-
on

n

er
T

We must be aware that for the model under considera
this quantity is only the difference between densities of el
trons and holes, entering, as we will see below, the H
constant. Both types of carriers contribute to the conduc
ity, and their densities can be considerably larger thann0 .
For example, the density of electrons is

n~0!5
eH

2p2c E
0

`

@e~vpz2m!/T11#21dpz

5
eHT

2p2cv
ln~11em/T!.

At low temperatures, whenm@T, the density is equal ton0
but at higher temperatures and magnetic fields it beco
much larger.

III. HALL CONSTANT

For the Hall constant we need only ‘‘bare’’ Green fun
tions of the type defined in Ref. 7:

Gab
~0!~pz ,py ,x,x8,vm!

5(
n

cna~x2cpy /eH!cnb* ~x82cpy /eH!

ivm1m2«n~pz!
, ~15!

where the summation overn means different energy levels
positive and negative, anda,b51,2. We use the temperatur
technique since we want to consider finite temperatures.

The current operator can be obtained from the Ham
tonian ~1! and the relation

dH52
1

c E jdAdV. ~16!

From here we obtain

j ~r ,t !5ec1~r !vsc~r ,t !. ~17!

In the usual way we get for the linear response~see Ref.
13!

j i~v0!52Qik
R ~v0!Ak~v0!, ~18!

whereQik
R (v0) is the analytical continuation from the uppe

half plane of complex frequencies of the corresponding th
modynamic average

Qik~ iv0!5
2e2v2

c
T(

m
E dpy

2p E dpz

2p E dx8

3Tr@s iG~py ,pz ,x,x8,vm1v0!

3skG~py ,pz ,x8,x,vm!#, ~19!

where the trace is taken over the components 1,2 and
spin projections were taken into account. Performing
analytical continuation we get
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Qxy
R ~v0!5

2ie2v2

c E
2`

` dv

2p E dpy

2p E dpz

2p E dx8H tanh
v

2T
@G2

R~py ,pz ,x,x8,v1v0!Im G1
R~py ,pz ,x8,x,v!

2G1
R~py ,pz ,x,x8,v1v0!Im G2

R~py ,pz ,x8,x,v!#1tanh
v1v0

2T
@ Im G2

R~py ,pz ,x,x8,v1v0!

3G1
A~py ,pz ,x8,x,v!2Im G1

R~py ,pz ,x,x8,v1v0!G2
A~py ,pz ,x8,x,v!#J . ~20!
d
nc

in

ut

ex-
t of
Now we substitute the Green functions~15! and use the ei-
genvalues and eigenfunctions~8!–~11!. Here ImGR means
that the imaginary part of the factor@v1m2«n(pz)1 id] 21

in Eq. ~15! has to be taken equal to2pd@v1m2«n(pz)#.
We can limit ourselves with the states«0

(6) , «1
(6) since the

Green function of the staten50 has no large magnetic fiel
in the denominator, and the orthogonality of the eigenfu
tions permits the connection betweenn’s differing not more
than by 1. Then every one of the Green functions conta
the productc0(x2cpy /eH)c0(x82cpy /eH). Integrating in
Eq. ~20! over x8 and py , we obtain the factoreH/(2pc).
After that, instead of the eigenfunctions we can substit
only thepz-dependent prefactors in Eq.~9!. Taking into ac-
count that every Green function can correspond to a~1!
state, as well as to a~2! state, we obtain for smallv0

Qxy
R ~v0!5

2ie2v2

c

eH

2pc

cv0

2eHv2 E
0

` dpz

2p S tanh
vpz2m

2T

2tanh
vpz1m

2T D . ~21!

The connection betweenQxy
R (v0) and the static conductivity

sxy is
-

s

e

sxy5F ic

v0
Qxy

R ~v0!G
v0→0

~22!

From here we obtain

sxy5
e2

p E
0

`

~@e~vpz2m!/T11#212@e~vpz1m!/T11#21!
dpz

2p
.

Comparing with Eq.~12!, we obtain

sxy5
n0ec

H
, rxy5

H

n0ec
, RH5

rxy

H
5

1

n0ec
, ~23!

i.e., the usual result for the Hall constantRH .

IV. CONDUCTIVITY

To obtain the conductivity we use the same approach
cept that we calculate this time the diagonal componen
the Q matrix. We obtain
Qxx
R ~v0!5Qyy

R ~v0!5
2e2v2

c E
2`

` dv

2p E dpy

2p E dpz

2p E dx83H tanh
v

2T
@G2

R~py ,pz ,x,x8,v1v0!Im G1
R~py ,pz ,x8,x,v!

1G1
R~py ,pz ,x,x8,v1v0!Im G2

R~py ,pz ,x8,x,v!#1tanh
v1v0

2T
@ Im G2

R~py ,pz ,x,x8,v1v0!G1
A~py ,pz ,x8,x,v!

1Im G1
R~py ,pz ,x,x8,v1v0!G2

A~py ,pz ,x8,x,v!#J . ~24!

The connection betweenQxx
R (v0) andsxx is similar to Eq.~22!, and hence we need the imaginary part ofQxx

R (v0). From
Eq. ~24! we obtain

Im Qxx
R ~v0!5

2e2v2

c E
2`

` dv

2p E dpy

2p E dpz

2p E dx8S tanh
v

2T
2tanh

v1v0

2T D @ Im G2
R~py ,pz ,x,x8,v1v0!

3Im G1
R~py ,pz ,x8,x,v!1Im G1

R~py ,pz ,x,x8,v1v0!Im G2
R~py ,pz ,x8,x,v!# ~25!
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~we used here that ImGR52Im GA!. Since, according to Eq
~22!, we are interested in smallv0 , we expand to the lowes
order and obtain

Im Qxx
R ~v0!

52
e2v2v0

cT E
2`

` dv

2p E dpy

2p E dpz

2p E dx8

3cosh22
v

2T
@ Im G2

R~py ,pz ,x,x8,v!

3Im G1
R~py ,pz ,x8,x,v!

1Im G1
R~py ,pz ,x,x8,v!Im G2

R~py ,pz ,x8,x,v!#.

Again, since all the Green functions contain produ
c0(x2cpy /eH)c0(x82cpy /eH), the integrations overx8
and py can be performed resulting in a factoreH/(2pc),
and we are left with the prefactors in formulas~9! and energy
denominators. We can write this as

Im Qxx
R ~v0!

52
2e2v2v0

cT

eH

2pc E
2`

` dv

2p E
2`

` dpz

2p
cosh22

v

2T

3Im G~1!2
R ~pz ,v!Im G~0!1

R ~pz ,v!, ~26!

whereG(1)2
R , G(0)1

R mean that in the sums overn @see Eq.
~15!# only terms withn51 or n50 are left.

Taking the scattering into account we can conclude t
the product of Green functions contains

1/~2t0!u~6pz!

~v1m7vupzu!21~1/2t0!2

1/~2t1!

@v1m7«1~pz!#
21~1/2t1!2 .

~27!

Both products are close tod functions. Since, however, th
second factor would bepd@v1m7«1(pz)# and«1(pz) con-
tains the large magnetic field, this would substantially red
the contribution to Eq.~26! due to the factor cosh22(v/2T) in
the integrand. Therefore, we can replace only the first fa
by a d function and get from Eq.~27!

pd~v1m7vupzu!u~6pz!~1/2t1!

@v1m7«1~pz!#
2 . ~28!

Here 1/(2t1) is 2Im S, whereS is the self-energy due to
scattering. The expression~28! contains, actually, the firs
order scattering correction to the Green function, which
presented in Fig. 1. The imaginary part ofS comes from

FIG. 1. Correction to the Green function due to scattering,
tering the expression~28!.
s

t

e

r

s

integration along the half circle around the pole in the cen
Green function, and hence, it will impose a limitationv
.min@«(pz8)2m#. Again, in order not to reduce the contribu
tion to the integral overv, the central Green function has t
belong ton50.

The impurity lines contribute after averaging over po
tions a factor

NiE d3k~2p!23uU~k!u2E c12* ~x12cpy /eH!eikxx1

3c0 j@x12c~py2ky!/eH#dx1

3E c0 j* @x22c~py2ky!/eH#e2 ikxx2

3c12~x22cpy /eH!dx2 . ~29!

We have included here integrals coming from the ‘‘env
lope’’ c functions. U(k) is the Fourier component of th
electron-impurity interaction potential. It is natural to assum
that it is a screened Coulomb interaction

U~k!5
4pe2

«`~k21k2!
, ~30!

where«` is the background dielectric constant, which m
be large;k is the reciprocal Debye screening radius

k25
8pe2

«`

eH

2pc
T(

m
E

2`

` dpz

2p

1

~ ivm1m2vpz!
2

5
2e3H

p«`cv
. ~31!

Here we took into account both branches1 and2 at n50
and integrated in the same way as before.

Since e2/\v;1 for v;108, k2!eH/c, if «`@1. We
will assume this, since in semimetals, where the situatio
close to the one under consideration,«`;100. According to
this, in the integral overd3k in Eq. ~29! small k’s are the
most important (k;AeH/c is the upper limit!. However, if
we putkx5ky50 in Eq. ~29!, the integral will vanish, since
c0250, and there are no nondiagonal matrix elemen
Therefore we must expand the matrix elements in power
kx andky . In this way we get

E c12* ~x12cpy /eH!eikxx1c0 j@x12c~py2ky!/eH#dx1

' ikx~ x̂!0 j
121~c/eH!ky~]/] x̂!0 j

12. ~32!

The matrix elements, entering here we can obtain fr
two relations. Since the group velocity in the current isv̂
5vs, we can write

v̂x5] x̂/]t5 i @H,x̂#; ~ x̂!0 j
125

~ v̂x!0 j
12

i ~«12«0!
. ~33!

Similarly, the matrix elements of]/] x̂ can be obtained from
the commutation relation@]/] x̂,x̂#51. One must also take
into account that every one of the three Green functions
tering the diagram in Fig. 1 can be1 or 2, and the matrix
elements depend on that. So we obtain

-
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~ x̂!011
1215~ x̂!011

1225~ x̂!121
0115~ x̂!122

0115
u~pz!

&~pz
212eH/c!1/2

,

~ x̂!012
1215~ x̂!012

1225~ x̂!121
0125~ x̂!122

0125
u~pz!

&~pz
212eH/c!1/2

,

~34!

~]/] x̂!121
0115~]/] x̂!122

01152~]/] x̂!011
12152~]/] x̂!011

122

5
u~pz!~pz

212eH/c!1/2

2&
,

~]/] x̂!121
0125~]/] x̂!122

01252~]/] x̂!012
12152~]/] x̂!012

122

5
u~2pz!~pz

212eH/c!1/2

2&
. ~35!

The matrix elements do not depend on the1 or 2 index
of external Green functions. Therefore from the intern
Green function we obtain

E
0

` dpz8

2p

1

v1m2vpz81 id
1E

2`

0 dpz8

2p

1

v1m1vupz8u1 id

5E
2`

` dpz8

2p

1

v1m2vpz81 id
52

i

2v
.

In the last factor of Eq.~29! the operator]/] x̂ is acting on
the internal function, and so integration by parts has to
performed.

We will see below that under condition~14! the pz , en-
tering the matrix elements will be much less thanAeH/c and
can be neglected. Then the terms withkx and ky will be
equal, and since thekz5pz2pz8 is small, the integral overk
becomes

NiE d2k~2p!22~kx
21ky

2!uU~k!u25Ni

4pe4

«`
2 ln «`

@we have substituted formulas~30! and ~31!#. Actually, this
result is true with logarithmic accuracy. Higher order powe
of kx andky would add a term of the order of unity to ln«` .

Collecting all the factors together, using Eqs.~22! and
~28!, and taking into account that

d~v1m2vupzu!u~pz!1d~v1m1vupzu!u~2pz!

5d~v1m2vpz!

we obtain finally

sxx5syy5
1

2p S e2

«`v D 2

ln «`

ecNi

H
. ~36!

The corresponding component of the resistivity tensor

rxx5
sxx

sxx
2 1sxy

2

l

e

s

and sxy is given by Eq. ~23!. It is most likely that
(e2/«`v)2Ni!n0 , and hence

rxx5
1

2p S e2

«`v D 2

ln «`

Ni

ecn0
2 H. ~37!

V. DISCUSSION

As we argued in the Introduction, the resistivity~37! is
only a part of the total resistivity and is due to regions w
a very small concentration of electrons@termaH in Eq. ~3!#.
The resistivity indeed depends linearly onH. The interesting
feature is that it formally does not depend on temperatu
From experimental data1 we see that it, actually, has to de
pend on temperature, decreasing approximately three tim
as the temperature varies from 4.5 to 300 K. This rat
small decrease ofr, instead of a marked increase, demo
strates that it is not due to the appearance of phonon sca
ing but is most likely associated with the change of dop
(n0). This is qualitatively confirmed by the fact that the d
crease with temperature of the observed Hall constant an
the resistivity starts at the same temperature: 60–70 K
Ag21dSe, and 100–130 K in Ag21dTe. As we argued al-
ready, in an inhomogeneous sample with an unknown in
nal structure the ‘‘effective’’ Hall constant cannot be calc
lated. The electron concentration per atom obtained from
has to be somewhere betweend;1022 and the limiting
value from our estimate~4!, i.e.,;10210. As we mentioned,
the experimental value was;1025.

The fact that both the resistivity and the Hall consta
decrease with temperature correspond qualitatively to form
las ~23! and ~37!. Since the doping mechanism is rather u
usual ~doping of pure regions by electrons from metal
clusters! it is difficult to predict the temperature dependen
of n0 . Most likely, it will grow with temperature but much
slower than the familiar exponent; this corresponds to
observations. Since the resistance depends not only onn0 but
also onNi , it is hard to compare at this stage samples w
different d’s.

In our model we made several unusual assumptions.
gapless spectrum with a linear momentum dependenc
both bands, making the electrons similar to charged neu
nos, can be checked by diamagnetic~cyclotron! resonance.
The main feature of this spectrum is that contrary to m
conventional cases, the quantum condition persist to ra
small magnetic fields and rather high temperatures. In or
to distinguish this phenomenon from other kinds of unus
magnetiresistance phenomena~they all lead to negative mag
netoresistance! I suggest that it be calledquantum magne-
toresistance.
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