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Quantum magnetoresistance
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An explanation is proposed of the unusual magnetoresistance, linear in magnetic field and positive, observed
recently in nonstoichiometric silver chalcogenides. The idea is based on the assumption that these substances
are basically gapless semiconductors with a linear energy spectrum. Most of the excess silver atoms form
metallic clusters which are doping the remaining material to a very small carrier concentration, so that even in
a magnetic field as low as 10 Oe, only one Landau band participates in the conductivity.
[S0163-182698)07829-1

I. INTRODUCTION ping in semiconductorgsee Ref. § also do not lead to a
linear dependence of the resistivity on magnetic field. Be-
Recently an interesting phenomenon has been observesides, the substances in question behave as metals, and not as
by Xu et al! in two doped silver chalcogenides AgSe and ~ semiconductors.
Ag,., sTe, with 5~0.01, the magnetoresistance depended lin- In an old and thoroughly forgottefincluding the author
early on magnetic field starting from approximately 10 Oehimsel paper! published almost 30 years ago, the present
and going on to 55 kOe without any sign of saturation. Thisauthor developed a more general approach to the theory of
took place at temperatures ranging from 4.5 to 300 K. Thegalvanomagnetic phenomena in metals, based on the exact
slope of the linear field dependence decreased with increaguantum description of electrons in a magnetic field. The
ing temperature in this range approximately three times. Theeal goal of that paper was to establish the truth concerning
Hall constant did not depend on temperatureTat100 K  the amplitude of the Shubnikov-deHaas oscillatidfisis
and decreased at higher temperatures. problem caused great confusion in the scientific community
With ideal stoichiometry,8=0, or small nonstoichiom- of those dayg however, for generality, the limiting quantum
etry, at low temperatures these substances are intrinsic sengiase, with electrons only in one Landau band, was also con-
conductors with a narrow direct gdp.The gap is sample sidered. The formulas obtained in that work were
dependent and lies in the range of several tens of meV. The
effective mass of carriers is of the order of Fén,, where
mo is the free electron maésAt higher temperaturesT(
=133 °C for AgSe) these substances undergo a phase tran,

L ; _ S vhereN; is the density of scattering centensis the electron
sition into a phase which behaves more similar to a metaldensity R is the Hall constant. and it was assumed that
Contrary to that, for nonstoichiometricor doped com- ' '

pounds, from the finite value of the Hall constant we can,.. 0. To my knowledge, this was the only possible case of a

lude that at i ture th imilar t thIinear positive magnetoresistance.
et s e oo N OTURL2) =y s e ot esitance, whereas e
9 P P P " experimental resuitcan be described as

According to conventional theorisee, e.g., Ref.)5the
magnetoresistance in a metal with nonequal densities of elec- p=po+aH, (3)
trons and holes behaves as

o N;H B B H
Pxx=Pyy= —nZec’ pxy=RH= nec’ @)

and this formula is valid not only at magnetic fields of sev-
po(27)%, Qr<1l eral T but down to 10 Oe. According to what was said before
(1) [formula (1)], there is no way to explain such a behavior
Po: Qr>1 assuming that the metal is homogenous. Indeed the condition
where Q=eH/(m,c) is the Larmor frequencym, is the for only one Landay level to partiqipate G\g/e include# in .
cyclotron massy is the collision time, ang, is the resis- the numerical estimates; otherwise, units are used with
tance at zero field. This means that first it grows quadrati—hzl)
cfa_lly with field and then reachgs saturation. With equal den- n<(eH/ch)32 4)
sities of electrons and holdthis can hardly correspond to
the present cagethe limit at{) 7>1 is quadratic i). None  If we substitute the electron concentration obtained from the
of these laws resembles the observations. There exists a céfall measurements~ 10" cm™3, we getH>2 T. The only
tain possibility of a linear magnetoresistance, namely, gossibility is to assume that the real samples used in the
polycrystalline metal with an open Fermi surfgsee in Ref.  experiments are highly inhomogenous, so that they contain
5) but this is definitely not the present case. Therefore it issmall regions with a large concentration of excess silver at-
clear that the conventional approach, based on the quasiclasms and, correspondingly, higher electron concentration, im-
sical treatment of electrons, cannot explain the phenomenoihedded into regions with a much smaller electron concentra-
Exotic mechanisms, such as constant and variable range hotflen where the extremal quantum situation takes place. For
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such a structure one could get the form(8a however, one with energy(momentum. If the valence band contacts the
would have to assume that the concentration in the poorlgonduction band, or slightly hybridizes with it, the spectrum
doped regions has the order of'i@m 3, i.e., ~10 ° per  becomes even closer to linearity.
atom, or less. This can be obtained from the conditidn The possibility of a linear spectrum was analyzed in Ref.
and the experimental result that the dependence of the mag4 (type |). It can be a consequence of cubic symmetry with-
netoresistance deviates from linearity only & 10 Oe.  out an inversion center and can also happen at some random
Since the atomic concentration of excess silver atoms is gboint in the reciprocal space at proper “tuning”, e.g., by
the order of 1%, it seems that these atoms form metallipressure or doping. An example of the latter was analyzed in
clusters, which are doping the rest of the material with elecRef. 12.
trons. We will consider here the simplest spectrum of this kind,
For an inhomogenous system the calculation of the Hallust in order to have an example of what can happen in such
constant requires a more precise characterization of the ma-substance. The spectrum corresponds to a double represen-
terial, and therefore the experimentally obtained “effectivetation of cubic groupT or O, and its Hamiltonian can be
concentrations” of the order of #6cm™3 cannot be calcu- written as
lated unambiguously. However, even these concentrations

corresponding to~10"° electrons per atom are much less H:J + _® Al ludVv 5
than the concentration of the excess silver atoms; this shows yrvjolp c yav, ®)
the trend.

There are, however, other concerns. At small fields theWhereU are the Pauli matrices arglis the momentum op-

; erator. The velocity can be assumed of the usual order of
Landau level spacing becomes smaller tilanFor a qua- . L
) L magnitudev ~ 10° cm/sec. In the absence of magnetic field
dratic energy spectrum at 10 Oe it(ia K)

we get two branches of the spectrum with energiesvp,
—vp. Suppose that the magnetic field is alongand we

K, chose the vector potentigh,=Hx. The electronic wave
functions will have two components satisfying the equations

heH
m;ckg

~10°3 T
m;

wherekg is the Boltzmann constant and, is the mass of 9 Jd d eH €

the free electron. If one uses the value rof /my~ 102 ™ l/fl+< —I 5‘@*" < X ¢2=; Y1,
given in the literaturé,one gets 10* K, which is too small,

since the linear magnetoresistance at 10 Oe was observed at 9 o eH 9 e

T=4.5K. The other assumption in Ref. 7, namely, that the (—i &Jr @_i < x) Pyt = 1,/12=; Py (6)

electrons are degenerate, is even more difficult to achieve at
the required densities. Since the equations contain explicitly onty we will search
for solutions of the usual form

Il. MODEL 1111’2: ¢1’2(X)e(ipyy+ipzz). (7)
Since the problem seems completely hopeless for an or-

dinary approach, some very unusual path has to be taken. In The eigenvalues of Eq6) are

Ref. 3 an idea was proposed about the high-temperature 2eHn\ 12

phase of AgSe. Due to the increased mobility of silver ions sﬁf):v( p2+ ) ,

a substantial disorder appears which creates “tails” in both

the conduction band and the valence band. Eventually the 2eHn 12

bands overlap, and the substance becomes metallic. It should el '=—v| pZ+ ) . (8)
be mentioned that according to experimental data the gap is c

direct. In Ref. 8 it was concluded that in Ae with increas-  corresponding normalized eigenfunctions have the form
ing temperature a phase transition from a narrow-gap semi-

conductor to a gapless semiconductor takes place. One could 1 12
. . . (+)_ Pz

guess that since the main reason for this change of the spec- n1 —7 1+ (ZTGH/C)UZ Un s
trum is disorder, the same could happen as result of doping 2 Pz

and not of increased mobilitythe ions move slowly, and

they are always static from the viewpoint of electrorthis +_ " 1— P. 12
conclusion is supported by the finite Hall constant. Under ¥n2'= V3 (p>+2neH/c)? V-1,
these conditions the nonstoichiometric compound cannot be

treated as a semiconductor with carriers in the bands result- 1 p 77)

ing from doping such as, e.g., Ge and Si, but the start must 1/1511):— (1— 2—21,2) Un s
be done from a different phase, which is closer to a gapless 2 (pz+2neH/c)

semiconductor:*° The latter is a substance whereTat 0 a

completely filled valence band matches an empty conduction ) i o8 172

band. From the small value of the effective nfatdooks Yna :5 1+ (p?+2neHic)? Un-1, ©
more likely that the energy spectrum in both bands is linear. z

Indeed, since a small effective mass can appear only in somehere ¢, are the usual normalized eigenfunctions of a free
restricted regions of the momentum space, it has to growelectron in a magnetic field:
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g =(2"! )—1/2(B/,n_)1/4e—(ﬁ/2)[x—(py/,8)]2 _We mu;t pe aware tha}t for the model under c_o_nsideration
this quantity is only the difference between densities of elec-
XHn[\/E(x—py/,B)]_ (100  trons and holes, entering, as we will see below, the Hall
. . constant. Both types of carriers contribute to the conductiv-
Here g=eH/c andH, are Hermite polynomials. ity, and their densities can be considerably larger thgn

Formulas(9) describe the eigenfunctions far#0. Inthe g, example, the density of electrons is
casen=0 the eigenfunctions are

(+)_ eH o0
1/101 =0(p,) o, n(O):m fo [e(vpzf,u.)/T_’_l]fld D,
Yo' =0,
eHT
= In(1+e#'T).
(—) 27cy
o1’ = 0(—P2) o,

At low temperatures, whep>T, the density is equal to,
but at higher temperatures and magnetic fields it becomes

We assume that in the undoped substance at zero terffduch larger.
perature all the negative bands are filled and the positive

62'=0. (11)

bands are emptisee Ref. § We will assume also that at the IIl. HALL CONSTANT
temperatures and levels of doping under consideration only
the bands((f):vlpzl andsg’): —v|p,| will contain charge For the Hall constant we need only “bare” Green func-

carriers. The necessary condition will be established latefions Of the type defined in Ref. 7:
Imagine that the doping corresponds to the electron density
No. This means that the density of electrons in the be§id ~ GYA(P;.Py X, X', )
minus the density of holes in the ban§’ must be equal to ]
Y 4 a Yna(X—CPy leH) Phs(x’ —cpy/eH)

Ng. =
° ; iom+u—en(py)

: (15

eH [« (vp,— )T -1 (vp,+u)/IT -1 pz_
c fo ([e +1]7"—[e +1]7) 5-=No-  where the summation over means different energy levels,
(12) positive and negative, and, 3=1,2. We use the temperature
technique since we want to consider finite temperatures.
Here we took into account two projections of the electron The current operator can be obtained from the Hamil-
spin and the fact that the spin splittinggsH can be ne- tonian (1) and the relation
glected. It is also important to remember that according to

Eq. (11 only electron states with,>0 and hole states with 1
p,<0 are available. From conditiofi2) we obtain oH=— z J joAdV. (16)
2’7T2n0CU .
K=—en (13 From here we obtain
We see that the chemical potential does not depend on tem- j(riy=egt (Nvoy(r,t). (17)
perature, which means that at all temperatures the electron

Now we can obtain the condition for one Landau level toq3,
participate in kinetics. The first and rather evident condition

's (in ordinary units J1(00)= — QR (wo) A o), (18

T<vveHilc. a4 whereQiFf((wo) is the analytical continuation from the upper
If we substituteH~10 Oe, we gefT<10 K, which corre- half plane of complex frequencies of the corresponding ther-
sponds to the measurement conditions of Ref. 1. With largemodynamic average
H the lower temperature boundary also rises, sothatat 1 T

we getT<300 K, which is also quite satisfactory. The con- 2622 dp, ( dp,
tribution of the Landau band with=1 to the electron den- Qik(iwg)= c >, f o f Py f dx’
sity is m
XTroiG(py,ps XX, 0nt o)
n(l):i m[e[v(p§+2eH/c)1/2_M]/T+ 1]_1dp ,
27720 0 z XUkG(pyipZ!X !Xvwm)]! (19)

The contribution will be small if conditiorf14) is fulfilled, where the trace is taken over the components 1,2 and two
provided thatu< (eH/c)*2 Using formula(13), we get the spin projections were taken into account. Performing the
condition (4) for ng. analytical continuation we get
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2ie?v? (* dw dp dp
Qxy(a’o) J j = J 5 j dx’ {tanhz-l— [G 2R(py-pZaX-X,-w+wO)|m G?(pyapz-x,-wi)

.27

R ’ R ’ w+w0 R ’
Gi(py,pz XX, 0+ wo)lm G3(py,p,, X', X, w)]+tanh 5 [Im G3(py,p;, X, X", 0+ wg)

GL(py,pz.X' X, @) —Im GJ(py,p, X, X", 0+ wO)GQ(py,pZ,x’,x,w)]}. (20)

Now we substitute the Green functiofs5) and use the ei-

genvalues and eigenfunctiori8)—(11). Here ImGR means Oxy™
that the imaginary part of the factpw+ u—en(p,) +id] 1

in Eqg. (15) has to be taken equal te [ w+ u—e,(p,)].

We can limit ourselves with the state§™), ¢{*) since the ~From here we obtain
Green function of the state=0 has no large magnetic field

in the denominator, and the orthogonality of the eigenfunc-

tions permits the connection betweels differing not more e?

than by 1. Then every one of the Green functions containsoxy="— f ([evPz= T 1] 1 —[elvP /T4 17~ 1)
the product:,//o(x cpy/eH)yo(x’ —cpy/eH). Integrating in

Eq. (20) over x” and p,, we obtain the factoeH/(27c).

After that, instead of the eigenfunctions we can substitutécomparing with Eq(12), we obtain

only the p,-dependent prefactors in EP). Taking into ac-

count that every Green function can correspond to+a

state, as well as to @) state, we obtain for smatbg ngec H Pxy

Cry=os Py= s Ru= ,
WTTH O P9 hgec” TMTH T neec

ic

o QRy(@o) (22)

wy—0

pz

2ie?v? eH coy (=dp vpP,—
QB wo) = [ 5% tann®®:

c 2mc2eHv? Jo 27 2T i.e., the usual result for the Hall constaRy, .

—tanh (21 IV. CONDUCTIVITY

vp,t M)
2T )7

To obtain the conductivity we use the same approach ex-
The connection betwed@ffy(wo) and the static conductivity cept that we calculate this time the diagonal component of

Oyy IS the Q matrix. We obtain

[’

2e%y? dpy dpZ ) R )
QR o) =Q}(wg) = f f f fdx X tanh—[G (Py, Pz, XX, 0+ wo)IMm GT(py,p;, X", X, w)

— 27T
_|_
+G(Py P, XX, @+ wo)Im GE(py,p, X' X, )] +tanh——— °[Im G¥ (Py. Pz XX @+ @) GR(Py P, X' X, 0)

+1m GR(py,p, XX, 0+ wo)G’;(py,pZ,x’,x,w)]}. (24)

The connection betweeR" (wo) anday, is similar to Eq.(22), and hence we need the imaginary parQt(wo). From
Eq. (24) we obtain

Im Qi&(wo)—ze I 27,] dpyj OIIOZfolx

XIm G(py.p, X" X,0)+Im G{(py,p, XX, 0+ wo)Im G5(py,p, X' ,X,w)] (25)

tanh—— tanh

5T [ImG (Py, Pz . XX 0+ )
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m integration along the half circle around the pole in the central
{3 Green function, and hence, it will impose a limitation
>mine(p,)—w]. Again, in order not to reduce the contribu-
tion to the integral ovew, the central Green function has to
; , belong ton=0.
o :," GR oGP ~ The impurity lines contribute after averaging over posi-
ez ;Mo (12 tions a factor

FIG. 1. Correction to the Green function due to scattering, en- ) 3 -3 2 * _ iKyXq
tering the expressio(28). le d*k(2m) (U (K)| f¢12(xl cpy/eH)e"x

(we used here that I&R"=—1Im G*). Since, according to Eq. X hojl X1~ c(py—ky)/eH]dx,
(22), we are interested in smally, we expand to the lowest _
order and obtain XJ l/,’Q‘j[XZ_C(py_ky)/eH]e—lkxxz
Im QF(wo) X 1o(Xo— cpyleH)dx,. (29)
e v wo m dpy dIOz We have included here integrals coming from the “enve-
= J, 27rj J fd ' lope” « functions.U(K) is the Fourier component of the

electron-impurity interaction potential. It is natural to assume
© that it is a screened Coulomb interaction

X cosh™ 2 o7 [Im G5(py,Pz. X, X', @)
UK 47e?

X Im G?(py,pz,x’,x,w) g.(K*+ k%)’
wheree,, is the background dielectric constant, which may
be large;x is the reciprocal Debye screening radius

(30

+1m G(py.p, X, X", @)Im G(py,p, . X" ,X,w)].

Again, since all the Green functions contain products

_ r_ - : ' 8me? eH = dp. 1
bo(x—cpy/eH) g(x' —cpy/eH), the integrations ovek 2= 2 f halac
and p, can be performed resulting in a factet/(2c), g, 2mC ) w27 (iogtu—vp,)?
and we are left with the prefactors in formul@® and energy 3
denominators. We can write this as _ 2e’H (31)
R TELCV
Im Qyx(wo) .
Here we took into account both branchésand — atn=0
26?20y eH (= dw (= dp, ® and integrated in the same way as before.
=——— = cosh 2 — Since e?/hv~1 for v~1C®, «k?<eHlc, if e.>1. We
cT 2wc ) .27 ) . 2=« 2T . LT . . ; T
will assume this, since in semimetals, where the situation is
XIm GR ,(p,,@)Im GR (P, o) (26)  Cclose to the one under consideratien~100. According to

o o _ this, in the integral oved®k in Eq. (29) small k’s are the
whereGyy,, G(p); mean that in the sums over[see Eq. most important k~ \eH/c is the upper limit. However, if

(15] only terms withn=1 orn=0 are left. we putk,=k,=0 in Eq.(29), the integral will vanish, since
Taking the scattering into account we can conclude thaty,,=0, and there are no nondiagonal matrix elements.
the product of Green functions contains Therefore we must expand the matrix elements in powers of

kx andk, . In this way we get
1(27) 0( = p,) 1/(27)

(@0+pFv|p])?+(12r0)° [+ uFe1(p) 12+ (1/27y)*
(27)

f P xa—cpy/eH)e™ 1y, [x; — c(py—ky)/eH]dx

Both products are close t@funciions. Since, however, the ~ikx(>“<)(1f+(c/eH)ky(a/ai)(l)?. (32)
second factor would be& [ o+ u+ &1(p,) ] ande4(p,) con-
tains the large magnetic field, this would substantially reduce The matrix elements, entering here we can obtain from
the contribution to Eq(26) due to the factor cos(w/2T) in  two relations. Since the group velocity in the currentis
the integrand. Therefore, we can replace only the first factoky -, we can write
by a é function and get from Eq27) 12
S N . (V0]
78w+ puTo|p,)0(=p,)(1/2r) D= dXIt=i[H.X]; (Rp=—",
= 2 (28 i(e1— &)
[w+uFei(p,)]

(33

Similarly, the matrix elements of/ 9x can be obtained from
Here 1/(2r,) is —Im 3, whereZ is the self-energy due to the commutation relatiofd/9x,x]=1. One must also take
scattering. The expressig28) contains, actually, the first into account that every one of the three Green functions en-
order scattering correction to the Green function, which igtering the diagram in Fig. 1 can be or —, and the matrix

presented in Fig. 1. The imaginary part Bfcomes from elements depend on that. So we obtain
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4(p,) and oy, is given by Egq.(23). It is most likely that
()82t = (082 = (0% = (0% = o1 26Ho (e?/e..0)?N;<ng, and hence
z
1 [ e*)\? N;
( )12+ ( )12*_(5‘()01*:(5‘()01* (pZ) pXX:_<_ |n € I H (37)
01— = (X)p1- 12+ 2 (p2+ 2eHIc) V2’ 27 \ e, ecrg
z
(34)
12— V. DISCUSSION

(919%) 151 = (9 9%) 5L = — (9l %) g7 = — (9l X) g5+
As we argued in the Introduction, the resistivit§7) is
o( pz)(p§+ 2eH/c)? only a part of the total resistivity and is due to regions with
= 23 ' a very small concentration of electrofisrmaH in Eq. (3)].
The resistivity indeed depends linearly Bn The interesting
feature is that it formally does not depend on temperature.
From experimental datave see that it, actually, has to de-
2 2 pend on temperature, decreasing approximately three times,
:0(—pz)(pz+2eH/c) . (35) as the temperature varies from 4.5 to 300 K. This rather
2V2 small decrease of, instead of a marked increase, demon-
strates that it is not due to the appearance of phonon scatter-
The matrix elements do not depend on theor — index  ing but is most likely associated with the change of doping
of external Green functions. Therefore from the internal(n,). This is qualitatively confirmed by the fact that the de-

(910%) 2% = (9l 9%) 5= = — (3l %) 33" = — (9l %) a2

Green function we obtain crease with temperature of the observed Hall constant and of
the resistivity starts at the same temperature: 60—70 K in
= dp, 1 o dp, 1 Ag,., Se, and 100-130 K in AgsTe. As we argued al-
o 27 wtpu—vp,Fio ) o w+utolpl+is ready, in an inhomogeneous sample with an unknown inter-
nal structure the “effective” Hall constant cannot be calcu-
= dp, 1 i lated. The electron concentration per atom obtained from it
= — — T — — 72 . g
fﬁw 27 w+p—vp,+id 20 has to be somewhere betweéh-10 < and the limiting

value from our estimaté), i.e., ~10 °. As we mentioned,

In the last factor of Eq(29) the operatow/dx is acting on  the experimental value was10 °.

the internal function, and so integration by parts has to be The fact that both the resistivity and the Hall constant

performed. decrease with temperature correspond qualitatively to formu-
We will see below that under conditiogii4) the p,, en- las(23) and(37). Since the doping mechanism is rather un-

tering the matrix elements will be much less thaH/c and  usual (doping of pure regions by electrons from metallic

can be neglected. Then the terms with and k, will be clusters it is difficult to predict the temperature dependence

equal, and since thie,= p,— p, is small, the integral ovek of ny. Most likely, it will grow with temperature but much

becomes slower than the familiar exponent; this corresponds to the
observations. Since the resistance depends not onhy, bat
4ret also onN;, it is hard to compare at this stage samples with
Nif d?k(2m) 2K+ k) |U(K)[2=N; —z Ine. different 5's.

In our model we made several unusual assumptions. The

[we have substituted formuld80) and (31)]. Actually, this ~ gapless spectrum with a linear momentum dependence in

result is true with logarithmic accuracy. Higher order powersboth bands, making the electrons similar to charged neutri-
of k, andk, would add a term of the order of unity todn.. ~ NOS, can be checked by diamagnetgclotron resonance.

Collecting all the factors together, using Eqg2) and  The main feature of this spectrum is that contrary to more

(28), and taking into account that conventional cases, the quantum condition persist to rather
small magnetic fields and rather high temperatures. In order
S(w+pu—v|p,) 8(p,) + 8w+ p+v[p,]) 6(—p,) to distinguish this phenomenon from other kinds of unusual
magnetiresistance phenomditzey all lead to negative mag-
=d(w+u—vp,) netoresistangel suggest that it be callequantum magne-

in fi resistan
we obtain finally toresistance

Oy
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