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Critical exponents of the three-dimensional diluted Ising model
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We study the phase diagram of the site-diluted Ising model in a wide dilution range, through Monte Carlo
simulations and finite-size scaling techniques. Our results for the critical exponents and universal cumulants
turn out to be dilution independent, but only after a proper infinite volume extrapolation, taking into account
the leading corrections-to-scaling termiS0163-182608)00429-9

[. INTRODUCTION (2) in the temperature-dilution plane consists of a magneti-
cally disorderedparamagneticregion at high temperature,
The magnetic phase diagram and critical properties ofeparated from an orderdterromagnetit region at lower
many magnetic materials can be described by means of tHemperaturegsee Fig. 1 The dilution-dependent critical
Heisenberg Hamiltonian: temperaturél (p) obviously equals the pure model value at
p=1. It lowers for larger dilution values, until the extreme
i ea caseT(py) =0 at the site percolation threshold for the con-
H :i,j,za,ﬁ JagS s (@ centration of the magnetic atoms.

Not many general results have been obtained for the
where S is a spin operator. We use latin indices for lattice Hamiltonian(2). The most popular one is doubtless ther-
sites and greek ones for the spin componejﬁg,is anusu- ris criterion.! It states that the critical behavior of E(R)
ally short-ranged coupling matrix. One can understand Eqwill be the same as for Eqd) if the specific-heat critical
(1) on the basis of the exchange interaction between the ele€xponenta is negative, while a new universality class will
trons of the external shells of the atoms. In principle, thisappear ifa>0. In the latter case it is possible to stotlat
interaction is @3) symmetric. Nonetheless if one puts the « for the diluted model is negative. The only model between
atoms on a crystalline lattice, the material tends to magnetizéhe generic ones for magnetigising, XY, Heisenbergdis-
in the so-called axes or planes of easy magnetization giveplaying «>0 in three dimensions, is the Ising model.
by the symmetry of the crystal, thus breaking th@sym- There are other physical contexts in which the Hamil-
metry. tonian (2) has been studied. For instance, its four-

A typical example is given by the uniaxial crystals, as thedimensional Ising version has been recently investigeted
hexagonal lattices, where the magnetization can choose &ef. 3 and references thergim connection with the puz-
subspace of easy magnetization thaxis or its orthogonal zling problem of finding nonasymptotically free interacting
plane. In the first case the system is well described assumirigeories in four dimensions. The two-dimensional model is
that the magnetic momenta point in tleedirection and it
should be described by the Ising model. In the second one ) A
the material should be studied by means of ¥ model. i y
One can use the form of Eql) for these models, with an i '

. . . 08— ] —
appropriate choice of thé matrix. L

However no pure material exists in nature, so then it is L Ordered phase i

mandatory to consider the effects of nonmagnetic impurities. 06— .

The simplest way to do so is by considering a modified ver- . i
sion of Eq.(1) C

04— T ]

H= > JlseesStsy, 2) i _
ij,a.p 02 —
where thee's are quenched, uncorrelated random variables, L
chosen to be 1 with probabilify (the spin concentrationor PSP S I I R S R
0.00 0.25 0.50 0.75 1.00 1.25 1.50

0 with probability 1—p (the impurity concentration, or spin 8
dilution). The rationale for the quenched approximation is

that usual relaxation times for the nonmagnetic impurities FIG. 1. Phase diagram of the modéB), in the inverse
are much longer than the corresponding ones for spin dytemperature-dilution plane. The dots correspond to the simulated
namics. For nonfrustrated systems, the phase diagram of Egoints, while the arrow signals the percolation limii= ).
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TABLE |I. Critical exponents for the diluted Ising model obtained from analytical calculations, and
experimental measures. For comparison we also show the values for the pure Ising model.

Ref. v y B )
Analytical 9 0.697 0.416

10 0.678 1.33 0.349

11 0.671 1.32 0.348

Ising (Ref. 12 0.630@15) 1.2412) 0.325@15) 0.782)

Experimental 23 0.36

24 >2/3 1.446)

26 0.38%25)

25 0.35@9)

28 0.7G2) 1.374)

29 0.691) 1.313)

also interesting as a playground for exactly solvable fieldion threshold being gi.~0.31(Ref. 20]. The investigation
theories, and has also been consideisk Refs. 4-8, and of very diluted samples is made possible byg-seweighting
references therejn _ _ _ o method, which allows us to extrapolate the simulation results
As already stated, the materials displaying Ising-like bepiained atp to a closep’ value®®2! A careful consider-
havior in very pure samples should behave differently whenjon of the scaling corrections is needed, in order to get the
the lmpurltlgs .cpncgntrat.mn INCreases. In fapt, according t?ight value in the infinite volume limit. In this system, the
Harris, an infinitesimal impurity concentration should be corrections-to-scaling exponent, is very small (e
enough to spoil the Ising behavior. However this will happen%0_4 see Ref. P Thus, the confusin’g results in previous

in very narrow intervals of temperature, which may be ex- ; .
ery P Y MC studies can be understood as an unusually large contri-
perimentally unreachable. . . ) .
bution of the scaling corrections. After a proper consider-

The Hamiltonian(2) can be studied in the low dilution ™ . ) T "
regime by means of analytical perturbative renormalization@tion of this problem, we find dilution-independent critical

group method€- They find a new fixed-point, thus imply- exponents in quantitative agreement with perturbative calcu-
ing that the critical exponents along tiig(p) line are dilu-  lations. _ . _
tion independent and different from their pure Ising values. Another theoretical problem of interest is the absence of
Their results are summarized in Table I. Unfortunately, theself-averagingat the critical point. This means that the
error estimations for this kind of calculations is very diffi- disorder-realization variance of quantities such as the mag-
cult. netic susceptibility or the specific heat, at the critical point, is

The study of the Hamiltoniaf2) beyond the low disorder a fixed, nonzero fraction of their mean values even in the
regime, is restricted to the Monte CalIC) method. Many thermodynamical limit. It has been argéédhat this fixed
simulations have been performed in the last 17 y&ar$.  fraction is an universal number. In Ref. 3, this fraction for
The first study, on small lattictwas compatible with the the susceptibility is calculated analytically and numerically
new fixed-point scenario. However further simulatiths in four dimensions. In this work, we numerically calculate
found results rather suggesting a continuously varying valughis ratio, along the critical lind,(p). After the compulsory
of the critical exponents along the critical line. A Monte infinite volume extrapolation, a universal, dilution-
Carlo renormalization-group stutifound a value for ther  independent result is found. A very recent simulatfonas
exponent consistent with the perturbative onepat0.8.  questioned the universality of these ratios. However, these
However, forp=0.9 their results did not differ from the pure authors do not perform any infinite volume extrapolation,
Ising model, while forp<<0.8 they could not find meaningful thus their conclusions are necessarily not definitive.
results. More recent simulatioftssuggested a single fixed- The experimental study is still not completézbe Table
point scenario withv=0.774), confirmed in Ref. 17 where [). For instance, indications of the expected new universality
»=0.78(1) was found ap=0.4. This puzzle of mutually class were obtainéd®* in the Ising antiferromagnet
contradicting results started to make sense in Ref. 18, whetiee, _,Zn,F,, studied in the reduced temperature range®10
the crucial observation that the exponents measured in a fixst<10"1. Also in Ref. 24, a cusplike behavior of the spe-
nite lattice are transitory was made. Unfortunately the statiseific heat was found, so no divergence was expected. This
tical errors at large dilution did not allow for a definite con- yields v=2/3 through standard hyperscaling relations.ssto
clusion. bauer measurements ind=&n, ;F, gave similar result&> A

Recently a MC work on this model has appeaté@ihey  compatible value for the exponefitwas obtained for a dys-
obtainy=0.682(2) atp=0.8 but a markedly different result, prosium aluminum garnet doped with yttrium at a 5%
»=0.7178), atp=0.6. dilution.?® The results regarding th@ exponent have been

In this paper we present sound numerical evidence for guestioned in Ref. 27 where MgZnysF, was studied by
random fixed-point dominant along the whole critical line. synchrotron magnetic x-ray scattering. These authors con-
This is achieved by means of a finite-size scalifs9 clude that the experimental errors to date are too big to dis-
analysis, in a wide dilution randg®.4<p=<0.9, the percola- tinguish between the pure Ising and the dilu{g@dvalues.



2742 H. G. BALLESTEROSet al. PRB 58

Maybe the strongest evidence found for a new universality 4
3 1(MH
class regards exponentsand v. The best measures have gs=—— — _ (8)
been reported in Refs. 28,29; they were obtained by means 2 222
~ETS. (M%)
of neutron scattering in Mn ,Zn,F, and FezZn,_,F,, re- . .
spectively. Another kind of cumulant, meaningless for the pure system,
The layout of the paper is as follows. In Sec. Il we definec@n be defined as
the model and the observables to be measured in the numeri- —_—
cal simulation. In Sec. Ill we provide the necessary technical (M2 (M?)?
details about the MC methods. Section IV is devoted to 92=# 9
finite-size scaling techniques. After that, in Sec. V, we (M%)

present our numerical results and discuss the need for apyis quantity would be zero in the thermodynamical limit if
infinite-volume extrapolation. This is considered in Sec. V'-self-averaging is to be found. A very useful definition of the

We present our conclusions in Sec. VII. correlation length in a finite lattice, reads
Il. THE MODEL [ xF-1 |2 10
4 sirf(mw/L)]

We have considered the site-diluted Ising model on the
single-cubic lattice, with nearest-neighbor interaction. WewhereF is defined in terms of the Fourier transform of the
will work in a lattice of linear sizé, with periodic boundary magnetization
conditions. The Hamiltonian is

G(k)= % 2 eMlea, (12)
H:_BE GiEJ'O'iO'j, (3) '
(i) as
where o are the usualZ, spin variables. The's are the v
quenched random variables introduced in E). We shall F=— (|G(2m/L,0,0)|2+ permutations (12)
refer to an actuale;} configuration as &ample We study 3
the so-called quenched disorder: that is, for every observable
it is understood that whrst calculate the average on the;}
variables with the Boltzmann weight given by exq), the
results on the different samples beilager averaged.
To avoid confusion, we will denote the Ising average with Ill. THE MONTE CARLO UPDATE

brackets, while the subsequent sample average will be over- 4o method of choice for an Ising model simulation is a

lined. The observables will be denoted with calligraphic let-¢|ster method. The most efficient variety for the pure model
ters, i.e. 0, and with italics the double avera@e=(0). The s the Wolff's single-clustefSC) update®® However, in di-

This definition is very well behaved for the FSS method
we employ??

total nearest-neighbor energy is defined as luted systems one can find groups of spins almost completely
surrounded by holes that are scarcely changed with a SC
&= eoieo, 4) method. Thus we have carefully studied the problem of the

o thermalization for each value of the dilution.

) ) _ We have found two different regimes. For small dilution
The energy is extensively used for gxtrapolatmg the result§p>0_65), the mean size of the groups is small and can be
obtained for an observabl®, at couplingsto a nearby8’  appropriately thermalized by adding a Metropolis update.

coupling® and for calculating3 derivatives through its con- For larger dilutions p<0.5), using the same update meth-
nected correlation. For instance, one can define the specif'tgds, the integrated autocorrelation times do not show a sig-
heat as nificant increase, and a plot of the measures against the MC

time does not show any significant drift. However, we ob-

) serve deviations coming from hot and cold starts. This fail-
ure is due to the presence of intermediate-sized groups of
nearly isolated spins that neither Metropolis nor SC can ef-

V being the total number of sites in the lattide’, ficiently thermalize. In this cases we have found that the

The normalized magnetization is addition of a Swendsen-Wan¢SW) cluster updat¥ is
enough to provide a fast thermalization.

1 E Thus we have constructed our elementary MC step

M=g 2 €oi. ®  (EMCS as 250 SC flips complemented with a Metropolis

step forp=0.65 and a SW sweep every 200 SC flips for the

In terms of the magnetization we can give a convenient defiother dilutions. We discard 100 EMCS for equilibration, then

- 1 -
C=0g()= 5 (EH—(&),

nition of the susceptibility as measuring after every EMCS. The integrated autocorrelation
times for all observables are very small: near 1 EMCS in the
x=V(M?), (7) largest lattice.

A disordered model simulation gets characterized by two
its Binder parameter being parameters, the number of samples generatég énd the
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number of independent measures taken in each sariple (
Previous workgfor instance Refs. 16—1&ave chosen the
N,>Ng regime. Howevelsee Ref. R the optimal regime is

g
N|"" —
Os

2
(13

whereo, is the mean varianc@e a sampleof the observable
under consideration, whileg is the variancédetween differ-
ent samplesMoreover, the nonvanishing value g§ shows
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fact, in our opinion, this is the best available method to mea-
sure the usually tiny three-dimensionglexponent®).

In many caseshigh precision computations or small lat-
tices, it is useful to parametrize the leading corrections-to-
scaling, thus we need to consider in the analysis a behavior
like

QO|Q§:S=SX0/”+ASL_“’+--- .

17

Here the dots stand for higher-order corrections, wAﬂ’eis

that the susceptibility is not a self-averaging quantity, thusa dilution-dependent slope.

making very dangerous the smblk regime. In this work we
have fixedN,=200 andNg=20 000. Forp=0.9 we per-
formedNg= 10 000.

In addition to the usugB extrapolatiort® in some cases it

is useful to perform @ extrapolation. It can be done as we
know the precise distribution of the densities of the actual

configurationgbinomial distribution. Details of the method

can be found in Ref. 3 for the same model in four dimen-

sions.
We remark that when computingd derivatives of
observables)(O)=(OE) —(O)(&), or the B extrapolation,

The most convenient observables to measure the two in-
dependent critical exponentg,and v, are found to be

8B§HX= v+1,
X—X=v(2—n).

V. NUMERICAL RESULTS

The phase diagram of the mod8) is shown in Fig. 1. In
this work we have simulated latticeés=8, 16, 32, 64, and

(O)(B+AB)=(0e*F)/(e*#), we suffer a bias that de- 128 at dilutionsp=0.9, 0.8, 0.65, 0.5, and 0.4. Our proce-

creases as Wi, if the measures used for computing the dif- qyre has been the following. Far=0.9,0.8,0.65, we have
ferent mean values are not statistically independent. This ighosen g3 coupling value where the relation

negligible in usual MC simulations where the statistical error

is larger(of order 14/N,). However, when averaging in many EL,B,p) &(2L,B,p)
different samples, the statistical error can become too small L = oL

to ignore the bias. Fortunately, there are several methods to

eliminate it. For instance, we use subsets of measures tgpproximately holds. Then, we have relied on standard re-
parameterize the bias as a functior\yfand then to extrapo- weighting methods, which allow us to extrapolate the simu-
late N, — <. Further details can be found in Ref. 3 where thelation results at coupling to a closeB’, to precisely fulfill
method was applied in the four-dimensional diluted Isingthe matching conditior{18). For very diluted systems, the

(18

model.

IV. FINITE-SIZE SCALING METHODS

A very efficient way of measuring critical exponetits
follows from this form of the FSS ansatz:

O(L,B,p)=L*""[Fo(&(L,B,p)/L)+O(L™ )], (14

where a critical behavidr *o is expected for the operat@,
and Fo is a (smooth scaling function. From a
renormalization-group point of viewy is the eigenvalue cor-

responding to the leading irrelevant operator. It is very im-

transition line is almost horizontéee Fig. ] thus it is more
convenient to use p-reweighting method to extrapolate the
simulation results to a nearlly value (see Refs. 3, 6, 31
Therefore, we have first located tievalues for which Eq.
(18) holds atp=0.4,0.5, then we have fixed thisvalue, and
changed later on. In this way, the true critical dilutions for
fixed B, pdB), differ from 0.4 and 0.5in less than a 2%
Nevertheless, we shall keep referring to thenpas0.4,0.5
in tables and graphics, for the sake of clarity.

In Table Il we present the results for exponentand »
and cumulantg), andg,, using Eq.(16) (neglecting scaling
correction$. Beware that consecutive data in the table are

portant that, in the above equation, only quantities measu@nticorrelatedthe results of lattice. are used once in the
able on a finite lattice appear. Notice that terms of ordeflumerator and another time in the denominator in @6)].

&2, are dropped from Eq.14), so we assume that we are

deep within the scaling region.

To eliminate the unknown scaling function, we measur

the quotient

e

For the error computation we have used a jack-knife method
with 50 bins, ensuring a 10% of uncertainty in the error bars.
Thus, we display two digits in these bars if the first one is
smaller than 5.

Notice that the exponeny and the cumulang, are, be-
fore any infinite volume extrapolation, quite dilution inde-

Qo=0(sL.A,p)/O(L.B.p), (19 pendent. This can be understood because they show a very
at the coupling value for which the correlation length in unitsmild evolution with the lattice size. On the contrary, expo-
of the lattice size is the same for both lattices. So we get nent» and cumulantg, show a larger dependence on the
lattice size and so, an infinite volume extrapolation is needed
before one can extract definite conclusions. Nevertheless,
one can already guess from the table thi surely different
from the pure Ising value and thg, cumulant is different
from zero (there is not self-averagingThe latter was also

Qolg,-s=5©""+0(L™*). (16

Given the strong statistical correlation betwegg andQ,,
the above quotient can be obtained with great accufacy
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TABLE II. Critical quantities obtained from paird_(2L) using Eq.(16) for all the dilutions simulated.

L p=0.9 p=0.8 p=0.65 p=0.5 p=0.4
7 8 0.01717) 0.02197) 0.028410) 0.029624) 0.032229)
16 0.02777) 0.03087) 0.033@8) 0.034519) 0.029716)
32 0.03209) 0.03358) 0.03299) 0.031311) 0.031517)
64 0.03499) 0.03468) 0.03358) 0.032914) 0.032613)
v 8 0.666314) 0.6877111) 0.717216) 0.744724) 0.771832)
16 0.664314) 0.684912) 0.710718) 0.732822) 0.753432)
32 0.663115) 0.683612) 0.704820) 0.718924) 0.738227)
64 0.664415) 0.686414) 0.699620) 0.711821) 0.718226)
9> 8 0.083210) 0.154616) 0.231G25) 0.278424) 0.304324)
16 0.086112) 0.150a14) 0.207715) 0.237120) 0.255122)
32 0.091813) 0.147417) 0.192@20) 0.213822) 0.229625)
64 0.097417) 0.147712) 0.184219) 0.199421) 0.210616)
U4 8 0.704914) 0.690@17) 0.681423) 0.690G20) 0.698920)
16 0.692617) 0.681815) 0.680916) 0.687118) 0.695821)
32 0.687619) 0.681916) 0.683220) 0.687917) 0.688920)
64 0.682116) 0.677118) 0.678Q17) 0.682519) 0.6857122)

observed in the same model in four dimensidmehere we andv(L). In Fig. 2 we plot theAC(L) values obtained. As
found mean-field results plus logarithmic corrections. a contrast we also plot the corresponding values for the pure
Another quantity of interest is the specific heat. As statedsing model which grow, as they shou(the data are taken
in the introduction,« is negative and no divergences are from Ref. 3§. We find a decreasing value &fC(L) for p
expected. This is a quite difficult behavior to study, because<0.8, as expected. Notice that tfteansient v~ 2/3 found
FSS investigations in other models displayiag<O, show for p=0.9 in Table Il, impliese=0 through hyperscaling
that the specific heat at the critical point is a growing, thoughrelations. This is very nicely shown in the plot, where a
bounded, quantity* For this reason we choose to study constant value oAC(L,p=0.9) is seen. PlottingA\C(L)
againstL” would be useless, because the scaling correc-
AC(L)=[C(2L)~C(L)]q,=2- tions go approximately as %4 that is, their lattice size

. , ) evolution is much faster than that of the asymptotic term.
It diverges if >0, tends to zero ifa<<O and goes to a

constant value if the specific heat diverges logarithmically

(a=0). In addition, the usually large background term of V1. INFINITE VOLUME EXTRAPOLATION

the specific-heat disappears. It will be convenient to recall i i , , L

that by deriving the FSS ansatz from the renormalization AS Shown in the previous section, with our statistical ac-

group?® one finds a behavior for the specific heat. &%~ curacy the values for the critical exponents are seen to de-
(wherey = 1/»). Therefore one should expect the fulfillment pend on the lattice size, so an infinite volume extrapolation is
of hyperscaling relations for the transient exponentd,)

1.50_|||||---||---|||||||||_ pe[0.4,0.9], L216

Ising ] sor d.of=8 ]
L 1 P F ]
1.25— — > 20f =
— |- 10_ g —
~ 4
8 1.00_— p=0.9
5 | | L | |
sk [ C BN — -
>~ om 08 r /
L p=0. N /
3 15 ! pe[0.4.0.8), Lz16
~— p=0.65 r ; b
O i d.of.=6 b
Q 0.50 - p=05 s, 10 / 1
; ]
L p=0.4 i N . ]
0.25 — — 50 S =
L E F (S 0gé 7
e e e e e ey
P PRI NI IR R B 0.0 oz 0.4 0.6 0.8 10
0.0 0.1 0.2 0.3 0.4 2

L—0.4
FIG. 3. Minimum of y? as a function ofw, for the fits of Eq.

FIG. 2. Normalized specific-heat difference at the point where(19). We also plot with a dashed line the corresponding quantity for
Q:=2. Thew~0.4 value used in the plot is obtained in Ref. 9.  the Q,,ﬁ§ fit.
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L i 0.3 = —
6.00 — = - — L g P=04 ]
C - ]
Ed Ising . o p=0.5
55 ] I = p=065 |
r =z > = - i I - i
= »=0.9 02— |
:;& 5.50% = * = p=08 - o«
o [ ] =] - - * p=0.8
525 p=0.65 ]
r b 0.1 — = T
= b * p=0.9
p=0.5
5.00 — —
r=04
T I N I B S I R BRI R R B
0.0 01 0.2 0.3 0.4 05 0.0 0.1 02 0.3 0.4 05
L~ L~
FIG. 4. Q3B§=21*1’” for the different dilutions. The solid lines FIG. 5. Cumulantg, as a function ofL“. The solid lines

correspond to a fit enforced to yield the same infinite volume ex-correspond to a fit enforced to yield the same infinite volume ex-
trapolation forp<0.8. The smallest lattice in the fitis=8 and we  trapolation forp=<0.8. The smallest lattice in the fit is=16 and
usew=0.37. The Ising data have been taken from Ref. 36. we usew=0.37.

required[see Eq(17)]. However, one has to decide when the not surprising as it shows almost no scaling corrections,
dots in EQ.(17) can be neglected. Our criterium will be the A%~0). We see that including the=0.9 data yields an
following. We perform the fit for lattice sizes not smaller yntenable fit withL ,,;,=16. Moreover, when we study the
than a giverL my, . If the fit quality is reasonabléd.e., a not  extrapolation forQ, e=2***", we find an awful result. This
too Iargex fdegree of freedor(d;)ﬁ falgulated with tITe fl;:l could have been anticipated from Fig. 2, where a clearly
covariance matrix we repeat it for lattices not smaller than nonasymptotic value for the specific heatpat 0.9 is seen.

2L in - IT this last ﬁ'.[ is E.ilso reas_onable atite extrapolated On the contrary, when discarding the=0.9 data, reasonable
values are compatlble in both fiwe keep the central value fits are obtained. Thus, we conclude that pke0.9 system is
fro¢hthe]1_mm ftl;[1 but qléot; ert[pr btarsf from.”thg'%mb?”_e- d still crossing over from the pure Ising fixed point to the
erefore the needed estimate lor will be outaine diluted one, even for lattices as largelas 128. Finally, it is
from the lattice size evolution of the scaling functions: evident from the plot that the determination of can be

¢ £\” greatly improved by means ofjaint fit of the g, and /L
= = (— +A§L*‘°+--- , scaling functions. The results for this fit are shown in Table
L Q=2 L Ill. According to our, conservative, dots-neglecting crite-
rium, we find
o= gG AL T 19
94|Q§ 2=04 T A, 19 ©=0.376). (20)
gZ|Q§:2=g§+A32L*‘”+--- . Notice that the value obtained in Ref. 8=0.42 (without

error estimatiojy using the scaling-field method for

Then we shall use thie value to extrapolate the critical Momentum-space RG equations, is compatible with ours.
exponentsj and 7. A reasonable value szldof in these fits In Table IV we present the infinite volume extrap()latlon
will be a consistency condition. A technical point of interest - ) _ N
is that the single universality-class scenario requires the in- TABLE IV. Infinite volume extrapolation and fit qualities for
finite volume extrapolation fos*o’” to be dilution indepen- the critical expon.ents, including data frdoe Lmi,?, atp=0.4, 0:5,
dent. Therefore, we can include data of different dilutions?'65'. ar:.d 0-8 uilggsECéN). The second error s due to the inde-
and lattice sizes in the fit. ermination inw=0.376).

In Fig. 3, we plot the minimum of?/dof in a fit to Eq.

i 2
(19), as a function ofw. Several points become clear. It is Lmin Extrapolation X"/ dof Q
obvious thatg, is not useful at all in order to fixo (this is v 8 0.683710(29  14.0/11 0.24
16 0.683§24)(33)  6.26/7 0.51
TABLE lIl. Results of the infinite volume extrapolation o 32 0.6876)(2) 4.14/3 0.25
and¢/L, including data fronL =L ,,;,, atp=0.4, 0.5, 0.65, and 0.8.
Q(x?,dof) is the probability of getting a largee? in the fit. 7 8 0.04198)(20) 96.4/11 <10°®
16 0.037412)(9) 8.92/7 0.26
Lmin  x°/dof  Q ® &L (o) 32  0.037436)(8) 0.18/3 0.98
8 46.2/21 0.0012 0.4305 0.589@17) 0.145817) Ja 8 0.672621)(25) 31.5/11 .0001
16  150/13 031 032  0.5984)  0.1453) 16 0.673428)(21)  7.95/7 0.34

32 1.95/5 0.86 0.38) 0.5817) 0.15Q7) 32 0.665%7)(3) 1.08/3 0.78
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TABLE V. Crossing points of scaling functior¥L andg, for pairsL and A for the different dilutions.

L p=0.9 p=0.8 p=0.65 p=0.5 p=0.4
Oa 8 0.24958830) 0.28600248) 0.3702%13) 0.4999627) 0.3957728)
16 0.24934(15) 0.28576%18) 0.370185%36) 0.499496) 0.395128)
32 0.24929013)  0.2857587) 0.37020816) 0.49948%30)  0.39489%33)
64 0.249292¢15)  0.285741725  0.370164948)  0.49940911)  0.39484013)
&L 8 0.24929%26) 0.285690¢49) 0.3696110) 0.4981417) 0.3930219)
16 0.24929112) 0.28570815) 0.36998631) 0.498965) 0.394416)
32 0.249295@4)  0.28574%6) 0.37014713) 0.49932621)  0.39469423)
64 0.2492003) 0.285739423) 0.370154044) 0.4993749) 0.394785%10)

for v and # critical exponents and thg, cumulant. We see

thatL ,;;=16 fulfills our dots-neglecting criterium fay, and
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In Table V we present the crossing points&t andg, for
the (L,2L) pair for all the dilutions simulated. We find again

7. Forv, L,in=8 is found to be enough. Our final values arethat an infinite volume extrapolation is needed in order to
extract the critical couplings.

Using Eq.(23) for s=2 we perform a joint fit for both
scaling functionsg, and &/L. For this fit we takew+ 1/v
=1.836). Thefinal results for the different dilutions studied
94=0.6737)(2) are shown in Table VI, V\_/here two \_/alues fog,, are _used._

4T ' Let us remark that our critical couplings are compatible with
where the first error is statistical while the second is due tdhe results in Ref. 18[BP~%%=0.285784), pBP~%°
the uncertainty inn. From Eq.(21) we obtain =0.24933(3]). But we definitely do not agree with the value
BP~%8=0.285 760 9(4) quoted in Ref. 19. This is not sur-
prising as in this work the corrections-to-scaling are not con-
sidered.

»=0.683724)(29),

7=0.037436)(9), (21)

a=—0.05%7)(9),

B=0.354€18)(10), (22

y=1.3425)(5).

For the computation of the statistical error ghand y we We have shown, beyond the low-disorder limit, that the
take into account that the statistical correlation between djjuted Ising model is in the basin of attraction of a single
and 7 has turned out to be negligible. The agreement withfixed point. Therefore, if randomness is to be modelized with
experimental measures ofand y (see Table)lis very good.  Eq. (2), the critical exponents of an Ising system are not
In Fig. 4 we showQ, . as a function ofw for all the  those of the pure Ising model, but those of the random fixed
dilutions. We also plot the corresponding values for the purgoint (although this may be fairly hard to show in a very
Ising model. The solid lines correspond to the joint fit for pure sample To establish this result we have simulated in a
Lmin=8 using the data fronpp<0.8. Notice that the data are very wide dilution range, finding a consistent pictuwely
strongly anticorrelated, therefore the apparghbn the plot  after an infinite volume extrapolatiomhep=0.9 data seem,
is larger that the real one, computed with the full covariance
matrix. An analogous fit fog, is shown in Fig. 5. We re- TABLE VI. Infinite volume critical couplings estimations for
mark that thep=0.9 data are pointing to @naybe too-low the studied dilutions. The first error bar corresponds to the statistical
value. This is another signature of the crossover from théit error, the second on@imost negligibl¢is due to the uncertainty
Ising fixed point ¢,=0) to the diluted one. in w+ 1/v exponent. For this table we uset 1/v=1.836).
It is interesting to compare the values fyy andg, with

VII. CONCLUSIONS

those obtained in four dimensiofis: L min x*Idof Pc Be
94=0.32455 16 0.11/3 0.39481@1)(2) 0.852
e ’ 32 0.04/1  0.3948222(7)  0.852
9,=0.31024. 16 2.93/3  0.499419)(1) 0.543
Finally, we can compute the infinite volume critical cou- 32 0.78/1 0.4993847(4) 0.543
plings by studying the crossing points of scaling functions 16 5.27/3 0.65 0.370165)(1)
(asé/L andg,) measured in lattices of sizésandsL. Let 32 1.53/1 0.65 0.3701%8)(0)
A,Bg ,Apt be the deviation of these crossing points from the 16 5.41/3 0.8 0.28574230/(0
infinite-volume critical couplings. The expected scaling be- ' ’ ' 100
havior i<’ 32 0.27/1 0.8 0.28573687)(5)
1_g o 16 8.45/3 0.9 0.249290%9)(0)
L L —w—1lv . . .
8BS ApLr L Uy (23) 32 0.03/1 09 0.24928880)(5)

sthv—
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however, to be still crossing over from the pure Ising fixedin four dimensions,diluted Ising models are found not to be
point to the diluted one in lattices as largelas 128. self-averaging at criticality in three dimensiotsee Ref. 19
We obtain the values of the critical exponents and univerfor an independent verification in three dimensjorfhis is
sal cumulants eliminating the systematic errors coming fronproved by showing that the quotient between the sample
the leading corrections-to-scaling terms. The previous MGyariance of the susceptibility and its mean value tends in the
computations did not consider these terms and were not abiiermodynamic limit to a nonzero constant independent of
to control the corresponding systematic effects. Incidentallythe dilution (it is a renormalization-group invariantThis

most of the computations have been carried oyt-aD.8 as  quotient is measured with a 4% accuracy after the infinite
in this case the scaling corrections are very small, and th@olume extrapolation.

results in small lattices seem stable. However, even in this
case the lack of an extrapolation produces an underestima-
tion of the errors.

The (dilution-independentcritical exponents are shown
to be in good agreement with the series estim3t&sThe We are grateful to Dave Belanger for calling our attention
corrections-to-scaling exponeant is measured with a 16% to relevant experimental work. The computations have been
error and is found to be in quantitative agreement with thecarried out using the RTNN machines at Universidad de
perturbative estimaté.The smallness of this exponent ex- Zaragoza and Universidad Complutense de Madrid. We ac-
plains why this problem is so hard to attack numerically. Inknowledge CICyT for partial financial sSuppdAEN97-1708
fact, the total computer time devoted to this work has beemnd AEN97-1698 J.J.R.L. is granted by EC HMC
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