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Critical exponents of the three-dimensional diluted Ising model
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We study the phase diagram of the site-diluted Ising model in a wide dilution range, through Monte Carlo
simulations and finite-size scaling techniques. Our results for the critical exponents and universal cumulants
turn out to be dilution independent, but only after a proper infinite volume extrapolation, taking into account
the leading corrections-to-scaling terms.@S0163-1829~98!00429-9#
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I. INTRODUCTION

The magnetic phase diagram and critical properties
many magnetic materials can be described by means o
Heisenberg Hamiltonian:

H5 (
i , j ,a,b

Jab
i j Si

aSj
b , ~1!

whereSi
a is a spin operator. We use latin indices for latti

sites and greek ones for the spin components.Jab
i j is an usu-

ally short-ranged coupling matrix. One can understand
~1! on the basis of the exchange interaction between the e
trons of the external shells of the atoms. In principle, t
interaction is O~3! symmetric. Nonetheless if one puts th
atoms on a crystalline lattice, the material tends to magne
in the so-called axes or planes of easy magnetization g
by the symmetry of the crystal, thus breaking the O~3! sym-
metry.

A typical example is given by the uniaxial crystals, as t
hexagonal lattices, where the magnetization can choos
subspace of easy magnetization thec axis or its orthogonal
plane. In the first case the system is well described assum
that the magnetic momenta point in thec direction and it
should be described by the Ising model. In the second o
the material should be studied by means of theXY model.
One can use the form of Eq.~1! for these models, with an
appropriate choice of theJ matrix.

However no pure material exists in nature, so then i
mandatory to consider the effects of nonmagnetic impurit
The simplest way to do so is by considering a modified v
sion of Eq.~1!

H5 (
i , j ,a,b

Jab
i j e ie jSi

aSj
b , ~2!

where thee’s are quenched, uncorrelated random variab
chosen to be 1 with probabilityp ~the spin concentration!, or
0 with probability 12p ~the impurity concentration, or spin
dilution!. The rationale for the quenched approximation
that usual relaxation times for the nonmagnetic impurit
are much longer than the corresponding ones for spin
namics. For nonfrustrated systems, the phase diagram o
PRB 580163-1829/98/58~5!/2740~8!/$15.00
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~2! in the temperature-dilution plane consists of a magn
cally disordered~paramagnetic! region at high temperature
separated from an ordered~ferromagnetic! region at lower
temperatures~see Fig. 1!. The dilution-dependent critica
temperatureTc(p) obviously equals the pure model value
p51. It lowers for larger dilution values, until the extrem
caseTc(pc)50 at the site percolation threshold for the co
centration of the magnetic atoms.

Not many general results have been obtained for
Hamiltonian~2!. The most popular one is doubtless theHar-
ris criterion.1 It states that the critical behavior of Eq.~2!
will be the same as for Eq.~1! if the specific-heat critical
exponenta is negative, while a new universality class w
appear ifa.0. In the latter case it is possible to show2 that
a for the diluted model is negative. The only model betwe
the generic ones for magnetism~Ising, XY, Heisenberg! dis-
playing a.0 in three dimensions, is the Ising model.

There are other physical contexts in which the Ham
tonian ~2! has been studied. For instance, its fou
dimensional Ising version has been recently investigated~see
Ref. 3 and references therein! in connection with the puz-
zling problem of finding nonasymptotically free interactin
theories in four dimensions. The two-dimensional mode

FIG. 1. Phase diagram of the model~3!, in the inverse
temperature-dilution plane. The dots correspond to the simula
points, while the arrow signals the percolation limit (b5`).
2740 © 1998 The American Physical Society



and

PRB 58 2741CRITICAL EXPONENTS OF THE THREE-DIMENSIONAL . . .
TABLE I. Critical exponents for the diluted Ising model obtained from analytical calculations,
experimental measures. For comparison we also show the values for the pure Ising model.

Ref. n g b v

Analytical 9 0.697 0.416
10 0.678 1.33 0.349
11 0.671 1.32 0.348

Ising ~Ref. 12! 0.6300~15! 1.241~2! 0.3250~15! 0.78~2!

Experimental 23 0.36
24 .2/3 1.44~6!

26 0.385~25!

25 0.350~9!

28 0.70~2! 1.37~4!

29 0.69~1! 1.31~3!
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also interesting as a playground for exactly solvable fi
theories, and has also been considered~see Refs. 4–8, and
references therein!.

As already stated, the materials displaying Ising-like b
havior in very pure samples should behave differently wh
the impurities concentration increases. In fact, according
Harris, an infinitesimal impurity concentration should
enough to spoil the Ising behavior. However this will happ
in very narrow intervals of temperature, which may be e
perimentally unreachable.

The Hamiltonian~2! can be studied in the low dilution
regime by means of analytical perturbative renormalizati
group methods.9–11 They find a new fixed-point, thus imply
ing that the critical exponents along theTc(p) line are dilu-
tion independent and different from their pure Ising valu
Their results are summarized in Table I. Unfortunately,
error estimations for this kind of calculations is very dif
cult.

The study of the Hamiltonian~2! beyond the low disorde
regime, is restricted to the Monte Carlo~MC! method. Many
simulations have been performed in the last 17 years.13–18

The first study, on small lattices13 was compatible with the
new fixed-point scenario. However further simulation14

found results rather suggesting a continuously varying va
of the critical exponents along the critical line. A Mon
Carlo renormalization-group study16 found a value for then
exponent consistent with the perturbative one atp50.8.
However, forp50.9 their results did not differ from the pur
Ising model, while forp,0.8 they could not find meaningfu
results. More recent simulations15 suggested a single fixed
point scenario withn50.77(4), confirmed in Ref. 17 where
n50.78(1) was found atp50.4. This puzzle of mutually
contradicting results started to make sense in Ref. 18, w
the crucial observation that the exponents measured in
nite lattice are transitory was made. Unfortunately the sta
tical errors at large dilution did not allow for a definite co
clusion.

Recently a MC work on this model has appeared.19 They
obtainn50.682(2) atp50.8 but a markedly different resul
n50.717(8), at p50.6.

In this paper we present sound numerical evidence fo
random fixed-point dominant along the whole critical lin
This is achieved by means of a finite-size scaling~FSS!
analysis, in a wide dilution range@0.4<p<0.9, the percola-
d
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tion threshold being atpc'0.31~Ref. 20!#. The investigation
of very diluted samples is made possible by ap-reweighting
method, which allows us to extrapolate the simulation res
obtained atp to a closep8 value.3,6,21 A careful consider-
ation of the scaling corrections is needed, in order to get
right value in the infinite volume limit. In this system, th
first corrections-to-scaling exponent,v, is very small ~v
'0.4, see Ref. 9!. Thus, the confusing results in previou
MC studies can be understood as an unusually large co
bution of the scaling corrections. After a proper consid
ation of this problem, we find dilution-independent critic
exponents in quantitative agreement with perturbative ca
lations.

Another theoretical problem of interest is the absence
self-averagingat the critical point. This means that th
disorder-realization variance of quantities such as the m
netic susceptibility or the specific heat, at the critical point
a fixed, nonzero fraction of their mean values even in
thermodynamical limit. It has been argued22 that this fixed
fraction is an universal number. In Ref. 3, this fraction f
the susceptibility is calculated analytically and numerica
in four dimensions. In this work, we numerically calcula
this ratio, along the critical lineTc(p). After the compulsory
infinite volume extrapolation, a universal, dilution
independent result is found. A very recent simulation19 has
questioned the universality of these ratios. However, th
authors do not perform any infinite volume extrapolatio
thus their conclusions are necessarily not definitive.

The experimental study is still not completed~see Table
I!. For instance, indications of the expected new universa
class were obtained23,24 in the Ising antiferromagne
Fe12xZnxF2, studied in the reduced temperature range 1023

<t<1021. Also in Ref. 24, a cusplike behavior of the sp
cific heat was found, so no divergence was expected. T
yieldsn>2/3 through standard hyperscaling relations. Mo¨ss-
bauer measurements in Fe0.9Zn0.1F2 gave similar results.25 A
compatible value for the exponentb was obtained for a dys
prosium aluminum garnet doped with yttrium at a 5
dilution.26 The results regarding theb exponent have been
questioned in Ref. 27 where Mn0.5Zn0.5F2 was studied by
synchrotron magnetic x-ray scattering. These authors c
clude that the experimental errors to date are too big to
tinguish between the pure Ising and the dilutedb values.
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Maybe the strongest evidence found for a new universa
class regards exponentsg and n. The best measures hav
been reported in Refs. 28,29; they were obtained by me
of neutron scattering in Mn12xZnxF2 and FexZn12xF2, re-
spectively.

The layout of the paper is as follows. In Sec. II we defi
the model and the observables to be measured in the num
cal simulation. In Sec. III we provide the necessary techn
details about the MC methods. Section IV is devoted
finite-size scaling techniques. After that, in Sec. V, w
present our numerical results and discuss the need fo
infinite-volume extrapolation. This is considered in Sec. V
We present our conclusions in Sec. VII.

II. THE MODEL

We have considered the site-diluted Ising model on
single-cubic lattice, with nearest-neighbor interaction. W
will work in a lattice of linear sizeL, with periodic boundary
conditions. The Hamiltonian is

H52b(
^ i , j &

e ie js is j , ~3!

where s are the usualZ2 spin variables. Thee’s are the
quenched random variables introduced in Eq.~2!. We shall
refer to an actual$e i% configuration as asample. We study
the so-called quenched disorder: that is, for every observ
it is understood that wefirst calculate the average on the$s i%
variables with the Boltzmann weight given by exp(2H), the
results on the different samples beinglater averaged.

To avoid confusion, we will denote the Ising average w
brackets, while the subsequent sample average will be o
lined. The observables will be denoted with calligraphic l
ters, i.e.,O, and with italics the double averageO5^O&. The
total nearest-neighbor energy is defined as

E5(
^ i , j &

e is ie js j . ~4!

The energy is extensively used for extrapolating the res
obtained for an observable,O, at couplingb to a nearbyb8
coupling30 and for calculatingb derivatives through its con
nected correlation. For instance, one can define the spe
heat as

C5]b^E&5
1

V
~^E 2&2^E&2!, ~5!

V being the total number of sites in the lattice,L3.
The normalized magnetization is

M5
1

V (
i

e is i . ~6!

In terms of the magnetization we can give a convenient d
nition of the susceptibility as

x5V^M 2&, ~7!

its Binder parameter being
y
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^M 4&

^M 2&2
. ~8!

Another kind of cumulant, meaningless for the pure syste
can be defined as

g25
^M 2&22^M 2&2

^M 2&2
. ~9!

This quantity would be zero in the thermodynamical limit
self-averaging is to be found. A very useful definition of th
correlation length in a finite lattice, reads31

j5S x/F21

4 sin2~p/L ! D
1/2

, ~10!

whereF is defined in terms of the Fourier transform of th
magnetization

G~k!5
1

V (
r

eik•re rs r , ~11!

as

F5
V

3
^uG~2p/L,0,0!u21permutations&. ~12!

This definition is very well behaved for the FSS meth
we employ.32

III. THE MONTE CARLO UPDATE

The method of choice for an Ising model simulation is
cluster method. The most efficient variety for the pure mo
is the Wolff’s single-cluster~SC! update.33 However, in di-
luted systems one can find groups of spins almost comple
surrounded by holes that are scarcely changed with a
method. Thus we have carefully studied the problem of
thermalization for each value of the dilution.

We have found two different regimes. For small dilutio
(p>0.65), the mean size of the groups is small and can
appropriately thermalized by adding a Metropolis upda
For larger dilutions (p<0.5), using the same update met
ods, the integrated autocorrelation times do not show a
nificant increase, and a plot of the measures against the
time does not show any significant drift. However, we o
serve deviations coming from hot and cold starts. This fa
ure is due to the presence of intermediate-sized group
nearly isolated spins that neither Metropolis nor SC can
ficiently thermalize. In this cases we have found that
addition of a Swendsen-Wang~SW! cluster update34 is
enough to provide a fast thermalization.

Thus we have constructed our elementary MC s
~EMCS! as 250 SC flips complemented with a Metropo
step forp>0.65 and a SW sweep every 200 SC flips for t
other dilutions. We discard 100 EMCS for equilibration, th
measuring after every EMCS. The integrated autocorrela
times for all observables are very small: near 1 EMCS in
largest lattice.

A disordered model simulation gets characterized by t
parameters, the number of samples generated (NS) and the
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number of independent measures taken in each sample (NI).
Previous works~for instance Refs. 16–18! have chosen the
NI@NS regime. However~see Ref. 3!, the optimal regime is

NI;S s I

sS
D 2

, ~13!

wheres I is the mean variancein a sampleof the observable
under consideration, whilesS is the variancebetween differ-
ent samples. Moreover, the nonvanishing value ofg2 shows
that the susceptibility is not a self-averaging quantity, th
making very dangerous the smallNS regime. In this work we
have fixedNI5200 andNS520 000. Forp50.9 we per-
formedNS510 000.

In addition to the usualb extrapolation,30 in some cases i
is useful to perform ap extrapolation. It can be done as w
know the precise distribution of the densities of the act
configurations~binomial distribution!. Details of the method
can be found in Ref. 3 for the same model in four dime
sions.

We remark that when computingb derivatives of
observables,]b^O&5^OE&2^O&^E&, or theb extrapolation,
^O&(b1Db)5^OeDbE&/^eDbE&, we suffer a bias that de
creases as 1/NI , if the measures used for computing the d
ferent mean values are not statistically independent. Th
negligible in usual MC simulations where the statistical er
is larger~of order 1/ANI!. However, when averaging in man
different samples, the statistical error can become too sm
to ignore the bias. Fortunately, there are several method
eliminate it. For instance, we use subsets of measure
parameterize the bias as a function ofNI and then to extrapo
lateNI→`. Further details can be found in Ref. 3 where t
method was applied in the four-dimensional diluted Isi
model.

IV. FINITE-SIZE SCALING METHODS

A very efficient way of measuring critical exponents32

follows from this form of the FSS ansatz:

O~L,b,p!5LxO /n@FO„j~L,b,p!/L…1O~L2v!#, ~14!

where a critical behaviort2xO is expected for the operatorO,
and FO is a ~smooth! scaling function. From a
renormalization-group point of view,v is the eigenvalue cor
responding to the leading irrelevant operator. It is very i
portant that, in the above equation, only quantities mea
able on a finite lattice appear. Notice that terms of or
jL5`

2v are dropped from Eq.~14!, so we assume that we ar
deep within the scaling region.

To eliminate the unknown scaling function, we measu
the quotient

QO5O~sL,b,p!/O~L,b,p!, ~15!

at the coupling value for which the correlation length in un
of the lattice size is the same for both lattices. So we ge

QOuQj5s5sxO /n1O~L2v!. ~16!

Given the strong statistical correlation betweenQO andQj ,
the above quotient can be obtained with great accuracy~in
s
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fact, in our opinion, this is the best available method to m
sure the usually tiny three-dimensionalh exponents32!.

In many cases~high precision computations or small la
tices!, it is useful to parametrize the leading corrections-
scaling, thus we need to consider in the analysis a beha
like

QOuQj5s5sxO /n1Ap
OL2v1¯ . ~17!

Here the dots stand for higher-order corrections, whileAp
O is

a dilution-dependent slope.
The most convenient observables to measure the two

dependent critical exponents,h andn, are found to be

]bj→x5n11,

x→x5n~22h!.

V. NUMERICAL RESULTS

The phase diagram of the model~3! is shown in Fig. 1. In
this work we have simulated latticesL58, 16, 32, 64, and
128, at dilutionsp50.9, 0.8, 0.65, 0.5, and 0.4. Our proc
dure has been the following. Forp50.9,0.8,0.65, we have
chosen ab coupling value where the relation

j~L,b,p!

L
5

j~2L,b,p!

2L
~18!

approximately holds. Then, we have relied on standard
weighting methods, which allow us to extrapolate the sim
lation results at couplingb to a closeb8, to precisely fulfill
the matching condition~18!. For very diluted systems, th
transition line is almost horizontal~see Fig. 1! thus it is more
convenient to use ap-reweighting method to extrapolate th
simulation results to a nearbyp8 value ~see Refs. 3, 6, 21!.
Therefore, we have first located theb values for which Eq.
~18! holds atp50.4,0.5, then we have fixed thisb value, and
changedp later on. In this way, the true critical dilutions fo
fixed b, pc(b), differ from 0.4 and 0.5~in less than a 2%!.
Nevertheless, we shall keep referring to them asp50.4,0.5
in tables and graphics, for the sake of clarity.

In Table II we present the results for exponentsn andh
and cumulantsg4 andg2 , using Eq.~16! ~neglecting scaling
corrections!. Beware that consecutive data in the table a
anticorrelated@the results of latticeL are used once in the
numerator and another time in the denominator in Eq.~16!#.
For the error computation we have used a jack-knife met
with 50 bins, ensuring a 10% of uncertainty in the error ba
Thus, we display two digits in these bars if the first one
smaller than 5.

Notice that the exponenth and the cumulantg4 are, be-
fore any infinite volume extrapolation, quite dilution inde
pendent. This can be understood because they show a
mild evolution with the lattice size. On the contrary, exp
nent n and cumulantg2 show a larger dependence on th
lattice size and so, an infinite volume extrapolation is nee
before one can extract definite conclusions. Neverthel
one can already guess from the table thatn is surely different
from the pure Ising value and theg2 cumulant is different
from zero ~there is not self-averaging!. The latter was also
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TABLE II. Critical quantities obtained from pairs (L,2L) using Eq.~16! for all the dilutions simulated.

L p50.9 p50.8 p50.65 p50.5 p50.4

h 8 0.0171~7! 0.0219~7! 0.0284~10! 0.0296~24! 0.0322~29!

16 0.0277~7! 0.0308~7! 0.0330~8! 0.0345~19! 0.0297~16!

32 0.0320~9! 0.0335~8! 0.0329~9! 0.0313~11! 0.0315~17!

64 0.0349~9! 0.0346~8! 0.0335~8! 0.0329~14! 0.0326~13!

n 8 0.6663~14! 0.6877~11! 0.7172~16! 0.7447~24! 0.7718~32!

16 0.6643~14! 0.6849~12! 0.7107~18! 0.7328~22! 0.7534~32!

32 0.6631~15! 0.6836~12! 0.7048~20! 0.7189~24! 0.7382~27!

64 0.6644~15! 0.6864~14! 0.6996~20! 0.7118~21! 0.7182~26!

g2 8 0.0832~10! 0.1546~16! 0.2310~25! 0.2784~24! 0.3043~24!

16 0.0861~12! 0.1500~14! 0.2077~15! 0.2371~20! 0.2551~22!

32 0.0918~13! 0.1474~17! 0.1920~20! 0.2138~22! 0.2296~25!

64 0.0974~17! 0.1477~12! 0.1842~19! 0.1994~21! 0.2106~16!

g4 8 0.7049~14! 0.6900~17! 0.6814~23! 0.6900~20! 0.6989~20!

16 0.6926~17! 0.6818~15! 0.6809~16! 0.6871~18! 0.6958~21!

32 0.6876~19! 0.6819~16! 0.6832~20! 0.6879~17! 0.6889~20!

64 0.6821~16! 0.6771~18! 0.6780~17! 0.6825~19! 0.6857~22!
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observed in the same model in four dimensions,3 where we
found mean-field results plus logarithmic corrections.

Another quantity of interest is the specific heat. As sta
in the introduction,a is negative and no divergences a
expected. This is a quite difficult behavior to study, beca
FSS investigations in other models displayinga,0, show
that the specific heat at the critical point is a growing, thou
bounded, quantity.32 For this reason we choose to study

DC~L !5@C~2L !2C~L !#Qj52 .

It diverges if a.0, tends to zero ifa,0 and goes to a
constant value if the specific heat diverges logarithmica
(a50). In addition, the usually large background term
the specific-heat disappears. It will be convenient to re
that by deriving the FSS ansatz from the renormalizat
group,35 one finds a behavior for the specific heat asL2yT2d

~whereyT51/n!. Therefore one should expect the fulfillme
of hyperscaling relations for the transient exponents,a(L)

FIG. 2. Normalized specific-heat difference at the point wh
Qj52. Thev'0.4 value used in the plot is obtained in Ref. 9.
d

e

h

y
f
ll
n

andn(L). In Fig. 2 we plot theDC(L) values obtained. As
a contrast we also plot the corresponding values for the p
Ising model which grow, as they should~the data are taken
from Ref. 36!. We find a decreasing value ofDC(L) for p
<0.8, as expected. Notice that the~transient! n'2/3 found
for p50.9 in Table II, impliesa50 through hyperscaling
relations. This is very nicely shown in the plot, where
constant value ofDC(L,p50.9) is seen. PlottingDC(L)
againstLa/n would be useless, because the scaling corr
tions go approximately asL20.4, that is, their lattice size
evolution is much faster than that of the asymptotic term

VI. INFINITE VOLUME EXTRAPOLATION

As shown in the previous section, with our statistical a
curacy the values for the critical exponents are seen to
pend on the lattice size, so an infinite volume extrapolatio

e
FIG. 3. Minimum of x2 as a function ofv, for the fits of Eq.

~19!. We also plot with a dashed line the corresponding quantity
the Q]bj fit.
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required@see Eq.~17!#. However, one has to decide when t
dots in Eq.~17! can be neglected. Our criterium will be th
following. We perform the fit for lattice sizes not smalle
than a givenLmin . If the fit quality is reasonable~i.e., a not
too largex2/degree of freedom~dof! calculated with the full
covariance matrix!, we repeat it for lattices not smaller tha
2Lmin . If this last fit is also reasonable andthe extrapolated
values are compatible in both fits, we keep the central valu
from theLmin fit, but quote error bars from the 2Lmin one.

Therefore the needed estimate forv, will be obtained
from the lattice size evolution of the scaling functions:

j

L U
Qj52

5S j

L D `

1Ap
jL2v1¯ ,

g4uQj525g4
`1Ap

g4L2v1¯ , ~19!

g2uQj525g2
`1Ap

g2L2v1¯ .

Then we shall use thisv value to extrapolate the critica
exponentsn andh. A reasonable value ofx2/dof in these fits
will be a consistency condition. A technical point of intere
is that the single universality-class scenario requires the
finite volume extrapolation forsxO /n to be dilution indepen-
dent. Therefore, we can include data of different dilutio
and lattice sizes in the fit.

In Fig. 3, we plot the minimum ofx2/dof in a fit to Eq.
~19!, as a function ofv. Several points become clear. It
obvious thatg4 is not useful at all in order to fixv ~this is

FIG. 4. Q]bj52111/n for the different dilutions. The solid lines
correspond to a fit enforced to yield the same infinite volume
trapolation forp<0.8. The smallest lattice in the fit isL58 and we
usev50.37. The Ising data have been taken from Ref. 36.

TABLE III. Results of the infinite volume extrapolation ofg2

andj/L, including data fromL>Lmin , atp50.4, 0.5, 0.65, and 0.8
Q(x2,dof) is the probability of getting a largerx2 in the fit.

Lmin x2/dof Q v j/L g2

8 46.2/21 0.0012 0.430~15! 0.5890~17! 0.1458~17!

16 15.0/13 0.31 0.37~2! 0.598~4! 0.145~3!

32 1.95/5 0.86 0.38~6! 0.587~7! 0.150~7!
t
n-

s

not surprising as it shows almost no scaling correctio
Ap

g4'0!. We see that including thep50.9 data yields an
untenable fit withLmin516. Moreover, when we study th
extrapolation forQ]bj52111/n, we find an awful result. This
could have been anticipated from Fig. 2, where a clea
nonasymptotic value for the specific heat atp50.9 is seen.
On the contrary, when discarding thep50.9 data, reasonabl
fits are obtained. Thus, we conclude that thep50.9 system is
still crossing over from the pure Ising fixed point to th
diluted one, even for lattices as large asL5128. Finally, it is
evident from the plot that the determination ofv can be
greatly improved by means of ajoint fit of the g2 and j/L
scaling functions. The results for this fit are shown in Tab
III. According to our, conservative, dots-neglecting crit
rium, we find

v50.37~6!. ~20!

Notice that the value obtained in Ref. 9,v50.42 ~without
error estimation!, using the scaling-field method fo
momentum-space RG equations, is compatible with ours

In Table IV we present the infinite volume extrapolatio

-
FIG. 5. Cumulantg2 as a function ofL2v. The solid lines

correspond to a fit enforced to yield the same infinite volume
trapolation forp<0.8. The smallest lattice in the fit isL516 and
we usev50.37.

TABLE IV. Infinite volume extrapolation and fit qualities fo
the critical exponents, including data fromL>Lmin , at p50.4, 0.5,
0.65, and 0.8 using Eq.~17!. The second error is due to the inde
termination inv50.37(6).

Lmin Extrapolation x2/dof Q

n 8 0.6837~10!~29! 14.0/11 0.24
16 0.6838~24!~33! 6.26/7 0.51
32 0.687~6!~2! 4.14/3 0.25

h 8 0.0419~8!~20! 96.4/11 ,10215

16 0.0374~12!~9! 8.92/7 0.26
32 0.0374~36!~8! 0.18/3 0.98

g4 8 0.6726~21!~25! 31.5/11 .0001
16 0.6734~28!~21! 7.95/7 0.34
32 0.665~7!~3! 1.08/3 0.78
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TABLE V. Crossing points of scaling functionsj/L andg4 for pairsL and 2L for the different dilutions.

L p50.9 p50.8 p50.65 p50.5 p50.4

g4 8 0.249583~30! 0.286002~48! 0.37025~13! 0.49996~27! 0.39577~28!

16 0.249340~15! 0.285765~18! 0.370185~36! 0.49949~6! 0.39512~8!

32 0.2492901~13! 0.285758~7! 0.370208~16! 0.499485~30! 0.394895~33!

64 0.2492924~15! 0.2857417~25! 0.3701649~48! 0.499409~11! 0.394840~13!

j/L 8 0.249299~26! 0.285690~49! 0.36961~10! 0.49814~17! 0.39302~19!

16 0.249291~12! 0.285708~15! 0.369986~31! 0.49896~5! 0.39441~6!

32 0.2492957~44! 0.285745~6! 0.370147~13! 0.499326~21! 0.394694~23!

64 0.2492901~13! 0.2857394~23! 0.3701540~44! 0.499374~9! 0.394785~10!
re
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for n andh critical exponents and theg4 cumulant. We see
thatLmin516 fulfills our dots-neglecting criterium forg4 and
h. For n, Lmin58 is found to be enough. Our final values a

n50.6837~24!~29!,

h50.0374~36!~9!, ~21!

g450.673~7!~2!,

where the first error is statistical while the second is due
the uncertainty inv. From Eq.~21! we obtain

a520.051~7!~9!,

b50.3546~18!~10!, ~22!

g51.342~5!~5!.

For the computation of the statistical error inb and g we
take into account that the statistical correlation between
and h has turned out to be negligible. The agreement w
experimental measures ofn andg ~see Table I! is very good.

In Fig. 4 we showQ]bj as a function ofv for all the
dilutions. We also plot the corresponding values for the p
Ising model. The solid lines correspond to the joint fit f
Lmin58 using the data fromp<0.8. Notice that the data ar
strongly anticorrelated, therefore the apparentx2 on the plot
is larger that the real one, computed with the full covarian
matrix. An analogous fit forg2 is shown in Fig. 5. We re-
mark that thep50.9 data are pointing to a~maybe! too-low
value. This is another signature of the crossover from
Ising fixed point (g250) to the diluted one.

It is interesting to compare the values forg4 andg2 with
those obtained in four dimensions:3

g450.32455,

g250.31024.

Finally, we can compute the infinite volume critical co
plings by studying the crossing points of scaling functio
~asj/L andg4! measured in lattices of sizesL andsL. Let
Dbc

L ,Dpc
L be the deviation of these crossing points from t

infinite-volume critical couplings. The expected scaling b
havior is37

Dbc
L ,Dpc

L}
12s2v

s1/n21
L2v21/n. ~23!
o

h

e

e

e

s

-

In Table V we present the crossing points ofj/L andg4 for
the (L,2L) pair for all the dilutions simulated. We find agai
that an infinite volume extrapolation is needed in order
extract the critical couplings.

Using Eq.~23! for s52 we perform a joint fit for both
scaling functionsg4 and j/L. For this fit we takev11/n
51.83(6). Thefinal results for the different dilutions studie
are shown in Table VI, where two values forLmin are used.
Let us remark that our critical couplings are compatible w
the results in Ref. 18 @bc

p50.850.28578(4), bc
p50.9

50.24933(3)#. But we definitely do not agree with the valu
bc

p50.850.285 760 9(4) quoted in Ref. 19. This is not su
prising as in this work the corrections-to-scaling are not c
sidered.

VII. CONCLUSIONS

We have shown, beyond the low-disorder limit, that t
diluted Ising model is in the basin of attraction of a sing
fixed point. Therefore, if randomness is to be modelized w
Eq. ~2!, the critical exponents of an Ising system are n
those of the pure Ising model, but those of the random fix
point ~although this may be fairly hard to show in a ve
pure sample!. To establish this result we have simulated in
very wide dilution range, finding a consistent pictureonly
after an infinite volume extrapolation. Thep50.9 data seem

TABLE VI. Infinite volume critical couplings estimations fo
the studied dilutions. The first error bar corresponds to the statis
fit error, the second one~almost negligible! is due to the uncertainty
in v11/n exponent. For this table we usev11/n51.83(6).

Lmin x2/dof pc bc

16 0.11/3 0.394816~11!~2! 0.852
32 0.04/1 0.394821~22!~7! 0.852

16 2.93/3 0.499413~9!~1! 0.543
32 0.78/1 0.499394~17!~4! 0.543

16 5.27/3 0.65 0.370166~5!~1!

32 1.53/1 0.65 0.370156~8!~0!

16 5.41/3 0.8 0.2857421~30!~0!

32 0.27/1 0.8 0.2857368~47!~5!

16 8.45/3 0.9 0.2492905~19!~0!

32 0.03/1 0.9 0.2492880~30!~5!
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however, to be still crossing over from the pure Ising fix
point to the diluted one in lattices as large asL5128.

We obtain the values of the critical exponents and univ
sal cumulants eliminating the systematic errors coming fr
the leading corrections-to-scaling terms. The previous M
computations did not consider these terms and were not
to control the corresponding systematic effects. Incidenta
most of the computations have been carried out atp50.8 as
in this case the scaling corrections are very small, and
results in small lattices seem stable. However, even in
case the lack of an extrapolation produces an underest
tion of the errors.

The ~dilution-independent! critical exponents are show
to be in good agreement with the series estimates.9–11 The
corrections-to-scaling exponentv is measured with a 16%
error and is found to be in quantitative agreement with
perturbative estimate.9 The smallness of this exponent e
plains why this problem is so hard to attack numerically.
fact, the total computer time devoted to this work has be
about five Intel Pentium-Pro years. As we had already sho
s

r-

C
le
,

e
is
a-

e

n
n

in four dimensions,3 diluted Ising models are found not to b
self-averaging at criticality in three dimensions~see Ref. 19
for an independent verification in three dimensions!. This is
proved by showing that the quotient between the sam
variance of the susceptibility and its mean value tends in
thermodynamic limit to a nonzero constant independen
the dilution ~it is a renormalization-group invariant!. This
quotient is measured with a 4% accuracy after the infin
volume extrapolation.
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