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Phase transitions induced by easy-plane anisotropy in the classical Heisenberg antiferromagne
on a triangular lattice: A Monte Carlo simulation

Luca Capriotti*
Dipartimento di Fisica dell’Universita` di Firenze and Istituto Nazionale di Fisica della Materia (INFM), Largo E. Fermi 2,

I-50125 Firenze, Italy
and Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, 34013 Trieste, Italy

Ruggero Vaia†

Istituto di Elettronica Quantistica del Consiglio Nazionale delle Ricerche, via Panciatichi 56/30, I-50127 Firenze, Italy
and Istituto Nazionale di Fisica della Materia (INFM), Largo E. Fermii 2, I-50125 Firenze, Italy

Alessandro Cuccoli‡ and Valerio Tognetti§

Dipartimento di Fisica dell’Universita` di Firenze and Istituto Nazionale di Fisica della Materia (INFM), Largo E. Fermi 2,
I-50125 Firenze, Italy

~Received 14 November 1997; revised manuscript received 16 December 1997!

The antiferromagnetic classicalXXZ model with easy-plane exchange anisotropy on the triangular lattice,
which causes frustration of the spin alignment, is studied by means of Monte Carlo simulations. The system
shows the signature of a Berezinskii-Kosterlitz-Thouless transition, associated with vortex-antivortex unbind-
ing, and of an Ising-like one due to the chirality, the latter occurring at a slightly higher temperature. Data for
internal energy, specific heat, magnetic susceptibility, correlation length, and some properties associated with
the chirality are reported in a broad temperature range for lattice sizes ranging from 24324 to 1203120; four
values of the easy-plane anisotropy are considered. Moving from the strongest towards the weakest anisotropy
~1%!, as the thermodynamic quantities tend to the isotropic model behavior, the two transition temperatures
decrease by about 25% and 22%, respectively.@S0163-1829~98!00725-5#
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I. INTRODUCTION

The critical behavior of classical two-dimensional~2D!
frustrated models has raised the interest of several scien
in recent years. Popular realizations of such models are
Heisenberg1–3 and theXY ~Refs. 4 and 5! antiferromagnet on
a triangular lattice, as well as the fully frustratedXY model
on the square lattice;6,7 the role of frustration shows up in th
particular nature of the order parameter in the first one,
in the presence of two kinds of symmetry in the other two.
the triangular-lattice models the minimum energy configu
tion ~say, the ground state! is a ferromagnetic arrangement
the spins in each of three sublattices, with a relative rota
of 120° between each other. The three vertices of each la
plaquette belong to different sublattices, and it is possible
associate to each plaquette a vector, the chirality, which
fines the rotation of the spin direction around the plaque
In the XY case the~staggered! chirality turns into a scalar
order parameter whose sign distinguishes between two
generate ground states.

In this paper we consider theXXZ triangular antiferro-
magnet~TAF!, a system that shares the symmetry of theXY
model but is a more realistic description of a spin syste
Indeed, the ability to treat three-dimensional spins is a n
essary step for studying the corresponding quantum sys
by means of semiclassical approaches.8–11 In the XXZ TAF
the easy-plane anisotropy results in a double degenerac
the ground state. This model is thus expected to belong to
universality class of the frustratedXY model. A very fasci-
PRB 580163-1829/98/58~1!/273~9!/$15.00
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nating aspect of the thermodynamics of such a system is
it has two order parameters, the~in-plane! magnetization and
the chirality, with two distinct symmetry groups, continuo
SO~2! rotations and discreteZ2 lattice reflections, respec
tively. This has surprising consequences in view of t
Mermin-Wagner theorem12 that can be applied only in the
first case to infer that the magnetization must vanish
any finite temperature, leaving the possibility
Berezinskii-Kosterlitz-Thouless13 ~BKT! critical behavior as-
sociated with the rotation symmetry in thexy plane, while
long-range order and an Ising-like phase transition are
lowed for the chirality. This rich structure was observed
Monte Carlo~MC! simulations for theXY model. However,
it was not clear whether the two transitions are distinct, w
an intermediate phase, or they are manifestations of a
universality class in which the two transition temperatu
could be molten in a single multicritical point: from ear
numerical simulations4,5 they turned out to be weakly differ
ent, but in view of their uncertainty no firm conclusion
could be inferred. Very recently, high-precision MC studi
of the XY TAF model and of its Villain version were re
ported by Olsson,7 who established that the BKT transitio
occurs at a temperature;121.4 % lower than the Ising-like
one.

The results we find for theXXZ TAF are qualitatively
similar to those known for theXY TAF, for any anisotropy
strength considered, even close to the isotropic limit. T
observed changes reflect the enhanced spin fluctuations
from the easy plane and the crossover towards the isotr
limit. The features of both the Ising-like and the BKT tra
273 © 1998 The American Physical Society
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274 PRB 58CAPRIOTTI, VAIA, CUCCOLI, AND TOGNETTI
sition shift to lower temperatures. Although the numeric
uncertainty is not much smaller than their difference, fro
our simulations the BKT critical temperature turns o
slightly smaller than the other one, systematically for all a
isotropy values.

In Sec. II we introduce theXXZ model and its ground
state, discussing the connections with the correspondingXY
model and its critical behavior. In Sec. III the MC simulatio
algorithm is described and the definitions of the calcula
thermodynamic quantities are given. Eventually, in Sec.
the MC results are reported, generally for four different v
ues of the anisotropy constant, and analyzed for their crit
behavior and the finite-size effects. Conclusions are bri
drawn in Sec. V.

II. THE XXZ MODEL

We consider the classicalXXZ Hamiltonian

H5
J

2(i,d ~si
xsi1d

x 1si
ysi1d

y 1lsi
zsi1d

z !, ~1!

where J is the positive~antiferromagnetic! exchange con-
stant, and (si

x ,si
y ,si

z) are the Cartesian components of unita
vectors, the classical spins, sitting on the sites$ i% of a two-
dimensional triangular lattice. The interaction is restricted
nearest neighbors andd runs over their relative displace
ments (udu51). The planar character of the system is due
the presence of the constantlP@0,1), which weakens the
interaction of thez spin components, energetically favorin
configurations with the spins lying in thexy plane ~easy
plane!.

The ground-state configuration of Eq.~1! consists of co-
planar spins forming 62p/3 angles between neare
neighbors.14 In contrast to the isotropic case, where the pla
in which the 2p/3 structure lies can take any direction
spin space, in theXXZ model such structure must take pla
in the easy plane. In any case this leads to aA33A3 periodic
ground state. It appears that, besides the SO~2! degeneracy,
the frustration causes an additional twofold degeneracy
the ground state, which is due to chirality~or helicity!, de-
fined as the sign of rotation of the spins along the sides
each elementary triangle; i.e., the whole degeneracy co
sponds to the group SO(2)3Z2.

As has been pointed out by Leeet al.,5 the existence of
the extra degeneracy of the ground state allows the 2D f
tratedXY model to support, in addition to spin waves a
vortices, a third type of elementary excitation associated w
domain-wall formation between regions with opposite st
gered chirality~solitons!. The first two are responsible fo
the loss of orientational order with increasing temperatu
while the latter causes the destruction of chirality ord
Then, the thermodynamics is characterized by the interp
of these three types of elementary excitations.

The ground state of the three sublattices consists of fe
magnetically aligned spins, the interaction between thos
the same sublattice being mediated by the spins of the o
two. Thus the physics of the three sublattices is expecte
be similar to the physics of the whole lattice in theXY un-
frustrated models and a BKT topological transition becom
plausible.13 Besides, since lattice reflection is a discrete sy
l
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metry, the system can have long-range chirality order a
nite temperature without violating the Mermin-Wagn
theorem12 and an order-disorder Ising-like transition is e
pected.

Whether the two transitions are very close but distin
each conserving the proper critical exponents, or they me
a single phase transition that has both Ising and BKT ch
acter in a possible new universality class, is an open prob
also shared by the other realizations of the so-called fu
frustratedXY model, which are generally believed to hav
similar critical behavior.7

It is well known15–18 that the unfrustratedXXZ model
shows the BKT transition, as does theXY model, at finite
temperature for every value of the anisotropy constanl
,1 ~no matter how close to 1!. Likewise, it is at least plau-
sible that the order-disorder transition of the chirality is a
present in the frustratedXXZ model forl,1, i.e., as far as
the system shows a planar character and its ground state~the
2p/3 structure of the ground state being forced to lie in t
xy plane! has the twofold additional degeneracy.

III. MONTE CARLO SIMULATION

We performed standard MC simulations on triangular l
tices of sizeL3L ~along the primitive vector directions!,
containingN5L2 sites and 2N elementary triangles, with
periodic boundary conditions.L was between 24 and 120
multiples of 3 have been chosen forL to preserve the
ground-state translation symmetry. In order to reduce
MC correlation time, a combination of Metropolis19 and
overrelaxed algorithms was used,20,21 as in previous studies
of the XXZ model on the square lattice.18 Typical runs
sampled 30 000 configurations. Since to our knowledge,
data are available for theXXZ TAF model, the simulation
code we developed was checked in the isotropic case,
which we got results in complete agreement with those
ported in the literature.1,3 The uncertainties reported in th
following are statistical errors, estimated in the standard w
from the quadratic fluctuations of the corresponding obse
able. The effects of correlations were included by multip
ing the pure statistical errors byA2t, t being the correlation
time deduced from the analysis of the sequence of
sampled data for that observable.22

We evaluated several thermodynamic quantities in or
to observe the effects of the destruction of chirality ord
such as internal energy, specific heat, chirality, and its s
ceptibility. On the other hand, spin-correlation function
correlation length, and susceptibility were calculated to
vestigate the presence of a BKT transition.

The definition of the chirality, that is, the sign of rotatio
of spins on the elementary triangle in the ground-state c
figuration, is usually generalized1,4 to finite temperatures a
follows:

kr5
2

3A3
~s13s21s23s31s33s1!, ~2!

where 1, 2, and 3 are the corner sites of the elementary
centered at the dual-lattice vectorr , always~for both upward
and downward triangles! ordered in the same way~for ex-
ample, counterclockwise!. Unlike theXY model where, be-
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PRB 58 275PHASE TRANSITIONS INDUCED BY EASY-PLANE . . .
cause the spins are confined in thexy plane, it has only the
component along thez axis, in theXXZ model the chirality
is a true vector. It is normalized to 1 for a complete 2p/3
structure, when it has only thez component that can take th
values61, as an Ising spin. At any finite temperature t
length ofkz compared to that of the other two componen
gives a measure of the rigidity of the 2p/3 structure, and can
be taken as the order parameter. During the simulations
calculated the staggered chirality, defined as

k5
1

2N K U(
r

~2 !rk r
zU L , ~3!

where the factor (2) r assumes the values61 for downward/
upward triangles, respectively.

Also interesting is the susceptibility associated with st
gered chirality along thez axis, calculated as

xk5
1

4NF K U(
r

~2 !rk r
zU2L 2K U(

r
~2 !rk r

zU L 2G . ~4!

On the other hand, the sublattice in-plane spin susce
bility was computed as the average of the sublattice squ
magnetization,

x5
1

2 (
a5x,y

1

N (
L5A,B,C

K S (
iPL

si
aD 2L , ~5!

since the average magnetization in the thermodynamic l
is 0. Such a definition retains its value in investigating t
divergence ofx also for finite lattice simulations, becaus
even if different from 0, the missing term in Eq.~5! is well
behaved and negligible in the critical region. Alternative
the same information can be also obtained from the t
k-dependent susceptibility,

x~k!5
1

2 (
a5x,y

1

N K U(
i

si
aeik• iU2L , ~6!

taken at the ordering wave vectorK , i.e., one of the six
vectors pointing towards the corners of the first Brillou
zone of the whole lattice; for example,K5(4p/3,0). A
straightforward calculation shows indeed that the sublat
susceptibility, defined in Eq.~5!, and the total one satisfy th
following relation:

x~K !5 3
2 x2 1

2 x~k50!, ~7!

wherex(k50) is 0 att50, and is small with respect to th
first, also near to the critical point.

The spin-correlation length is defined assuming
asymptotic exponential decay form of the in-plane sp
correlation functions,

C~n!5^si
xsi1n

x 1si
ysi1n

y &}e2n/j, ~8!

with i and i1n belonging to the same sublattice, and lar
values ofn. Even if a direct fit of the two-point correlation
function ~8! can be used, we adopted a faster and more r
able method to evaluatej. This can be achieved translatin
Eq. ~8! in reciprocal space. In fact, the asymptotic expon
tial decay in real space is associated with the Ornst
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Zernicke form of the Fourier transform of the~full lattice!
spin-correlation function, i.e., thek-dependent susceptibility
x(k), behaving as

x~K1k!}
1

k21j22
, ~9!

for small values of the wave vectork. Since the first Bril-
louin zone of the finite lattice is discrete, it is not possible
take arbitrarily small values ofk: we used a fit with the first
four shells aroundk50. An alternative way we used was t
extract the value ofj using just the smallest availablek:

j5
1

k1
F x~K !

x~K1k1!
21G1/2

, ~10!

with, e.g.,k15(0,4p/LA3).

IV. RESULTS AND COMMENTS

A. Thermodynamic behavior

We performed simulations on theXXZ model for values
of l50, 0.5, 0.9, 0.99, ranging from the strongest easy-pl
anisotropic case to the quasi-Heisenberg case. The isotr
model was also considered not only to compare the result
our simulation code with the data reported in the literature1–3

but also to check the consistency of the quasi-Heisenb
limit.

The internal energy per spine5^H&/N for the XXZ
model with l50 is reported in Fig. 1 as a function of th
reduced temperaturet. For comparison, data for theXY
model taken from Ref. 4 and for the isotropic model are a
shown. It is evident from the figure that the qualitative b
havior of the internal energy is quite different in the isotrop
and planar cases. In fact, in the latter cases the internal
ergy presents a narrow region in which size dependenc
apparent, and the slope becomes steeper the larger the l

FIG. 1. Internal energy for theXX0 model for lattice sizesL
524 ~circles!, L536 ~diamonds!, L548 ~down triangles!, L560
~up triangles!, andL5120 ~squares!. Data for theXY model with
L530, taken from Ref. 4~full squares!, and for the isotropic case
with L560 ~crosses!, are also shown for comparison. The data
the small dotted frame (tP@0.4,0.445# andeP@20.98,20.84#) are
magnified in the inset in order to emphasize the size dependen
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276 PRB 58CAPRIOTTI, VAIA, CUCCOLI, AND TOGNETTI
size. Instead, the behavior of the same quantity in the iso
pic case is smoother and only with a weak size depende
~not shown in the figure!. In the low-temperature region th
internal energy, according to the spin-wave approximat
and the equipartition theorem, is linear int. While in theXY
model the internal energy starts from the ground-state va
e0523/2 with slope 1/2, in the other two cases the slope
1 because of the different number of degrees of freedom:
per spin in the former, two in the latter cases. Increasing
temperature, the excitation of the out-of-plane componen
the spins becomes more and more important and cause
different behavior between the isotropic and theXX0 case.
Similar behavior is observed for all the values oflÞ0 con-
sidered.

The specific-heat data are reported in Fig. 2 for all
values ofl ~including the isotropic case!. For lÞ1 the spe-
cific heat shows the signature of a divergence, which is
important feature of the frustrated planar antiferromagn
also present in theXY case~the corresponding peak, take
from Ref. 5, is shown in the figure on the top!. As l→1 the
peak and the size dependence of its height become less
less pronounced, until, in the isotropic limit, no divergence
all is observed. The size dependence of the peak heig
shown in Fig. 3, forl50, 0.9, and 0.99. It suggests a log
rithmic divergence withL, just as in the two-dimensiona
Ising model.23

The critical behavior associated with the order-disor
transition can be also observed in the staggered chirality
in its susceptibility, defined in Eqs.~2!, ~3!, and ~4!, and
shown in Fig. 4 forl50. At quite low temperatures th
system displays chirality order, witnessed by the high va
of k. As the temperature rises, the number of cells with sm
chirality increases, and domains with opposite stagge
chirality develop in the lattice. This leads to a sharp drop
the chirality and to the divergence of the chiral susceptibi
at tc.0.41 .

The transition is also shown by the behavior of the cor
lation function of the staggered chirality, namely,

Ck~R!5^~2 !Rk r
zk r1R

z &, ~11!

R being one of the Bravais vectors of the dual lattice. This
shown in Fig. 5 forl50, L560, and several temperature
A low-temperature phase in which the system is comple
correlated is evident fort&0.42. Increasing the temperatur
the correlation functions fall off exponentially. Of course
is hard to extract from the correlation functions an accur
estimate of the critical temperature since, approachingtc
from above, when the correlation length becomes larger t
the sampled lattice size, the system behaves as if it w
correlated, even if, in the thermodynamic limit, it may n
be. However, we can approximately locate the critical
gion, forl50, betweent50.4 andt50.42, which is consis-
tent with the behavior of the specific heat, the chirality, a
its susceptibility.

Let us turn now to the rotational degrees of freedom. W
recall that the peculiarities of the BKT transition can be su
marized as follows.13,18First of all, according to the Mermin
Wagner theorem, the system does not show any finite m
netization in absence of an applied magnetic field at ant
Þ0 below and above the transition temperaturetBKT . Al-
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though the system cannot display long-range order, be
the critical temperature it is characterized by quasi-lon
range order, whose macroscopic consequence is the po
law decay of the correlation functions of the in-plane sp
components,

C~n!5^si
xsi1n

x 1si
ysi1n

y &}
1

nh
, ~12!

FIG. 2. Specific heat for theXXZ model for the reported value
of l and different values ofL. In the top graph the specific hea
observed in theXY model for L572, taken from Ref. 5, is also
shown~crosses!. Open symbols as in Fig. 1.
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PRB 58 277PHASE TRANSITIONS INDUCED BY EASY-PLANE . . .
where the critical exponenth is a function of temperature
and assumes the universal value ofh51/4 at tBKT . This
quasi-long-range order is not destroyed by the excitation
vortex-antivortex pairs until when, raising the temperatu
the pairs unbind and the system undergoes a transition
disordered phase with exponentially decaying correlat
functions. The in-plane correlation length and susceptibi

FIG. 3. Maximum of the specific heat as a function ofL for l
50 ~circles!, 0.9~diamonds!, and 0.99~triangles!. The straight lines
are guides for the eye.

FIG. 4. Staggered chirality~a! and chiral susceptibility~b! for
l50 and various values ofL as functions of temperature. Symbo
as in Fig. 1.
of
,
a

n
y

both diverge exponentially fort→tBKT
1 ,

j}aj ebj~ t2tBKT!21/2
, ~13!

x}ax ebx~ t2tBKT!21/2
~14!

@wherex(K ) can also be taken forx# and are infinite fort
<tBKT . These properties were also observed in theXY
TAF,4,5 which shares a similar low-temperature phase w
the ferromagnetic counterpart, if the sublattice magnetiza
of the former replaces the uniform magnetization of the l
ter; for example, the low-temperature phase is well descri
by Eq. ~12!, wherei and i1n belong to the same sublattice

Another important property of the BKT transition in un
frustrated planar systems is the behavior of the specific h
which displays a maximum slightly above the transition te
perature@usually att.(1.121.2)tBKT ~Ref. 18!#. However,
this maximum cannot be observed in frustrated pla
systems,4,5 where it is hidden by the divergence connect
with the chirality transition.

Figure 6 displays the correlation functions of the in-pla
spin componentsC(n) for l50.9 and various temperature
for L5120. Fittings against Eqs.~12! and~8! are also shown
in the figure. The data fort50.32 andt50.35 can be fitted
only by the power law, while fort50.36 andt50.4 the
exponential decay fits best: given the rather large lattice s
it can be reasonably argued that the critical tempera
tBKT(l50.9) is located in betweent50.35 andt50.36. As
already noticed, it is difficult to extract accurate informatio
abouttBKT from the correlation functions since it is not po
sible to discriminate between the high- and low-temperat
predicted behavior unless data for lattice sizesL.j are
available, a requirement that cannot be achieved close to
critical temperature.

As already said, the methods we used to extract the va
of the correlation lengthj were the fit, according to Eq.~9!,
of the total in-planek-dependent susceptibilityx(k) around
one of the ordering wave vectorsK , or, alternatively, the use
of Eq. ~10!. We recall that the correlation length of the infi
nite system~above tBKT) is well defined by Eq.~8!; for a

FIG. 5. Chirality correlation function forl50, L560, and vari-
ous temperatures:t50.3 ~full circles!, t50.4 ~full triangles!, t
50.42 ~full diamonds!, t50.44 ~circles!, t50.5 ~triangles!, t50.6
~diamonds!.
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finite system, the same is still true for temperatures and
tice sizes large enough that the finite-size effects are ne
gible; otherwise Eq.~10! can be considered anad hocdefi-
nition of j. Provided thatj&L/6, the values of correlation
length we got by the two methods were the same within
uncertainties. When finite-size effects become relevant,
results differ from each other of about 4–8 %, the fi
method being less reliable since Eq.~9! is valid for j2k2

!1, a condition which cannot be satisfied beyond the w
vectors closest toK , as can be seen in Fig. 7: the values oj
reported in Fig. 8, forl50, are those obtained in the seco
way. The correlation length belowtBKT , as well as in a

FIG. 6. Spin-correlation function forl50.9,L5120 and differ-
ent temperatures:t50.32 ~full triangles!, t50.35 ~full diamonds!,
t50.36 ~circles!, and t50.40 ~squares!. Lines are best fits agains
Eq. ~12! ~dashed lines! and Eq.~8! ~full lines!. All fitting functions
were properly symmetrized to take into account the periodic bou
ary conditions applied to the simulated finite-size lattice.

FIG. 7. x(K1k)21 againstk2, for l50.9 andL5120, at dif-
ferent temperatures:t50.35 ~open circles!, 0.36 ~diamonds!, 0.37
~down triangles!, 0.38~up triangles!, and 0.40~squares!. The maxi-
mum value of k2, for the chosen set of wave-vector shells,
(4p/A3)23(7/L2).0.0256, so that a linear behavior~full lines!
againstk2 is expected untilj2(t)!1/0.0256.39. Indeed, this is not
the case fort50.35, whenj.90 and the linear fit fails. The dashe
line is a guide for the eye.
t-
li-

e
e

t

e

neighborhood above it, has been evaluated just to ch
where finite-size effects become relevant and in order
verify the finite-size scaling lawj}L.

Figure 9 shows the in-plane (x) and out-of-plane (xzz)
sublattice susceptibilities, defined in Eq.~5!, as functions of
temperature, for different values ofl and of the lattice sizes
As expected, the susceptibility displays finite-size effe
like the correlation length and the rule of thumbj&L/6 for
neglecting such effects also applies. The behavior of the
of-plane sublattice susceptibilityxzz, shown in the same fig-
ure, is also an interesting feature of the BKT transition, a
present in theXXZ model on bipartite lattice,18 which, of
course, has no counterpart in theXY models. As expected
the absolute magnitude ofxzz increases asl increases, the
system becoming more isotropic and the out-of-plane fl
tuations becoming easier. However, for every value ofl
Þ1, the easy-plane character of the system prevails at
temperatures and fort→0, xzz→0; on the other hand, in the
opposite limit, the effects of the anisotropy of the intera
tions disappear, all spins can fluctuate independently fr
each other, and both the in-plane and out-of-plane susce
bilities approach the common value 1/3. Starting from t
high-temperature limit, and coming to lower temperaturesx
increases whatever the value oflÞ1 is, ending to diverge a
tBKT ; of course, the smaller the anisotropy, the longerxzz

follows the behavior ofx. The result is that, asl→1, xzz

develops a sharper and sharper maximum.

B. Critical temperatures

1. Order-disorder transition

As we have seen in the previous sections, the behavio
the specific heat, chirality, and its susceptibility as functio
of temperature indicates the presence of an Ising-like ph
transition connected with the loss of chirality order for eve
value of l,1 considered. Those thermodynamic quantit
allow us to estimate immediately, at least approximately,
corresponding critical temperaturestc , since the transition
appears rather sharp for all the values ofl. A finite-size

d-

FIG. 8. In-plane correlation lengthj for the XX0 model as a
function of temperature for different simulation box sizes. In t
lower part j/L is reported to show the finite-size scaling belo
tBKT . Symbols as in Fig. 1.
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scaling analysis of these data shows that the features of
phase transition are consistent with two-dimensional Is
exponents.

In Fig. 10,kLb/n is reported, forl50 andtc50.412, as a
function of the reduced variablex5tL1/n, where t is
12t/tc for t,tc and 12tc /t otherwise.5,24 According to the
scaling hypothesis, close to the infinite-latticetc the order
parameterk is given by

k5L2b/n f ~x!, ~15!

FIG. 9. In-plane~open symbols! and out-of-plane~full symbols!
susceptibilities as functions of temperature for the values ofl re-
ported in each figure. Different symbols refer to the simulation b
sizes as in Fig. 1.
ch
g

where, since forL→` the power-law singularities are to b
reproduced, the limiting form of the functionf (x) for x
→` and t,tc is

f ~x!}xb. ~16!

Therefore, reporting as in Fig. 10kLb/n vs x, the data for the
various lattice sizes do collapse onto a single curve, which
of course,f (x) if the values oftc , b, andn are correct. In
the present case using the critical exponents of the t
dimensional Ising model,n51 and b51/8, a good agree-
ment with the finite-size scaling law is obtained. Belowtc the
large-x behavior reproduces the correct critical behavi
which, in a double-logarithmic scale, is represented by a
with slopeb51/8. Abovetc the asymptotic behavior show
the 1/L decay of the order parameter24 as L→` which
means, according to Eq.~15!, f (x)}xb21. This corresponds
to the line with slope27/8 in the figure. In this way it has
been possible to give the estimates of the critical tempera
reported in Table I.

2. BKT transition

In order to estimate the critical temperature associa
with the BKT transition we relied on two methods: first, th
fit of the correlation length and the in-plane susceptibil
with Eqs. ~13! and ~14!, using the MC data that are repre
sentative for their thermodynamic limit, i.e., fort*tBKT , and
second, we used the finite-size scaling law

x

FIG. 10. Finite-size scaling analysis for the staggered chiralitk
for l50. Ising exponentsb51/8 and n51 are used. Different
symbols refer to the simulation box sizes as in Fig. 1.

TABLE I. Critical temperaturetc associated with the chirality
phase transition and BKT transition temperature. The latter is
tained by fitting the in-plane correlation lengthj(t) and the in-plane
susceptibilityx against Eqs.~13! and ~14!.

l tc tBKT (j fit! tBKT (x fit!

0.00 0.4126 0.005 0.4026 0.002 0.4036 0.001
0.50 0.4006 0.005 0.3916 0.002 0.3886 0.003
0.90 0.3556 0.005 0.3456 0.006 0.3446 0.002
0.99 0.3206 0.005 0.3066 0.008 0.3056 0.009
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x}L22h~ t !, ~17!

which is valid for t&tBKT , to obtain the scaling exponen
h(t), which satisfies h(tBKT)51/4. Notably, the latter
method makes use of a different and independent data s
should be noticed that recent works25 have shown that the
scaling given in Eq.~17! is subjected to logarithmic correc
tions, predicted and detected by high-precision data,
could affect the determination of the exponenth. However,
in view of the lattice sizes and of the numerical accurac
we deal with here, they cannot show up from our analys

Concerning the first method, we have tested for BKT b
havior, i.e., with Eqs.~13! and ~14!, both the correlation
length j(t) and the susceptibilityx(t). As said above, in
doing this only the reliable estimates of the thermodynam
limit of these quantities were kept, after the criterionj(t)
&6L, in order to discard the data affected by finite-size
fects. Of course, this has prevented us from obtaining us
estimatesj(t) andx(t) for t close to the transition tempera
ture, due to the large amount of computer time required
simulate large systems. Indeed, when simulating a larger
tice, besides the increase of the time needed for any m
(}N5L2), we must also face the increase of MC fluctu
tions and correlation time, so that much more sample c
figurations should be generated in order to keep uncertain
at a reasonable level. This would imply resorting to larg
scale simulations, which is well beyond our purposes. T
results for the BKT transition temperatures from the fits
the representative data are also summarized in Table I; s
x(t) is a direct outcome of the MC simulation, its values a
the consequently fitted values oftBKT can be more accurat
than those forj(t), which must indeed be derived by fittin
the MC outcomes for thek-dependent susceptibility. Th
uncertainties account both for the statistical error and for
instability of the fit against exclusion of the data points at
lowest temperature, wherej(t);L/6.

As for the use of Eq.~17!, in actual numerical calculation
it holds also slightly abovetBKT , whenL is still smaller than
the thermodynamicj and the system is already correlated.
fact this scaling relation allows us to give an estimate of
parameterh(t) and, by looking at which temperature suc
quantity attains the value 1/4, to have an independent ch
of the estimated critical temperature. In Fig. 11,x/L7/4 is
plotted on a doubly logarithmic scale as a function of t
lattice sizeL for l50.50. The data fall clearly on a straigh
line for t<0.40, the slope of the lines being the correspo
ing values of 1/42h; they already depart from linearity, in
stead, fort50.41. The values for the quantity 1/42h we
obtain by fitting the susceptibility data with Eq.~17! are
reported, for the various values ofl considered, in Table II.
By interpolation, the values oftBKT appearing in the fourth
column can be computed. These data agree reasonably
with those obtained by fittingj and x with Eqs. ~13! and
~14!, shown in Table I; the trend to a slight overestimation
tBKT for the higher values ofl was already observed for th
square-lattice case in Ref. 18.

For every value ofl the critical temperaturetc is signifi-
cantly higher than the BKT transition temperaturetBKT , al-
though their difference is not much larger than the uncerta
ties. Also in this respect the situation is similar to that of t
XY TAF, where there is no agreement in the literature
. It
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whether a single or a double phase transition takes pl
Nevertheless, the fact thattc*tBKT for all values ofl in a
systematic way, makes it unlikely that the difference cou
just be due to statistical errors.

V. CONCLUDING REMARKS

We have performed Monte Carlo simulations of the tw
dimensionalXXZ model on a triangular lattice at differen
values of the easy-plane anisotropy constantl. For every
value ofl considered, the situation appears quite similar
that observed in theXY triangular antiferromagnet, wher
frustration induces an order-disorder transition, associa
with the twofold additional degeneracy of the ground sta

FIG. 11. In-plane susceptibility overL7/4 vs L, for l50.5, at
different temperatures around the critical one:t50.30 ~squares!,
0.38 ~up triangles!, 0.39 ~down triangles!, 0.40 ~diamonds!, and
0.41 ~circles!.

TABLE II. Scaling exponenth(t) as obtained by direct finite-
size scaling analysis of the in-plane susceptibility data accordin
Eq. ~17!. The values oftBKT given in the fourth column are obtaine
by interpolation of the functionh(t) at the pointh51/4.

l t 1/4 - h tBKT

0.00 0.300 0.16560.002
0.400 0.05460.005
0.405 0.05160.007
0.410 20.0660.01 0.4076 0.003

0.50 0.300 0.165460.0007
0.380 0.0960.04
0.390 0.05260.008
0.400 20.2560.03 0.3916 0.005

0.90 0.300 0.148660.0005
0.320 0.1360.06
0.340 0.06860.008
0.350 0.0060.01 0.3506 0.005

0.99 0.200 0.20460.009
0.300 0.13160.02
0.310 0.0860.01
0.315 20.0260.01 0.3146 0.002
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and a BKT transition connected with the sublattice in-pla
orientational ordering. The critical behavior turns out to
consistent with an Ising transition, for the internal ener
specific heat, chirality, and the associated susceptibi
while it is consistent with a BKT transition with respect
the in-plane correlation length and susceptibility. The va
of both the critical temperatures decreases with the ani
ropy strength, as shown in Table I; this is consistent with
fact that the critical behavior observed is connected with
planar character of the system, and that both the chirality
the orientational quasiordering are disturbed by the out
a
s

a

,

.

v

e

,
y,

e
t-
e
e
d

f-

plane fluctuations of the spins, which, at a fixed temperatu
increase with the value ofl. For the same reason the phas
transition in theXX0 model takes place at a temperaturet
.0.403) that is sensibly lower than that observed in theXY
model (t.0.505), where the spins are confined in thexy
plane. As for the question of whether a single or two pha
transitions are occurring, our results for the transition tem
peratures~Table I! support the second hypothesis, consiste
also with the most recent high-precision MC simulations o
the fully frustratedXY model,7 where the existence of a new
universality class is ruled out.
,

.
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