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on a triangular lattice: A Monte Carlo simulation

Luca Capriottt
Dipartimento di Fisica dell'Universitadi Firenze and Istituto Nazionale di Fisica della Materia (INFM), Largo E. Fermi 2,
1-50125 Firenze, ltaly
and Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, 34013 Trieste, Italy

Ruggero Vaia
Istituto di Elettronica Quantistica del Consiglio Nazionale delle Ricerche, via Panciatichi 56/30, I-50127 Firenze, Italy
and Istituto Nazionale di Fisica della Materia (INFM), Largo E. Fermii 2, I-50125 Firenze, Italy

_Alessandro Cuccdliand Valerio Tognetfi
Dipartimento di Fisica dell’'Universitadi Firenze and Istituto Nazionale di Fisica della Materia (INFM), Largo E. Fermi 2,
1-50125 Firenze, ltaly
(Received 14 November 1997; revised manuscript received 16 Decembgr 1997

The antiferromagnetic classicAlXZ model with easy-plane exchange anisotropy on the triangular lattice,
which causes frustration of the spin alignment, is studied by means of Monte Carlo simulations. The system
shows the signature of a Berezinskii-Kosterlitz-Thouless transition, associated with vortex-antivortex unbind-
ing, and of an Ising-like one due to the chirality, the latter occurring at a slightly higher temperature. Data for
internal energy, specific heat, magnetic susceptibility, correlation length, and some properties associated with
the chirality are reported in a broad temperature range for lattice sizes ranging fro@%24 120< 120; four
values of the easy-plane anisotropy are considered. Moving from the strongest towards the weakest anisotropy
(1%), as the thermodynamic quantities tend to the isotropic model behavior, the two transition temperatures
decrease by about 25% and 22%, respectij@0163-18208)00725-5

[. INTRODUCTION nating aspect of the thermodynamics of such a system is that
it has two order parameters, tfie-plane magnetization and
The critical behavior of classical two-dimension@D) the chirality, with two distinct symmetry groups, continuous
frustrated models has raised the interest of several scientisf(2) rotations and discret&, lattice reflections, respec-
in recent years. Popular realizations of such models are théely. This has surprising consequences in view of the
Heisenberg 2 and theXY (Refs. 4 and bantiferromagnet on Mermin-Wagner theoreffi that can be applied only in the
a triangular lattice, as well as the fully frustrat¥ef model ~ first case to infer that the magnetization must vanish at
on the square lattic” the role of frustration shows up in the @y finite temperature, leaving the possibility —of
particular nature of the order parameter in the first one, anderezinskii-Kosterlitz-Thoules3 (BKT) critical behavior as-
in the presence of two kinds of symmetry in the other two. Insouated with the rotation symmetry in thy plangl, while
the triangular-lattice models the minimum energy configura-long'r"’mge order and an Ising-like phase transition are al-

tion (say, the ground statés a ferromagnetic arrangement of lowed for the chlra!|ty. Thls rich structure was observed in
S . . . . Monte Carlo(MC) simulations for theXY model. However,
the spins in each of three sublattices, with a relative rotatio

ri]t was not clear whether the two transitions are distinct, with
of 120° between each other. The three vertices of each Iatticgn intermediate phase, or they are manifestations of ,a hew
plaquette belong to different sublattices, and it is possible t '

- o 3 aniversality class in which the two transition temperatures
associate to each plaquette a vector, the chirality, which d&sqy1q be molten in a single multicritical point: from early
fines the rotation of the spin direction around the plaquette,merical simulatiorf&® they turned out to be weakly differ-

In the XY case the(staggerefi chirality turns into a scalar ent, put in view of their uncertainty no firm conclusions
order parameter whose sign distinguishes between two depuld be inferred. Very recently, high-precision MC studies
generate ground states. of the XY TAF model and of its Villain version were re-

In this paper we consider th¥XZ triangular antiferro-  ported by Olssori,who established that the BKT transition
magnet(TAF), a system that shares the symmetry of ¥  occurs at a temperaturel—1.4 % lower than the Ising-like
model but is a more realistic description of a spin systemone.

Indeed, the ability to treat three-dimensional spins is a nec- The results we find for th&XXZ TAF are qualitatively
essary step for studying the corresponding quantum systegimilar to those known for th&XY TAF, for any anisotropy

by means of semiclassical approacfed.in the XXZ TAF  strength considered, even close to the isotropic limit. The
the easy-plane anisotropy results in a double degeneracy observed changes reflect the enhanced spin fluctuations out
the ground state. This model is thus expected to belong to thigom the easy plane and the crossover towards the isotropic
universality class of the frustrateXlY model. A very fasci- limit. The features of both the Ising-like and the BKT tran-
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sition shift to lower temperatures. Although the numericalmetry, the system can have long-range chirality order at fi-
uncertainty is not much smaller than their difference, fromnite temperature without violating the Mermin-Wagner
our simulations the BKT critical temperature turns outtheoremt® and an order-disorder Ising-like transition is ex-
slightly smaller than the other one, systematically for all an-pected.
isotropy values. Whether the two transitions are very close but distinct,
In Sec. Il we introduce theXXZ model and its ground each conserving the proper critical exponents, or they melt in
state, discussing the connections with the correspondivig a single phase transition that has both Ising and BKT char-
model and its critical behavior. In Sec. Il the MC simulation acter in a possible new universality class, is an open problem
algorithm is described and the definitions of the calculatedalso shared by the other realizations of the so-called fully
thermodynamic quantities are given. Eventually, in Sec. IVfrustratedXY model, which are generally believed to have
the MC results are reported, generally for four different val-similar critical behaviof.
ues of the anisotropy constant, and analyzed for their critical It is well known'>~*8 that the unfrustratecdXZ model
behavior and the finite-size effects. Conclusions are brieflshows the BKT transition, as does tXe¥ model, at finite

drawn in Sec. V. temperature for every value of the anisotropy constant
<1 (no matter how close to)1Likewise, it is at least plau-
IIl. THE XXZ MODEL sible that the order-disorder transition of the chirality is also
present in the frustratedXZ model forA <1, i.e., as far as
We consider the classiclXZ Hamiltonian the system shows a planar character and its ground (stete

2/3 structure of the ground state being forced to lie in the

J xy plane has the twofold additional degeneracy.
H=3S (Sshatselgasishg, @ P generacy
, N _ Iil. MONTE CARLO SIMULATION
where J is the positive(antiferromagnetic exchange con- _ _ _
stant, and§*,s ,s?) are the Cartesian components of unitary ~We performed standard MC simulations on triangular lat-
vectors, the classical spins, sitting on the sidsof a two-  tices of sizel <L (along the primitive vector directions
dimensional triangular lattice. The interaction is restricted tocontainingN=L* sites and R elementary triangles, with
nearest neighbors and runs over their relative displace- Periodic boundary conditiond. was between 24 and 120:
ments (d|=1). The planar character of the system is due tonultiples of 3 have been chosen far to preserve the
the presence of the constani[0,1), which weakens the ground-state translation symmetry. In order to reduce the
interaction of thez spin components, energetically favoring MC correlation time, a combination of Metropdfisand
configurations with the spins lying in they plane (easy overrelaxed algorithms was us&t?! as in previous studies
plane. of the XXZ model on the square latti¢&. Typical runs

The ground-state configuration of E@) consists of co- sampled 30 000 configurations. Since to our knowledge, no
planar spins forming =2x/3 angles between nearest data are available for th&¥XZ TAF model, the simulation
neighbors:* In contrast to the isotropic case, where the plane0de we developed was checked in the isotropic case, for
in which the 27/3 structure lies can take any direction in Which we got results in complete agreement with those re-
spin space, in th&XXZ model such structure must take place ported in the literaturé® The uncertainties reported in the
in the easy plane. In any case this leads 8 \/3 periodic following are statistical errors, estimated in the standard way
ground state. It appears that, besides thé25@egeneracy from the quadratic fluctuations of the corresponding observ-
the frustration causes an additional twofold degeneracy ofPe- The effects of correlations were included by multiply-
the ground state, which is due to chiralitgr helicity), de- g the pure statistical errors by2, 7 being the correlation
fined as the sign of rotation of the spins along the sides ofime deduced from the analysis of the sequence of the

each elementary triangle: i.e., the whole degeneracy corré@mpled data for that observabfe. . o
sponds to the group SO(X)Z,. We evaluated several thermodynamic quantities in order

As has been pointed out by Le al.® the existence of [0 observe the effects of the destruction of chirality order,

the extra degeneracy of the ground state allows the 2D frusiuch as internal energy, specific heat, chirality, and its sus-
trated XY model to support, in addition to spin waves and cept|b|I|Fy. On the other hand,. §p|n—correlat|on funct|on.s,
vortices, a third type of elementary excitation associated wittforrelation length, and susceptibility were calculated to in-
domain-wall formation between regions with opposite stagVeStigate the presence of a BKT transition. _
gered chirality(solitons. The first two are responsible for Th_e definition of the ch|raI|f[y, that_ls, the sign of rotation
the loss of orientational order with increasing temperature®f SPIns on the elementary triangle in the ground-state con-
while the latter causes the destruction of chirality order.iguration, is usually generalizéfito finite temperatures as
Then, the thermodynamics is characterized by the interpla llows:
of these three types of elementary excitations.

The ground state of the three sublattices consists of ferro- _ 5
magnetically aligned spins, the interaction between those of Kr—ﬁ(SiXSQ‘FSzXSg‘FSgXSl), 2
the same sublattice being mediated by the spins of the other
two. Thus the physics of the three sublattices is expected tohere 1, 2, and 3 are the corner sites of the elementary cell
be similar to the physics of the whole lattice in tK&Y un-  centered at the dual-lattice vecigralways(for both upward
frustrated models and a BKT topological transition becomesind downward trianglésordered in the same wafor ex-
plausible'® Besides, since lattice reflection is a discrete sym-ample, counterclockwigeUnlike the XY model where, be-
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cause the spins are confined in the plane, it has only the V4 — T T T ' ' ' T ]
component along the axis, in theXXZ model the chirality — ] ., °
is a true vector. It is normalized to 1 for a complete/3 0.6h o . |
structure, when it has only thecomponent that can take the ) ° .
values*+1, as an Ising spin. At any finite temperature the * .
length of k* compared to that of the other two components  -0.8[ | * . 1
gives a measure of the rigidity of ther23 structure, and can ¢ -
be taken as the order parameter. During the simulations we _; o1 ° . ]
calculated the staggered chirality, defined as | 3
1 az2b f -

":m< 2(—>ff<f>, 3 S
where the factor € )" assumes the values1 for downward/ ] SRR . : . : . : -
upward triangles, respectively. 0.0 0.2 0.4 0.6 0.8 1.0

Also interesting is the susceptibility associated with stag- t

gered chirality along the axis, calculated as

1 22 z
w3 {5 re

FIG. 1. Internal energy for th&X0 model for lattice sized
2 =24 (circles, L=36 (diamond$, L =48 (down triangleg L=60
> } 4 (up triangle$, andL =120 (squares Data for theXY model with
L =30, taken from Ref. 4full square$, and for the isotropic case
o ] with L=60 (crossejy are also shown for comparison. The data of
On the other hand, the sublattice in-plane spin susceptihe small dotted framet € [0.4,0.445 ande e [ —0.98,-0.84)) are
bility was computed as the average of the sublattice squareflagnified in the inset in order to emphasize the size dependence.
magnetization,

) Zernicke form of the Fourier transform of tHé&ull lattice)
- 1 S 1 5@ 5) spin-correlation function, i.e., the-dependent susceptibility
X2 a=xy Na=&sc \|ich ™ ' x(k), behaving as

since the average magnetization in the thermodynamic limit 1

is 0. Such a definition retains its value in investigating the x(K+k)o ——, 9
divergence ofy also for finite lattice simulations, because, k*+¢&

even if different from 0, the missing term in E€p) is well  for small values of the wave vectdr Since the first Bril-
behaved and negligible in the critical region. Alternatively, |ouin zone of the finite lattice is discrete, it is not possible to
the same information can be also obtained from the totajake arbitrarily small values d€: we used a fit with the first

k-dependent susceptibility, four shells around=0. An alternative way we used was to
1 1 ) extract the value of using just the smallest availabke
=5 2 (|2 st ), (6) 1wk 12
2.5, N\|4 g L X (10
kel x(K+ky) ’

taken at the ordering wave vectét, i.e., one of the six
vectors pointing towards the corners of the first Brillouin with, e.g.,k,=(0,47/L/3).
zone of the whole lattice; for exampl& =(47/3,0). A

straightforward calculation shows indeed that the sublattice IV. RESULTS AND COMMENTS
susceptibility, defined in Ed5), and the total one satisfy the
following relation: A. Thermodynamic behavior

- We performed simulations on the€XZ model for values
x(K)=2x—2x(k=0), (M ofr=0,0.5,0.9,0.99, ranging from the strongest easy-plane
anisotropic case to the quasi-Heisenberg case. The isotropic
model was also considered not only to compare the results of
cour simulation code with the data reported in the literdfute
but also to check the consistency of the quasi-Heisenberg

whereyx(k=0) is 0 att=0, and is small with respect to the
first, also near to the critical point.

The spin-correlation length is defined assuming th
asymptotic exponential decay form of the in-plane spin-

correlation functions, imit. _ i
The internal energy per spie={H)/N for the XXZ
C(n)=(s's, ,+9's’, Yore "¢, gy  Model withA=0 is reported in Fig. 1 as a function of the

reduced temperature For comparison, data for thXY
with i andi+n belonging to the same sublattice, and largemodel taken from Ref. 4 and for the isotropic model are also
values ofn. Even if a direct fit of the two-point correlation shown. It is evident from the figure that the qualitative be-
function (8) can be used, we adopted a faster and more relihavior of the internal energy is quite different in the isotropic
able method to evaluaté This can be achieved translating and planar cases. In fact, in the latter cases the internal en-
Eq. (8) in reciprocal space. In fact, the asymptotic exponen-ergy presents a narrow region in which size dependence is
tial decay in real space is associated with the Ornsteinapparent, and the slope becomes steeper the larger the lattice
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size. Instead, the behavior of the same quantity in the isotro-
pic case is smoother and only with a weak size dependence
(not shown in the figure In the low-temperature region the
internal energy, according to the spin-wave approximation
and the equipartition theorem, is lineartinwhile in theXY r o
model the internal energy starts from the ground-state value ¢, % eo |
ep= — 3/2 with slope 1/2, in the other two cases the slope is 3 fg& 1
1 because of the different number of degrees of freedom: one | ° o . 1
per spin in the former, two in the latter cases. Increasing the 2| 8 i
temperature, the excitation of the out-of-plane component of : *a *
the spins becomes more and more important and causes the °
different behavior between the isotropic and XX0 case. ' ' ' ' '
Similar behavior is observed for all the valuesho£0 con-
sidered.

The specific-heat data are reported in Fig. 2 for all the
values of\ (including the isotropic cageFor A # 1 the spe-
cific heat shows the signature of a divergence, which is an
important feature of the frustrated planar antiferromagnet, ¢,
also present in th&Y case(the corresponding peak, taken
from Ref. 5, is shown in the figure on the joAs A —1 the
peak and the size dependence of its height become less anc “| 0 ® §
less pronounced, until, in the isotropic limit, no divergence at
all is observed. The size dependence of the peak height is | °
shown in Fig. 3, fon=0, 0.9, and 0.99. It suggests a loga- 0 ‘ ‘ ' '
rithmic divergence withL, just as in the two-dimensional 6
Ising model?®

The critical behavior associated with the order-disorder [
transition can be also observed in the staggered chirality and 4}
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in its susceptibility, defined in Eq€2), (3), and (4), and
shown in Fig. 4 forn=0. At quite low temperatures the
system displays chirality order, witnessed by the high value
of k. As the temperature rises, the number of cells with small i u 8
chirality increases, and domains with opposite staggered 1[ s s i
chirality develop in the lattice. This leads to a sharp drop of
the chirality and to the divergence of the chiral susceptibility
atte=0.41 . s .
The transition is also shown by the behavior of the corre- : %
lation function of the staggered chirality, namely, o2l g U g

obd

(=]

Cu(R)=((—)"wixtsR), (1)

R being one of the Bravais vectors of the dual lattice. This is ' ‘ T ' , ' , ' ; '

shown in Fig. 5 forA=0, L=60, and several temperatures. 2 I 90%° |

A low-temperature phase in which the system is completely @ ;| # A=1 i

correlated is evident far<0.42. Increasing the temperature,

the correlation functions fall off exponentially. Of course it~ 06363 04 05 06 07

is hard to extract from the correlation functions an accurate

estimate of the critical temperature since, approaching

from above, when the correlation length becomes larger than G, 2. specific heat for thiXZ model for the reported values

the sampled lattice size, the system behaves as if it wergr \ and different values of.. In the top graph the specific heat

correlated, even if, in the thermodynamic limit, it may not opserved in thexY model for L =72, taken from Ref. 5, is also

be. However, we can approximately locate the critical re-shown(crosses Open symbols as in Fig. 1.

gion, forA =0, betweert=0.4 andt=0.42, which is consis- )

tent with the behavior of the specific heat, the chirality, andthough the system cannot display long-range order, below

its susceptibility. the critical temperature it is charactenzed by lquaS|—Iong-
Let us turn now to the rotational degrees of freedom. Weange order, whose macroscopic consequence is the power-

recall that the peculiarities of the BKT transition can be sumJaw decay of the correlation functions of the in-plane spin

marized as follows®8First of all, according to the Mermin- COmMponents,

Wagner theorem, the system does not show any finite mag-

netization in absence of an app_li_ed magnetic field at any C(n)=<sixsix+n+siysiy+n>oci1 (12)

#0 below and above the transition temperattggr. Al- n”’
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FIG. 5. Chirality correlation function fox =0, L =60, and vari-
ous temperaturest=0.3 (full circles), t=0.4 (full triangles, t
=0.42 (full diamondg, t=0.44 (circles, t=0.5 (triangles, t=0.6
(diamonds.
where the critical exponeny is a function of temperature
and assumes the universal value ®#1/4 attgcr. This  both diverge exponentially far—tg,r,
guasi-long-range order is not destroyed by the excitation of

FIG. 3. Maximum of the specific heat as a functionLofor \
=0 (circles, 0.9(diamond$, and 0.99triangles. The straight lines
are guides for the eye.

_ —1/2
vortex-antivortex pairs until when, raising the temperature, §oca, gbe(t=takr) 7% (13
the pairs unbind and the system undergoes a transition to a i
disordered phase with exponentially decaying correlation x*a, ePx(t—takr) (14)

functions. The in-plane correlation length and susceptibility
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FIG. 4. Staggered chiralitya) and chiral susceptibilityb) for
A =0 and various values df as functions of temperature. Symbols

as in Fig. 1.

[where x(K) can also be taken fay] and are infinite fort
<tgyky. These properties were also observed in ¥¥
TAF,*° which shares a similar low-temperature phase with
the ferromagnetic counterpart, if the sublattice magnetization
of the former replaces the uniform magnetization of the lat-
ter; for example, the low-temperature phase is well described
by Eq.(12), wherei andi+n belong to the same sublattice.

Another important property of the BKT transition in un-
frustrated planar systems is the behavior of the specific heat,
which displays a maximum slightly above the transition tem-
perature[usually att=(1.1-1.2)tg«r (Ref. 18]. However,
this maximum cannot be observed in frustrated planar
systemd'® where it is hidden by the divergence connected
with the chirality transition.

Figure 6 displays the correlation functions of the in-plane
spin component€(n) for A =0.9 and various temperatures,
for L=120. Fittings against Eq$12) and(8) are also shown
in the figure. The data far=0.32 andt=0.35 can be fitted
only by the power law, while fot=0.36 andt=0.4 the
exponential decay fits best: given the rather large lattice size,
it can be reasonably argued that the critical temperature
tgkt(A=0.9) is located in between=0.35 andt=0.36. As
already noticed, it is difficult to extract accurate information
abouttgkr from the correlation functions since it is not pos-
sible to discriminate between the high- and low-temperature
predicted behavior unless data for lattice siies¢ are
available, a requirement that cannot be achieved close to the
critical temperature.

As already said, the methods we used to extract the value
of the correlation lengtly were the fit, according to E¢9),
of the total in-plane&k-dependent susceptibility(k) around
one of the ordering wave vectoks or, alternatively, the use
of EqQ. (10). We recall that the correlation length of the infi-
nite system(abovetgykr) is well defined by Eq(8); for a
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FIG. 6. Spin-correlation function for=0.9,L =120 and differ- FIG. 8. In-plane correlation length for the XX0 model as a
ent temperatures:=0.32 (full triangles, t=0.35 (full diamonds,  function of temperature for different simulation box sizes. In the

t=0.36 (circles, andt=0.40 (squarek Lines are best fits against |ower part /L is reported to show the finite-size scaling below
Eq. (12) (dashed linesand Eq.(8) (full lines). All fitting functions tgkr . Symbols as in Fig. 1.
were properly symmetrized to take into account the periodic bound-

ary conditions applied to the simulated finite-size lattice. neighborhood above it, has been evaluated just to check
where finite-size effects become relevant and in order to
finite system, the same is still true for temperatures and latverify the finite-size scaling lawfoL.
tice sizes large enough that the finite-size effects are negli- Figure 9 shows the in-planey] and out-of-plane x*?)
gible; otherwise Eq(10) can be considered aad hocdefi-  sublattice susceptibilities, defined in E&), as functions of
nition of &. Provided thatt=<L/6, the values of correlation temperature, for different values Bfand of the lattice sizes.
length we got by the two methods were the same within théAs expected, the susceptibility displays finite-size effects
uncertainties. When finite-size effects become relevant, thiike the correlation length and the rule of thurgks L/6 for
results differ from each other of about 4-8 %, the firstneglecting such effects also applies. The behavior of the out-
method being less reliable since E@) is valid for £2k?>  of-plane sublattice susceptibility?% shown in the same fig-
<1, a condition which cannot be satisfied beyond the waveure, is also an interesting feature of the BKT transition, also
vectors closest t&, as can be seen in Fig. 7: the valuesof present in theXXZ model on bipartite latticé® which, of
reported in Fig. 8, foh =0, are those obtained in the second course, has no counterpart in tX& models. As expected,
way. The correlation length belowsyr, as well as in a the absolute magnitude gf“ increases aa increases, the
system becoming more isotropic and the out-of-plane fluc-
tuations becoming easier. However, for every valuexof
#1, the easy-plane character of the system prevails at low
temperatures and far— 0, y**—0; on the other hand, in the
opposite limit, the effects of the anisotropy of the interac-
tions disappear, all spins can fluctuate independently from
each other, and both the in-plane and out-of-plane suscepti-
bilities approach the common value 1/3. Starting from the
high-temperature limit, and coming to lower temperatuges,
increases whatever the value)of 1 is, ending to diverge at
tgkr; Of course, the smaller the anisotropy, the longéf
follows the behavior ofy. The result is that, as—1, y**
develops a sharper and sharper maximum.

0.20r

0.00 80— 0_'01 — 0.‘02 T .03 B. Critical temperatures
k2 1. Order-disorder transition
FIG. 7. x(K +k)~! againstk?, for \=0.9 andL =120, at dif- As we have seen in the previous sections, the behavior of

ferent temperatures:=0.35 (open circley 0.36 (diamonds, 0.37  the specific heat, chirality, and its susceptibility as functions
(down triangley 0.38(up triangle, and 0.40(squares The maxi-  Of temperature indicates the presence of an Ising-like phase
mum value ofk?, for the chosen set of wave-vector shells, is transition connected with the loss of chirality order for every
(4m/\3)2x (7/L?)=0.0256, so that a linear behavidull lines) ~ value of A <1 considered. Those thermodynamic quantities
againstk? is expected untit?(t) < 1/0.0256=39. Indeed, this is not allow us to estimate immediately, at least approximately, the
the case fot=0.35, whent=90 and the linear fit fails. The dashed corresponding critical temperatureés, since the transition
line is a guide for the eye. appears rather sharp for all the valuesiof A finite-size
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FIG. 10. Finite-size scaling analysis for the staggered chirality
for A=0. Ising exponent§3=1/8 andv=1 are used. Different
symbols refer to the simulation box sizes as in Fig. 1.

where, since fot. — the power-law singularities are to be
reproduced, the limiting form of the functiof(x) for x
—oo andt<t.is

f(x)oxP. (16)

Therefore, reporting as in Fig. 1L7"" vsx, the data for the
various lattice sizes do collapse onto a single curve, which is,
of course,f(x) if the values oft;, 8, andv are correct. In
the present case using the critical exponents of the two-
dimensional Ising modely=1 and 8=1/8, a good agree-
ment with the finite-size scaling law is obtained. Belpwthe
largex behavior reproduces the correct critical behavior,
which, in a double-logarithmic scale, is represented by a line
with slope8=1/8. Abovet, the asymptotic behavior shows
the 1L decay of the order parametéras L—o which
means, according to EL5), f(x)«x?~ 1. This corresponds

to the line with slope—7/8 in the figure. In this way it has
been possible to give the estimates of the critical temperature
reported in Table I.

2. BKT transition

In order to estimate the critical temperature associated
with the BKT transition we relied on two methods: first, the
fit of the correlation length and the in-plane susceptibility
with Eqgs. (13) and (14), using the MC data that are repre-
sentative for their thermodynamic limit, i.e., foetgct, and
second, we used the finite-size scaling law

ported in each figure. Different symbols refer to the simulation box

sizes as in Fig. 1.

TABLE I. Critical temperature, associated with the chirality
phase transition and BKT transition temperature. The latter is ob-

scaling analysis of these data shows that the features of sutdined by fitting the in-plane correlation lenggft) and the in-plane
phase transition are consistent with two-dimensional Isingusceptibilityy against Eqs(13) and (14).

exponents.

In Fig. 10,«xL#"" is reported, fon =0 andt,=0.412,asa X te tgkr (€ fit) texr (x fit)
function of the reduced variabl&=7LY", where 7 is " "
1—t/t, for t<t. and 1—t./t otherwise>?* According to the 0.00 0412+ 0.005  0.402+ 0.002 0.403+ 0.001
scaling hypothesis, close to the infinite-lattitethe order ~ 0-°0 0.400+ 0.005  0.391* 0.002  0.388+ 0.003
parametelk is given by 0.90 0.355+ 0.005  0.345+ 0.006  0.344* 0.002

0.99 0.320= 0.005 0.306%+ 0.008 0.305*+ 0.009

k=LA (x), (15)
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X |_2—71(t), (17) 0.5 I

which is valid fort<tgkr, to obtain the scaling exponent
n(t), which satisfies n(tgkt)=1/4. Notably, the latter
method makes use of a different and independent data set.
should be noticed that recent wofk$iave shown that the 4 44
scaling given in Eq(17) is subjected to logarithmic correc- ':] TF
tions, predicted and detected by high-precision data, thass
could affect the determination of the exponentHowever,
in view of the lattice sizes and of the numerical accuracies
we deal with here, they cannot show up from our analysis.
Concerning the first method, we have tested for BKT be-  0.02f
havior, i.e., with Egs.(13) and (14), both the correlation
length £(t) and the susceptibilityy(t). As said above, in s s R
doing this only the reliable estimates of the thermodynamic 20 100
limit of these quantities were kept, after the criteriéft) L
=<6L, in order to discard the data affected by finite-size ef-
fects. Of course, this has prevented us from obtaining usefu|, o
estimatest(t) and y(t) for t close to the transition tempera- ifferent temperatures around th.e critical °m€9'30 (squares
: . 0.38 (up triangle$, 0.39 (down triangley 0.40 (diamond$, and
ture, due to the large amount of computer time required t% 41 (circles
simulate large systems. Indeed, when simulating a larger lat- '
tice, besides the increase of the time needed for any move _ .
(xN=L2), we must also face the increase of MC fluctua-Whether a single or a double phase transition tak_es place.
tions and correlation time, so that much more sample conlNevertheless, the fact tha=tgy; for all values ofi in a
figurations should be generated in order to keep uncertainti¢d/Stématic way, makes it unlikely that the difference could
at a reasonable level. This would imply resorting to largeJust be due to statistical errors.
scale simulations, which is well beyond our purposes. The
results for the BKT transition temperatures from the fits of
the representative data are also summarized in Table I; since
x(t) is a direct outcome of the MC simulation, its values and  We have performed Monte Carlo simulations of the two-
the consequently fitted values tfir can be more accurate dimensionalXXZ model on a triangular lattice at different
than those fog(t), which must indeed be derived by fitting values of the easy-plane anisotropy constant~or every
the MC outcomes for thé&-dependent susceptibility. The value of \ considered, the situation appears quite similar to
uncertainties account both for the statistical error and for thehat observed in th&Y triangular antiferromagnet, where
instability of the fit against exclusion of the data points at thefrustration induces an order-disorder transition, associated

e

e

FIG. 11. In-plane susceptibility over’ vs L, for A\=0.5, at

V. CONCLUDING REMARKS

lowest temperature, whegt)~L/6. with the twofold additional degeneracy of the ground state,
As for the use of Eq(17), in actual numerical calculations
it holds also slightly abovésy, whenlL is still smaller than TABLE II. Scaling exponent;(t) as obtained by direct finite-

the thgrmodynamlé a}nd the system is glready Co_rrelated. INsize scaling analysis of the in-plane susceptibility data according to
fact this scaling relation allows us to give an estimate of thezq. (17). The values of gy given in the fourth column are obtained
parameterp(t) and, by looking at which temperature such py interpolation of the functiom(t) at the pointy= 1/4.

guantity attains the value 1/4, to have an independent check
of the estimated critical temperature. In Fig. 34L"*is t 14 -5 tekr
plotted on a doubly logarithmic scale as a function of the

lattice sizeL for A=0.50. The data fall clearly on a straight 0.00 0.300 0.16%0.002

line for t=<0.40, the slope of the lines being the correspond- 0.400 0.054:0.005

ing values of 1/4- »; they already depart from linearity, in- 0.405 0.05%0.007

stead, fort=0.41. The values for the quantity H4; we 0.410 —0.06+0.01 0.407= 0.003

obtain by fitting the susceptibility data with Eq17) are  0-50 0.300 0.165#0.0007

reported, for the various values ®fconsidered, in Table II. 0.380 0.0&-0.04

By interpolation, the values dir appearing in the fourth 0.390 0.052:0.008

column can be computed. These data agree reasonably well 0.400 —0.25+0.03 0.391+ 0.005

with those obtained by fitting and y with Eqgs.(13) and  0.90 0.300 0.14860.0005

(14), shown in Table I; the trend to a slight overestimation of 0.320 0.13-0.06

tgkt for the higher values ok was already observed for the 0.340 0.06& 0.008

square-lattice case in Ref. 18. 0.350 0.0&:0.01 0.350= 0.005
For every value oh the critical temperaturg; is signifi-  0.99 0.200 0.204 0.009

cantly higher than the BKT transition temperatiigg, al- 0.300 0.131%+0.02

though their difference is not much larger than the uncertain- 0.310 0.08-0.01

ties. Also in this respect the situation is similar to that of the 0.315 —0.02+0.01 0.314+ 0.002

XY TAF, where there is no agreement in the literature on
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and a BKT transition connected with the sublattice in-planeplane fluctuations of the spins, which, at a fixed temperature,
orientational ordering. The critical behavior turns out to beincrease with the value of. For the same reason the phase
consistent with an Ising transition, for the internal energy,transition in theXX0 model takes place at a temperature (
specific heat, chirality, and the associated susceptibility=0.403) that is sensibly lower than that observed inXhée
while it is consistent with a BKT transition with respect to model t=0.505), where the spins are confined in the

the in-plane correlation length and susceptibility. The valugplane. As for the question of whether a single or two phase
of both the critical temperatures decreases with the anisotransitions are occurring, our results for the transition tem-
ropy strength, as shown in Table I; this is consistent with theperaturegTable ) support the second hypothesis, consistent
fact that the critical behavior observed is connected with thealso with the most recent high-precision MC simulations of
planar character of the system, and that both the chirality anthe fully frustratedXY model! where the existence of a new
the orientational quasiordering are disturbed by the out-ofuniversality class is ruled out.
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