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Incommensurate phase of the pure and doped spin-Peierls system CuGgO
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Phases and phase transitions in the pure and doped spin-Peierls systen; @eSeisidered on the basis
of a Landau theory. In particular, we discuss the critical behavior, the soliton width, and the low-temperature
specific heat of the incommensurate phase. We show that dilution leads always to the destruction of long-range
order in this phase, which is replaced by an algebraic decay of correlations if the disorder is weak.
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The spin-Peierl$SP transition is the classic instability of phase, for which a Debye-liKE®* law has been found with an
one-dimensional quantum spin-antiferromagnetic chains amplitude much larger than the backgrour(thttice)
due to the coupling of the spins with the lattice. A rigid contribution® (iii) solitons, which are supposed to produce
Heisenberg chain has a nonmagnetic uniform ground statée modulation in the | phase are bréath comparison to
with a gapless fermionic excitation spectrdrithis can be  the sharp Sine-Gordon-like solitons predicted by mean-field-
seen most easily by using the Jordan-Wigner transformationike calculations, (iv) already a small amount of doping
which  maps the spins onto(strongly interacting |eads to a strong reduction of the SP temperafige(Ref.
pseudofermiond.Due to the coupling to the lattice, the sys- 16) and a drastic suppression of the anomalies at the Ul
tem can lower its energy by the standard Peierls mechanisnggnsitionlt17?

lattice distortions freeze in at a wave vectdi=2that leads Since the phonon energies are always large compared
smultan_eogsly to the opening of a gap at the Fermi Ieve|_|quth the magnetic ones, the applicability of the adiabatic
the fermionic spectrum such that the energies of all OCCUp'egpproximations has been questioréhomskii et al® de-
fermionic states decreaddn zero magnetic field the free- veloped a soliton picture of the SP transition in .Cu@eo

fermion band is half filled with the Fermi wave vectkg . )
= qr/2a, which corresponds to a dimerization of the chain. AWh'Ch. resembles — somewhat s?ructural order-disorder
’ transitions?® No soft-mode phonon is expected, but the SP

nonzero magnetic field lowers the Fermi le$éit Umklapp N it ds to d f t of solit hich
processes still favor the distortion ata until a critical field ransition corresponds to decontinement ot Soltons, whic
are bound to pairs belowgp. These solitons are simulta-

strengthH, is reached, at which a transition to an incommen- X e
neously magnetic and structural excitations: they carry

surate(l) phase with modulation vectd2ke— g4 sets in. In ) ;
the | phase a neviempty) band appears in the middle of the SPINZ2 and are domain walls between the two ground states
of the dimerized lattice.

gap of the fermionic spectrum. Thus, spin excitations still : ! ) .
exhibit a gap that is however smaller than the gap of the ItiS the aim of the present paper to explain the properties
dimerized(D) phase. The above picture follows from theo- (i)=(iV) by a pure phenomenological approach, which
ries obtained for free or weakly interacting pseudofermions@V0ids dehcatesapprommatlons in the coupled spin phonon
in which phonon dynamics were essentially ignotéd. System: TheT™ law of the specific heat in the | phase is
There, the SP transition is the result of the freezing of &£XPlained quantitatively by phason fluctuations. It is argued
(classical phonon mode due to the further downwards renor-ﬂ_‘?t broad solltons.are fingerprints Qf the type-l! lock-in tran-
malization of the phonon frequency by the spin-phonorsition that occurs in SP systems like CuGe®inally, we
interaction®® This scenario is supported by the experimenta/Show that dilution leads to complete destruction of long-
data of organic SP systerhsdowever, it does not seem to fange order in the | phase. B _

apply in all respects to the transition found recently in the ncommensurate phases are classified according to the ex-
inorganic SP substance CuGgBThough not devoid of con- istence Qf agl inversion symmetry for th.e structural transition
troversy, there is now a wealth of well-accepted results for" qu_estu_)nz. In case there is an inversion symmetry for the
CuGeQ, which shows two SP transitiods!31>6The SP Hamlltonlan,_ as.for_ CuQeQ first derlvatlv_es of the order
transition from a disordered, uniforfU) to a D phase at parameter(Llfshnz mvgnants do not exist. Indegd, for
14.3 K in zero field is shifted slightly to loweF if the field ~ CuGeQ the uniform high-temperature orthorhombic struc-
increases until a Lifshitz point &t~11.3 K andH~12.5T  {Ure, space groupbmm changes belowspto a dimerized

is reached, where the transition to an | phase sets in. Sonigructure, space grouBbcm with distortion wave vector
experimental results that are not explained by the existing330) (established from x-ray and neutron-diffraction
theories ardi) no soft phonon has been observed sc®far, experimenty. Standard group-theoretic arguments based on
(i) a (Peierl3 gap in the D phase is observed in low- the symmetries and the invariant group of the distortion vec-
temperature specific-heat measurements, but not in thetor in the Brillouin zoné® show that the transition is de-
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scribed by four nonequivalent, one-dimensional irreducibleSince the number of degrees of freedom of the system cannot
representation% It is very likely, that only one of these four change when going from the D to the | phase, it is clear that
representations corresponds to the primary order parametdgq. (2) is valid only for fluctuations ofA(x) with a long
which is real and can be considered to be proportional to thevavelength compared tq_ *, i.e., as long as we are away
displacement of the copper ions. The other three may occutom the Lifshitz point.

as secondary order parameters. In fact, neutron-scattering If one approaches the ordered phase along the line
data indicates that at least two normal modes are necessaryd¢Q(T,H) =0, one observes a so-calledshitz critical behav-
explain the displacement pattern of the D phagesimple jor, which follows from a change of the dispersion relation to
transformation of reversing the displacements on one sublahk:r+cxk)2(+ cyk§+dk§. Note that at the Lifshitz critical
tice helps us in getting an ordered state with a zero wavgoint the conventional hyperscaling is changedste- (d
vector for the D phase. We take this transformed and coarse- 1), =2« where v,=»,/2=0.31 are the correlation
grained displacement to be proportional to the orderiength exponents parallel and perpendicular to the
parameter field/(x). In generalg(x) will also include con- gjrection?* Approaching the D or | phase, respectively, from
tributions from the magnetic degrees of freedom.  the U phase on a line parallel to that givendyyT,H) =0, at

The Landau Ham(|jlt0n|an is that of an anisotropic Isingfirst a Lifshitz-type critical behavior will be observed before
modef**! #{y}=Jd'xh{y(x)}, where the Hamiltonian the region of Ising- oiX Y-type critical, respectively, behav-
density is(for i=x,y,2) ior is asymptotically reached.

Considering the DI transition, fluctuation effects are ex-
o, Ci , U ,do o pected to be less important, because it is first order in the
hyt=5 ¢ +§i: o ()™ 7 '+ 7 (029) mean-field approximatiodVFA). A refined MFA has been
worked out by Bruce, Cowley, and Murrdyfor this case,
wo.oe 5 who found that in the | phase the order parameter can be
tg U5 ()" () described by a multiplane-wave  ansatzy(x)
=2Xa, cosfngz) with m=1,3,5..., which is rapidly converg-
ing. For example, the ratipaz/a;|~0.035 is close to the
transition?! In this sense the system showsoad domain
walls. Also, in this refined theory the transition remains first
order.

Above we assumed to be positiveeven for large field
values. In the opposite case, the transition to the U phase
might become first order. Some mean-field thedrigedict
very special relations between the coefficients of the Landau-
expansion, i.e.,

Terms invoIving&M&ﬁz/z, though not shown explicitly, may
also appeaf' We have included higher-order terms in order
to stabilize the system for the case when one ofgheoef-
ficients (herec,) or u becomes negative for a sufficiently
strong magnetic field. A negativg signals the transition to
the | phase. The parametarsand c; are taken as analytic
functions of T and H with r=r[T—TgdH)], and
c,(T,H)=co[H,(T)—H]. Microscopic treatmentsand ex-
periments sugges?,thatu also decreases considerably with
increasing magnetic field.

A mean field analysisf the phase diagram requires treat-
ing the Hamiltonian Eq(1) as a free energy minimized with
respect tap. Let us first assume, thatandd remain positive
everywhere in thed-T plane. Then, we can ignore the last
two terms in Eq(1). If ¢;>0 for alli, the minimum of the
free energy occurs for wave vector 0, while a nonzerd
vector is  possible if c¢,<0. The mean-

field phase boundaries are given for UDx=0, ¢;>0, Ul 0" 41us of this functioR? Note, that¢¢(z), which is

_ A2 . e _n9\—1.2 24 _ ) . . .
r=cz/2d, and DI: r=(\6 2) 7c;/d.”" The spontane-  roja1eq to the spin density, obeys the Sine-Gordon equation.
ous wave vector in the | phase is given = —c,/d. The | this case solitons aharpin the sense that the separation
DI transition isfirst order while the other two are second of qomain walls diverge by approaching the D phase. How-
order, in agreement with experiments. _ ever, from a symmetry point of view, which we adopt here,

Fluctuationsdo make subtle changes in the phase diagrane do not see a deeper reason why the relati@nshould be
but the overall features remain the same. The critical behavyfilled in general by arexactmicroscopic theory. In fact,
ior of the UD transition is Ising-like, but the Ul transition is these relations were obtained using the adiabatic approxima-
XY-like. This difference originates from the fact that in the I {jgp. Consequently, one has to expect that, in generalwthe
phase the order parameter condensés=at- s and has con-  ande terms in Eq.(1) do exist, but violate the relation).
sequently two components\(x) =[A(x),A(X)]. These These terms will change the modulation amplitude ratio
are related to y{x) by ¢(X)=v2[A1(X)coslsX)  |a,/ay| to larger values, but without reaching the sharp soli-
+A,(x)sin@sx) ] In the | phase, the Landau functional thus ton |imit. Thus, the DI transition is expected to remain first

u/c,=const, w=3du?/4c?, e=5du/2c,. (3

If these are fulfilled, the DI transition may becoroentinu-
ous at least close to the Lifshitz poifitindeed, for this very
particular relation of the coefficients of the Landau expan-
sion (1), the ground-state solutions are the Jacobian elliptic
functions y5(z) =sin ¢(2)/2]= o sn(z/kés ,K), whereé is

a bare correlation lengttexpressed byg,, d, andr) andk is

can be written as order, as found also experimentally for CuGED*!
Although the validity of Landau theory is essentially re-
h{A}=2(r—cZ/2d) A%+ 2|c,|(3,A)? stricted to the region close to the transition, one should ex-

pect that it can be used to understand, at least qualitatively,
the low-temperature specific-heat data. For this purpose, we

3
2 2, ° 2,2
T Cx(0xA) T Cy(yA) "+ 2 u(A%" @ have to determine the low-lying excitations of the ordered
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structure. These can be found by adding the kinetic energy . — w2136
term [d%p/2 y?(x) to the GL Hamiltonian, where the mass <A(X)A(O)>~( o/ 2 (X /§o’i)2/ LL) . (@
densityp will have contributions both from the magnetic and !

the lattice degrees of freedom. We will further assume #hat
obeys Bose statistics. Using the saddle-point approximatio
to determine the equilibrium value gf one obtains in the D
phasew?(k)=1/p (2|r|+c;k?) for the frequency of the har-

monic_ excitations of the order-parameter field. In the Dsults we have neglected vortex-ring excitations. It has been
hase, where the order parameter is real, we idertj ) ' .
P P gy argued recently that these can indeed be neglected for suffi-

=#(2|r|/p)Y? with the gap that is found in the loWw- < .
specific heat. In the | phase, in addition to the massive amciently weak disorder and low temperaturésAt elevated

plitude mode, a gaplesphason mode with frequency temperatg_res or Iarge_r dilution, their condensation t_riggers
w?(K)=1/p (ka)2<+cyk2+2|cz| kg) appear€! which will thg trgn3|tlon to the disordered phase. The type of this tran-
sition is presently unknown.

We briefly apply the results obtained so far to CuGeO
kT | 2 Fixing the T=0 value of the order parameter =1, we
L_) =B asoT3. (4) haveroTo=uo. From the mean-field jump of the specific
Eqéo P heat ACyra=r2To/2u=Uy/2To~22.7 mI/Kcm in zero
_ — " ,  magnetic field’ we getuy=650 mJ/cn that gives the cor-
Here we have introducedo=({oxéoyé0,) "~ Where &G rect size of the critical region. SincRCyea decreases for
=CilroTo and we used’'~Ty/2 to expresp by Ey. Thus, increasing field and is reduced approximately by a factor 4.6
the phason mode delivers B contribution to the low- when reaching the Lifshitz poiny is reduced correspond-
temperature specific heat, in addition to that from acoustigngly to aboutu, =112 mJ/cm, but still positive. Defining
phonons”’ the Ginzburg critical regiong=|Tg—T,|/T, as the region

Next we extend our analysis to tlpienched disordered jn which the first fluctuation correction to the specific heat
casg e.g., random substitutions of Cu by Zn or Ni and/or Gepecomes larger tham\Cyes, this gives for zero field,
by Si in CuGeQ. Such substitutions change the various in-g) =0.12 nm, &,,=0.36 nm, and &,,=0.69 nm** with
teractions locally but do not break the symmetry of the dis'géometric mean 502031 nm. Tc; I%(kBTO/SWUEg)Z
prllacefr;’nents ifn rf]avor ofs particglay d_imerizatiot?. Th%relfoée’mo.lfi—larger ACpra diminishes ¢ cdrrespondingly. For
the effects of these random substitutions can be modele . et -
randomness in the coefficients of the original Landau Hamilt-}ig é; ;{?;Igg?] JS é ;Z;nvsﬂzglézﬁh#z: EI)'ZLI)]LV;: ge:ﬁ’éé
tonian without any symmetry breaking term. Little reflection .. : " P e
shows that the main effect will come from a randomnessLlfszr/‘étz point _ the 4/§r|t|cal region _IS given 1,2yTG'L
5r(x) inr.28In the D phase, this leads to a decreas@ &f ~7c (§O,Zu0_/_1/§§uL) ~0.7 where {o=(d/2roTo) "~1.2
as was shown microzco ic;all by Khomski al1° More’- nm. The critical exponens changes fromB,=0.325 forH

pically by ' <H, to B,=0.15-0.18 forH~H, and then to Bxy

over, the_ critical bghawor will be changed to that of the=0.346 for H>H, , in agreement with the experimental
diluted Ising modef’ g
observatiort:

The effect of disorder is even more severe in the | From the low-temperatur ific heat in the D ph
phase. This can be seen easily by rewritifigx) as ¢(x) 0 €0 eloplf ature speciiic hea € U phase
T . _ - one findsgE,~23 K,™** which gives with Eq.(4) for the
=v2A(X)codgx+ 6(x)]. With 6r(x)=«Z;8(x—x;) the h 9 ific h ~1.3 mI/K mol in the | oh
disorder term can now be written as phason specific hegipasos=1.3 m molin the 1 phase,

which has to be compared with the experimental value of
« 1.4 mJ/K mol.1° This good agreement is possibly to some
— E A?(x;)cog2[ (x;) +qeXi ]} (5) degree accidental, since the magnetic-field dependences of
25 the various parameters have not been carefully taken into
account. But at least the order of magnitude should be right.

For the Larkin length we obtain witk=n;y,,v /2 for the

concentration of the Zn atoms (. denotes the volume per

Bespite of the loss of true long-range order, the system will,
however, still show Bragg peaks of finite width, as follows
from the Fourier transform of Ed7). In deriving these re-

dominate the specific heat

V2

phasoh™ B

15

The random impurity positiong; lead to a random phase
ai=a(X)=29X;(mod 2r) that is equally distributed
anisotropy term destroys the ranslaional long-range ordel!it Cel) and assuming g linear dependencargf(x) onx
of the :)y hase? Howgver the phase- haseg cor?eIation%lth d In Tsp(x)/dx~14." for x~0.04: Li~12nm and
, P ' » e p p—2 for x~0.07: L, ~0.7 nm. The data of Kiryukhiret al!!
fun<:2t|on diverges only logarithmicafly ([6(x)—6(0)1%)  \as fitted with an exponential decay of correlations with an
=m/18 In(dL,). Here the overbar denotes the disorder av-gpisotropic correlation lengthof order 10 nm. It is interest-
erage. The Larkin length, is related to the strength of the 4 1o remark, that their data for the longitudinal scan can
disorder. A rough estimate is also be fitted by a power law with an exponen.75, in
— agreement with the Fourier transform Ea@).
Lo~27% £5/(d In Tsp/dNimp) 120, (6)
The authors acknowledge discussions with M. Braden, S.
wheren;,,, denotes the concentration of the impurities. Be-Brasovskii, B. Biehner, A. Gernoth, H. Schulz, and G. Uhrig
cause of the logarithmic divergence of the phase fluctuationss well as the support from SFB 341 and GIEN.). One of
there is, howeverquasi-long-range orderof the order- the authors(T.N.) acknowledges the hospitality of ENS
parameter correlation function (Parig, where some of the work was done.
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