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Magnetization switching in a Heisenberg model for small ferromagnetic particles
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We investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an
external magnetic field. For low uniaxial anisotropy the spins can be expected to rotate coherently, while for
sufficient large anisotropy they should behave Ising-like, i.e., the switching should then be due to nucleation.
We study this crossover from coherent rotation to nucleation for a classical three-dimensional Heisenberg
model with finite anisotropy. The crossover is influenced by the size of the particle, the strength of the driving
magnetic field, and the anisotropy. We discuss the relevant energy barriers which have to be overcome during
the switching, and find theoretical arguments which yield the energetically favorable reversal mechanisms for
given values of the quantities above. The results are confirmed by Monte Carlo simulations of Heisenberg and
Ising models[S0163-182608)04825-5

I. INTRODUCTION possible to consider dipolar interaction in a Monte Carlo

The size of maanetic particles plavs a crucial role for thesimulatior'}4 this needs much more computational effort due
density of informa?ion stgra ein r?waynetic recordin mediat0 the long range of the dipolar interaction and, hence, ex-

Ity . 9 9 ding m ceeds current computer capacities. Therefore, the validity of
Sufficiently small particles become single-domain particles

which imoroves their auality for maanetic recording. On thebur results is restricted to particles which are small enough to
other harl?d when thg argi/cles arg too small theg. becomge single-domain particles in the remanent state.
' P Y In the following, we will investigate the thermally acti-

Zug’ergg;arf?gpzurceaggv &%r']gf:”r:ité%ne?fg?t Ezssi(gﬁ'tly vatgd reversgl qf a .particlg Which is Qestabilized by a mag-
b.eé,n fochsed on the understar;ding of small magnetic pap_etlc f|e_ld pomtlng in a direction antiparallel tp the initial

. ) . - . magnetization which is parallel to the easy axis of the sys-
ticles, especially since recent experimental techniques aIIO\z[\/em Due to the finite temperature and maanetic field. after
for the investigation of isolated single-domain partides. ) P 9 '

. ) . some time the particle will reverse its magnetization, i.e., the
In this paper focus is on the reversal of ferromagnetic L . .
articles of finite size. We investigate the influence of the” component of the magnetization will change its sign.

b ' 9 In Sec. Il, we determine the energy barriers which have to

Slze anq anisotropy of the particle on Fhe possible reversakl)e overcome by thermal fluctuations for the two cases of
mechanisms, two extreme cases of which are coherent rota-

tion and nucleation. The latter mechanism has been a subje%(f)herent rotation and nucleation within a classical theory. By

of common interest in recent yedre! studied mainly theo- a comparison of the energy barriers, we derive where the

) L , . crossover from one mechanism to the other occurs. In Sec.
retically in Ising models, which can be interpreted as a clas;

sical Heisenberg model in the limit of infinite anisotropy. It lll, we compare our theoretical considerations with numeri-
is the aim of thig aper to study the crossover from n?g negal results from Monte Carlo simulations of Heisenberg and
D pap Y . . 9 Ising models, and we relate the lifetime of the metastable
tization reversal due to nucleation for high anisotropy to co- . . .

513 . state to the theoretical energy barriers for the different rever-
herent rotatiot?'3 for lower anisotropy. .

. . - . sal mechanisms.
Throughout the paper we will consider a finite, spherical

three-dimensional system of magnetic moments. These mag-
netic moments may represent atomic spins or block spins Il. THEORY
following from a coarse graining of the physical latti¢e.
Our system is defined by a classical Heisenberg Hamiltonian,

A. Coherent rotation

Here we give a brief summary of the results of the theo-
ries of Neel*? and Brown®® since we need these concepts for
H=—-J3, S,~S,-—d2 ($92-B- >, S, (1)  the further progress of our theoretical considerations. Let us
(i) i [ consider a spherical, homogeneously magnetized particle of
radiusR. The simplest theoretical description for the reversal
where S are three-dimensional vectors of unit length. Theof such a particle is to assume that the reversal mechanism is
first sum, which represents the exchange of the spins, is ov@ibherent rotation, i.e., a uniform rotation of all spins of the
nearest neighbors with the exchange coupling conslant particle. This reversal process can be described by an angle
The second sum represents a uniaxial anisotropy which feof rotation § between the easy axis of the system—uwhich in
vors thez axis as the easy axis of the systéamisotropy our case will be antiparallel to the direction of the magnetic
constantd>0). The last sum is the coupling of the spins to field—and the magnetization of the particle. The increase of
an applied magnetic field, wheBeis the strength of the field the energy during the reversal is then
times the absolute value of the magnetic moment of the spin.
We neglect dipolar interaction. Although in principle it is AE=—dV cogd—BMV co¥. (2
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shaded region in Fig.)lis Vq=7H2(3R—H)/3+ 7h?(3r
—h)/3. The energy increase during the reversal of the par-
ticle is

AE=20F—2MBV,, (6)

where o is the energy density of the domain wall. Further-
more, it ish=r—r?’—2HR+H?, since the quantities in
Fig. 1 are not independent. Hence the energy increase can be
expressed in terms ¢, which is a measure of the penetra-
tion depth of the domain wall and its curvatureThese two
quantities define the geometry of the droplet. Next we deter-
mine that curvature ., which minimizes the energy in-
crease by the conditiofnAE/dr =0, yielding the physically

FIG. 1. The nucleation of a droplet at the boundary of a :spheri-er':'Vant solution

cal particle.

20
Since this equation should be comparable to Bg, the moMB

anisotropy constardl is an anisotropy energy per unit cell \yhich is also the radius of a critical droplet for classical
(spin), andV=(4/3)mR" is the volume of the particle as a ,,cleation in a bulk material.

number of unit cellsB is—as before—the absolute value of The energy barrieA E,, which has to be overcome during

the applied field times the magnetic moment of a unit cellpe reversal is the maximum of the energy increase with
and, henceM the spontaneous magnetization per magnetiGegpect taH. From the conditioWAE/dH =0, the physically
moment. The energy barrier which has to be overcome is dugjevant solution

to the anisotropy of the system. It is the maximumAdE

with respect tog: ( X
Hya=R| 1— (8)
_4nR°d4mRBM 7ROB’M? ; vx“+4
o3 3 3d @ follows with x=MBR/o. Inserting the two conditions above

into the formula for the energy increase yields the energy
The corresponding lifetime of the metastable state is then parrier for nucleation:

AEcr> 47R%g
T~€x (4 AE,=———[x*+(4—x3)Vx*+4+2x*>-8]. (9
{5 a0 :
for temperatureT<AE,. The two equations above are This expression has two important limits. The first is the
physically relevant only for limit of infinite system size,
16mo°
d>MB/2. (5 lim AE, = o (10)
R— o

Otherwise there is n{positive energy barrier, and hence the

reversal is spontaneous without the need for thermal activawhere we obtain half of the energy barrier of the classical
tion. This is the region of nonthermal reversal. nucleation theory for a bulk system. The reduction by a fac-
tor of 1 is due to the fact that for open boundary conditions
only one-half of a critical droplet has to enter the system
) o ) o from the boundary.

For a system with a sufficient large anisotropy, it might be  The other interesting limit is that of small magnetic fields,

energetically favorable to divide into parts with opposite di-ywhere Eq.(9) can be expanded with respectte MBR/ o,
rections of magnetization parallel to the easy axis in order tQegylting in

minimize the anisotropy energy barrier. This kind of reversal

mechanism is called nucleatiin(see Ref. 8 for a recent A7BR3M  37B2R*M?2

review). The simplest case of a reversal process driven by ~ AE,~27R?o— 3 T8, T @D
nucleation for a system of finite size is the growth of one

single droplet starting at one point of the boundary of theThis means that for a small fiel@ the energy barrier of a
system(see also Ref. 11 for a corresponding calculation for anucleation process is the energy of a flat domain wall in the
two-dimensional systemDue to the growth of the droplet a center of the particle plus corrections which start linearly in
domain wall will cross the system, and the energy barrieB. In contrast to the N&-Brown theory, here, for vanishing
which has to be overcome is caused by the domain-wall emrmagnetic field, the energy barrier is proportional to the cross-
ergy. We assume that the domain wall will have a curvaturesectional area of the particle rather than its voluisee also
defined by a radius (see Fig. L Then the surface of the the work of Braun’), which consequently reduces the coer-
domain wall isF=27rh and the volume of the dropléthe  civity of the particle.

B. Nucleation
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1 T T T T T T droplet nucleation—with different energy barriers—is dis-
cussed in the literatur¢gsee Refs. 18—20, and references
therein.

Apart from that, in a system with a given finite anisotropy
the domain walls may be extended to a certain domain wall
width £. For large anisotropy becomes as small as one
lattice constant. This is the Ising case, where the domain-

d [J/spin]

coherent rotation non-thermal ik | -
02| - wall energy density igr~J/spin. For smaller anisotropy the
domain walls become more extended, amddecreases.
0 L1 1 L L L L Hence the crossover from nucleation to coherent rotation

0 02 04 06 [J]O-B 1 12 14 may be softened by the occurrence of extended domain
walls. In this sense, pure coherent rotation could also be
FIG. 2. Diagram showing the regions of different reversalinterpreted as a domain-wall-driven reversal, where the
mechanisms for a particle of si®=4 spins, withc=J/spin and  Width of the domain wall is larger than the particle size.
M =1/spin. The points are results from Monte Carlo simulationsObviously, our theoretical considerations discuss only two
(see Sec. I extreme cases. How realistic they are has to be tested nu-
merically.
C. Comparison of coherent rotation and nucleation

Comparing the two energy barriers for coherent rotation

[Eg. (3)] and nucleatiofEq. (9)], we can evaluate which . MONTE CARLO SIMULATION

reversal mechanism has the lower activation energy for a A. Method

given set of values oR, B, o, andd. A corresponding dia-

gram is shown in Fig. 2 for a system of radiBs=4 spins, Due to the many degrees of freedom of a spin system,

where we seM = 1/spin ands= J/spin. For large anisotropy humerical methods have to be used for a detailed micro-
the reversal is dominated by nucleation—the particle beSCOpic description of the system. Since we are especially
haves like an Ising system. The crossover lth¢B,o,R) interested in the thermal properties of the system, we use
which separates the region of reversal by nucleation from thonte Carlo methods for the simulation of the magnetic
region of coherent rotation can be determined by the condiParticle. Although a direct mapping of the time scale of a
tion that here the energy barriers for a nucleation process arjonte Carlo simulation on experimental time scales is not

for coherent rotation are equal. This condition results in  Possible, this method provides information on the dynamical
behavior of the system since it solves the master equation for

2 1 ( 4 X2 the irreversible behavior of the systéf.
+ 1-—+— We consider spins on a simple cubic lattice of size
x2  x?*+4

x2 2 LXLXL, and simulate spherical particles with radi&s
1
+ N3+ (202 4) e a
X

=L/2 and open boundary conditions on this lattice. One
single spin flip of our Monte Carlo procedure consists of
: 12 three parts. First, a spin is chosen randomly and a trial step is
made(the role of which we will discuss belowSecond, the
For a vanishing magnetic field, the formula above has a finit¢hange of the energy of the system is computed according to
limit, Eq. (1). Third, the trial step is accepted with the probability
from the heat-bath algorithm. Let us call one sweep through
) 30 the lattice and performing the procedure explained above
é'ino(dc): >R’ (13 5nce per spin one Monte Carlo St&gCS).
Since we are interested in different reversal mechanisms,
For large particle size, Eq12) has the simple asymptotic we designed a special algorithm which can simulate all of

form them efficiently. We use three different kinds of trial steps:
First, a trial step in any spin direction uniformly distributed

. BM in spin space. This step does not depend on the initial direc-

lim (dc) = o (14) tion of the spin. It samples the whole phase space efficiently

R—x

and guarantees ergodicity. Second, a small step within a lim-
which, interestingly, is also the limit for nonthermal reversalited circular region around the initial spin direction. This step
[see Eq(5)]. This means that for increasing particle size thecan efficiently simulate the coherent rotation. Third, a reflec-
region where a thermally activated reversal by coherent rotion of the spin. This step guarantees that, in the limit of
tation occurs vanishes. For an infinite particle size the reverlarge anisotropy, our algorithm crosses over to an efficient
sal is always either nonthermal or it is driven by simulation of an Ising-like system. For each Monte Carlo
nucleation—depending only on the ratio of the magneticstep we use one of these different trial steps. Our algorithm
field to the anisotropy. then consists of a series of Monte Carlo steps using the dif-
All the considerations above can be expected to be relferent trial steps above. Altogether, our algorithm is ergodic,
evant only for sufficiently low temperatures. For higher tem-and it guarantees that all possible reversal mechanisms may
peratures the situation is more complicated. That is, for th@ccur in the system and can be simulated efficiently. As we
nucleation regime, a crossover from single-droplet to multi-tested by comparing simulations with different combinations
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of trial steps, and as we will demonstrate in Sec. lll B, for a

. . . . . le+04 |
two-spin system, this algorithm does not artificially change -
our results. -

Simulations of Heisenberg systems are much more time 1000 F
consuming than, e.g., those of Ising systems, since thé&d i
Heisenberg system has many more degrees of freedonz=, 100
Apart from that, to obtain results which are comparable to - [

our theoretical considerations we have to perform simula- 10k

tions in the limit of low temperaturesT<T., where the

critical temperaturd ., is 1.44) for anisotropyd=0.2% Here,

the metastable lifetimes are long—for single runs up to 9 4 6 8 10 12 14

5x 10" MCS's in our simulation. Therefore, for the Heisen- 1/T [1/7]

berg system we had to restrict ourselves to rather small sys-

tem sizesL =4, 8, and 12. However, we tried to minimize FIG. 3. Metastable lifetime- vs 1/T for a system of two spins.

the statistical error by performing an average over many— 0-%J. Two different anisotropiesj=1.5/spin(nucleation and

Monte Carlo runs (100 . .,1000). Since the theoretical con- d=0.5]/spin (coherent rotation The solid lines correspond to Eq.
. . . s ' - (4), with the energy barriers explained in the text.

siderations which we want to prove are for finite system

sizes, and since, hence, the radius of the particle is a variabigomain wall at that time is in the center of the system divid-
of the theory we believe that the rather small system sizes dhg the particle into two oppositely magnetized parts of equal
the simulation are no disadvantage. Apart from that, for comsjze,

parison we also performed Monte Carlo simulations of an Figure 5 shows the corresponding time dependence of the
Ising model where we also used larger system sizes of up t2 component of the magnetization, its absolute vaMe
L=28. T_he simulations were performed on an IBM-RS6000:|M|, and its planar componerl, = /MXZJr My2 for the
workstation cluster and on two Parsytec CC parallel computsame simulation from which the spin configurations of Fig. 4
ers(8 and 24 PPC604 nodes, respectiyely stem. For the case of coherent rotation there is a continuous
growth of the planar component of the magnetization during
the reversal, while the absolute value of the magnetization
remains nearly constant—apart from a small dip at the life-

We start our simulation with an initial spin configuration time 7=~19 000 MCS'’s. For the case of nucleation the planar
where all spins are pointing uUgll spinsS=(0,0,1)]. The  component of the magnetization is nearly constant zero ex-
magnetic fieldB=(0,0,— B) destabilizes the system, and af- cept of a small hump at the lifetime~34 000 MCS’s. Here
ter some time the magnetization of the system will reversethe absolute value of the magnetization breaks down.

The metastable lifetimer is defined by the condition These results lead us to the following approach to charac-
M,(7)=0, whereM, is the z component of the magnetiza- terize the reversal mechanisms numerically: we determine
tion M=(1N)Z;S . the absolute value of the magnetization at the lifetiMér).

First, we tested our algorithm by simulating the simplestln order to obtain reasonable results we have to take an av-
imaginable system that can show both coherent rotation anérage over many runs, so that we define a quangity
nucleation—a two-spin system. Here the energy barrier iss[M(7)] where the square brackets denote an average over
AE,=2(J—B) for nucleation(i.e., the spins are antiparallel many Monte Carlo rungor systems This quantity should
during the reversalandAE = 2d(1—B/(2d))? for coherent  go to zero for a nucleation-driven reversal, and should be
rotation (i.e., the spins are always parallel during the rever-finite for coherent rotation. The maximum value pfin the
sa). For low temperatures we expect a behavior followinglimit of low anisotropy should be the spontaneous magneti-
thermal activation as in Eq4) with the energy barriers zation.
above. Figure 3 demonstrates that in the limit of low tem- In order to confirm our theoretical results numerically, we
peratures, we actually obtain constant slopes for thevr  simulated x for different values of the anisotropyl
1/T data, and the slopes agree perfectly with the theoretical

B. Results for the Heisenberg system

energy barriers above. Hence our simulation is in agreemen rrly/
Witlk\lI the theoretical expectations. _ \\\\::77::;;/ £ /{{\'s I‘::::\/‘ {
ow we turn to the s_lmulatloq of larger systems. Figure 4 /' \\~—-// ./ / A A P~ \
shows spin configurations of simulated systems of §&e [\\\——/7"////"— NA A=)
=6 spins at the metastable lifetime For simplicity, only b‘t\\‘jﬁf_;;f_j } 2 /f,;:\‘\\:} }
one central plane of the three-dimensional system is shown\ \ \ ~~\———~ #—~~—_~ { PN/
The z axis of the spin components is pointing up. For suffi- \ ==~ \ > NP l /
cient low anisotropyFig. 4a)] the spins rotate nearly coher- \:::::::::\ \ { § N > \I < f
ently. At the metastable lifetime the magnetization vector a) b) N

of the system points in any given direction in tke plane.
Therefore, as horizontal component of the spins we show FiG. 4. Snapshots of simulated spin configurations at the life-
here that component of'they plane of th? spin space that time 7. Shown is one central plane of systems of $Rze6 spins.
has the largest contribution. For larger anisotrpigig. 4(b)], B=0.7J. (a) Coherent rotation =0.35)/spin, T=0.09). (b)
the reversal is driven by nucleation. Since iMs(7) =0, the  Nucleation ¢i=0.7J/spin, T=0.45J).
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FIG. 7. Scaling plot ofu vs anisotropy for different system
sizes. Data correspond to Fig. 6.
g M:R—B/V'I-"Lt(|dx_d|R1/v)’ (15)
~ ~
= where the scaling functiop™~x? for x—o so that in the
= limit of infinite system size it isu~ (d..—d)” for d<d... In
3 order to test if this scaling form can be applied to the data
Eh shown in Fig. 6, we present a corresponding scaling plot in
= Fig. 7. The data collapse rather well, usird),=B/2
=0.35)/spin, B/v=0.5+0.1, and 1/=0.9+0.1.
-1k L L L 7] Obviously, in the limitR— oo, u(d) behaves like an order

25000

30000
£ [MCS]

35000

parameter at a second-order phase transition: it is zero for
d>d, and finite ford<d.,, following u~ (d.,—d)?. The

fact that for infinite system size the transition occursiat
=B/2 is in agreement with our theoretical considerations,
since forR—o the region of thermally activated coherent
rotation vanishes and the crossover from nucleatiofmom-
therma) coherent rotation occurs at.(R—)=B/2 [Eq.

(14)]. That is, only ford<B/2 will the particle rotate coher-
=0.7J,...,1.2, and the system siR=2, . .. ,6spins. We  ently, andu must be finite. However, to what degree the
took an average over 100RE6 spins) to 1000 R crossover from nucleation to coherent rotation for infinite
—2 spins) runs. Figure 6 shows the results for the anisotSyStém size may be described as a phase transition must be

ropy dependence of. for different system sizes and the IEftI forthtfwl? research. il . | ‘
lowest temperatures that have been simulate@@ (!N the following we will restrict ourselves to systems o

FIG. 5. M, M, , andM, of oneR=6 spins—system as in Fig.
4: B=0.7J. (a) Coherent rotation d=0.35)/spin, T=0.09). (b)
Nucleation ¢@=0.7J/spin), T=0.45].

=0.2)/spin,...,2)/spin, the magnetic field B

=0.71], ...,0.04) depending ord). The influence of the
temperature on the simulations will be discussed later in co

nection with Fig. 8.

As expected, for small anisotropy, tends to a finite limit
while with increasing anisotropy the curves converge to zero
This effect is stronger the larger the system size is—a beh
ior that appears to be analogous to the finite size behavior
a system undergoing a phase transition. The correspondi s%

finite-size scaling ans

is

1 T

0.5 -

1 /spin]

FIG. 6. u vs anisotropy for different system siz&8=0.7J, T

=0.71), ...,0.04) depending ord.

n_

finite size. In order to differentiate numerically between the
two reversal mechanisms for systems of finite size, we use a
criterion that also comes from a study of phase transitions:
we define the inflection point of the curveKB) as that
value d.(B,R) where the crossover from nucleation to co-
herent rotation occurs. These points are shown in Fig. 2. For

}?rge B they agree very well with the theoretical line. For

wer B the numerical values are slightly too small. This
stematic deviation might be due to the fact that the theo-
retical energy barrier for nucleation is overestimated assum-
ing o=J/spin: due to occurrence of extended domain walls
for lower anisotropy the domain-wall energy might be re-
duced. This also reduces the energy barrier of the nucleation
process and, consequently, here crossover to nucleation oc-
curs earlier.

Apart from the numerical determination of the crossover
line d; discussed above, we also tried to compute the rel-
evant energy barriers directly. During the simulation, tem-
perature plays a crucial role. The largkis, the larger is the
energy barrier which has to be overcome by thermal activa-
tion and, hence, the higher the temperature has to be during
the simulation in order to obtain results within a given com-
puting time. On the other hand, we have to simulate as low
temperatures as possible to see the behavior that is described
by our theoretical considerations. Therefore, varying the an-
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FIG. 8. Metastable lifetime vs 1/T for four different anisotro-
pies. System siz&=4 spins andB=1J.

FIG. 10. Metastable lifetime vs 1/T for two different magnetic
fields. System siz&=4 spins.

isotropy, we have to adjust the temperature. Figure 8 showthermal reversal to thermally driven coherent rotation is con-
the temperature dependence of the metastable lifetime farerned. Also, we observe that in principal the numerical re-
different anisotropies. To save computer time, instead of asults seem to converge with decreasing temperature.
average of the lifetimes of the individual Monte Carlo runs,However, within these simulation we cannot confirm the the-
we calculated the medignln the limit of low temperature oretical curve very accurately, especially the asymptotic be-
we expect a behavior following thermal activation as in Eqg.havior of the nucleation regime. We conclude that the main
(4), with the energy barrier following from the theoretical reason for this quantitative deviation is that we do not obtain
consideration in Sec. Il. the asymptotic low-temperature energy barriers, since these

As Fig. 8 shows, this dependeng@ee., constant slopes in still depend on the temperature.
Fig. 8 for low T) can hardly be observed. All curves have a  One additional reason for deviations in the coherent rota-
finite curvature even for the lowest simulated temperaturdion regime might be that, in order to compare the results of
except of that ford=0.4J/spin, where the energy barrier is our simulation with theoretical results, we had to estimate
zero. We conclude that we could not reach low enough temthe domain-wall energy density, which here we simply set
peratures within the simulations and, hence, we analyze ouo o= J/spin. This estimate might be too large for a Heisen-
data in the following way: We take the local slope of berg system which can develop extended domain walls with
(In7)(1/T) as a temperature-dependent energy barrier. These lower domain-wall energy. We could try to §itin such a
energy barriers versus are shown in Fig. 9 for three differ- way that we obtain a reasonable agreement with the numeri-
ent temperatures, and they are compared with the theoreticaél data, but this would not solve the problem mentioned
results. The magnetic field isB=1J. Hence, for above, namely, that we are not in the asymptotic low-
d<0.5)/spin—the nonthermal regiofEq. (14)]—it is AE  temperature regime.
=0. In the regime for thermally activated coherent rotation,
i.e., betweend<<0.5J/spin and the crossover anisotrofdy
[Eqg. (12)], the energy barrier increases following E@).
Above d; which is roughly 0.63/spin, here the energy bar-
rier remains constant since in the nucleation regime it doe
not depend oml [Eq. (9)].

Comparing our numerical results with this theoretica
curve, we find agreement as far as the crossover from no

C. Results for the Ising system

In order to confirm our theoretical results for the energy
Qarrier of the nucleation regime, it is much more straightfor-
ward to simulate an Ising system directly instead of a
IHeisenberg system with large anisotropy. Therefore, we per-
formed a standard Monte Carlo simulation of an Ising system
defined by the Hamiltonian

) ) ! 1 1 1 1
)T =2 --%--
10 JT:s ..... - T H=-12> SS-BX S, (16)
8 1/T =6 --B-— (i) i
x
‘ with S==1. As before, we simulated spherical particles

with radius r=L/2 on a simple cubic lattice of size

L XL XL with open boundary conditions. For the Ising sys-
tem,L was varied fromL =4 to 32. We used the same meth-
ods as above, performing averages over 50—100 Monte Carlo
runs depending on the system size.

Figure 10 shows the resulting temperature dependence of
the metastable lifetime. In our data for the Ising system, a
thermal activation corresponding to Eg) can be much bet-

FIG. 9. Comparison of the theoretical curve for thedepen-  ter extracted than for the Heisenberg system. For low enough
dence of the energy barrier with the numerical data for differentemperatures, straight lines can be fitted to the data the slope
temperatures following from Fig. 8. of which determine the activation barria,, .

AE [J]

0.8 1 12 14 16
d [J/spin]
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6F T T T T T ! T = tion and nucleation, which in the case of a single-droplet-
R= 4+-=-— o ; . .
R= 6 > nucleation is a reversal by domain-wall motion. We studied

5k R= 8 "] the crossover from switching due to nucleation for high an-

4k g: %g 5 isotropy, high fields, and large systems to coherent rotation
R=14+64 for lower anisotropy, lower fields, and smaller systems. By a

3 IV comparison of the relevant energy barriers, we derive a for-
’ mula which estimates where the crossover from one mecha-
. nism to the other occurs.
1k i N If we insert the material parameters for Cdft,
] % o=0.004 J/M, andd= 200 kJ/n? in Eq. (13), we find that

for vanishing magnetic field a reversal by nucleation should
occur for particles with a radius larger than 15 nm. While at
the moment we are not aware of any direct measurement of

FIG. 11. Comparison of the theoretical curve for the energythis crossover, experimental hints of the occurrence of dif-
barrier[Eq. (9)] with the numerical data for different system sizes ferent, particle-size-dependent reversal mechanisms were
andB=0.1J, ...,0.8l. x=MBR/o. published by Wernsdorfest al?

As one important result, we found that in the limit of large

For a comparison of our numerically determined activa-particle size the region where a thermally activated coherent
tion barriers with Eq(9) for the theoretical energy barriers rotation occurs vanishes. This means that for large particles
of the nucleation process, once more we have to estimate tlibe rotation is always either nonthermal or driven by nucle-
domain-wall energy densityr. In an Ising system, the ation, depending only on the ratio of the driving field to the
domain-wall width is reduced to one lattice constant andanisotropy. Second, in the nucleation regime the energy bar-
hence, the domain-wall energy cannot be reduced by an exier is reduced, since here—in contrast to theeN&rown
tended width of the wall. But, on the other hand, on a cubidheory—for vanishing magnetic field the energy barrier is
lattice the energy of a domain wall per spin depends on th@roportional to the cross-sectional area of the particle rather
direction of the domain wall with respect to the axis of thethan its volume.
lattice. This isJ/spin for a wall parallel to the axis but, larger ~ We confirmed the result above by simulations. We also
for walls in diagonal directions. Thus we can expedo be tried to determine the relevant energy barriers numerically.
little larger thanJ/spin, and in the following it is set to  For the case of the Heisenberg model we could hardly reach
=1.2]. the low-temperature limit which one needs in order to see the

Figure 11 compares our numerical data with Eg).  Simplest, lowest-energy reversal mechanism. However, for
Since AE,/(R?0) depends only on the variable an lIsing model, i.e., in the limit of infinite anisotropy we
=MBR/o, the data for different system sizes collapse oncould establish our formulas for the energy barrier of a
one single curve, and the agreement of our numerical dat@ingle-droplet nucleation process.
with the theoretical curve is satisfactory.

AE,/(R%)
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