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Critical temperature and density of spin flips in the anisotropic random-field Ising model
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We present analytical results for the strongly anisotropic random-field Ising model, consisting of weakly
interacting spin chains. We combine the mean-field treatment of interchain interactions with an analytical
calculation of the average chain free ene(yghain mean-field” approach The free energy is found using a
mapping on a Brownian motion model. We calculate the order parameter and give expressions for the critical
random magnetic-field strength below which the ground state exhibits long-range order and for the critical
temperature as a function of the random magnetic-field strength. In the limit of vanishing interchain interac-
tions, we obtain corrections to the zero-temperature estimate by Imry anfPMe. Rev. Lett35, 1399
(1979] of the ground-state density of domain wallspin flipg in the one-dimensional random-field Ising
model. One of the problems to which our model has direct relevance is the lattice dimerization in disordered
guasi-one-dimensional Peierls materials, such as the conjugated pdiamepolyacetylene.
[S0163-182698)02129-9

I. INTRODUCTION ation of a “wrong” domain favorable. From Eql), the
zero-temperature density of spin flips is estimated ©°be
Owing to the wide range of physical systems that can be
described by Ising-like models, it is believed that the 1 (h?
random-field Ising modelRFIM), i.e., the Ising model with Ng=—~-—. (2
a spatially random magnetic field, captures the essential R 2
physics of many disordered systems. Therefore, over the past
two decades this model has been extensively studied, bothhe lower critical dimension above which LRO in the RFIM
theoretically and experimentallg.The most studied realiza- s possible is 210
tion of the RFIM is the dilute antiferromagnet in a uniform  |n most previous studies of the RFIM, the interactions
field. This realization was found by Fishman and Aharbny petween the Ising spins were assumed to be isotropic, i.e.,
in 1979 and is still under current investigatibh.Other  independent of the direction. These studies focused on the
equally interesting as diverse problems to which the RFIMuniversal critical properties of the model, such as the critical
has been found to be applicable are, e.g., the Anderson-Mogikponents and the lower critical dimension, which do not
transition of disordered interacting electrbrasd aspects of depend on the degree of anisotropy of the interactions. On
protein folding’ the other hand, the anisotropic RFIM has several nonuniver-
Much of the theoretical interest in the RFIM has origi- sal properties, such as the critical temperature, that are very
nated from the early work by Imry and Man 1975, these interesting in relation to disordered quasi-one-dimensional
authors noticed that in the presence of a random magnetigystems.
field the lowest energy state of the Ising model may have no  For example, we recently showedhat disordered Peierls
long-range ordefLRO). They considered the energetics of chains with a doubly degenerate ground state can under cer-
creating a “wrong” domain(i.e., a domain in which all spins tain conditions be described by the one-dimensional RFIM.
have reversed sigh®f linear sizeR in the ordered phase. In this mapping, the Ising variables describe the local lattice
The typical domain siz&k caused by the disorder fluctua- dimerization, while the random field corresponds to disorder
tions is determined by the balance between the energy coft the electron hopping amplitudes. The spin flips induced by
of domain walls and the possible energy gain due to thehe random field then correspond to disorder-induced neutral
decrease of the interaction energy between the reversed spisslitons in Peierls chains. The density of the spin flips is
and the random field. In the one-dimensional case, this bakelated to the magnetic properties of the disordered Peierls

ance reads systems, since the neutral solitons have spin‘d/the con-
jugated polymertrans-polyacetylene is a well-known ex-
21~ 2\{BR, B ample of a Peierls system for which this mapping may be

used. Taking into account the weak interchain interactions in

guasi-one-dimensional crystallineans-polyacetylene, the
wherel is the energy of one domain wall aqti’) is the  thermodynamics of solitons in this material may be de-
strength of the random magnetic field. This zero-temperaturscribed by the anisotropic RFIR.In this context, the inter-
estimate implies that in the one-dimensional random-fieldesting properties of the anisotropic RFIM are the temperature
Ising model LRO does not exist, as in an infinite system it isof the three-dimensional Peierls transition, the order param-
always possible to choode large enough to make the cre- eter, and the density of spin flips as a function of the random-
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field strength andor) temperature. These properties stronglyHere,{ . . . ) denotes the average over the random-field real-

depend on the degree of anisotropy of the interactions. izations. Finally, we impose open boundary conditions on
In the present paper we study tdedimensional aniso- the model. This choice does not affect our results, as these

tropic RFIM (d>2), which consists of regularly arranged will be derived for a large systenlN— .

chains of spins in a random magnetic figlfec. I). The For vanishing magnetic-field strengéh the ground state

interaction between spins in neighboring chains is supposedf the spin system Ed3) is ferromagnetically ordered. This

to be much smaller than the interaction within chains ands not necessarily the case when a finite random field is

will be treated in the mean-field approximation; the intra-present: For a number of spins it may then be favorable to

chain interactions will be treated exactly. Using the transfer{lip and align with the local direction df;, to minimize the

matrix formalism and a mapping on a Brownian motiontotal energy.

model, we find an analytical expression for the average free To calculate the partition function of the model we treat

energy of the continuum version of our modgkc. Ill). This  the interchain interactions in the mean-field approximation.

key result is used in Sec. IV to obtain the order parameterThen the energy Eq3) becomes a sum of single-chain en-

the critical temperature, and the density of spin flips. In Secergies and can be written as

IV A, we present analytical results for these quantities in the _

limit where thermal creation of spin flips dominates their 41 I B I,

creation by the random magnetic field; in Sec. IV B we con-éurlh]=N EI 5(1=0i0i1) = (B+h)oi+ )

sider the opposite limit. We find the critical random-field =

2

strength below which the ground-state exhibits LRO; well ®)
below the critical strength, the density of spin flips is foundwhereB is the homogeneous mean fieTq, equalsl | times
to be exponentially suppressed. the number of nearest-neighbor chains of one particular

In the absence of the interchain interactions, the anisoehain, and we took into account that the contributions of all
tropic model reduces to the one-dimensional RFIM. In thisN9~1 chains are on average equal. The mean fiekhtisfies
limiting case, our solution is exact. It shows that the estimatehe self-consistency equation:
for the density of spin flips E2) in a single chain is correct
to lowest order in the random magnetic-field strength and 1
gives higher-order corrections to this expression. Previous B= §|L<<U>>, (6)
attempts to obtain an exact solution for the one-dimensional
casé” did not yield closed expressions for the free energyVhere((...)) denotes both the thermal average and the
the physical interpretation of our results in Sec. V and sum{({c}), which is the normalized difference between the aver-

marizing in Sec. VI. age number of sites with spin upN() and spin down i),
IIl. MODEL <<0>>_NT+NL’ @)

We consider the anisotropic RFIM on drdimensional
lattice with a total number ofl¢ sites. The Ising spins occu-
pying the lattice, interact with their nearest neighbors and 1 9
with a magnetic field that has a random value at each lattice {(o))= N £<F). (8
site. The anisotropy results from the fact that the exchange
interactionl along one of the lattice directions is assumed toHere,(F) denotes the average over the random-field realiza-
be much stronger than the interactignperpendicular to this tion of the free energy of a single chain in the mean figld
direction: 0<I, <I (for definiteness, the interactions are For a particular random-field realization:
chosen positive The lattice is thus divided inthl9~1 chains

can be found from

labeled f N spins(labeledi). Th f del 1 _
i(sagﬁlgnc;)yo spins(labeledi). The energy of our mode F[h]=——|n<{2} . ,BE[o.h]), ©
1—0i, Oy 1— 0,0, where the chain enerdy[ o,h] is given by the relevant part
ghl=1 > —  th > — of Eq. (5),
(i,i"),a i(a,a’)
I
-> h o, 3) E[th]zz [E(l_UiUiJrl)_(B—’_hi)a'i . (10
ia

) ) ) ) . Using Eq.(8), the explicit form of the self-consistency con-
Here, oi,=*1 is the classical spin variable describing the yition (6) becomes

two possible spin directions, up and down, at sitef chain

a. The summations oveji,i’) and{a,a') are restricted to T, 9

nearest-neighbor pairs. The random magnetic tigldis as- B=- N £<F). 11
sumed to be uncorrelated for different lattice sites, with van-

ishing mean and Gaussian correlator of strength In view of the relative weakness of the interchain interac-

tions (I, <), this so-called chain mean-field
(Nig)=0 and (hi,hjz)=€5 5, p. (4)  approximatio®® is expected to be accurate.
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The disorder-averaged free enerdy), which we calcu- (h(t))=0 and (h(t)h(t"))=ed(t—t"). (19
late analytically in the next section, can also be used to find i i
other relevant thermodynamic properties. In particular, thd" the last expression, we have chosen the lattice constant as
average density of spin flips inside a chain as a function of® unit of length(time). The Hamiltonian Eq(17) describes

temperature and random-field strength is obtained through the relaxation of a spin 1/2 in a magnetic field which has a
constantx component and a random and time-dependent

19 component.
Ns=N 5<F>, (12 It can easily be seen from E(L4) that the validity of the
expansion Eq(16), i.e., the validity of the continuum de-
sincel is the spin-flip creation energy. In the context of the scription of the discrete Ising model, requires the two condi-
degenerate ground-state conjugated polymers, mentioned iions
the Introduction,ng directly gives the density of solitons
within chains. exp{— Bl}<1 (19

and
Ill. THE AVERAGE FREE ENERGY

To derive the continuum version of the discrete model Eq. AhM®[+[B])<1 (20
(10), we follow the standard path!’ by first rewriting the  to be fulfilled simultaneously. While the first condition re-
chain partition function in the transfer-matrix formalism. The sults in an upper limit for the temperaturé<l, the latter
partition function is thus considered as the expectation valugmplies a lower temperature limif>O(max \e,|B[}).
of an ordered product of operato?$ along the chain axis The continuum limit allows us to write the partition func-
tion Eqg. (13) as a sum over matrix elements for the time-
ordered propagation of a spin-1/2 particle in imaginary time:

N
2n=2 e~ pELol}= X (o'|]] Tilo).
a o0’ =*1 = ~ ts .
(13) zZ[h1= S (a’|Texp{ f fH(t)dt} o). (21
o0’ =+ ti
Here, the final summation over,o’ accounts for all pos- R !
sible boundary conditions for the spins on the chain’s endsHere,7T'is the time-ordering operator and the integration over

On the basis spanned by the two vectpts and|—) (cor-  the dimensionless time variablehas to be performed from
responding tar=+1 ando= — 1, respectively, the transfer the initial timet; =0 to the final timet;=N corresponding to

matrix -’I\—i reads the chain Iength
It is now convenient to rotate the spinor basis over an
etAhiTB) o= BlgTAhi+B) angle 7r/2 around ther, axis, which yields the transformed
-‘ri: . (14) Hamiltonian:
e Blg—Bhi+B)  o—B(h+B)
" A | oA A
T, depends on the site-indéxhrough the random magnetic H ’(t)=exp{ ! 2‘72] H(t)exp( —I 2‘72}
field.
A relation between the transfer matrix E(L4) and its =—B[h(t)+Blo;+exp{— Bl } o3, (22)

(euclideam quantum Hamiltonian is established by interpret-

ing the axis of the chain as th@maginary time axis of

guantum mechanics. This means that neighboring sites la- N

beled byi are considered as subsequent tirhés the con- Z[h]:2<+|’7’exp{ f H'(t)dt
tinuum model. In this sensg carries information about the 0

time evolution of the system and can in fact be identifiedTo make this expression more compact, we introduce the
with the time evolution operatdr of a corresponding Hamil- wave function of the spin,

tonianH:
V() =y (O] +)+ 9, (D] ), (24
T=exp{—H}. (15  which obeys the time-dependent Sdltirger-like equation,

|+). (23

In the continuum approximation the deviation Dffrom the ~
identity matrix is assumed to be small, so that the last ex- gtV O=H(W(). (25
pression can approximately be written as

Together with the inital condition’(t=0)=|+), the parti-

T=1—-H, (16)  tion function EQ.(23) now simply reads
whereH, obtained from Eq(14), has the form Z[h]=2¢,(N). (26)
A(t)=B[h(t)+Blaz+exp— Bl}oy. (17) Our problem of calculating the partition function has, of

. . course, not been solved in going from E§3) to Eq. (26).
Here,o; ando5 are the Pauli matrices and the random mag-However, it is possible to find a substitution for the spin-
netic field is now Gaussian in time: wave function Eq(24) that relates the calculation &f h] to
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an exactly solvable Brownian motion model. This method ay(v)=—2BB—2e P'sinh(v(t)), (33

was already used by us in a previous papewhere we

considered the Hamiltonian EGL7) without interchain in-  and

teractions B=0), in the context of disorder-induced solitons N

in a single polymer chain. To keep the present paper reason- a2:432f (h(tHh(t"))dt' =452%. (34)

ably self-contained, we will briefly repeat the essential steps 0

?;;Sgshrziw]ogtjc”ﬁrmg? ;;\;]Vt ?)Ifs\?i:\jvr, f;}';ﬁ%ilgeg ni\;e; ;I'he solution of the Fokker-Planck equati¢82) is easily
. e . : ound to be

major complication, the physical consequences are impor-

tant, as it gives rise to the existence of LRO at finite tem- _ I

perature andor) finite random magnetic field. Peq(v) =Nexp{— vv —zcost{v)}, (35
We start by introducing the two time-dependent functionswhere we introduced

u(t) and v(t), such that the spin-wave function E(R4)

B
reads v=— (36)
Be
v(t)
cos T e—BI
W (t)=u(t) . (27 z=—, (37)
o) pe
sin >~ and the normalization coefficieth determined by

The initial condition, ¥ (t=0)=|+), requires thau(t=0) +oo

=1 andv(t=0)=0, and from Eq.(25 we obtain two f duPeqv)=1. (38
coupled differential equations far(t) anduv(t), o

du(t) The equilibrium distribution Eq(35) is centered around.,

_ -Bl [Eg. (3D)], and in the limit of vanishing fluctuationse (

dt u(te” “eostlo (1)), 28 —0), it approaches & distribution[ Pe(v)— 6(v —v..)].
Using our result foP.{v), the average free energy of the
RFIM can easily be obtained. We first note that E80)
do(t) enables us to write the partition function Eg6) in terms of
=—-2BB—2e Plsinh(v(t))—28h(t). (29  v(t) alone:

and

dt
While Eqg.(28) can be easily integrated, yielding Z[h]=2¢T(N):2u(N)cosr<U(2 ))
t
u(t)=u(0)exp[e‘ﬁ'J cosr(v(t’))dt’], (30 N v(N)
0 :2exp{ e‘ﬂIJ cosk(v(t))dt]cos)’(7>.
Eq. (29 can be interpreted as the Langevin equation for the °
velocity v of a particle undergoing a one-dimensional (39

Brownian motion. The last term in Eq29) is the random  5iting in the limit of long chains all terms that do not

force acting_on the part_icle, while the fi_rst and the secondgrow proportional taN, we can now replace the average of
terms describe, respectively, a consténiag force and a InZ[h] over the random-field realizations by the average over

friction. ;
In the absence of the random for@g® random magnetic Pedv). This leads to
field), the velocityv approaches a time-independent value 1 e Bl [+ 7 K/(2)
for t—oo: N<F>:_T » Peq(v)cosi(v)dsz;KV(z),
v.=—arcsinti gBe?"). (31 (40)

In the presence of the random fore€t) becomes a stochas- WhereK,(z) denotes the modified Bessel function of orader
tic variable with a time-dependent distributiof®(v,t), andK/(2) its derivative with respect ta.X®

which may be obtained from the corresponding Fokker- The analytical solution Eq40) of the average free energy
Planck equatiod® In the limit of long times N—), the is the key result of this paper, from which all further results
time-independent  equilibrium  distribution,Pe{v), is  follow. In Fig. 1, this solution as a function of temperature is

reached, obeying compared to results of a numerical simulation of the discrete
RFIM at e=0.012 for three values of the mean fieB.

d ay PPPefv)  IPedv) Apart from the presence of the mean field, the simulation

~ 5y (@1(v)Pedv))+—5 w? a Y method is identical to the one described in Ref. 11. Figure 1

shows that in the temperature regidr<l, the analytical
(32 S 4 . .

solution is in excellent agreement with the simulation, except
Here, the first and second moments are given by, respeder very low temperatures, where the condition E2Q) is
tively, not met. It is observed that the analytical solution for the free
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T/1 FIG. 2. The order parameté(o)) of the ansitropic RFIM as a
. . function of the random magnetic-field strengtland temperatur@
FI_G. 1. The average free energy of the anisotropic RFI_M as affor T>To(e)]. The plotgwas obtained %ty solving the self-
lunction “of temperaturé for three values of e mean fidid: consistency condition Eq11) with the analytical solution Eq40)

:0_'005’ 0.01, and 0.02 (curve_s a, b, and c, respectively for the free energy. The interchain interaction was chosen such that
Solid curves represent the analytical result &) for the con- ~ 0.02, in which cas@,=0.298 (at e=0) and 0.00712
=0.02, =0. €= e.=0. .

tinuum approximation to the RFIM; dashed curves are obtainedi/I - ) .
from numerical simulations of the RFIM. In all cases, the randomAt (T,€)=(0,0), the order parameter reaches its maximyfu))

field strength was takea=0.012. The thin line aff =T, gives the ~ — L+ 1he _tEiCk gur\_/ﬁ in T§<0>>:O plane separates the,T)
position of the maxima of the analytical solution. regions with and without LRO.

energy reaches a maximumTat Ty(€) # 0 (indicated by the ~ The first term in the right-hand side of E@1) is the con-

thin line). The meaning ofTy(¢e) will be discussed in Sec. tinuum approximation for the free energy of the discrete

IV B. model Eqg.(10) at e=0. Under the conditions specified by
Egs.(19) and(20) this term agrees with the exact expression,

IV. ANALYSIS OF RESULTS

1 1

Using Eq.(40), it is straightforward to solve numerically NFZ - E'”(COSK,BB)Jr J(sinh(BB))?>+e 28, (42
the self-consistency equatidhl), from which the order pa-
rameter({c)) is found through Eq(6). Figure 2 gives the Wwhich can be obtained by diagonalization of the transfer-
thus obtained order parameter as a function of temperatum@atrix Eq.(14) ath;=0.
and random-field strength forl, /1=0.02. A low- Using Eq.(41), the sglf-co_nsistency equatighl) for the
temperature cutoffo(e) was used, as will be explained in Mean fieldB can be written in the form
detail in Sec. IV B. The thick curve in th€c))=0 plane
separates the region with LR@nside this curve from the E: _ 1672& 4 43)
one without LRO. From the solution fg( o)), one obtains T, y T2 Yo
the critical temperature and the density of spin flips through
further numerical analysis. For certain parameter values Where
andz, however, our result Eq40) also allows for analytical _ 2, —281-112
solutions. Here, two limiting cases should be distinguished. y=[L(BB)"+e ] 7~ (44)

In Sec. IV A, we will consider the case of very weak disor- a¢ the transition temperatureT(e), the order parameter

der, where thermally induced spin flips dominate the ones,nishes. Therefore. by puttirg=0 in Eq. (43). we obtain
induced by the random magpnetic field. In Sec. IV B, we con- : . Dy putting a. (43)

an equation fofT :
sider the opposite limit. q o(€)

. . 2T(€) I € I

A. Dominant thermal spin flips — =ex - exp 2 . (45)
- - I Tc(e) Tg(e) Tc(e)

For a weak random magnetic fielé--0) the modified

Bessel function in Eg(40) has to be evaluated at large order

In particular, ate=0 we obtain
and argumenty,z=1). Using standard expansioh’sye ob- P

tain to first order ine: T |
1
ex =1 46
Ly L garrem_fe e 2T4(0) F(Tcm)) 49
—(Fy=—— +e P _
N< ) B (B 2 (BB)?+e 2P This equation can be compared with the exact result for the

(41  critical temperature of the two-dimensional Ising motfei*
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LA T
smt‘(_l_—c sml’(_l_—c) =1. (47) I(T,e)—l—2TIn(e—_|_o>, (55
For |, <I, both Egs.(46) and (47) give approximately with
T | 48 To=To(e)=2e™ 7 %€, (56)
¢ In(I/1,)’ “8) a characteristic temperature that depends on the strength of

the random magnetic field. Furthermore, we defired
which shows that the chain mean-field approximation works gnetic X . W e

well for the strongly anisotropic Ising model. I(T,e)B
From Eq.(45) we find that at weak disorder the transition X=—". (57
temperature decreases linearly with

At T=T,, the free energy reaches a maxim(h Fig. 1),
implying that the entropy vanishes. The general expression
for the entropy in our model is

Tc(e)=T(0)(1—ae), (49
whereq is

10(F)  2e x?

2 =— = I (—) 58
a:m. (50 (S N dT (T, e)? sint(x) n To &8

_ _ o which becomes negative far<T,. This unphysical behav-
Finally, the average density of spin flipsee Eq(12)]for  joris also observed for isolated chairs €0) ! Its origin is

weak disorder is given by the continuum approximation, which breaks down at low
s temperatures. As we discussed in Ref. 11, the problem arises
e for T>Tc(e), due to the fact that in the continuum model a spin flip can
n.— 2 (51) take any position on the chain and is not restricted to the
s -2l 2,,2 i i iqi i i
e 2P <~—+e,8 y ) for T<T.(e). lattice points of the original discrete model. The continuum
L model, therefore, gives incorrect results as soon as the ther-

mal fluctuation of the spin-flip position$(T)~T?/e, be-

We note, that in the disordered phdaeoveT(e) ], no cor- comes less than one lattice constant. This happefisa/e,

rection to the density of spin flips linear inoccurs. Thisis . .
related to the fact that in the weak disorder limit, the domain" agreement with E¢56). The nature off; suggests that at

; : L X this temperature the continuum model in fact describes the
sizeR in Eqg. (1) is limited by the distance between thermally ; } - .

. S N zero-temperature discrete model. Using numerical simula-
induced spin flips, which is too small to allow for the cre-

ation of spin flips by the random field. In this case thefuons, we confirmed that for the one-dimensional RFIM this

lowest-order correction is23*exp(Al)/8 indeed is a reasonable identificatitn.
Bexp ’ Using Eq.(54), the self-consistency condition E¢l1)

now takes the form
B. Dominant disorder-induced spin flips

We now turn to the limit exp- 81]<%, or equivalently: <<U>>:§: X (59)
z<1, where the thermal creation of spin flips is negligible T, tanhx)  sinkf(x)
compared to creation by the random magnetic field. To low- o .
est order inz, we then hav¥ in Eq. (40): For ({o))<1, the nontrivial solution of Eq(59) for the or-
der parameter reads
z K (2) F(1+v)(22)" "+ (1-v)(2/2)” (52 3
_ ~_ . €
v K,(2) FA+v)(2/2)""-TI'(1-v)(2/2)” (o)) \/I(T,e)—T—. (60)

1
To find the critical temperature, at whid—0, it is suffi-
cient to consider only small values opxB, where
I'(1xv)=e*"""(y=0.577 is Euler's constaptso that Eq.

(52) further reduces to T
1

3e

At the critical temperatur@.(e), the left-hand side of Eq.
(60) vanishes, yielding

=1, (61)

eTo(E))

Figure 3 shows the critical temperature as a function of the
random magnetic-field strength for three values of the inter-
Using this result and the definitions Eq86) and(37) of »  chain interaction. The dashed curves are obtained by solving
andz, respectively, the free energy E@0) finally becomes Eq. (61). This yields meaningful results only fofy(e)
<T.(€)=<0.13, where the upper limit arises from the fact
€ X that thez<1 approximation made in deriving Ep2) starts
N<F>: " 1(T,e) tanh(x) " (54 to break down. The solid curves show the results obtained if
we do not apply the small-expansion, but instead numeri-
Here, we introduced cally solve the self-consistency equation Efjl) with the

I—2Tc(e)ln(
z Ki(2) N 1

vK, (2  tanHwiIn[2e 7z]}

(53
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FIG. 3. The critical temperatur&(e) of the anisotropic RFIM FIG. 4. Density of spin flips within the chai_ns_of the anisotropic
as a function of the random magnetic-field strength ?Qr/I RFIM as a function of the random magnetic-field strengthTat
=0.002, 0.01, and 0.02curves a, b, and c, respectivehsolid =T,, i.e., in the ground state. The interchain interaction was chosen

curves derive from Solving qul) with the exact free energy Eq SUCh thaﬁli /l = 0.02. Thezdashed “ne ShOWS the analytical result
(40). The dashed curves are obtained by solving (B, while the ~ Ed. (67) for e<e=0.0071".
dots represent the smallbehavior Eq(49). The dash-dotted curve

shows the temperatuii,(€), below which the continuum approxi- €
mation breaks down and which corresponds approximately to nS(T,e)ZZ—. (65
=0 in the discrete RFIM. 1%(T,€)

In particular, the latter expression holds for the one-
full free energy Eq/(40). Clearly, over a large disorder in- dimensional RFIM, which is disordered at all
terval, the approximate results give excellent agreement witkemperature&® Equation (65) was obtained previously in
the exact ones. Also presentédbts are the results in the Ref. 11, where we discussed the density of kinks in isolated
weak disorder limi{Eq. (49)]. The dash-dotted curve in Fig. polymer chains. The temperature region where &&) is
3 indicates the lower temperature linig(e), which we ar-  valid is specified by Eqs(19) and (20). However, as we
gued to correspond t6=0 in the discrete model. showed in Ref. 11, the density of spin flips at zero tempera-

The critical disorder strength. below which LRO exists ture in the discrete RFIM is very close to the continuum
in the ground state is a function of the interchain interactiorvesult Eq.(65) at T=Ty(e):
and can be calculated from Ed61) by requiring that
T.(€)=Ty(€). This yields

€
ng(0,e)~ ————, 66
i ~ s(0€) (10ye? (66)
€ %E 1+ ¢ ?’l_i wherec is defined by Eq(63). To lowest order ine, this
c : (62)
3 9V I result agrees with the estimate Hg). The leading correc-

tion to Eq.(2) is of the ordere®?.
For e<e., LRO does exist and the zero-temperature

spin-flip density should be obtained by numerically solving
c=2.2e77"2=0.78. (63)  the order parameter from E(9) at T=T, and substituting

the result into Eq(64). ForT, /1=0.02 the resultings de-
It is seen thate, is of the order off , I. For a random-field pendence of the spin-flip density is shown in Fig. 4. At this
strengthe< e, the ground stateT(=T,) of the anisotropic  particular value of the interchain interaction, the critical dis-
RFIM is nearly perfectly ordered{o))=1, as is clear from order strength i,~0.00712 It is observed from Fig. 4 that
Fig. 2. well below this critical value, the spin-flip density is strongly

We now turn to the average density of spin flips within suppressed. In fact, far<e., Eq.(64) reduces to

the chains, which using Eq&l2) and(54), is obtained as

7o
2 ns(TOyf)zfeXF<_—ILI(TO,G)), (67)

€
. 64
12(T,e) sint?(x) 64 which shows exponential suppression for snealEquation

(67) is represented in Fig. 4 by the dashed curve. It should be
In the disordered phase£0), Eq.(64) reduces to noted that, strictly speaking, Eq67) is only valid for v

where

€ X
nS(Tl 6) =
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=B/(Be)<1 which was assumed in deriving EG3) from  |(T,e)=1—TInl(T) is the spin-flip free energy, which also
Eq. (52). However, straightforward analysis shows that forincludes the entropy of the spin-flip location. It is clear that
T,/1=0.02 and T=T,, this condition onv implies e the free energy, rather than the “bare” kink creation energy
>0(10 %), which holds for the overwhelming part of Fig. 4. | should enter into the correct expression E8f) for the
density of spin flips.
V. DISCUSSION Finally, we discuss the critical strength of the random
magnetic field, given by Eq62), above which the system is
The results for the anisotropic Ising model obtained abovejisordered at all temperatures. In an isolated chain, spin flips
admit a simple interpretation. To this end it is useful to dis-gre induced by an arbitrarily weak random magnetic field
tinguish between two kinds of spin flips occuring in chains:[see Eq.(65)], because the distances between the spin flips
kinks and antikinks. For kinks, the spins are positive to thecan be made as large as is necessary to compensate for the
left of the spin flip and negative to the right. For antikinks, spin-flip creation energy by the energy of the interaction with
the opposite holds. Obviously, kinks and antikinks have thehe random magnetic field. In the presence of interchain in-
same creation energy, and along the chain always an alterngeractions, however, the distances between spin flips are not
tion of kinks and antikinks occur. allowed to be arbitrarily large, because of the potential Eq.
We first discuss the density of thermally induced spin(6g). The potential grows linearly with the distanée be-
flips in the absence of a random magnetic fi@d. (51) with  tween kink and antikink, while the energy gain due to kink-
€=0]. As we assumed the temperature to be much smallegntikink pair creation grows proportional t(R. Thus, in the
than the spin-flip creation enerdy the density of the ther- presence of interchain interactions, the equation describing
mally induced spin flips is small. In the disordered phasehe balance between the energy gain and energy loss due to

(aboveT,), one can neglect the correlations between the pothe creation of a kink-antikink pair of siZR [cf. Eq. (1)],
sitions of spin flips in different chains and the density of the

spin flips (kinks and antikinks is given by the Boltzmann 2147, R~2eR (71)
formula: n=e #'. In the ordered phase, the interchain in- * '
teractions bind kinks and antikinks within one chain into 5y has a solution ife>e.~T, 1, in accordance with Eg.

pairs, which is clear from the fact thag<e 2" belowT;.  (g2). For e<e, the distances between disorder-induced spin
As follows from Eq.(3) the binding energy of such a pair  flips in isolated chains are very large, so that they are sup-
is proportional to the distand® between kink and antikink:  pressed by the interchain interactions and the system at zero
~ temperature is in the ordered state. If, on the other hand,
V(R)=1,R, (68) > the system is disordered at all temperatures.

as over this distance the spin sign is opposit&(te)). Thus The dependence of the critical temperature on the disorder

below T.(0), the density of the thermally induced kink- strength in the RFIM can be compared with that in another
antikink pairs is Ising-type model of disorderetpin- Peierls systems con-

sidered in Ref. 22. There it was assumed that impurities ran-
n -~§(T)e‘25' (69) domly cut the chains into finite segments, some of which,
par ’ e.g., the ones with an odd number of units, contain at least
where the factoﬁ(-r) =T/(T,)—the average size of the pair One soliton. This was modeled by an ensemble of finite Ising
at temperaturd—comes from the sum over all possible dis- chains whose length are taken from a Poisson distribution
tances between kinks and antikinks in the partition functionand which are subjected to a mean field and four different
The density of spin f||ps in the ordered phase equaﬂ&iz k_lndS of bounqary conditions. FOI’ small Impurlty Concentr-a-
in accordance with Eq51). tion x, the critical temperature in that model decreases lin-
The transition between the ordered and disordered phas€grly withx, just as in the RFIMsee Eq(49)]. On the other
occurs when the kink-antikink pairs dissociate into free kinkshand, for largex, T¢(x)«1/x and at zero temperature the
and antikinks. Thus, at the critical temperature the averageround state is ordered for all valuesfThe absence of a
length of the kink-antikink pair is of the order of the averagecritical concentration, above which LRO is destroyed, is re-
distance 1, between spin flips, lated to the fact that in that model the positions of spin flips
(solitong within the finite chains are not fixed. At=0 the

— I spin flips are located near one of the chain ends to minimize
R(TC(O))~ex;{W), (70 the size of “wrong” domains. In the RFIM, however, the

¢ distances between neighboring spin flips are governed by the
which explains the physical content of Eg6).> energy balance Eq(71) and cannot be made arbitrarily

Next we discuss the density of spin flips in the disorderedsmall, which results in the existence of a critical random-
phase induced predominantly by the random magnetic fielgield strength.
[see Eq(65)]. This equation coincides with the simple Imry
and Ma estimate Ed2), except that the kink creation energy
| is replaced byl(T,e) defined in Eq.(55). This can be
understood as follows: The spin flips enter into the partition In this paper, we studied the anisotropic RFIM, consisting
function with the weight: w(T)=I(T)e #', where of spin chains with interchain exchange interactions that are
|(T)~T? e is the thermal fluctuation of the spin-flip position much weaker than the intrachain interactions. Treating the
in the presence of the random magnetic field. We can novinterchain interactions in the mean-field approximation, we
write the weight in the form:w(T)=e #'(T9 where found an analytical solution Eg40) for the free energy. The

VI. SUMMARY AND CONCLUSIONS
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crux of our approach lies in the fact that in this chain mean<hain of the polymertrans-polyacetylené! Our present
field approximation the free energy of the continuum versiorntreatment of the anisotropid-dimensional RFIM allows us
of the model can be related to a one-dimensional Browniato extend that study to include the soliton-antisoliton con-
motion. We found the stationary solution of the correspondfinement that is imposed by electron hopping between neigh-
ing Fokker-Planck equation, which enabled us to perform thdoring polyacetylene chains in the bulk material. In particu-
average of the free energy over the random magnetic-fielthr, the exponential suppression of the density of spin flips
realizations. From this, we obtained the order parameter aswaell below the critical random-field strengflsee Eq.(67)]
function of temperature and random-field strength and, morenay be relevant to explain the absence of experimental sig-
specifically, the critical temperature below which LRO oc- natures of these solitons. In a forthcoming papere will
curs as a function of the random-field strength. We also calfocus more particularly on this application of the anisotropic
culated the density of spin flips in the chains. As we decribedrFIM and discuss various experimental observables. We fi-
in Sec. V, our results have a clear physical interpretation. nally note that ifB is considered an externétather than
The chain mean-field approximation restricts the validityself-consistentfield, our model describes the lattice dimer-
of our results tad>2, where thermodynamic quantities suf- ization of a disordered polymer chain with a nondegenerate
fer much less from fluctuations than in lower dimensionalground staté? B then is proportional to the energy differ-
systems. We believe that the critical temperaflyge) given  ence between the two phases with different signs of the
by Eq. (61) describes the phase transition in three dimen-dimerization.
sions qualitatively correct and is quantitatively correct for a
strongly anisotropic realization of the RFIM. Clearly, our
mean-field treatment of interchain interactions is not appli-
cable in two dimensions, where LRO is lacking for all tem-  This work is part of the research program of the Stichting
peratures andor) random-field strength®d. Fundamenteel Onderzoek der Mateif®©M), which was fi-
The one-dimensional RFIM had already been solved byhancially supported by the Nederlandse Organisatie voor
us in the context of disorder-induced solitons in a singleWetenschappelijk Onderzog¢k\WO).
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