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We present a method of calculating the Helmholtz free energy of an anharmonic crystal. The exact expres-
sion forF, obtained by summing an infinite series of contributions, fadhthe loops and bubbldguartic and
cubic contributions to the self-energy of the Green’s fungtia evaluated numerically and the equation of
state results for a Lennard-Jones solid are compared withzlperturbation theoryPT) which contains only
the lowest order cubic and quartic contributions. It is shown that the infinite sum results are considerably
improved over the.? PT results for higher temperatures. Next we have presented a powerful ansatz approach
of evaluating the same sum. The numerical results from this method are shown to be identical to the exact sum
except at neaf,, where they are very slightly different. The ansatz method is then extended to the higher order
A diagrams and here too the numerical results are found to be improved over the results fidhPiheThe
ansatz procedure is then extended to the propagator renormalization and the numerical results obtained seem to
have the best agreement with the results of classical Monte Carlo simuldBii63-18208)04729-9

[. INTRODUCTION similar magnitude but arising in different orders of PT
should be summed. The former procedure has been followed
The purpose of this paper is to report the equation of staty Choquard, resulting in the first order self-consistent pho-
results, for a fcc nearest-neighbor interaction Lennard-Jong3on theory(SCY as well as others, e.g., SC2. But S(ef.
(LJ) solid, from a procedure which requires the summatior?) Yields poor results and SCRefs. 5,13 diverges. The
of an infinite series of diagrams, selected in a consisterf@tter procedure, where the diagrams are generated by the
manner. Our results are obtained in the classical or highvan Hove orderingX) schemé, has not been implemented,
temperature T) limit, T>®;, (the Debye temperatuxeThe fo_rmaIIy, or computathnally a_nd this is what we achieve in
validity of the results obtained from the summation proce-INiS Paper in the classical limit. o
dure is assessed by comparing them with the classical Monte AS @ first step, the diagrams Gf(A7) arising in the self-

Carlo (MC) results calculated for the same model potential.ene_rgy of the Green’s function are sum_med in the determi-
We have been prompted to do this work because aQatlon of the Helmholtz free energ¥ ). This sum represents

shown in Ref. 1, the straightforward application of thé all the contributions toF from the loops and bubbles as

perturbation theoryPT) (two diagramsand even higher or- inserts in the ring, to all orders af. The loops and bubbles

4 ) S . ) are the only self-energy insertions ©{\?2). We are able to
der \™ PT (eight additional dlagramshas prc')duced.dwer- carry out this summation exactly. A comparison of the equa-
gence of almost all thermodynamic properties. This can b

: ; %ion of state results from this calculation with that of thé
illustrated by the results for the heat capacity at constanpr (the most investigated anharmonic theowyill tell us
volume (C,). The classical MC calculation gives a value for apoyt the importance of the higher order diagrams included
C, ., that drops slightly a§" increases from B at T=0 t0 i, the summation procedure. To facilitate the presentation of
about 88% of this at the melting temperatu®,J. TheA*>  our arguments, the free-energy and self-energy diagrams of
PT result agrees at low, up to 30% ofT,, and then drops  O(A2?) and O(\*) are presented in Figs. 1 and 2, respec-
sharply. Thex* PT result agrees with MC up to about 40% tively. The self-energy diagrams can be obtained by breaking
of Tr, and then curves sharplypwards From the point of  one line in a free-energy diagram, but, in turn, the free-
view of divergence, the situation here seems to be similar to

that encountered by Gell-Mann and BruecKriarthe calcu-

lation of the correlation energy of the electron gas. Free Energy Self—-Energy
One can get good agreement over a wider range of tem-

peratures, either by leaving out some of the diagrams of XD al

O(\%), as we did in Ref. 1, but for which priori there is no @ ev Q;

basis other than achieving a good agreement, or, by summing
diagrams to higher orders, ideally to an infinite order. How-
ever, if the summation is to be carried out, it should be done S o) —€ > —

in a consistent manner, i.e., eithall the diagrams in the

same order of PT should be summed, or all the diagrams of FIG. 1. Free energy and self-energy diagrams of okder
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_Free Energy Self—-Energy O(N?). We note that these thre®(\%) diagrams can be

generated from the tw®(\?) diagrams(a) and (b) of Fig.
% (a1) 1, by inserting either a loop or a bubble in the phonon lines
(a) a
(b1)

in 1(a) and Xb).

The last step in our calculation is the propagator renor-
malization. By this powerful procedure, even higher order
diagrams than considered so far are generated by including
self-energy inserts into internal phonon lines. When those
lines themselves have inserts put into them, an iterative, or
self-consistent, calculation is required. However, the number
of terms generated in this way is enormous and their exact
numerical evaluation for every wave vectay)(and branch
index (j), in some reasonable time, is very difficult, if not
impossible. Thus, due to the extreme complexity of these
calculations, largely due to the tensorial character of the an-
harmonic force constants, their Fourier transforms, multiple
Brillouin zone (BZ) summations restricted by numerofis
functions, and finally neighbor summations, we have devel-
oped an ansatz to approximate many such diagrams as prod-
ucts of simpler diagrams, with numerical factors. In the situ-
ations where we can compare these results with exact
calculations, they have been found to be amazingly accurate.
We therefore apply this technique to give equation of state
results when the internal propagator lines are treated to dif-
ferent degrees of sophistication. Some of the approximations
developed in this way lie very close to the MC results over
the entire temperature range of the solid.

® OO

(b2)

(e1)

© O

(c?)

(d1)

(d) é (d?)

(as) II. INFINITE SUMMATION
OF ALL THE RING DIAGRAMS

INVOLVING THE LOOP AND BUBBLE INSERTS

() S (1)
The infinite series of all the ring diagrams, involving the
loop and bubble inserts, can be summed in closed form by

the following procedure which involves modifying the mul-
tiplying coefficient of theAngqj operators in the Hamil-
tonian H) and then a subsequent integration over a coupling
parameter ¢), 0<g<1. The procedure also requires the
knowledge of the one phonon Green'’s function which can be
derived by the diagrammatic methdtior by the Zubarev
prescriptior"'° Here we have followed the Zubarev method
because it has a built-in self-consistency criterion. Then for
the H containing the harmonic and anharmo@ubic and
quartig contributions, the one phonon Green’s function in
the diagonal approximation is given by

(£1)

® d0

{f2)

(g1)

(g) @

i’ _ 2wqj 8qq' jj
W 2m[w?-0f ()]

@

S1b 818 B(8)5 B &4 BB bolop

(g?)
(h) @ (a1) whereQ7; () is in general a frequency-dependent renormal-
ized phonon frequency and its complete expresson can be
FIG. 2. Free energy and self-energy diagrams of onder found in Ref. 10. However, in the context of the evaluations
of the anharmonic contributions to the average square of the

energy diagrams can often be interpreted as built from th&Omic displacemeHzazndF (Ref. 12 it has been shown that
self-energy diagrams as building blocks. the w dependence dfg;(w) in the high-temperature limit is

The next step in the summation procedure involves thdlot Very important because exact results for these quantities
insertions of the self-energy diagrams@f\*) in the ring. ~ are given in this limit when2Z;(w) is evaluated atv=0
To avoid double counting in the tot& up to O(\%), the  which we simply denote a87;. Thus, from Eqs(15)—(17)
three diagramgb), (d), and(f) in Fig. 2 are excluded from of Ref. 12, we have
the summation procedure because these diagrams are already ) ) ) .
included in the first step through the self-energy insertions of 0= wg;+D3a(qj) +Dy(aj), (2
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Ds(aj)=— Fi= ! > B(qjj (10
3 2/3'\' A1 Azl TN G (ai). )
P F )2
% |P(—aj,0uj1,%i2)| 3) Since the Green’s function, expressed in term§)gf, as
Qg J Qq i ’ given by Eq.(1) is identical in mathematical structure to the
v Green’s function for a harmonic system we can write an
, . ) equivalent harmonic form for the anharmortic This form
\? ®(01j1,—01j1.0),—aj) i f th dified coefficient for th A
D4(qj)= D . . (4 interms of the modified coefficient for the operafgfA, ,
2BN 47, Qq, is given by

where we have replaced,; in the right-hand side of Egs. _ qJ + t

(16) and(17) of Ref. 12, with(),; . We note thaﬂf“ can be - _E wqj —AgjAgjt @gBq;Byg; (11)
determined only self- conS|stentIy from Ed8)—(4) because

of the appearance cﬂzé- in the denominators of the right-

hand sides of Eqg3) and (4). The above equations can be _2 q] AT Agit BT Bqj)

derived rigourously in the high-temperature limit with the

self-consistency condition built in the Zubarev method. In A (Qéj_wqj) ;

Egs.(1)—(4) the various symbols have the following mean- +gZZ ——AgiAdi (12

ing: B=1/kgT, where kg is the Boltzmann constant, @ @aj

®(—0j,q1j1,022) and P(dzj1,—d1j1,02j2,—d2j2) are  where we have multiplied the second term of Exp) with a
the Fourier transforms of the third and fourth rank tenSOfSCoup”ng constang for the purpose of eva]uatinﬁ by the
respectively, antN represents the number of unit cells in the method of integration over the coupling constant. The advan-
crystal. tage of writingH in the form of Eq.(12) is that we can

We have solved these equations exactly. However, it igonsider the second term as an interaction term between the
useful to develop an approximate solution to make contachhonon modes| andj and the Hamiltonian is of the same
with some ideas to be discusssed in the next section. Amathematical structure as that of the interacting Einstein
appr(_)XImate self-consistent solution can be obtained by Sukb'scmator§3 where the free energy was evalulated by the
stituting coupling constant integration method and in another géper
it was shown to be equivalent to the results obtained from the
ring diagram summation procedure. However, when these
same methods are applied in the present problem we have
some ambiguity in the definitions of vertex and ring. Unlike
the case of interacting Einstein oscillators where the vertex
was a simple vertex with no structure, here the vertex is
complicated and has a stucture. This structure is defined as
the sum of quartic and cubic vertices each of them consisting
(6)  of a loop and a bubble, respectively. Therefore when the
lines are folded to form a ring the ambiguity arises in the
lowest order in the definition of the ring and the insert. Thus
we expect the first order insert contributions to be corrected
for the numerical factors when the above method is applied

Q%= w5 (1+X) (5)

in Egs. (2—(4), where the average quantit)b(
=(1/3N) 24 Xq; with XqJ—[D3(q1)+D4(q1)]/w is cal-
culated from

aj

2
3NkgT

Fia
1+X

3 Fip
(1+X)?

X:

whereF, andF 1, are the free energies for the diagrams of
O(N\?) in Fig. 1. In terms of the matriced\(qjj’) and

B(qjj’
(@ii" in the present problem. Thus employing the coupling con-
. S stant integration methold,F is given by
Agij )= ®(qyj1,—d1j1,0i,—ai")
Nwgiwgir o 2 ’ 1 1

AT duly “ayiy == In<23in 7Q ) 13

- 5o hy BHQy, (13
Since our calculations are done in the classical limit, we

Bl =No 0, > > A(—g+gy+ay) can isolate the terms which are independent:ofvith the

aj ©aj’ dal1 Gal2 help of the standard product representation for gihwith

1 X .
D(—qj .0 1.0 2)P(—A1i1.—ojr.Ci’ x=73Bh{q; . The result is that the terms which dependfion
X S/ EUHVERLE) 22) (2 Suls. =Gl 241 ), and thef independent terms are separated in the following
Oq.i, P, manner:
8 : .
1 1 D3(qj)+Dy(aj)
Fi, andF4, are given by F= E% |n(,8ﬁwqj)+ﬁ§ Inf 1+ —ng
Ie < ,3%295,-
Fia= A(qjj), 9 = 14
1a 8N,82%: (aij) 9 ﬁqE 2 In pRCI (14)
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The substitution oD3(qj), D4(qj), andQéj from Eqgs.(3), from Egs.(9) and(10) and setX=0. The averages are cal-

(4), and(5), respectively, into Eq14) yields the following# culated from the same definition as given earlier in the cal-

independent anharmonic contribution Fowhich does not culation of X. Thus Eq.(17) reduces to

include the effect of renormalization of the phonon frequen-

cies X=0): F _ 3NkgT n 4F 15 . 2F b
AT 2 3NkgT = NKkgT

- Fl(a)_ 2Fl(b) .

1
Fa=pg2 In 1+ 55AG )~ 55Bi|, (19 (19

a We note here the following important result: whereas the
whereA andB are given by Eqs(7) and(8). By expanding  diagrams ), 2(d), and 2f) of O(\*) were exactly included
the In function in Eq(15), we can identify the standard cubic in Eg. (15) now we find from the second term of the expan-
(F5) and quartic E,) contributions, after summing ovey ~ Sion of the In function of Eq(18)
andj, as those arising from the first term of the expansion. )
Compared to the correct expressi@btained by other meth- oo f Fla
ods the present; and F, differ by factors of} and 3, 207 3 NkgT’
respectively. The other higher order contributionsogi#),
such agb), (d), and(f) in Fig. 2 and other diagrams of these FiaFim)
types of O(\®), O(\?®), etc., are correctly given. We also Fa=—4—NiT (20)
note that in deriving Eq(15) the mixing of phonon modejs B
andj’ has not been allowed and for simplicity only the di- (Fip)?
agonal contributions oA(qjj’) andB(qjj’) matrices have Fon=—3 RO
been included in the calculations. When this mixing iand NkgT
j" is allowed the anharmonic contributigthe second term
of Eqg. (14)] gets modified. Taking this effect into account
e_md the differences in the numerical factorngfr_:mdF4 the __diagrams are about 1-3 % 6, 0.4—1.5 % forF (g,
final correct expression for the total anharmonic contribution, \ "1 >5_5 2 o4 foF 5. In each case, the actual discrep-

(Fa) to F, which we have employed in our calculations, is 5ncy gepends slightly on the volume. This combination of
given by diagrams corresponds to what we have called the exact sum.
1 1 We can therefore test the ansatz at this stage by evaluating
Fa=— Fl(a)_ZFl(b)+_E Tr In( [+ —M ) (16)  the equation of state using both E48) and the exact sum,
24 2p Eq. (16). The agreement is very good. We believe it will be

Where i E0.(16 Tr stands fo the ace operacnis a3 WTIIe (0 use e spprosmalins ghen nere i calce
X3 unit matrix, and the matribM is given by M(qjj’) : y

2 e o ' diagrams need to be evaluated exactly and the sum of an
;ng((%J)J )~ B(ajj"), whereA andB are defined by Eq<7) infinite number of ring diagrams can then be approximated.

When the effect of renormalization is included, Ep) is So far, we have been able to test gach approximation that
we have developed from the numerical results to onder

I he followi ion for th h ic f A o
;i%?;;d by the following expression for the anharmonic reeand A%, We now wish to use the remaining results of order

A to estimate other higher order terms. First, we rewrite the
sum of ring diagrams as

A2 A2

(19

(21)

Compared to the exact numerical valuesFef), Fa(q),
and Fy the errors from the above expressions for these

1 A A(djj)  A* B(djj)
FA:EZ In 1+ﬁ 11X -

CIJ 2B (1+X)2 3NkgT
FA: 2 |n{1+X}—F1(a)—2Fl(b) y
Fiag 2Fyip
- . a7 h
1+X (1+X)? where
However, if we use the fully renormalized frequencies as 4F1a  2F1p
determined by the iterative solution of E@), the last two X~ 3NKkgT ' NkgT '

terms in Eq.(17) will be modified to —Fl(a)/(l+X)2 _ . _

—2F 1 (5/(1+X)® because as seen from the expressions foFrom a comparison with the expression for the exact loga-
F1(a) @andF 1 (p) €achawyg; in the denominator is then replaced fithmic sum, we see that the quantityplays the role of an
by 3;(1+X). A further discussion of this point in the nu- average squared frequency shift. That is, if the harmonic
merical calculations t@©(\2) as well asO(\?) is given in  squared frequencies were all multiplied by the same factor

the next section. (1+x), the logarithmic contribution to the free energy would
have the form that we suggest. There is a simple relationship
IIl. AN APPROXIMATE SUM betvv(.al;en.the con:}nbuuons to tﬂj(: frr(]ae eneLgthf?d the.kr)elated
OF HIGHER ORDER DIAGRAMS contributions to the average shift that each shift contribu-

tion equals the free-energy contribution, divided by
In the approximate method of summing the higher order3NkgT/2, and multiplied by the number of lines that can be
diagrams, or ansatz, we repladéqjj) andB(qjj) in Eq.  cut to convert the free-energy diagram to a self-energy dia-
(17), by their average values in terms Bfy 5 and Fyy,, gram.
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Using this rule, we can construct the contributions to the I = = = =
free energy arising from ring diagrams with inserts devel- x= @ g b g 2@ L, 29
oped from diagrams(®), 2(e), 2(g), and 2h). The numbers 3NkBTl (1+X) "(1+x)?  (1+x?  (1+%)3
of lines that can be cut in these cases are 4, 4, 5, and 6,
respectively. Diagrams(B), 2(d), and Zf) have already been 4 Fae +5 Fag n Famn . 25)
included partially. However, they make additional contribu- (1+x)% (1+x)*  (1+x)°

tions. The self-energy diagrams obtained by cutting each of

the lines in a free-energy diagram are shown in Figs. 1 and 2Ve have also used Eq4.9—(21) once more. Note that there

In the cases (®), 2(d), and Zf), one of the diagrams gener- is now no explicit contribution from diagramgi8, 2(d), and
ated in this way is improper. That is, it can be split into two 2(f). A significant feature of this approximation is that the
diagrams by the cutting of a single line. It is these improperquantity x appears on both sides of the equation. It must
diagrams whose contributions to the self-energy have beetherefore be determined consistently, for example by itera-
estimated. There are additional contributions that are estiion. The self-consistent value of models, in an average
mated using the above rule, except that the numerical fact@ense, the shift in the phonon frequencies in self-consistent
is the number of lines that can be cut to give a proper diaphonon theories. The results of calculations using E2$.
gram. In this way, we arrive at an expression for the anharand(25) are labeled ansatz/{x) in the figures. This set of

monic contribution to the free energy of equations sums the contributions from all ring diagrams with
any number of self-energy inserts of order up\th to the
3NkgT extent that the numerical approximations are valid.
FA: 2 In{l+x}_Fl(a)_2Fl(b)_2F2(a)_2F2(b)

IV. RESULTS AND DISCUSSION
32073 20 329~ 4Fan = 4 a9 ™5 2. As indicated in the earlier sections of this paper we have
(22 carried out several calculations of the equation of state for a
nearest-neighbor model of the fcc LJ solid and compared
them with the classical MC results also obtained for the same
X= M{ZFl(a)"' 3F 1)+ 3F a1+ 2F 3+ 4F 3¢ model potential. As described in Ref. 1, the lattice sums were
B evaluated for a range of volumes and the thermal properties
+3|:2(d)+4|:2<e)+4|:2(f)+5|:2(g)+6|:2(h)}, (23 then found by suitable interpolations and differentiations.
We have calculated the nearest-neighbor distaRte),
This expression sums the anharmonic contribution to the freg€r0 Pressure constant-volume specific h€gf)( isothermal
energy arising from all ring diagrams with inserts up to orderPUlk modulus Br), thermal expansivity £p), anc; the Spe-
\“. To this accuracy, the only approximations are Egg)—  Cific heat at constant pressur€) for severalA® and \
(21) which we know are well satisfied numerically. th_eones with propagator rgnormallzanpn ef_fec;ts mclu_ded.
The identification of the quantity with an average shift Since most of these properties pehave in a similar fashion as
in the squared frequency suggests another extension of tf{@" @s the agreement with MC is concerned, we have pre-
classes of diagrams that can be summed. As described eg€nted graphically or12Iy values @@, as a representative
lier, many diagrams, such as the subs@h22(d), and 2f), ~ CUVe for the various.” theories andCp, (R/0), By from
can be interpreted as simpler diagrams with self-energy inthe A" theories considered in this paper. Figure 3 represents
serts in some of the lines. The explicit expression, @y ~ the results of our calculations for the quasiharmol@t),
for the contribution to the self-energy arising from diagramthe classical® PT, A® ansatz, {* ansat/(1+x), exact
(al of Fig. 1 contains a squared phonon frequency in theSLim(ES).4F|gures 4-6 represent the results for the classical
denominator, and the contribution from diagrand) of Fig. A~ PT, A" ansatz, the logarithmic ansatz with propagator
1, Eq. (3), contains two squared frequencies in the denomifenormalization {* ansat¥/(1+x), A *-ladder theorjwhich
nator. If we divide these contributions by factors of(%) ~ means taking into account all the diagrams uDie\*) ex-
and (1+x)2, respectively, then we are mimicking the effect Cept the Ladder diagran(t®], and finally thex*-ladder with
of the self-energy of the intermediate phonons. For consisPropagator renormalizatiorf (\*-ladde)/(1+x)]. In all
tency, in Eq.(22) each term must be divided by as many cases the comparison is made with the.MC valyes obtained
factors of (1+x) as there are lines in the corresponding dia-for N=256 atoms® with the N—1 correction applied to the
gram. We find that, to ordex*, the contributions tx and to ~ Vibrational contributions. These results are in very good
the free energy from diagramsi®, 2(d), and 2f) are fully ~ agreement with the earlier MC results for 108 atdhs.
included if we write It is clear from these results that the QH curves for all the
properties shift significantly when the?> PT contributions
are included. The further addition afl the \* contributions

3NkgT Fia Fimb) Faa again produces a significant shift in the curves in the oppo-
A= In{1+x}— -2 -2 ite direction. The di fthd PT from about 0.
2 (1+x)2  (1+x)° (1+x)3 site direction. The divergence o rom about 0.3y,
has now moved to 0H,,. Among the various options con-
Fao Fae Fag Fam) sidered involving thex? theory, although considerable im-
—2 1 _ _ K

provement is seen in the results)cof ansatz over tha? PT,
the best set of results are given by the? (ansaty/ (1+x)
(24)  theory. Now when all the contributions t@(\%) are

T(140* T(1+0* (A+x5 (1408
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FIG. 3. Specific heat at constant volum€,{) from A2 dia-
grams. Symbols arex: quasiharmonic,A: A? perturbation
theory, O: A2 ansatz,®: A2 ansatZ/l+x), *: exact sum,:
Monte Carlo.

FIG. 5. Specific heat at constant pressu@g). Symbols as in
Fig. 4.

summed to infinity. We have also presented a powerful an-
satz approach of summing the same set of diagrams. The
summed to infinity we have the results givenNf ansatz. numerical results in the classical limit for the equation of
The curves are much better behaved and yield a good agrestate of an fcc LJ solidwith nearest-neighbor interactipn
ment with the MC curves approximately up to T6but are indistinguishable from each other. Thus after testing the
then again the divergence sets in. The @nsaty/(1+x) validity of the ansatz method visaas the exact results the
procedure pushes the good agreement up toTQ,#efore  method is extended to includel the higher order contribu-
the results start diverging. It is also interesting to note thations of O(\%). The infinite set of contributions 6 from all

the \*-ladder results, which are exact calculations, hold venythe self-energies o®(\?) is then evaluated for the calcula-
well up to 0.9, before the onset of the divergence. Whention of the equation of state. The method is then extended to
compared with the classical results it seems that the cause include the propagator renormalization. Since we have com-
of the divergence of th®(\%) PT at an earlier stage in the pared all of our results with the MC method also calculated
calculation is due to the ladder diagram. Clearly almost comfor the same model, in several instances our results agree
plete agreement with MC is achieved with the almost exactly with those of MC. In short, we have ex-
(\*-ladde)/(1+x) approach. haustedall possibilities of selecting diagrams of at least up
to O(\*) as well as the infinite series of such diagrams.

V. CONCLUSIONS

Since our objective in this paper has been to select a
group of diagrams of the same order of magnitude generated

We have presented a method of deriving the Helmholtia the Van Hove ordering scheme and sum them to infinity,
free energy of an anharmonic crystal where an infinite set ofve have achieved this objective in a consistent manner.
diagrams, consisting of any number of loops and bubbles i0mpared to the traditional manybody work where the ver-
individual form and in all possible combinations, are tices are usually taken as constants our work here has been
more difficult because of the tensorial character of the force
constants, their Fourier transforms, multiple Brillouin zone,

1.18 ' ' ' ' ' X . ) ;
Q and neighbor summations. However when all is said and
€ 117 =
8 50 | | | | |
[=]
_g 1.16 - & 45 L
a n
3 40 -
E 1.15 - g
35 -
c =
é 114 I ) 30_ —
=]
-
2 113 = MRS i
=] ©
$ g 20+ -
z I
1.12 T T T T T ® 15 - -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 S
8 10_ -
Temperature (e/kg) =
. ) . ) L 5 T T | T T
FIG. 4. Nearest-neighbor distand® including contributions 0.0 0.1 0.2 0.3 0.4 0.5 0.6

from A4 diagrams. Symbols arg: \* perturbation theoryA: \*
ansatz, O: \* ansatz/l+x), @®: \*ladder, x: (\* ansatz -

laddep/(1+x), OJ: Monte Carlo.

Temperature (e/kg)

FIG. 6. Isothermal bulk modulusBg). Symbols as in Fig. 4.
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