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Summation of free-energy diagrams of an anharmonic crystal and equation of state
for a Lennard-Jones solid
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~Received 13 August 1997!

We present a method of calculating the Helmholtz free energy of an anharmonic crystal. The exact expres-
sion forF, obtained by summing an infinite series of contributions, fromall the loops and bubbles~quartic and
cubic contributions to the self-energy of the Green’s function!, is evaluated numerically and the equation of
state results for a Lennard-Jones solid are compared with thel2 perturbation theory~PT! which contains only
the lowest order cubic and quartic contributions. It is shown that the infinite sum results are considerably
improved over thel2 PT results for higher temperatures. Next we have presented a powerful ansatz approach
of evaluating the same sum. The numerical results from this method are shown to be identical to the exact sum
except at nearTm where they are very slightly different. The ansatz method is then extended to the higher order
l4 diagrams and here too the numerical results are found to be improved over the results from thel4 PT. The
ansatz procedure is then extended to the propagator renormalization and the numerical results obtained seem to
have the best agreement with the results of classical Monte Carlo simulations.@S0163-1829~98!04729-8#
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I. INTRODUCTION

The purpose of this paper is to report the equation of s
results, for a fcc nearest-neighbor interaction Lennard-Jo
~LJ! solid, from a procedure which requires the summat
of an infinite series of diagrams, selected in a consis
manner. Our results are obtained in the classical or h
temperature (T) limit, T.QD ~the Debye temperature!. The
validity of the results obtained from the summation proc
dure is assessed by comparing them with the classical M
Carlo ~MC! results calculated for the same model potenti

We have been prompted to do this work because,
shown in Ref. 1, the straightforward application of thel2

perturbation theory~PT! ~two diagrams! and even higher or-
der l4 PT ~eight additional diagrams! has produced diver
gence of almost all thermodynamic properties. This can
illustrated by the results for the heat capacity at cons
volume (Cv). The classical MC calculation gives a value f
Cv , that drops slightly asT increases from 3R at T50 to
about 88% of this at the melting temperature (Tm). The l2

PT result agrees at lowT, up to 30% ofTm , and then drops
sharply. Thel4 PT result agrees with MC up to about 40
of Tm and then curves sharplyupwards. From the point of
view of divergence, the situation here seems to be simila
that encountered by Gell-Mann and Brueckner2 in the calcu-
lation of the correlation energy of the electron gas.

One can get good agreement over a wider range of t
peratures, either by leaving out some of the diagrams
O(l4), as we did in Ref. 1, but for whicha priori there is no
basis other than achieving a good agreement, or, by summ
diagrams to higher orders, ideally to an infinite order. Ho
ever, if the summation is to be carried out, it should be do
in a consistent manner, i.e., eitherall the diagrams in the
same order of PT should be summed, or all the diagram
PRB 580163-1829/98/58~5!/2596~7!/$15.00
te
es
n
nt
h-

-
te
.
s

e
nt

to

-
of

ng
-
e

of

similar magnitude but arising in different orders of P
should be summed. The former procedure has been follo
by Choquard,3 resulting in the first order self-consistent ph
non theory~SC1! as well as others, e.g., SC2. But SC1~Ref.
4! yields poor results and SC2~Refs. 5,15! diverges. The
latter procedure, where the diagrams are generated by
Van Hove ordering (l) scheme,6 has not been implemented
formally, or computationally and this is what we achieve
this paper in the classical limit.

As a first step, the diagrams ofO(l2) arising in the self-
energy of the Green’s function are summed in the deter
nation of the Helmholtz free energy (F). This sum represents
all the contributions toF from the loops and bubbles a
inserts in the ring, to all orders ofl2. The loops and bubbles
are the only self-energy insertions ofO(l2). We are able to
carry out this summation exactly. A comparison of the eq
tion of state results from this calculation with that of thel2

PT ~the most investigated anharmonic theory! will tell us
about the importance of the higher order diagrams inclu
in the summation procedure. To facilitate the presentation
our arguments, the free-energy and self-energy diagram
O(l2) and O(l4) are presented in Figs. 1 and 2, respe
tively. The self-energy diagrams can be obtained by break
one line in a free-energy diagram, but, in turn, the fre

FIG. 1. Free energy and self-energy diagrams of orderl2.
2596 © 1998 The American Physical Society
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energy diagrams can often be interpreted as built from
self-energy diagrams as building blocks.

The next step in the summation procedure involves
insertions of the self-energy diagrams ofO(l4) in the ring.
To avoid double counting in the totalF up to O(l4), the
three diagrams~b!, ~d!, and ~f! in Fig. 2 are excluded from
the summation procedure because these diagrams are al
included in the first step through the self-energy insertions

FIG. 2. Free energy and self-energy diagrams of orderl4.
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O(l2). We note that these threeO(l4) diagrams can be
generated from the twoO(l2) diagrams,~a! and ~b! of Fig.
1, by inserting either a loop or a bubble in the phonon lin
in 1~a! and 1~b!.

The last step in our calculation is the propagator ren
malization. By this powerful procedure, even higher ord
diagrams than considered so far are generated by inclu
self-energy inserts into internal phonon lines. When tho
lines themselves have inserts put into them, an iterative
self-consistent, calculation is required. However, the num
of terms generated in this way is enormous and their ex
numerical evaluation for every wave vector (q) and branch
index (j ), in some reasonable time, is very difficult, if no
impossible. Thus, due to the extreme complexity of the
calculations, largely due to the tensorial character of the
harmonic force constants, their Fourier transforms, multi
Brillouin zone ~BZ! summations restricted by numerousD
functions, and finally neighbor summations, we have dev
oped an ansatz to approximate many such diagrams as p
ucts of simpler diagrams, with numerical factors. In the si
ations where we can compare these results with ex
calculations, they have been found to be amazingly accur
We therefore apply this technique to give equation of st
results when the internal propagator lines are treated to
ferent degrees of sophistication. Some of the approximati
developed in this way lie very close to the MC results ov
the entire temperature range of the solid.

II. INFINITE SUMMATION
OF ALL THE RING DIAGRAMS

INVOLVING THE LOOP AND BUBBLE INSERTS

The infinite series of all the ring diagrams, involving th
loop and bubble inserts, can be summed in closed form
the following procedure which involves modifying the mu
tiplying coefficient of theAqj

† Aqj operators in the Hamil-
tonian (H) and then a subsequent integration over a coup
parameter (g), 0<g<1. The procedure also requires th
knowledge of the one phonon Green’s function which can
derived by the diagrammatic method7,8 or by the Zubarev
prescription.9,10 Here we have followed the Zubarev metho
because it has a built-in self-consistency criterion. Then
the H containing the harmonic and anharmonic~cubic and
quartic! contributions, the one phonon Green’s function
the diagonal approximation is given by

Gqq8
j j 8 5

2vqjdqq8d j j 8

2p@v22Vqj
2 ~v!#

, ~1!

whereVqj
2 (v) is in general a frequency-dependent renorm

ized phonon frequency and its complete expresson can
found in Ref. 10. However, in the context of the evaluatio
of the anharmonic contributions to the average square of
atomic displacement11 andF ~Ref. 12! it has been shown tha
thev dependence ofVqj

2 (v) in the high-temperature limit is
not very important because exact results for these quant
are given in this limit whenVqj

2 (v) is evaluated atv50
which we simply denote asVqj

2 . Thus, from Eqs.~15!–~17!
of Ref. 12, we have

Vqj
2 5vqj

2 1D3~qj !1D4~qj !, ~2!
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D3~qj !52
l2

2bN (
q1 j 1

(
q2 j 2

D~2q1q11q2!

3
uF~2qj ,q1 j 1 ,q2 j 2!u2

Vq1 j 1

2 Vq2 j 2

2
, ~3!

D4~qj !5
l2

2bN (
q1 j 1

F~q1 j 1 ,2q1 j 1 ,qj ,2qj !

Vq1 j 1

2
, ~4!

where we have replacedvqj in the right-hand side of Eqs
~16! and~17! of Ref. 12, withVqj . We note thatVqj

2 can be
determined only self-consistently from Eqs.~2!–~4! because
of the appearance ofVqj

2 in the denominators of the right
hand sides of Eqs.~3! and ~4!. The above equations can b
derived rigourously in the high-temperature limit with th
self-consistency condition built in the Zubarev method.
Eqs. ~1!–~4! the various symbols have the following mea
ing: b51/kBT, where kB is the Boltzmann constant
F(2qj ,q1 j 1 ,q2 j 2) and F(q1 j 1 ,2q1 j 1 ,q2 j 2 ,2q2 j 2) are
the Fourier transforms of the third and fourth rank tenso
respectively, andN represents the number of unit cells in th
crystal.

We have solved these equations exactly. However, i
useful to develop an approximate solution to make con
with some ideas to be discusssed in the next section.
approximate self-consistent solution can be obtained by s
stituting

Vqj
2 5vqj

2 ~11X! ~5!

in Eqs. ~2!–~4!, where the average quantityX
5(1/3N)(qjXqj with Xqj5@D3(qj )1D4(qj )#/vqj

2 , is cal-
culated from

X5
2

3NkBT F2
F1a

11X
13

F1b

~11X!2G , ~6!

whereF1a andF1b are the free energies for the diagrams
O(l2) in Fig. 1. In terms of the matricesA(qj j 8) and
B(qj j 8)

A~qj j 8!5
1

Nvqjvqj 8
(
q1 j 1

F~q1 j 1 ,2q1 j 1 ,qj ,2qj 8!

vq1 j 1

2
,

~7!

B~qj j 8!5
1

Nvqjvqj 8
(
q1 j 1

(
q2 j 2

D~2q1q11q2!

3
F~2qj ,q1 j 1 ,q2 j 2!F~2q1 j 1 ,2q2 j 2 ,qj 8!

vq1 j 1

2 vq2 j 2

2
,

~8!

F1a andF1b are given by

F1a5
1

8Nb2(qj
A~qj j !, ~9!
,

is
ct
n
b-

f

F1b52
1

12Nb2(qj
B~qj j !. ~10!

Since the Green’s function, expressed in terms ofVqj
2 , as

given by Eq.~1! is identical in mathematical structure to th
Green’s function for a harmonic system we can write
equivalent harmonic form for the anharmonicH. This form
in terms of the modified coefficient for the operatorAqj

† Aqj ,
is given by

H5
\

4(qj
FVqj

2

vqj
Aqj

† Aqj1vqjBqj
† Bqj G ~11!

5(
qj

\vqj

4
~Aqj

† Aqj1Bqj
† Bqj !

1g
\

4(qj

~Vqj
2 2vqj

2 !

vqj
Aqj

† Aqj , ~12!

where we have multiplied the second term of Eq.~12! with a
coupling constantg for the purpose of evaluatingF by the
method of integration over the coupling constant. The adv
tage of writing H in the form of Eq.~12! is that we can
consider the second term as an interaction term between
phonon modesq and j and the Hamiltonian is of the sam
mathematical structure as that of the interacting Einst
oscillators13 where the free energy was evalulated by t
coupling constant integration method and in another pap14

it was shown to be equivalent to the results obtained from
ring diagram summation procedure. However, when th
same methods are applied in the present problem we h
some ambiguity in the definitions of vertex and ring. Unlik
the case of interacting Einstein oscillators where the ver
was a simple vertex with no structure, here the vertex
complicated and has a stucture. This structure is define
the sum of quartic and cubic vertices each of them consis
of a loop and a bubble, respectively. Therefore when
lines are folded to form a ring the ambiguity arises in t
lowest order in the definition of the ring and the insert. Th
we expect the first order insert contributions to be correc
for the numerical factors when the above method is app
in the present problem. Thus employing the coupling co
stant integration method,13 F is given by

F5
1

b(
qj

lnS 2sinh
1

2
b\Vqj D . ~13!

Since our calculations are done in the classical limit,
can isolate the terms which are independent of\ with the
help of the standard product representation for sinhx/x, with
x5 1

2 b\Vqj . The result is that the terms which depend on\
and the\ independent terms are separated in the follow
manner:

F5
1

b(
qj

ln~b\vqj !1
1

2b(
qj

lnF11
D3~qj !1D4~qj !

vqj
2 G

1
1

b(
qj

(
n51

`

lnF11
b2\2Vqj

2

4n2p2 G . ~14!
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The substitution ofD3(qj ), D4(qj ), andVqj
2 from Eqs.~3!,

~4!, and~5!, respectively, into Eq.~14! yields the following\
independent anharmonic contribution toF which does not
include the effect of renormalization of the phonon freque
cies (X50):

FA5
1

2b(
qj

lnF11
l2

2b
A~qj j !2

l2

2b
B~qj j !G , ~15!

whereA andB are given by Eqs.~7! and~8!. By expanding
the ln function in Eq.~15!, we can identify the standard cub
(F3) and quartic (F4) contributions, after summing overq
and j , as those arising from the first term of the expansi
Compared to the correct expression~obtained by other meth
ods! the presentF3 and F4 differ by factors of 1

3 and 1
2 ,

respectively. The other higher order contributions ofO(l4),
such as~b!, ~d!, and~f! in Fig. 2 and other diagrams of thes
types ofO(l6), O(l8), etc., are correctly given. We als
note that in deriving Eq.~15! the mixing of phonon modesj
and j 8 has not been allowed and for simplicity only the d
agonal contributions ofA(qj j 8) andB(qj j 8) matrices have
been included in the calculations. When this mixing inj and
j 8 is allowed the anharmonic contribution@the second term
of Eq. ~14!# gets modified. Taking this effect into accou
and the differences in the numerical factors ofF3 andF4 the
final correct expression for the total anharmonic contribut
(FA) to F, which we have employed in our calculations,
given by

FA52F1~a!22F1~b!1
1

2b(
q

Tr lnS I 1
1

2b
M D , ~16!

where in Eq.~16! Tr stands for the trace operation,I is a 3
33 unit matrix, and the matrixM is given by M (qj j 8)
5A(qj j 8)2B(qj j 8), whereA andB are defined by Eqs.~7!
and ~8!.

When the effect of renormalization is included, Eq.~15! is
replaced by the following expression for the anharmonic f
energy:

FA5
1

2b(
qj

lnF11
l2

2b

A~qj j !

11X
2

l2

2b

B~qj j !

~11X!2G
2

F1~a!

11X
2

2F1~b!

~11X!2
. ~17!

However, if we use the fully renormalized frequencies
determined by the iterative solution of Eq.~6!, the last two
terms in Eq. ~17! will be modified to 2F1(a) /(11X)2

22F1(b) /(11X)3 because as seen from the expressions
F1(a) andF1(b) eachvqj in the denominator is then replace
by vqj

2 (11X). A further discussion of this point in the nu
merical calculations toO(l2) as well asO(l4) is given in
the next section.

III. AN APPROXIMATE SUM
OF HIGHER ORDER DIAGRAMS

In the approximate method of summing the higher or
diagrams, or ansatz, we replaceA(qj j ) and B(qj j ) in Eq.
~17!, by their average values in terms ofF1(a) and F1(b) ,
-

.

n

e

s

r

r

from Eqs.~9! and ~10! and setX50. The averages are ca
culated from the same definition as given earlier in the c
culation ofX. Thus Eq.~17! reduces to

FA5
3NkBT

2
lnH 11

4F1~a!

3NkBT
1

2F1~b!

NkBT J 2F1~a!22F1~b! .

~18!

We note here the following important result: whereas
diagrams 2~b!, 2~d!, and 2~f! of O(l4) were exactly included
in Eq. ~15! now we find from the second term of the expa
sion of the ln function of Eq.~18!

F2~b!.2
4

3

F1~a!
2

NkBT
, ~19!

F2~d!.24
F1~a!F1~b!

NkBT
, ~20!

F2~ f!.23
~F1~b!!

2

NkBT
. ~21!

Compared to the exact numerical values ofF2(b) , F2(d) ,
and F2(f) the errors from the above expressions for the
diagrams are about 1–3 % forF2(b) , 0.4–1.5 % forF2(d) ,
and 1.25–2.2 % forF2(f) . In each case, the actual discre
ancy depends slightly on the volume. This combination
diagrams corresponds to what we have called the exact s
We can therefore test the ansatz at this stage by evalua
the equation of state using both Eq.~18! and the exact sum
Eq. ~16!. The agreement is very good. We believe it will b
worthwhile to use the approximations given here in calcu
tions on more elaborate models. Only the two lowest or
diagrams need to be evaluated exactly and the sum o
infinite number of ring diagrams can then be approximat

So far, we have been able to test each approximation
we have developed from the numerical results to orderl2

andl4. We now wish to use the remaining results of ord
l4 to estimate other higher order terms. First, we rewrite
sum of ring diagrams as

FA5
3NkBT

2
ln$11x%2F1~a!22F1~b! ,

where

x5
4F1~a!

3NkBT
1

2F1~b!

NkBT
.

From a comparison with the expression for the exact lo
rithmic sum, we see that the quantityx plays the role of an
average squared frequency shift. That is, if the harmo
squared frequencies were all multiplied by the same fac
(11x), the logarithmic contribution to the free energy wou
have the form that we suggest. There is a simple relations
between the contributions to the free energy and the rela
contributions to the average shiftx, that each shift contribu-
tion equals the free-energy contribution, divided
3NkBT/2, and multiplied by the number of lines that can
cut to convert the free-energy diagram to a self-energy d
gram.
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Using this rule, we can construct the contributions to
free energy arising from ring diagrams with inserts dev
oped from diagrams 2~c!, 2~e!, 2~g!, and 2~h!. The numbers
of lines that can be cut in these cases are 4, 4, 5, an
respectively. Diagrams 2~b!, 2~d!, and 2~f! have already been
included partially. However, they make additional contrib
tions. The self-energy diagrams obtained by cutting each
the lines in a free-energy diagram are shown in Figs. 1 an
In the cases 2~b!, 2~d!, and 2~f!, one of the diagrams gene
ated in this way is improper. That is, it can be split into tw
diagrams by the cutting of a single line. It is these improp
diagrams whose contributions to the self-energy have b
estimated. There are additional contributions that are e
mated using the above rule, except that the numerical fa
is the number of lines that can be cut to give a proper d
gram. In this way, we arrive at an expression for the anh
monic contribution to the free energy of

FA5
3NkBT

2
ln$11x%2F1~a!22F1~b!22F2~a!22F2~b!

23F2~c!23F2~d!23F2~e!24F2~ f!24F2~g!25F2~h! ,

~22!

x5
2

3NkBT
$2F1~a!13F1~b!13F2~a!12F2~b!14F2~c!

13F2~d!14F2~e!14F2~ f!15F2~g!16F2~h!%. ~23!

This expression sums the anharmonic contribution to the
energy arising from all ring diagrams with inserts up to ord
l4. To this accuracy, the only approximations are Eqs.~19!–
~21! which we know are well satisfied numerically.

The identification of the quantityx with an average shift
in the squared frequency suggests another extension o
classes of diagrams that can be summed. As described
lier, many diagrams, such as the subset 2~b!, 2~d!, and 2~f!,
can be interpreted as simpler diagrams with self-energy
serts in some of the lines. The explicit expression, Eq.~4!,
for the contribution to the self-energy arising from diagra
~a1! of Fig. 1 contains a squared phonon frequency in
denominator, and the contribution from diagram~b1! of Fig.
1, Eq. ~3!, contains two squared frequencies in the deno
nator. If we divide these contributions by factors of (11x)
and (11x)2, respectively, then we are mimicking the effe
of the self-energy of the intermediate phonons. For con
tency, in Eq.~22! each term must be divided by as ma
factors of (11x) as there are lines in the corresponding d
gram. We find that, to orderl4, the contributions tox and to
the free energy from diagrams 2~b!, 2~d!, and 2~f! are fully
included if we write

FA5
3NkBT

2
ln$11x%2

F1~a!

~11x!2
22

F1~b!

~11x!3
22

F2~a!

~11x!3

23
F2~c!

~11x!4
23

F2~e!

~11x!4
24

F2~g!

~11x!5
25

F2~h!

~11x!6
,

~24!
e
-

6,

-
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x5
2

3NkBTH 2
F1~a!

~11x!
13

F1~b!

~11x!2
13

F2~a!

~11x!2
14

F2~c!

~11x!3

14
F2~e!

~11x!3
15

F2~g!

~11x!4
16

F2~h!

~11x!5J . ~25!

We have also used Eqs.~19!–~21! once more. Note that ther
is now no explicit contribution from diagrams 2~b!, 2~d!, and
2~f!. A significant feature of this approximation is that th
quantity x appears on both sides of the equation. It m
therefore be determined consistently, for example by ite
tion. The self-consistent value ofx models, in an average
sense, the shift in the phonon frequencies in self-consis
phonon theories. The results of calculations using Eqs.~24!
and~25! are labeled ansatz/(11x) in the figures. This set of
equations sums the contributions from all ring diagrams w
any number of self-energy inserts of order up tol4, to the
extent that the numerical approximations are valid.

IV. RESULTS AND DISCUSSION

As indicated in the earlier sections of this paper we ha
carried out several calculations of the equation of state fo
nearest-neighbor model of the fcc LJ solid and compa
them with the classical MC results also obtained for the sa
model potential. As described in Ref. 1, the lattice sums w
evaluated for a range of volumes and the thermal proper
then found by suitable interpolations and differentiations.

We have calculated the nearest-neighbor distance (R/s),
zero pressure constant-volume specific heat (CV), isothermal
bulk modulus (BT), thermal expansivity (bP), and the spe-
cific heat at constant pressure (CP) for severall2 and l4

theories with propagator renormalization effects includ
Since most of these properties behave in a similar fashio
far as the agreement with MC is concerned, we have p
sented graphically only values ofCv as a representative
curve for the variousl2 theories andCP , (R/s), BT from
the l4 theories considered in this paper. Figure 3 represe
the results of our calculations for the quasiharmonic~QH!,
the classicall2 PT, l2 ansatz, (l2 ansatz!/(11x), exact
sum ~ES!. Figures 4–6 represent the results for the class
l4 PT, l4 ansatz, the logarithmic ansatz with propaga
renormalization (l4 ansatz!/(11x), l4-ladder theory@which
means taking into account all the diagrams up toO(l4) ex-
cept the Ladder diagram 2~h!#, and finally thel4-ladder with
propagator renormalization@(l4-ladder)/(11x)#. In all
cases the comparison is made with the MC values obta
for N5256 atoms16 with the N21 correction applied to the
vibrational contributions. These results are in very go
agreement with the earlier MC results for 108 atoms.17

It is clear from these results that the QH curves for all t
properties shift significantly when thel2 PT contributions
are included. The further addition ofall thel4 contributions
again produces a significant shift in the curves in the op
site direction. The divergence of thel2 PT from about 0.3Tm
has now moved to 0.4Tm . Among the various options con
sidered involving thel2 theory, although considerable im
provement is seen in the results ofl2 ansatz over thel2 PT,
the best set of results are given by the (l2 ansatz!/(11x)
theory. Now when all the contributions toO(l4) are
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summed to infinity we have the results given inl4 ansatz.
The curves are much better behaved and yield a good ag
ment with the MC curves approximately up to 0.6Tm but
then again the divergence sets in. The (l4 ansatz!/(11x)
procedure pushes the good agreement up to 0.75Tm before
the results start diverging. It is also interesting to note t
thel4-ladder results, which are exact calculations, hold v
well up to 0.9Tm before the onset of the divergence. Wh
compared with the classicall4 results it seems that the cau
of the divergence of theO(l4) PT at an earlier stage in th
calculation is due to the ladder diagram. Clearly almost co
plete agreement with MC is achieved with th
(l4-ladder)/(11x) approach.

V. CONCLUSIONS

We have presented a method of deriving the Helmho
free energy of an anharmonic crystal where an infinite se
diagrams, consisting of any number of loops and bubble
individual form and in all possible combinations, ar

FIG. 3. Specific heat at constant volume (CV) from l2 dia-
grams. Symbols are3: quasiharmonic,n: l2 perturbation
theory, s: l2 ansatz,d: l2 ansatz/~11x!, !: exact sum,h:
Monte Carlo.

FIG. 4. Nearest-neighbor distanceR including contributions
from l4 diagrams. Symbols are3: l4 perturbation theory,n: l4

ansatz, s: l4 ansatz/~11x!, d: l4-ladder, !: (l4 ansatz -
ladder!/~11x!, h: Monte Carlo.
ee-
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summed to infinity. We have also presented a powerful
satz approach of summing the same set of diagrams.
numerical results in the classical limit for the equation
state of an fcc LJ solid~with nearest-neighbor interaction!
are indistinguishable from each other. Thus after testing
validity of the ansatz method vis-a`-vis the exact results the
method is extended to includeall the higher order contribu-
tions ofO(l4). The infinite set of contributions toF from all
the self-energies ofO(l4) is then evaluated for the calcula
tion of the equation of state. The method is then extende
include the propagator renormalization. Since we have co
pared all of our results with the MC method also calcula
for the same model, in several instances our results a
almost exactly with those of MC. In short, we have e
haustedall possibilities of selecting diagrams of at least
to O(l4) as well as the infinite series of such diagrams.

Since our objective in this paper has been to selec
group of diagrams of the same order of magnitude gener
via the Van Hove ordering scheme and sum them to infin
we have achieved this objective in a consistent mann
Compared to the traditional manybody work where the v
tices are usually taken as constants our work here has
more difficult because of the tensorial character of the fo
constants, their Fourier transforms, multiple Brillouin zon
and neighbor summations. However when all is said a

FIG. 5. Specific heat at constant pressure (CP). Symbols as in
Fig. 4.

FIG. 6. Isothermal bulk modulus (BT). Symbols as in Fig. 4.
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done we have just about achieved our purpose in exhaus
all possibilities of selecting and summing these diagrams
an anharmonic crystal. The agreement with MC in the cl
sical high-temperature limit is very good in some cases
we believe that this is as best as it can be done at pre
from an analytical theory.
ng
r
-
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nt
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