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Mechanisms of transition between 1q and 2q incommensurate phases
in a two-dimensional crystal model

S. V. Dmitriev,* T. Shigenari, and K. Abe
Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan

~Received 23 December 1997; revised manuscript received 17 March 1998!

The two-dimensional elastically hinged molecule model of a crystal which contains two anharmonic terms
was studied numerically. The results show that the 1q or 2q incommensurate phase can be stable depending on
the parameters of the model. For example, in the sinusoidal incommensurate regime the 1q (2q) phase can be
globally stable but in the domain-wall regime the situation can be opposite and the 1q↔2q (2q↔1q)
transition can be expected. Another mechanism of the 1q↔2q phase transition stems from the softening of the
dispersion surface simultaneously at two points of the Brillouin zone, (kx,0) and (0,ky). In this case the 2q
modulated phase can appear as a linear combination of the two 1q modulated phases. Under the assumption
that the dispersion surface is slightly perturbed for some reason, the softening first occurs at one of the two
points resulting in the 1q phase formation. Further changing of the external parameters leads to the softening
at the second point and the 1q→2q transition can take place. Both these mechanisms of the 1q↔2q phase
transition were revealed and studied.@S0163-1829~98!07029-5#
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I. INTRODUCTION

Recently there has been a growing interest in incomm
surate~IC! phases which can appear in a temperature ra
between two different commensurate phases.1–3 An IC phase
is the modulated phase in which the ratio between lat
period and period of modulation is an irrational number.
many numerical studies, there is no way to determine
exact magnitude of the ratio, therefore, it may be expres
by an irreducible fraction with a big denominator.4 If the
denominator is not big and is not small then the modula
phase is called a high-order commensurate phase.

The IC phase appears from a normal~high-symmetry!
commensurate phase as a result of a second-order phase
sition and close to the critical point the modulation in a cry
tal has the form of sinusoidal waves. More often, the mo
lation can be characterized by a unique wave vector and
IC phase is said to be 1q modulated phase, but there a
cases where the modulation is described by two or m
wave vectors, then it is designated as the 2q phase and so on
At lower temperature, as a result of a first-order phase tr
sition ~lock-in transition!, the IC phase generally gives wa
to a low-symmetry commensurate phase.

The IC phase can perform different kinds of rather co
plicated transformations. For example, the pressu
temperature phase diagram of Rb2ZnBr4 contains a region
where the length of the modulation wave vector of theq
modulated phase exhibits stepwise behavior as a functio
pressure.5

Not only the length of the modulation wave vector c
change. Another example of the IC phase transformation
transition between 1q and 2q or 3q phases. For example, o
cooling in biphenyl, C12H10, the sequence of phases is
follows: normal, 2q, 1q;6 in quartz, SiO2, as follows:
normal, 1q, 3q, commensurate;7,8 in barium sodium
niobate, Ba2NaNb5O15, as follows: normal, 2q, 1q,
commensurate;9,10 and in Cu0.78Pd0.22 alloy as follows: high-
symmetry disordered~normal!, 2q, 1q.11
PRB 580163-1829/98/58~5!/2513~10!/$15.00
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The kinetics of the 2q→1q phase transition in the
Cu0.78Pd0.22 alloy has been studied by Bohr, Broddin, an
Loiseau11 by time-resolved x-ray scattering.

There are several kinds of microscopic models which s
port the modulated structure.

In the frame of the axial next-nearest-neighbor Isi
~ANNNI ! model the variable assigned to each particle c
obtain discrete values from a given set. It is very natura
some applications, for example, in the physics of orde
alloys where this variable means the sort of atom in a lat
point. The physical mechanism responsible for the format
of modulated structures is the competing interactions.12,13

The influence of the temperature and the features of the
main walls have been studied in the frame of the mean-fi
approach when the set of the possible states of a partic
no longer discrete.14,15 At finite temperatures the ANNNI
model has a very rich phase diagram with different mod
lated commensurate and IC phases.13,14The similar behavior
shows the model with the spin anisotropy for which the sp
vary continuously.16 Phase diagrams obtained using t
mean-field approximation appear to be correct in all but m
nor details.12 The ANNNI model modified by Yamada an
Hamaya17 qualitatively describe the chain of transformatio
containing IC high-order commensurate, and commensu
phases for various dielectrics ofA2BX4 family.

For the description of the IC phase in dielectrics, ho
ever, the spin variable seems not as natural as in the ca
ordered alloys. Here the displacement of the particle is u
ally taken as a natural variable.4,18–27The elastically hinged
molecule~EHM! model studied in this paper belongs to th
second class of microscopic models.

The 3q→3q8 phase transition, with a change of th
modulation wavelength, has been simulated by Parlinski
Chapuis18 by a molecular-dynamics technique in the fram
of the three-dimensional hexagonal model. The molecu
dynamics investigation of the kinetics of the 1q→3q and
3q→1q phase transitions in the three-dimensional hexa
2513 © 1998 The American Physical Society
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2514 PRB 58S. V. DMITRIEV, T. SHIGENARI, AND K. ABE
nal model has been performed by Parlinski and Chapuis.18,21

It has been found that the 1q→3q transition originates from
the nucleation of a set of antistripples within the stripes
the 1q phase.18 In the 3q→1q transition the columns~cells
of the 3q phase! merge together and form a stripe of the 1q
phase.18,21

It has been shown by Parlinskiet al. that to obtain the
stable 2q and 3q IC phases, special anharmonic term
should be introduced into the Hamiltonian.18,21–23After these
works the conditions of the existence of the stable 2q and 3q
IC phases in two- and three-dimensional microscopic mod
are quite clear, however the 1q↔2q and 1q↔3q phase
transitions have not been adequately investigated.

In this paper the one-dimensional elastically hinged m
ecule ~EHM! model recently proposed by the prese
authors24,25 was extended to the two-dimensional EH
model. The Hamiltonian of the last model is similar to th
studied by Parlinski,22 with two distinctions.

First, the harmonic part of the two-dimensional EH
model describes a crystal with any anisotropy and subje
to arbitrary homogeneous deformation, whereas the Par
ki’s model considers a crystal with a particular case of
isotropy and subjected to a hydrostatic pressure. As a re
in the two-dimensional EHM model the softening of a mo
with any wave vector is possible, whereas in the Parlins
model the softening can occur at a point~k,k! or simulta-
neously at two points~k,0! and~0,k! or simultaneously at an
infinitely large number of points of the Brillouin zone. On
will see that the mechanism of the 1q↔2q phase transition
discussed in Sec. IV B cannot be studied in the frame of
model of Parlinski.

The second distinction is that the anharmonic part of
Hamiltonian of the EHM model contains a four-body ter
describing the interaction of each hinge with the nearest
next-nearest neighbors instead of the three-body term
scribing the interaction of each hinge with the nearest ne
bors, as it is in the Parlinski’s model. The necessity of t
revision for our calculations will be explained in Sec. IV A

This paper is organized as follows: In Sec. II the tw
dimensional EHM model is introduced. In Sec. III the co
ditions of softening of the dispersion surface are given.
Sec. IV the two mechanisms of the 1q↔2q phase transition
are discussed and illustrated by numerical examples and
V concludes the paper.
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II. TWO-DIMENSIONAL EHM MODEL

The one-dimensional EHM model of a crystal is a cha
of molecules which are connected with each other by
elastic hinges. Each hinge of the one-dimensional EH
model has one degree of freedom, namely, the transve
displacementuj . The chain is compressed by the force alo
its axis and the hinges are in the anharmonic, one-w
fourth-order polynomial background potential. In dimensio
less form the equations of motion are24

d2uj

dt2
1F~uj 2224uj 2116uj24uj 111uj 12!

1P~uj 2122uj1uj 11!1uj1uj
350, ~2.1!

where coefficientsF.0, P.0 are proportional to the stiff-
ness of a hinge and the compression force, respectively. N
that the model with different physical interpretation but go
erned by essentially the same equation of motion has b
studied earlier by Slot and Janssen26 and by Ishibashi.27

In the continuum limit Eq.~2.1! takes the form

]2u

]t2 1F
]4u

]x4 1P
]2u

]x2 1u1u350, ~2.2!

where the displacementu(x,t) is the unknown function, co-
efficientsF and P describe the elastic properties of med
and the external pressure, respectively. An obvious tw
dimensional generalization of Eq.~2.2! is

]2u

]t2 1Fx

]4u

]x4 12Fxy

]4u

]x2]y2 1Fy

]4u

]y4 1Px

]2u

]x2

1Py

]2u

]y2 1u1u350, ~2.3!

whereu(x,y,t) is the unknown function,Fx , Fxy , Fy are
the elastic constants of the anisotropic media andPx , Py are
the components of the external pressure. Equation~2.3! has
long been in use in the theory of plates.28

The discrete analog of Eq.~2.3! is
r-

he
d2uj ,l

dt2
1~122Px22Py16Fx18Fxy16Fy!uj ,l1uj ,l

3 1Fx~uj 22,l1uj 12,l !1Fy~uj ,l 221uj ,l 12!12Fxy~uj 11,l 111uj 21,l 11

1uj 11,l 211uj 21,l 21!1~Px24Fx24Fxy!~uj 21,l1uj 11,l !1~Py24Fy24Fxy!~uj ,l 211uj ,l 11!

1S~uj 21,l 21uj 11,luj ,l 111uj 11,l 21uj ,l 11uj 21,l1uj 11,l 11uj 21,luj ,l 211uj 21,l 11uj ,l 21uj 11,l !50, ~2.4!

where we have introduced an additional anharmonic term with coefficientS. This fourth-order potential describes the fou
body anharmonic interaction of each hinge with the nearest and next-nearest neighbors.

Equation~2.4! is the equation for motion of the (j ,l )th hinge of the two-dimensional EHM model. The Hamiltonian of t
two-dimensional EHM model is
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H5
1

2 (
j ,l

S duj ,l

dt D 2

1
1

2
~122Px22Py16Fx18Fxy16Fy!(

j ,l
uj ,l

2 1
1

4 (
j ,l

uj ,l
4 1

1

2 (
j ,l

uj ,l@Fx~uj 22,l1uj 12,l !

1Fy~uj ,l 221uj ,l 12!#1Fxy(
j ,l

uj ,l~uj 11,l 111uj 21,l 111uj 11,l 211uj 21,l 21!1
1

2
~Px24Fx24Fxy!

3(
j ,l

uj ,l~uj 21,l1uj 11,l !1
1

2
~Py24Fy24Fxy!(

j ,l
uj ,l~uj ,l 211uj ,l 11!1

S

4 (
j ,l

uj ,l~uj 21,l 21uj 11,luj ,l 11

1uj 11,l 21uj ,l 11uj 21,l1uj 11,l 11uj 21,luj ,l 211uj 21,l 11uj ,l 21uj 11,l !. ~2.5!
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Several physical interpretations of the Hamiltonian E
~2.5! are possible. The first one, used by Parlinski,22 consid-
ers the square lattice of the interacting pointwise partic
The EHM model gives another interpretation.24 Recall that
many dielectric crystals are built of the clusters of ato
which can be considered as almost undeformable, e
quartz consists of the almost rigid SiO4 tetrahedral clusters
joined to each other, and the oxygen atoms at vertices
the role of hinges. Keeping this in mind, one can conside
two-dimensional layer of rigid molecules joined to ea
other by the elastic hinges~see Fig. 1!. If the angle between
the axes of the neighboring molecules is not equal to 0,
elastic hinge produces the moments which tend to decr
the absolute value of the angle. The stiffness of the an
tropic hinge is characterized by the coefficientsFx , Fy ,
Fxy . Each hinge has one degree of freedom which is a
placement perpendicular to thexy plane.~In the quartz case
it corresponds to the rotation angle of SiO4 tetrahedra.! The
hinges are in the anharmonic background potential (1/2)uj ,l

2

1(1/4)uj ,l
4 which describes the influence of the rest of t

crystal on the considered layer of molecules. The crysta
subjected to the external pressurePx , Py .

The Hamiltonian similar to Eq.~2.5! can be obtained also
as a mean-field approximation to an ANNNI model. For e
ample, the harmonic part of the Hamiltonian of the on

FIG. 1. The two-dimensional EHM model. Rigid molecules a
joined to each other by the elastic hinges~open circles!. If the angle
between the axes of the neighboring molecules is not equal to 0
elastic hinge produces the moments which tend to decrease
absolute value of the angle. The stiffness of the anisotropic hing
characterized by the coefficientsFx , Fy , Fxy . Each hinge has one
degree of freedom which is displacement alongz axis. The hinges
are in the anharmonic background potential~shown by springs!
which describes the influence of the rest of the crystal on the c
sidered layer of molecules. The crystal is subjected to the exte
pressurePx , Py .
.
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dimensional EHM model24 is essentially the same as that f
the mean-field Hamiltonian.12

III. DISPERSION RELATION

Substituting the formula

uj ,l5exp@2p i ~kxj 1kyl !2 ivt# ~3.1!

into the harmonic part of Eq.~2.4! one obtains the dispersio
relation

v2~kx ,ky!54FxA
218FxyAB14FyB

212~Px24Fx

24Fxy!A12~Py24Fy24Fxy!B1122Px

22Py14Fx18Fxy14Fy , ~3.2!

whereA5cos(2pkx), B5cos(2pky). In Fig. 2 the reciprocal
space of the model is shown, where we symbolize the p
ticular points of the Brillouin zone.

In the subsequent discussion the elastic constantsFx ,
Fxy , Fy and the parameterS will be considered temperatur
dependent. Changing of the temperature and/or changin
the external pressurePx , Py leads to the motion of a repre
sentative point in the six-dimensional phase space.

Obviously, Eq.~2.4! has the trivial solutionuj ,l50 ~nor-
mal phase!. This solution is stable when the functio
v2(kx ,ky), given by Eq. ~3.2!, has no negative values
When the representative point moves in the phase space
function Eq.~3.2! changes and it can vanish, i.e., the mo
softens, at a certain point (kx ,ky). The vanishing leads to
the condensation of the mode

he
the
is

n-
al

FIG. 2. The reciprocal space of the model. The wave vector
the modulation waves are denoted by the symbols given in
figure.
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uj ,l5Q1cos@2p~ j kx1 lky!1w1#

1Q2cos@2p~ j kx2 lky!1w2#, ~3.3!

where at least one of the coefficientsQ1 , Q2 is not equal to
0. One can see thatv2(0,0)51. It means that at least one o
the components of the soft mode wave vector (kx ,ky) is not
equal to 0 and that the EHM model has no acoustic mod

As is clear from Eq.~3.2!, from v2(kx ,ky)50 it follows
that v2(6kx ,6ky)50 with any combination of signs1
and2. In the following, instead of referring to all the sof
ening points (6kx ,6ky), only one of them withkx>0,
ky>0 will be referred to.

Just after the softening the displacementsuj ,l are small
and for this reason Eq.~3.3!, which was obtained from the
harmonic part of Eq.~2.4!, gives a good approximation to
solution of the nonlinear Eq.~2.4!. The only problem is to
choose the magnitudes of parametersQ1 , Q2 , w1 , w2 in Eq.
~3.3! which minimizes the energy of the solution.

If either kx50 or ky50 then Eq.~3.3! gives a 1q modu-
lated phase. If bothkx and ky are not equal to 0 then th
modulated phase may be of the 1q or 2q type depending on
the coefficientsQ1 andQ2 . If the structure Eq.~3.3! has the
lowest energy when bothQ1 andQ2 are not equal to 0 then
it corresponds to a 2q modulated phase, otherwise to a 1q
phase.

At some special conditions the softening can occur sim
taneously at a few or even at an infinitely large number
points of the Brillouin zone. In such a situation, the displa
ments of the hinges in modulated phase can be express
a linear combination of all the soft modes given by Eq.~3.3!.

Let us turn to the description of the conditions of softe
ing of the dispersion surfacev2(kx ,ky). Three different
cases should be considered. The first case is the softeni
the pointsM , X, X8. The second case is the softening a
point V, V8, D, or D8. The third case is the softening at
general point of the Brillouin zoneJ. Each case will be
considered separately.

Case 1. Softening at the pointM occurs when

124Px24Py116Fx132Fxy116Fy50. ~3.4!

Softening at the pointX occurs when

124Px116Fx50, ~3.5!

and at the pointX8 when

124Py116Fy50. ~3.6!

Case 2. The dispersion surface vanishes at a pointV
when v2(1/2,ky)50 and ]v2/]ky50. These conditions
give

~8Fxy2Py!224Fy~16Fx24Px11!50. ~3.7!

Similarly, the softening at a pointV8 takes place when

~8Fxy2Px!
224Fx~16Fy24Py11!50. ~3.8!

The softening takes place at a pointD8 when v2(0,ky)
50, ]v2/]kx50 and]v2/]ky50. It gives

Py
224Fy50. ~3.9!
.

l-
f
-
as

-

at

In a similar manner one can obtain the condition of so
ening at a pointD in the form

Px
224Fx50. ~3.10!

Case 3. The softening at a general point of the Brillou
zone J occurs when v2(kx ,ky)50, ]v2/]kx50, and
]v2/]ky50. The last two conditions are equivalent to the s
of equations

FxA1FxyB5Fx1Fxy2Px/4,
~3.11!

FxyA1FyB5Fy1Fxy2Py/4.

The set of linear equations inA, B Eq. ~3.11! has a unique
solution

A511
PyFxy2PxFy

4~FxFy2Fxy
2 !

, B511
PxFxy2PyFx

4~FxFy2Fxy
2 !

~3.12!

only if FxFy2Fxy
2 Þ0. In the case of isotropic model (Fx

5Fxy5Fy) this condition is not fulfilled and Eq.~3.11! has
no solutions forPxÞPy and has an infinite number of solu
tions for hydrostatic pressurePx5Py5P. Physically it
means that for the isotropic model the dispersion surf
cannot vanish at the considered part of the Brillouin zo
whenPxÞPy but in a particular case of hydrostatic pressu
the softening takes place simultaneously at an infinite nu
ber of points.

The condition of softening of the dispersion surface a
general point of the Brillouin zoneJ may be written as

4FxA
218FxyAB14FyB

212~Px24Fx24Fxy!A

12~Py24Fy24Fxy!B1122Px22Py14Fx

18Fxy14Fy50, ~3.13!

whereA, B are given by Eq.~3.12!.

IV. MECHANISMS OF THE 1 q↔2q TRANSITION

The modulated phase appears in the EHM model a
result of the second-order phase transition from the nor
phase~trivial solution! when at least one of the conditions o
softening of the dispersion surface Eqs.~3.4!–~3.10!, ~3.13!
is satisfied.

In the EHM model two scenarios of a 1q↔2q transition
can be described. The first possibility is softening of t
dispersion surface at a point of the Brillouin zone (kx ,ky)
with kxÞ0 andkyÞ0. Suppose that just after the softening
1q (2q) modulated phase has lower energy than a 2q (1q)
phase. Further changing of the external parameters ca
the increasing of the influence of the anharmonic terms
the 1q (2q) phase may become metastable or even unsta
At this point a transition to the 2q (1q) phase can be ex
pected.

Another scenario comes from the possibility of softeni
of the dispersion surface at two points of the Brillouin zo
simultaneously, namely, at a pointD and at a pointD8. In
this case the 2q modulated phase which has the form of
linear combination of the two 1q modes may appear. Now
suppose that the symmetry of the dispersion surface is
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ken for some reason and the softening at the two points
curs not simultaneously. It means that during the changin
the external parameters the softening of the dispersion
face first happens at one of the two points and the 1q phase
appears. Further changing of the external parameters ca
the softening of the dispersion surface at the second p
and the 1q→2q transition may take place.

The first scenario requires a special type of nonlinearity
the system. In the sinusoidal regime when the influence
the anharmonic terms is small the 1q (2q) phase should be
globally stable but in the domain-wall regime the unh
monic terms must provide the lowest energy for the 2q (1q)
phase.

The second scenario requires a special type of the s
metry of the dispersion surface when the softening can oc
at two pointsD andD8 almost simultaneously. Both thes
mechanisms of the 1q↔2q transition are considered in th
following subsections.

A. First mechanism

Discussing the first mechanism the number of parame
of the EHM model can be reduced. Let us restrict oursel
by the case of softening of the dispersion surface at a poin
the line S(kx5ky5k). The softening at such a point i
possible whenPx5Py5P, Fx5Fy5F, and Fxy,F. To
eliminate the parameterFxy let us setFxy5F/2. As a result
of the assumptions only three parametersP, F, S remain.

The condition of softening at a pointS Eq. ~3.13! in this
case reduces to

3F2P250, ~4.1!

which can be used forF.P/12. If F<P/12 then the soften-
ing occurs at the pointM and one must use the condition E
~3.4! which takes the form

128P148F50. ~4.2!

When the representative point moves in the phase sp
from the region where the trivial solution is stable a
crosses the parabola~4.1! at the point with coordinates

P~k!5
1

4
@sin~pk!#22, F~k!5

P2~k!

3
~4.3!

with given

k5L/N, ~4.4!

whereN.2L and L, N are coprime positive integers, the
the softening of the mode Eq.~3.3! with kx5ky5k takes
place. If N is rather big then the modulated phase can
considered as an IC phase.

Let us study the case ofk close to 1/4. Substituting the
soft mode Eq.~3.3! with kx5ky51/4 in the Hamiltonian Eq.
~2.5! and minimizing the energy of the soft mode with r
spect to amplitude and phaseQ1 , Q2 , w1 , w2 one can revea
two stable structures. The first stable structure is charac
ized by

Q15A2~4P212F21!

124S
, Q250, w15p/4, ~4.5!
c-
of
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nt
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of

-

-
ur

rs
s
of

ce

e

r-

which give the solution to Eq.~2.4! in the form of a 1q
modulated structure

uj ,l
1q,1/45Q1cosFp2 S j 1 l 1

1

2D G . ~4.6!

The solution Eq.~4.6! has the averaged energy per hinge

E1q,1/452
~4P212F21!2

4~124S!
. ~4.7!

The second stable structure is characterized by

Q15Q25A4P212F21

114S
, w15p/2, w250,

~4.8!

which give the solution to Eq.~2.4! in the form of 2q modu-
lated structure

uj ,l
2q,1/45Q1cosFp2 S j 1 l 1

1

2D G1Q1cosFp2 ~ j 2 l !G .
~4.9!

The solution Eq.~4.9! has the averaged energy per a hing

E2q,1/452
~4P212F21!2

4~114S!
. ~4.10!

The phases Eqs.~4.6! and ~4.9! cannot be considered a
IC phases because fork51/4 one hasN54 which is rather
small. These phases are the low-symmetry commensu
phases. The displacements in the 1q and 2q commensurate
phases Eqs.~4.6! and~4.9! are shown in Figs. 3~a! and 3~b!,
respectively, where the hinges with negative and posit
displacements are marked bys and1, respectively.

From Eqs.~4.7! and ~4.10! one can see that ifS50 ~no
anharmonicity!, then the 1q and 2q commensurate phase
have the same energy. Let us choose the magnitudeS5
20.2 at which the energy of the 2q phase is lower than the
energy of the 1q phase. The dimensionality of the pha
space was reduced to two.

The anharmonic part of the Hamiltonian which has be
used by Parlinski22 gives no difference between the energi
of the solutions Eqs.~4.6! and ~4.9!. That is why an anhar-
monic term different from that of Parlinski’s model was ch
sen for the present investigation.

FIG. 3. Displacements of the hinges for~a! 1q and~b! 2q com-
mensurate phases with (kx ,ky)5(1/4,1/4) defined by Eqs.~4.6!
and ~4.9!, respectively. Four periodic cells are shown. Hinges w
negative and positive displacements are marked bys and 1, re-
spectively.
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Let us discuss the IC structure by choosing the particu
path of the representative point in the (P,F) phase space a
follows:

P5const5P~k! with k5
10

41
, ~4.11!

whereP(k) is given by Eq.~4.3!. The parameterP is fixed
and thus the phase space becomes one dimensional.

According to Eq. ~4.3!, while the representative poin
moves in the rangeF.F(10/41), the trivial solution~normal
phase! is stable. The pointF(10/41)5Fi , which can be
found from Eq.~4.3!, is the point of the phase transition from
the normal to the modulated phase. AtFi the softening of the
mode~k,k! with k510/41 takes place. This mode (N541)
can be considered as an IC phase where the wave vect
close to the wave vector of the low-symmetry commensu
phase (k51/4). Just after the softening of the mode, in oth
words, in the vicinity of theFi the IC phase can be describe
with high accuracy by the trigonometric functions. Th
modulated phase may be of the 1q type

uj ,l
1q,10/415Q cosF2p

10

41
~ j 1 l !G ~4.12!

or of the 2q type

uj ,l
2q,10/415Q cosF2p

10

41
~ j 1 l !G1Q cosF2p

10

41
~ j 2 l !G .

~4.13!

The amplitudeQ in Eqs.~4.12!, ~4.13! cannot be derived
analytically and below it was obtained numerically from t
minimum energy condition.

Further motion of the representative point in the pha
space~decreasing ofF! leads to the increasing of the influ
ence of the anharmonic terms and the sinusoidal regim
changed to the domain-wall regime. In this regime the cr
tal structure cannot be obtained by minimizing the ene
with respect to the only one parameterQ. In order to carry
out the minimization of crystal energy with respect to all t
displacementsuj ,l the dissipative termd(duj ,l)/(dt) was in-
troduced in Eq.~2.4!, whered is the viscosity coefficient.
Using either Eq.~4.12! or ~4.13! as the initial condition and
solving numerically the equations of motion Eq.~2.4! with
the dissipative term, at the completion of the relaxation o
obtains the equilibrium either 1q or 2q IC phase. The size o
the crystallite subjected to the periodic boundary conditio
was N3N541341 hinges which is one period of the I
phase.

In Fig. 4~a! the energy of the 2q equilibrium IC phase
obtained from the structure Eq.~4.13! by the energy minimi-
zation with respect to all the displacementsuj ,l ~solid line! is
compared with that obtained by the energy minimizat
with respect to only one parameterQ ~dashed line!. The
curves coincide in the vicinity ofFi , where the influence o
the anharmonic terms is small.

In Fig. 4~b! the energies of the 1q and 2q equilibrium IC
phases withk510/41 are schematically shown by solid a
dashed lines, respectively, as the functions of parameteF.
One can see that whileF.Fi the only equilibrium solution
is the trivial solution with zero energy. ForF,Fi there is a
r

r is
te
r

e

is
-
y

e

s

range where the energy of the 1q structure is lower and this
range is followed by the range where the 2q structure has
lower energy. At the boundary of these two ranges
1q↔2q transition can be expected.

Let us study the kinetics of the 1q→2q transformation.
The numerical experiment was performed as follows. T
relaxation of the 1q IC phase given by Eq.~4.12! was carried
out at a magnitude of parameterF from the region where the
2q IC phase would have lower energy. As a result of t
relaxation the 1q phase was obtained. Then the small ra
dom perturbation of the hinge displacements was introdu
and the relaxation of the system was continued. It was
served that the system does not relax back to the 1q equilib-
rium state for it was unstable but it relaxed to the globa
stable 2q IC phase.

The kinetics of the 1q→2q transformation atF5Fi25
31024 is presented in Fig. 5. The displacements range fr
2umax to umax, whereumax is the maximum absolute valu
of uj ,l , was divided into five equal parts and the displac
ment of a hinge is marked in Fig. 5 by one of the signss, +,
d, 1, 1 depending on the part in which the displacement
the hinge falls. In Fig. 5~a! the 1q unstable, slightly per-
turbed IC phase is presented. The random perturbation
displacements does not exceed 0.001vmax. In Figs. 5~b! and
5~c!, the intermediate stages of the 1q→2q transformation
are shown. In Fig. 5~d! the globally stable 2q IC phase is
shown as the final result of the relaxation.

The 1q→2q transformation can be discussed in terms
the motion of the domain walls. The domain walls in Fig.
appear as the dark strips. In Fig. 5~a!, for example, the dark
strips separate the domains of the 1q commensurate phas
shown in Fig. 3~a! whereas in Fig. 5~d! the dark strips sepa
rate the domains of the 2q commensurate phase shown
Fig. 3~b!. The transformation starts from the splitting of th
domain wall into two domain walls moving in the opposi
directions@compare Figs. 5~a! and 5~b!#. The splitting of the
unstable domain walls has been described in the frame o
one-dimensional EHM model.25 During the phase transition

FIG. 4. ~a! The F dependence of the energy of the 2q equilib-
rium IC phase obtained from the structure Eq.~4.13! by the energy
minimization with respect to all the displacementsuj ,l ~solid line!
and with respect to the only one parameterQ ~dashed line!. ~b!
Schematic representation of the energies of the 1q ~solid line! and
2q ~dashed line! equilibrium IC phases withk510/41 as the func-
tions of parameterF. The 1q and 2q IC phases were obtained b
the relaxation of the structures Eqs.~4.12! and~4.13!, respectively.
The 1q and 2q IC phases appear atF5Fi . In the rangeF,Fi first
the 1q IC phase has lower energy but then the 2q phase has lower
energy.
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FIG. 5. The kinetics of the 1q→2q transition atF5Fi2531024: ~a! the 1q unstable, slightly perturbed IC phase,~b,c! the intermediate
stages of the process,~d! the globally stable 2q IC phase. Domain walls appear as dark strips. Inside the squares in~a! there is a 1q
commensurate phase shown in Fig. 2~a! and inside the square in~d! there is a 2q commensurate phase shown in Fig. 2~b!.
p
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the set of parallel equidistant domain walls@see Fig. 5~a!#
transforms into the rectangular net of domain walls@see Fig.
5~d!#.

The results presented in Fig. 5 were obtained on one
riod of the IC phase. Actually, the picture of the 1q→2q
transformation may be more complicated due to the rand
nucleation process of the domain-wall splitting. The net
domain walls in the 2q IC phase may be not so fine an
rectangular as it is shown in Fig. 5~d!.

B. Second mechanism

It is evident from Eqs.~3.9! and ~3.10! that the softening
simultaneously at the two points~kx , 0! and ~0, ky! takes
place if Px

224Fx5Py
224Fy . Let us consider the particula

case of softening at the points~k,0! and ~0,k! which takes
place in the EHM model with hydrostatic pressure

Px5Py5P, ~4.14!
e-

m
f

and the anisotropy of a special type

Fxy.Fx5Fy5F. ~4.15!

To eliminate the parameterFxy let us setFxy52F.
In view of Eqs.~4.14!, ~4.15!, both conditions of soften-

ing Eqs.~3.9!, ~3.10! take the form

P224F50, ~4.16!

which can be used forF.P/8. If F<P/8 then the softening
occurs at the pointsX, X8 and one must use the condition
Eqs.~3.5!, ~3.6! which give

124P116F50. ~4.17!

When the representative point moves in the phase sp
from the region where the trivial solution is stable a
crosses the parabola~4.16! at the point with coordinates
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P~k!5
1

2
@sin~pk!#22, F~k!5

P2~k!

4
, ~4.18!

then the softening of the two modes can take place at~k,0!
and ~0,k!, where k5L/N, N.2L and L, N are coprime
positive integers.

In the following, the case ofk close to 1/4 will be con-
sidered. There are two possible stable commensurate s
tures withk51/4. One is of the 1q type

uj ,l
1q,1/45Q1cosFp2 S j 1

1

2D G ~4.19!

with

Q15A2~2P24F21!

124S
~4.20!

and averaged energy per hinge

E1q,1/452
~2P24F21!2

4~124S!
. ~4.21!

Another one is of the 2q type

uj ,l
2q,1/45Q1cosFp2 S j 1

1

2D G1Q1cosFp2 S l 1
1

2D G
~4.22!

with

Q15A2P24F21

2~12S!
~4.23!

and averaged energy per hinge

E2q,1/452
~2P24F21!2

8~12S!
. ~4.24!

The 1q and 2q low-symmetry commensurate phas
given by Eqs.~4.19! and ~4.22! are shown in Figs. 6~a! and
6~b!, respectively. In Fig. 6 the hinges with negative, ze
and positive displacements are marked by signss, d and1,
respectively.

If S50 then the energy of the 2q commensurate phas
Eq. ~4.24! is twice higher than that of the 1q commensurate

FIG. 6. Displacements of the hinges for~a! 1q commensurate
phase with (kx ,ky)5(1/4,0), Eq.~4.19!, and~b! 2q commensurate
phase with two soft modes (kx ,ky)5(1/4,0) and (kx ,ky)
5(0,1/4), Eq.~4.22!. Four periodic cells are shown. Hinges wi
negative, zero, and positive displacements are marked by the
s, d, and1, respectively.
uc-

,

phase Eq.~4.21!. Let us setS521 so that the 2q commen-
surate phase obtains the energy lower than that for theq
commensurate phase.

To obtain an IC phase let us consider the path of
representative point given by Eq.~4.11! but P(k) must be
calculated here from Eq.~4.18!. While F.Fi , where Fi
5F(10/41) can be calculated from Eq.~4.18!, the only
trivial solution~normal phase! is stable. AtFi the phase tran-
sition to the IC phase takes place due to the softening at
two points~10/41, 0! and~0, 10/41!. The numerical calcula-
tions showed that in the case under consideration the ra
of stability of the 1q-IC phase is absent in contrast with th
case studied in the previous subsection. The IC phase
peared as the 2q modulated phase which in the vicinity o
the softening point can be presented as

uj ,l
2q,10/415Q cosS 2p

10

41
j D1Q cosS 2p

10

41
l D .

~4.25!

ns

FIG. 7. The 2q IC phase obtained as a result of relaxation of t
structure Eq.~4.25! at F5Fi21023, Px5Py5P(10/41). Structure
inside the square is the 2q commensurate phase shown in Fig. 5~b!.

FIG. 8. Schematic representation of the energy of the 1q ~solid
line! and 2q ~dashed line! equilibrium IC phases for~a! «50 and
~b! «.0. The 1q and 2q IC phases were obtained by the relaxati
of the structures Eqs.~4.26! and ~4.25!, respectively. In~a! the 1q
and 2q IC phases appear atF5Fi and the 2q phase has lower
energy in the rangeF,Fi . In ~b! the 2q IC phase appears atF
lower thanFi and there is a range where the 1q IC phase has lower
energy.



do-

t

-

of
oint

nt

o

t

e

e-

in
re

uc-

t

er-
ion
ing

the
il-

ave
of

the
s in

e-

e
e

in

PRB 58 2521MECHANISMS OF TRANSITION BETWEEN 1q AND 2q . . .
FIG. 9. The kinetics of the 1q→2q transition at F5Fi

21023, Px5P(10/41), Py5P(10/41)2331025: ~a! the slightly
perturbed 1q unstable IC phase,~b! an intermediate stage of th
process,~c! the globally stable 2q IC phase. Structure inside th
square in~a! is the 1q commensurate phase shown in Fig. 5~a! and
inside the square in~c! is the 2q commensurate phase, shown
Fig. 5~b!.
In Fig. 7 one period of the 2q IC phase obtained by the
relaxation of the structure Eq.~4.25! at F5Fi21023 is
shown. The meaning of the signss, +, d, 1, 1 is the same
as in Fig. 5. As may be seen from Fig. 7, the 2q IC phase is
the rectangular net of domain walls which separate the
mains of the 2q commensurate phase shown in Fig. 6~b!.

In order to study the 1q→2q transition let us suppose tha
there exists a small deviation from the condition Eq.~4.14!,
namely,Px5P, Py5P2«, where« is small and, for defi-
niteness, positive. Physically,« is a small uniaxial stress ap
plied in addition to the hydrostatic pressureP. The presence
of such a deviation breaks down the fourfold symmetry
the dispersion surface and softening first occurs at the p
(10/41, 0!. This softening leads to the 1q IC phase forma-
tion. In the vicinity of transition point the 1q IC phase can be
presented as

uj ,l
1q,10/415Q cosS 2p

10

41
j D . ~4.26!

Further decreasing ofF causes the softening at the poi
~0, 10/41! and a transition to a 2q IC phase happens.

In Fig. 8 theF dependence of the energy of the 1q equi-
librium IC phase~solid line! is schematically compared t
that for the 2q equilibrium IC phase~dashed line! at ~a! «
50 and~b! «.0. In ~a! the 1q and 2q IC phases appear a
F5Fi and the 2q phase has lower energy. In~b! the 2q IC
phase appears atF lower thanFi and there is a range wher
the 1q IC phase has lower energy.

The kinetics of the 1q→2q transformation is shown in
Fig. 9 for «5331025, F5Fi21023. In Fig. 9~a! the
slightly perturbed 1q unstable IC phase obtained by the r
laxation of the structure Eq.~4.26! is presented. The 1q IC
phase appears as a set of domains of the 1q commensurate
phase, shown in Fig. 6~a!, separated by the vertical doma
walls. In Fig. 9~b! an intermediate stage of the structu
transformation is shown. In Fig. 9~c! the globally stable 2q
IC phase is shown as the final result of the relaxation. Str
ture inside the square in Fig. 9~c! is the 2q commensurate
phase, shown in Fig. 6~b!. Note, that due to the fact tha
PxÞPy by « the structure in Fig. 9~c! has no fourfold sym-
metry and does not coincide with the 2q IC phase shown in
Fig. 7.

In the example just described the symmetry of the disp
sion surface was changed by the violation of the condit
Eq. ~4.14!. Similar results can be also obtained by assum
Fx5F2«, Fy5F instead of Eq.~4.15!.

V. CONCLUSION

The one-dimensional EHM model was generalized to
two-dimensional one. The anharmonic part of the Ham
tonian was chosen in a way to support both 1q and 2q stable
modulated phases. The soft mode can have an arbitrary w
vector (kx ,ky), which has not been shown by the model
Parlinski.22

The two mechanisms of the 1q↔2q phase transition
were discussed. At the sinusoidal regime of the IC phase
influence of the anharmonic terms is small but it increase
the domain-wall regime. If in the sinusoidal regime the 1q
(2q) IC phase is globally stable but in the domain-wall r
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gime the 2q (1q) IC phase becomes globally stable, then t
phase transition between them can happen. This is the
mechanism.

In a particular case of the model the dispersion surf
has such a symmetry that softening takes place at the
points of the Brillouin zone~kx , 0!, ~0, ky! simultaneously.
If this dispersion surface is slightly perturbed by some rea
then the softening occurs first at one of the two points w
the 1q IC phase formation and subsequently at the sec
point with the possibility of the 1q→2q phase transition.
This is the second mechanism. The dispersion surface ca
perturbed by application of the small uniaxial stress in ad
tion to the hydrostatic pressureP and/or by the anisotropy
with a small departure from the conditionFx5Fy .
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If the phase transition proceeds by the second mechan
then the phase sequence can be only as follows: nor
phase→1q phase→2q phase. In the case of the firs
mechanism the 1q and 2q phases in this sequence ma
change places.
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