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Mechanisms of transition between 3j and 2q incommensurate phases
in a two-dimensional crystal model
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The two-dimensional elastically hinged molecule model of a crystal which contains two anharmonic terms
was studied numerically. The results show that theol 2g incommensurate phase can be stable depending on
the parameters of the model. For example, in the sinusoidal incommensurate regime #tg phase can be
globally stable but in the domain-wall regime the situation can be opposite andghe2d (29— 1q)
transition can be expected. Another mechanism of tipe> 2q phase transition stems from the softening of the
dispersion surface simultaneously at two points of the Brillouin zorgQ} and (Ok,). In this case the @
modulated phase can appear as a linear combination of the qwoatulated phases. Under the assumption
that the dispersion surface is slightly perturbed for some reason, the softening first occurs at one of the two
points resulting in the 4 phase formation. Further changing of the external parameters leads to the softening
at the second point and they4:2q transition can take place. Both these mechanisms of the 2q phase
transition were revealed and studi¢80163-18208)07029-5

[. INTRODUCTION The kinetics of the §—1q phase transition in the
Cuy 7Py 2> alloy has been studied by Bohr, Broddin, and
Recently there has been a growing interest in incommentoisead! by time-resolved x-ray scattering.

surate(IC) phases which can appear in a temperature range There are several kinds of microscopic models which sup-
between two different commensurate phaséan IC phase  ort the modulated structure.

is the modulated phase in which the ratio between lattice In the frame of the axial next-nearest-neighbor Ising
period and pgrlod of rnodulatlon' Is an irrational numper. In ANNNI) model the variable assigned to each particle can
many numerical studies, there is no way to determine thé

exact magnitude of the ratio, therefore, it may be expressegbtain discr ete: values from a givep set. It is very natural in
by an irreducible fraction with a big denominafoif the some applications, for example, in the physics of ordered

denominator is not big and is not small then the modulate@”qyS where thi_s variable means the so_rt of atom in a Iatt_ice
phase is called a high-order commensurate phase. point. The physical mechgmsm responsﬂale f_or the fqrmatlon
The IC phase appears from a normaigh-symmetry of m_odulated structures is the competing interacti3rs.
commensurate phase as a result of a second-order phase trdfi€ influence of the temperature and the features of the do-
sition and close to the critical point the modulation in a crys-main walls have been studied in the frame of the mean-field
tal has the form of sinusoidal waves. More often, the moduapproach when the set of the possible states of a particle is
lation can be characterized by a unique wave vector and theo longer discreté®'® At finite temperatures the ANNNI
IC phase is said to bedl modulated phase, but there are model has a very rich phase diagram with different modu-
cases where the modulation is described by two or moréated commensurate and IC phas&¥ The similar behavior
wave vectors, then it is designated as tiggahase and so on. shows the model with the spin anisotropy for which the spins
At lower temperature, as a result of a first-order phase trarvary continuously® Phase diagrams obtained using the
sition (lock-in transition, the IC phase generally gives way mean-field approximation appear to be correct in all but mi-
to a low-symmetry commensurate phase. nor detailst? The ANNNI model modified by Yamada and
The IC phase can perform different kinds of rather com-Hamaya’ qualitatively describe the chain of transformations
plicated transformations. For example, the pressureeontaining IC high-order commensurate, and commensurate
temperature phase diagram of &hBr, contains a region phases for various dielectrics 85B X, family.
where the length of the modulation wave vector of the 1 For the description of the IC phase in dielectrics, how-
modulated phase exhibits stepwise behavior as a function @fver, the spin variable seems not as natural as in the case of
pressure. ordered alloys. Here the displacement of the particle is usu-
Not only the length of the modulation wave vector canally taken as a natural variablé®=?"The elastically hinged
change. Another example of the IC phase transformation is enolecule(EHM) model studied in this paper belongs to this
transition betweend and 2y or 3q phases. For example, on second class of microscopic models.
cooling in biphenyl, GH;o the sequence of phases is as The 33—3q’ phase transition, with a change of the
follows: normal, 2, 1q;° in quartz, SiQ, as follows: modulation wavelength, has been simulated by Parlinski and
normal, 1o, 3g, commensuraté® in barium sodium Chapuig® by a molecular-dynamics technique in the frame
niobate, BaNaNkO;s, as follows: normal, 8, 1q, of the three-dimensional hexagonal model. The molecular-
commensuratél®and in Cy,gPd, », alloy as follows: high-  dynamics investigation of the kinetics of theg23q and
symmetry disordere¢hormal, 2q, 1q.1* 3g—1q phase transitions in the three-dimensional hexago-
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nal model has been performed by Parlinski and Chajfis. Il. TWO-DIMENSIONAL EHM MODEL
It has been found that theql- 3q transition originates from
the nucleatlor; of a set of antlstrlp.plles within the stripes ofof molecules which are connected with each other by the
the 1g phase'’ In the 34— 19 transition the columnscells  gjagtic hinges. Each hinge of the one-dimensional EHM
of the g%lphase merge together and form a stripe of th@ 1 el has one degree of freedom, namely, the transversal
phase® o _ displacement; . The chain is compressed by the force along
It has been shown by Parlinskt al. that to obtain the jis ayis and the hinges are in the anharmonic, one-well

stable 21 and 3 IC phases, special a?pzeslrmonic terMS£oyrth-order polynomial background potential. In dimension-
should be introduced into the Hamiltoni&?'~2*After these less form the equations of motion &fe

works the conditions of the existence of the staldead 3
IC phases in two- and three-dimensional microscopic models

The one-dimensional EHM model of a crystal is a chain

. 2
are quite clear, however theqt2q and 19— 3q phase du;
transitions have not been adequately investigated. iz F(Uj—2=4Uj—1+6U; = 4Uj. 1 +Uj )
In this paper the one-dimensional elastically hinged mol- 3
ecule (EHM) model recently proposed by the present +P(Uj-1—2uj+Uj, 1)+ Uj+up=0, (2.1

author$*?> was extended to the two-dimensional EHM
model. The Hamiltonian of the last model is similar to thatwhere coefficientd=>0, P>0 are proportional to the stiff-
studied by Parlinské? with two distinctions. ness of a hinge and the compression force, respectively. Note

First, the harmonic part of the two-dimensional EHM that the model with different physical interpretation but gov-
model describes a crystal with any anisotropy and subjectedrned by essentially the same equation of motion has been
to arbitrary homogeneous deformation, whereas the Parlinstudied earlier by Slot and Jans&&and by IshibasH’
ki's model considers a crystal with a particular case of an- In the continuum limit Eq(2.1) takes the form
isotropy and subjected to a hydrostatic pressure. As a result,
in the two-dimensional EHM model the softening of a mode 5 4 5
with any wave vector is possible, whereas in the Parlinski's ‘9_“ ’9_“ ‘Q_U 3_

: ) +F +P +u+u®=0, (2.2

model the softening can occur at a poiatx) or simulta- at? ax* Ix?
neously at two point$x,0) and(0,x) or simultaneously at an
infinitely large number of points of the Brillouin zone. One where the displacement(x,t) is the unknown function, co-
will see that the mechanism of theyd-2q phase transition efficientsF and P describe the elastic properties of media
discussed in Sec. IV B cannot be studied in the frame of theand the external pressure, respectively. An obvious two-
model of Parlinski. dimensional generalization of EQR.2) is

The second distinction is that the anharmonic part of the
Hamiltonian of the EHM model contains a four-body term

e : : - i d?u d*u d*u d*u é?u
describing the interaction of each hinge with the nearestand ¢ ~ o= -
- - 7 tFx o at2Fy o tFy 2+ Py —>
next-nearest neighbors instead of the three-body term de-  dt X axay ay X
scribing the interaction of each hinge with the nearest neigh- e
bors, as itis in the Parlinski's model. The necessity of this +P, —l;+u+u3=0, 2.3
revision for our calculations will be explained in Sec. IV A. d

This paper is organized as follows: In Sec. Il the two-
dimensional EHM model is introduced. In Sec. Ill the con-whereu(x,y,t) is the unknown functionF,, F,, F, are
ditions of softening of the dispersion surface are given. Inthe elastic constants of the anisotropic media RpdP, are
Sec. IV the two mechanisms of thej4>2q phase transition the components of the external pressure. Equdi2o8) has
are discussed and illustrated by numerical examples and Sdong been in use in the theory of plat&s.
V concludes the paper. The discrete analog of E@2.3) is

2

uj |
dté +(1_ZPX_ZPy+6FX+8ny+6Fy)Uj'|+Ujsy|+Fx(Uj,2‘|+Uj+21|)+Fy(Uj‘|,2+ uj,l+2)+2ny(uj+l,l+l+ UJ,1‘|+1

FUjrq 1t Ujqy 1) F(Py—=4F,—4F, ) )(Uj_q tUj 1) +(Py—4F, —4F, ) (Uj -1+ Uj 1 11)
+S(Uj _ gy Uy Uyt Uy gy aUj U H U Uy Uj—aH U g U - qUj 4 1) =0, (2.4

where we have introduced an additional anharmonic term with coeffiSiefhis fourth-order potential describes the four-
body anharmonic interaction of each hinge with the nearest and next-nearest neighbors.

Equation(2.4) is the equation for motion of thg {)th hinge of the two-dimensional EHM model. The Hamiltonian of the
two-dimensional EHM model is
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de’|

1 1 1
+§(1—2PX—2Py+6FX+8FXy+6Fy); uiﬁzg uf',+§; Uj [ Fx(Uj— 2+ Uj 1))

1
+Fy(uj ot uj,l+2)]+ny]_§|: Uj i (UjsqpeatUj gt U g g F U g )+ > (Py—4F,—4F,))

1 S
le Uj,l(Uj—1,|+Uj+1,|)+§(Py_4Fy_4ny)2| Uj,|(Uj,|—1+Uj,|+1)+ZZJ Uj(Uj—q)—1Uj+ 1 Uj 41
T, T, T

FUj - qUj el Uj gl Uy 1t Uy aUj - qUj ). (2.5

Several physical interpretations of the Hamiltonian Eq.dimensional EHM modét is essentially the same as that for
(2.5) are possible. The first one, used by Parliréldpnsid-  the mean-field Hamiltoniat?
ers the square lattice of the interacting pointwise particles.
The EHM model gives another interpretati%fnRecalI that IIl. DISPERSION RELATION
many dielectric crystals are built of the clusters of atoms
which can be considered as almost undeformable, e.g., Substituting the formula
quartz consists of the almost rigid Si@trahedral clusters o )
joined to each other, and the oxygen atoms at vertices play uj 1= exd 2 (kyj + xyl) —iwt] 3.
the role of hinges. Keeping this in mind, one can consider a
two-dimensional layer of rigid molecules joined to each
other by the elastic hinggsee Fig. 1 If the angle between
the axes of the neighboring molecules is not equal to 0, the > _ 2 2 _
elastic hinge produces the moments which tend to decrease (rex 1ey) AR A" BFAB+AF BT+ 2(P,— 4F,
the absolute value of the angle. The stiffness of the aniso- —4F,))A+2(Py—4F,—4F,,)B+1-2P,
tropic hinge is characterized by the coefficieftg, F,,
Fy- Each hinge has one degree of freedom which is a dis-

placement perpendicular to thg plane.(In the quartz case, whereA = cos(2rx,), B=cos(2x,). In Fi -

! ) . = ,B= . g. 2 the reciprocal

it corresponds to the rotation angle of Si@trahedrg. The space of the model is shown, v)(/here we symbolize the par-
hinges are in the anharmonic background potential (J]f(,Z) ticular points of the Brillouin zone.

+(1/4)ujf‘yI which describes the influence of the rest of the |5 the subsequent discussion the elastic const&qts

crystal on the considered layer of molecules. The crystal i$:xy, F, and the parametes will be considered temperature

subjected to the external pressiitg, Py . _ dependent. Changing of the temperature and/or changing of
The Hamiltonian similar to Eq2.5) can be obtained also the external pressur®,, P, leads to the motion of a repre-

as a mean-field approximation to an ANNNI model. For ex-ggntative point in the six-dimensional phase space.

ample, the harmonic part of the Hamiltonian of the one- Obviously, Eq.(2.4) has the trivial solutioru; ;=0 (nor-

mal phasg This solution is stable when the function

wZ(KX,Ky), given by Eg.(3.2, has no negative values.

When the representative point moves in the phase space the

function Eq.(3.2) changes and it can vanish, i.e., the mode

softens, at a certain poini{,«,). The vanishing leads to

the condensation of the mode

to the harmonic part of Eq2.4) one obtains the dispersion
relation

—2P,+4F,+8F, +4F,, 3.2

Ky
1/2 X, Q’ M
FIG. 1. The two-dimensional EHM model. Rigid molecules are 3 Qe

joined to each other by the elastic hingepen circleg If the angle ,
between the axes of the neighboring molecules is not equal to 0, the oA _
elastic hinge produces the moments which tend to decrease the =
absolute value of the angle. The stiffness of the anisotropic hinge is
characterized by the coefficierfes, F,, F,,. Each hinge has one =A X
degree of freedom which is displacement alangxis. The hinges 0 12 Ky

are in the anharmonic background potenfighown by springs

which describes the influence of the rest of the crystal on the con- FIG. 2. The reciprocal space of the model. The wave vectors of
sidered layer of molecules. The crystal is subjected to the externdhe modulation waves are denoted by the symbols given in the
pressureP,, Py . figure.
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Uj 1= Q1c08 27 (j Kyt ky) + 1] .In a simila( manner one can obtain the condition of soft-
) ening at a pointA in the form
+Qc04 27(j ky—l ky) + @21, (3.3

2— =
where at least one of the coefficierds, Q, is not equal to Py 4Fx=0. (310

2 — . . . .
0. One can see that*(0,0)=1. It means that at least one of  case 3. The softening at a general point of the Brillouin
the components of the soft mode wave vectey,(ky) isnot  ;one = occurs when wz(Kx,Ky) =0, dwldk,=0, and

equal to 0 and that the EHM modgl has no acoustic mode. 54,2/, = 0. The last two conditions are equivalent to the set
As is clear from Eq(3.2), from *(«y,xy) =0 it follows  of equations

that w?(* ky, = k,)=0 with any combination of signs-

and —. In the following, instead of referring to all the soft- FxA+FB=F+F,,—P,/A4,
ening points € «,,* ), only one of them withx,=0, 313
x,=0 will be referred to. FuwA+FB=Fy+F,—P/4.

Just after the softening the displacemeunfs are small

and for this reason Eq3.3), which was obtained from the 1N€ Setof linear equations /&, B Eq. (3.1 has a unique

harmonic part of Eq(2.4), gives a good approximation to a Selution
solution of the nonlinear Eq2.4). The only problem is to . _

. ; PyFy— PxFy P,Fy— PyFx
choose the magnitudes of parame®ts Q,, ¢1, ¢, in Eq. A=1+-22Y 5V =14+ Y YV *
(3.3) which minimizes the energy of the solution. 4(FxFy—F5y) 4(F.Fy—Fy)

If either x,=0 or k,=0 then Eq.(3.3) gives a Iy modu- (3.12

lated phase. If both¢, and «, are not equal to 0 then the only if FyF,— Fiy;& 0. In the case of isotropic modeF(

modulated phase may be of thq r 2q type depending on - —g  —F ) this condition is not fulfilled and Eq3.13) has

the coefficientQ, andQ,. If the structure Eq(3.3) has the 1 solutions forP, = P, and has an infinite number of solu-

lowest energy when botQ, andQ, are not equal to 0 then tjons for hydrostatic pressur®,= P,=P. Physically it

it corresponds to a @ modulated phase, otherwise t0 8 1 means that for the isotropic model the dispersion surface

phase. ) N ) _cannot vanish at the considered part of the Brillouin zone
At some special conditions the softening can occur simulyyhen P«# Py but in a particular case of hydrostatic pressure

taneously at a few or even at an infinitely large number ofihe softening takes place simultaneously at an infinite num-

points of the Brillouin zone. In such a situation, the displaceer of points.

ments of the hinges in modulated phase can be expressed astne condition of softening of the dispersion surface at a

a linear combination of all the soft modes given by B13).  general point of the Brillouin zon& may be written as
Let us turn to the description of the conditions of soften-

ing of the dispersion surface?(«y,«y). Three different 4F A%+ 8F, AB+4F B2+ 2(Py— 4F,— 4F ) A
cases should be considered. The first case is the softening at

the pointsM, X, X'. The second case is the softening at a +2(Py—4F,—4F,)B+1-2P,— 2P +4F,
point Q, ', A, or A’. The third case is the softening at a +8F. 4+4F.=0 31
general point of the Brillouin zon&. Each case will be ooy 3.13
considered separately. whereA, B are given by Eq(3.12.

Case 1. Softening at the poin occurs when

IV. MECHANISMS OF THE 1 g+2g TRANSITION
1-4P,— 4P+ 16F,+32F, +16F,=0. (3.4

The modulated phase appears in the EHM model as a

Softening at the poinK occurs when result of the second-order phase transition from the normal
_ phase(trivial solution) when at least one of the conditions of
1-4P,+16F,=0, (3.9 softening of the dispersion surface E¢3.4)—(3.10, (3.13
and at the poinX’ when is satisfied.
In the EHM model two scenarios of aq-2q transition
1-4P,+16F,=0. (3.6 can be described. The first possibility is softening of the

) ) ) dispersion surface at a point of the Brillouin zone, («,)
Case 2. The dispersion szurface vanishes at a pdht  yth «, 0 andx,#0. Suppose that just after the softening a
when 0°(1/2k,)=0 and do“/dky,=0. These conditions 1q (29) modulated phase has lower energy thanga(2q)
give phase. Further changing of the external parameters causes
2 _ the increasing of the influence of the anharmonic terms and
(8Fyy=Py) = 4F,(16F,— 4P+ 1)=0. @37 the 1q (2q) phase may become metastable or even unstable.
At this point a transition to the @ (1q) phase can be ex-
pected.
(8Fyy— Px)2—4Fx(16Fy—4Py+ 1)=0. (3.9 Another scgnario comes from the possibility (_)f sqftening
of the dispersion surface at two points of the Brillouin zone
The softening takes place at a poifit when wZ(O,Ky) simultaneously, namely, at a poidtand at a poinA’. In
=0, dw?/Jk,=0 anddw?/Ix,=0. It gives this case the @ modulated phase which has the form of a
) linear combination of the two d modes may appear. Now
Py—4F,=0. (3.9  suppose that the symmetry of the dispersion surface is bro-

Similarly, the softening at a poif2’ takes place when
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ken for some reason and the softening at the two points oc- +4+004++00 14004400
curs not simultaneously. It means that during the changing of O++00++0 +4+00++00
the external parameters the softening of the dispersion sur- OO++0OO++ Q0++00++
face first happens at one of the two points and thephase I?—ggiggé ! ggéggggg
appears. Further changing of the external parameters causes QO+ +00++0 +4+00++00
the softening of the dispersion surface at the second point OO0++00++ OO0++00++
and the 31— 2q transition may take place. +O00++00+ OO++00++
The first scenario requires a special type of nonlinearity in (a) (b)

the system. In the sinusoidal regime when the influence of
the anharmonic terms is small thg 12g) phase should be
globally stable but in the domain-wall regime the unhar-

monic terms must provide the lowest energy for tige(2q) negative and positive displacements are markedobgnd +, re-

phase. spectivel
The second scenario requires a special type of the sym-p v

metry of the dispersion surface when the softening can ocCUfhich give the solution to Eq(2.4) in the form of a T
at two pointsA andA’ almost simultaneously. Both these modulated structure
mechanisms of thed« 2q transition are considered in the
following subsections.

FIG. 3. Displacements of the hinges f@ 1q and(b) 2g com-
mensurate phases with(, «,) =(1/4,1/4) defined by Eqs4.6)
and(4.9), respectively. Four periodic cells are shown. Hinges with

‘+|+1
] 2

T

/
Ujl’(ﬂ’l 4= Qlcos{g . (4.6)
A. First mechanism

Discussing the first mechanism the number of parameter5he solution Eq(4.6) has the averaged energy per hinge

of the EHM model can be reduced. Let us restrict ourselves
by the case of softening of the dispersion surface at a point of
the line X (x,=«y=«). The softening at such a point is
possible whenP,=P,=P, F,=F,=F, and F,,<F. To
eliminate the parametd,, let us setF,,=F/2. As a result
of the assumptions only three parametersF, S remain.

The condition of softening at a poidt Eq. (3.13 in this
case reduces to

(4P—12F—1)2

19,1/4_
E 4(1-4S)

(4.7)

The second stable structure is characterized by

AP—12F—1
Q1=0Q,= —74s p1=ml2, ¢,=0,

4.9

which give the solution to Ed2.4) in the form of 23 modu-
lated structure

3F—P2=0, (4.

which can be used fdf>P/12. If F<P/12 then the soften-
ing occurs at the poin¥l and one must use the condition Eq.
(3.4) which takes the form

+Qlco{g (j—I)}.
4.9

When the representative point moves in the phase spacgne solution Eq(4.9) has the averaged energy per a hinge
from the region where the trivial solution is stable and

'+|+1
T2

ar
29,14 _ r
upir = Qlco{ 2

1—-8P+48F =0. 4.2

crosses the parabo(d.1) at the point with coordinates (4P—12F —1)?
E20MA= — —— — " (4.10
1 P2(4) 4(1+49)
P(x)= 7 [sin(mx)]"2, F(k)= (4.3 _

4 3 The phases Eq¢4.6) and (4.9) cannot be considered as

with given IC phases because far=1/4 one hasN=4 which is rather
small. These phases are the low-symmetry commensurate
k=LIN, (4.4 phases. The displacements in thg 4nd 23 commensurate

_ o phases Eq94.6) and(4.9) are shown in Figs. @) and 3b),
whereN>2L andL, N are coprime positive integers, then respectively, where the hinges with negative and positive
the softening of the mode E¢3.3) with x,=«y=« takes displacements are marked by and +, respectively.
place. If N is rather big then the modulated phase can be FErom Eqgs.(4.7) and (4.10 one can see that =0 (no
considered as an IC phase. anharmonicity, then the §j and 23 commensurate phases

Let us Study the case of close to 1/4. Substltutlng the have the same energy. Let us choose the magni&pde
soft mode Eq(3.3) with k= «y=1/4 in the Hamiltonian Eq. 0.2 at which the energy of theq2phase is lower than the
(2.5 and minimizing the energy of the soft mode with re- energy of the & phase. The dimensionality of the phase
spect to amplitude and pha&g, Q,, ¢4, ¢, One can reveal space was reduced to two.
two stable structures. The first stable structure is character- The anharmonic part of the Hamiltonian which has been
ized by used by Parlinsk? gives no difference between the energies

of the solutions Eqgs(4.6) and(4.9). That is why an anhar-
__[2(AP—12F—1) _0 — 4. (4 monic term different from that of Parlinski’s model was cho-
Qu= 125 =0 e=mi4 4.9 sen for the present investigation.
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Let us discuss the IC structure by choosing the particular [x10%] B
path of the representative point in th,F) phase space as 3
follows: - / =

I 1 Q
= Vi =
) 10 & ;
P=const=P(x) with k= ik (4.11 T 204 ="
7| @ z
whereP(«) is given by Eq.(4.3). The parameteP is fixed -3 eru
and thus the phase space becomes one dimensional. o000
According to Eq.(4.3), while the representative point F-F.
1

moves in the range >F(10/41), the trivial solutiorfnormal

phase is stable. The poinf(10/41)=F;, which can be FIG. 4. () The F dependence of the energy of thg 2quilib-
found from Eq.(4.3), is the point of the phase transition from jym Ic phase obtained from the structure E413 by the energy
the normal to the modulated phase.FAtthe softening of the  minimization with respect to all the displacements (solid line)
mode («,x) with «=10/41 takes place. This mod&€41)  and with respect to the only one parame@r(dashed ling (b)
can be considered as an IC phase where the wave vector $ghematic representation of the energies of thesblid line) and
close to the wave vector of the low-symmetry commensurateq (dashed lingequilibrium IC phases withk=10/41 as the func-
phase k= 1/4). Just after the softening of the mode, in othertions of parameteF. The 1g and 2y IC phases were obtained by
words, in the vicinity of the~; the IC phase can be described the relaxation of the structures Eqd.12 and(4.13), respectively.
with high accuracy by the trigonometric functions. The The 1q and 2 IC phases appear Bt=F; . In the range~ <F; first

modulated phase may be of the lype the 1g IC phase has lower energy but then thee ghase has lower
energy.

(4.12

J

ul$04=q 003{277 10 (j+1) _ _
‘ 41 range where the energy of the Etructure is lower and this
range is followed by the range where thg 2tructure has
lower energy. At the boundary of these two ranges the
10 19+ 2q transition can be expected.
+Q COf{ZW 21 4)}- Let us study the kinetics of theqt-2q transformation.
(4.13 The numerical experiment was performed as follows. The
relaxation of the #j IC phase given by Ed4.12 was carried
The amplitudeQ in Eqgs.(4.12), (4.13 cannot be derived out at a magnitude of parameterfrom the region where the
analytically and below it was obtained numerically from the2q IC phase would have lower energy. As a result of the
minimum energy condition. relaxation the §j phase was obtained. Then the small ran-
Further motion of the representative point in the phaselom perturbation of the hinge displacements was introduced
space(decreasing of) leads to the increasing of the influ- and the relaxation of the system was continued. It was ob-
ence of the anharmonic terms and the sinusoidal regime iserved that the system does not relax back to theduilib-
changed to the domain-wall regime. In this regime the crysfium state for it was unstable but it relaxed to the globally
tal structure cannot be obtained by minimizing the energystable 21 IC phase.

or of the 2y type

10
uPo=qQ cos{er 270+D

with respect to the only one paramet@r In order to carry The kinetics of the §j—2q transformation aF=F;—5
out the minimization of crystal energy with respect to all the x 10 * is presented in Fig. 5. The displacements range from
displacementsi; | the dissipative ternd(du; ;)/(dt) was in-  —Upay tO Upay, Whereun,, is the maximum absolute value

troduced in Eq.(2.4), where 5 is the viscosity coefficient. of u;, was divided into five equal parts and the displace-
Using either Eq(4.12 or (4.13 as the initial condition and ment of a hinge is marked in Fig. 5 by one of the sighs,
solving numerically the equations of motion E@.4) with @, +, + depending on the part in which the displacement of
the dissipative term, at the completion of the relaxation onehe hinge falls. In Fig. &) the 1g unstable, slightly per-
obtains the equilibrium eitherdlor 2q IC phase. The size of turbed IC phase is presented. The random perturbation of
the crystallite subjected to the periodic boundary conditionglisplacements does not exceed 0@} In Figs. §b) and

was NXN=41x41 hinges which is one period of the IC 5(c), the intermediate stages of thg-1 2q transformation

phase. are shown. In Fig. &l) the globally stable & IC phase is
In Fig. 4@ the energy of the @ equilibrium IC phase shown as the final result of the relaxation.
obtained from the structure E1.13 by the energy minimi- The 19— 2q transformation can be discussed in terms of

zation with respect to all the displacemeuatis (solid line) is  the motion of the domain walls. The domain walls in Fig. 5
compared with that obtained by the energy minimizationappear as the dark strips. In Figah for example, the dark
with respect to only one paramet€ (dashed ling The strips separate the domains of thg dommensurate phase
curves coincide in the vicinity of;, where the influence of shown in Fig. 8a) whereas in Fig. &) the dark strips sepa-
the anharmonic terms is small. rate the domains of thedgcommensurate phase shown in

In Fig. 4(b) the energies of thedland g equilibrium IC  Fig. 3(b). The transformation starts from the splitting of the
phases withk =10/41 are schematically shown by solid and domain wall into two domain walls moving in the opposite
dashed lines, respectively, as the functions of paranteter directions[compare Figs. ®) and 3b)]. The splitting of the
One can see that whilE>F; the only equilibrium solution unstable domain walls has been described in the frame of the
is the trivial solution with zero energy. F6r<F; there is a  one-dimensional EHM modé?. During the phase transition
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If F<P/8 then the softening
(4.17

o) the intermediate

Inside the squares there is a o

ax

=0.

4F =0,
and one must use the conditions

(3.6) which give
4P+ 16F

Fu>F=F,=F.
P2

slightly perturbed IC phagke
1

(3.10 take the form

ax

To eliminate the parametét,, let us set~,,=2F.

When the representative point moves in the phase space
from the region where the trivial solution is stable and
crosses the parabo(4.16 at the point with coordinates

and the anisotropy of a special type
transformation may be more complicated due to the random In view of Egs.(4.14), (4.19), both conditions of soften-

which can be used fdf > P/8.

occurs at the pointX, X’

It is evident from Eqs(3.9) and(3.10 that the softening Egs.(3.5

simultaneously at the two points,, 0) and (0

5% 10" 4: (a) the 1q unstable

stages of the proces§&]) the globally stable @ IC phase. Domain walls appear as dark strips.
(4.14

Ky) takes

—4F, . Let us consider the particular

Fi

k) which takes

B. Second mechanism
place in the EHM model with hydrostatic pressure

2
y

x=P

—4F

2

The results presented in Fig. 5 were obtained on one pe-
X

FIG. 5. The kinetics of thed— 2q transition at~
commensurate phase shown in Figa)2and inside the square i) there is a 2 commensurate phase shown in Fig)2

nucleation process of the domain-wall splitting. The net ofing Eqs.(3.9)

domain walls in the 8 IC phase may be not so fine and

the set of parallel equidistant domain wa[kee Fig. )]
rectangular as it is shown in Fig(d.

transforms into the rectangular net of domain widise Fig.

5(d)].

riod of the IC phase. Actually, the picture of the4 2q

case of softening at the poin{g,0) and (O,

place if P
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FIG. 6. Displacements of the hinges f@ 1q commensurate
phase with f,,x,) =(1/4,0), Eq.(4.19, and(b) 29 commensurate
phase with two soft modes «(,«,)=(1/4,0) and f,x,)

=(0,1/4), Eq.(4.22. Four periodic cells are shown. Hinges with
negative, zero, and positive displacements are marked by the signs

O, @, and +, respectively.

P?(x)
R

1
P(k)=5 [sin(mk)]72%, F(x)= (4.18
then the softening of the two modes can take place«®
and (0,x), where k=L/N, N>2L andL, N are coprime
positive integers.
In the following, the case ok close to 1/4 will be con-

sidered. There are two possible stable commensurate stru

tures withk=1/4. One is of the & type

T 1
uf = Qlco{g j+ E) (4.19
with
__[2(2P—-4F-1) 42
A (4-20
and averaged energy per hinge
(2P—4F-1)?
1q,1/4_ _
E 4(1-49) (4.21)
Another one is of the @ type
1 T 1
2q,1/4_ .
uif —Qlcos{i (]+ 5 +Q1coz{5 (I+ 3
(4.22
with
2P—-4F-1
Q1= 2(1-9 (4.23
and averaged energy per hinge
(2P—4F—1)2
214_ _ - 0007
E 8(1-9) (4.24
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FIG. 7. The 2) IC phase obtained as a result of relaxation of the

structure Eq(4.25 atF=F;— 102, P,= P,=P(10/41). Structure

i@_side the square is thegZcommensurate phase shown in Fi¢h)5

phase Eq(4.2]). Let us setS=—1 so that the § commen-
surate phase obtains the energy lower than that for the 1
commensurate phase.

To obtain an IC phase let us consider the path of the
representative point given by E¢4.11) but P(«) must be
calculated here from Eq4.18. While F>F;, whereF;
=F(10/41) can be calculated from E@4.18), the only
trivial solution (normal phaskis stable. AtF,; the phase tran-
sition to the IC phase takes place due to the softening at the
two points(10/41, Q and (0, 10/41). The numerical calcula-
tions showed that in the case under consideration the range
of stability of the 1g-IC phase is absent in contrast with the
case studied in the previous subsection. The IC phase ap-
peared as the @ modulated phase which in the vicinity of
the softening point can be presented as

U= Q co{ p R —

1q,10/41 2q,10/41

E ; B
1q,10/41. 2q,10/41
El®10M1, g 20,10/

FIG. 8. Schematic representation of the energy of thesblid

The 1g and 2y low-symmetry commensurate phases e and 2y (dashed ling equilibrium IC phases fofa) s=0 and

given by Egs.(4.19 and(4.22 are shown in Figs. ® and

(b) £>0. The 1g and 2 IC phases were obtained by the relaxation

6(b), respectively. In Fig. 6 the hinges with negative, zero,of the structures Eqg€4.26 and (4.29, respectively. Ina) the 1q

and positive displacements are marked by sigh® and +,
respectively.

and 2y IC phases appear &=F; and the 2| phase has lower
energy in the rang&<F;. In (b) the 2q IC phase appears &

If S=0 then the energy of thecgcommensurate phase lower thanF; and there is a range where thg IC phase has lower
Eq. (4.24 is twice higher than that of theqlcommensurate energy.
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In Fig. 7 one period of the @ IC phase obtained by the
relaxation of the structure Eq4.25 at F=F;—10 % is
shown. The meaning of the sigRs -, @, +, + is the same
as in Fig. 5. As may be seen from Fig. 7, thg € phase is
the rectangular net of domain walls which separate the do-
mains of the 2 commensurate phase shown in Fi¢h)6

In order to study the §— 2q transition let us suppose that
there exists a small deviation from the condition E§14),
namely,P,=P, P,=P—g, wheree is small and, for defi-
niteness, positive. Physically,is a small uniaxial stress ap-
plied in addition to the hydrostatic pressu?e The presence
of such a deviation breaks down the fourfold symmetry of
the dispersion surface and softening first occurs at the point
(10/41, Q. This softening leads to thegllC phase forma-
tion. In the vicinity of transition point thed IC phase can be
presented as

10
uo=Q cos( p — ) . (4.26)

41

Further decreasing df causes the softening at the point
(0, 10/41 and a transition to a@ IC phase happens.

In Fig. 8 theF dependence of the energy of thg &qui-
librium IC phase(solid line) is schematically compared to
that for the 2y equilibrium IC phasgdashed lingat (a)
=0 and(b) £>0. In (a) the 1g and 2y IC phases appear at
F=F,; and the 2 phase has lower energy. (b) the 2q IC
phase appears &t lower thanF; and there is a range where
the 1g IC phase has lower energy.

The kinetics of the §j— 2q transformation is shown in
Fig. 9 for e=3%x10° F=F;—10 3. In Fig. 9a) the
slightly perturbed & unstable IC phase obtained by the re-
laxation of the structure Ed4.26) is presented. ThedLIC
phase appears as a set of domains of theedmmensurate
phase, shown in Fig.(6), separated by the vertical domain
walls. In Fig. 9b) an intermediate stage of the structure
transformation is shown. In Fig.(® the globally stable g
IC phase is shown as the final result of the relaxation. Struc-
ture inside the square in Fig(d is the 21 commensurate
phase, shown in Fig.(B). Note, that due to the fact that
P,# Py by € the structure in Fig. @) has no fourfold sym-
metry and does not coincide with the 2C phase shown in
Fig. 7.

In the example just described the symmetry of the disper-
sion surface was changed by the violation of the condition
Eq. (4.14. Similar results can be also obtained by assuming
Fy=F—e&, F,=F instead of Eq(4.15.

V. CONCLUSION

The one-dimensional EHM model was generalized to the
two-dimensional one. The anharmonic part of the Hamil-
tonian was chosen in a way to support bothdnd 2 stable
modulated phases. The soft mode can have an arbitrary wave
vector (k,,ky), Which has not been shown by the model of
ParlinskiZ?

The two mechanisms of theqt-2qg phase transition
were discussed. At the sinusoidal regime of the IC phase the
influence of the anharmonic terms is small but it increases in

inside the square ifc) is the 21 commensurate phase, shown in e gomain-wall regime. If in the sinusoidal regime thg 1

Fig. 5b).

(2q) IC phase is globally stable but in the domain-wall re-
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gime the 2 (1q) IC phase becomes globally stable, then the If the phase transition proceeds by the second mechanism
phase transition between them can happen. This is the firthen the phase sequence can be only as follows: normal
mechanism. phase —1q phase —2q phase. In the case of the first
In a particular case of the model the dispersion surfacenechanism the 4 and 21 phases in this sequence may
has such a symmetry that softening takes place at the twchange places.
points of the Brillouin zondx,, 0), (0, x,) simultaneously.
If this dispersion surface is slightly perturbed by some reason
then the softening occurs first at one of the two points with
the 1q IC phase formation and subsequently at the second The authors are grateful to K. Parlinski for enlightening
point with the possibility of the —2q phase transition. discussions and suggestions, T. A. Aslanyan for fruitful dis-
This is the second mechanism. The dispersion surface can lsessions, and A. A. Vasiliev for the critical reading of the
perturbed by application of the small uniaxial stress in addi-manuscript. S.V.D. wishes to thank the Ministry of Educa-
tion to the hydrostatic pressui® and/or by the anisotropy tion, Science, Sports, and Culture of Japan for their financial
with a small departure from the conditidh,=F, . support.
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