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Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles

J. Hartford, B. von Sydow, G. Wahnstro¨m, and B. I. Lundqvist
Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 18 December 1997; revised manuscript received 11 March 1998!

We report generalized stacking fault~GSF! curves along the@121# and @110# directions for Pd and Al,
calculated from first principles. The GSF curves are applied in the classic PN model to calculate Peierls
barriers and stresses for the Shockley partials and the unsplit edge dislocations in Pd and Al. The obtained
stresses using relaxed GSF curves agree well with experiments. The numerical results are also compared with
a recently derived analytical expression for the Peierls stress. The GSF curves have been calculated with a
pseudopotential implementation of density functional theory. The accuracy of the method have been tested by
calculating values for various stacking fault energies of Al, Ni, Cu, Ag, and Pd which favorably compare with
other theoretical and experimental values.@S0163-1829~98!02229-2#
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I. INTRODUCTION

Mechanical properties of materials depend on phenom
in a hierarchical structure from atomic up to a macrosco
length scale.1 Today many atomic-scale phenomena are
cessible for study with electron-structure theory. Similar
the continuum treatment of solids accounts successfully
macroscopic phenomena. However, there is gap in betw
which is necessary to bridge in order to theoretically mo
new materials.

On the microscale dislocations are recognized as key c
cepts for the understanding of mechanical properties of c
talline solids. The Peierls-Nabarro~PN! model provides a
conceptual framework for dislocation structure a
energetics,2–4 but a quantitative agreement with experimen
has been lacking and the model has not been thought u
as a predictive tool.4 The model is essentially a continuu
treatment, but the dislocation core, the region of inela
displacement, is given an approximate atomistic descript
The forces in the core, where the atomic-scale discrete
really counts, are currently approximated with the gene
ized stacking fault~GSF! surface.5,6 The GSF surface is the
interplanar potential energy for sliding one half of a crys
over the other half. Such a potential may nowadays be
culated accurately from first principles. This improved inp
gives a better ground for analysis and the PN model
lately received increased attention.7–9

The possibility of accurate input is provided by th
density-functional theory~DFT!.10–12In this theory the com-
plex many-electron problem is replaced by a simpler o
where a functional of the electron density is minimize
Methodological advancement of DFT together with the
creasing performance of computers and numerical meth
have made it realistic to assess the present types of ques
from first principles.

We report DFT results for both unrelaxed and relax
GSF curves of Pd and Al along the@121# and @110# crystal
directions. The GSF curves are applied in the PN mode
Shockley partials and edge dislocations and we discuss
various relaxations that can be used for the GSF curves.
location profiles are calculated, as well as barriers a
stresses for dislocation motion. The results for Peie
PRB 580163-1829/98/58~5!/2487~10!/$15.00
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stresses compare well with experimental values. We a
present results for two dissociated partial dislocations. T
partials are found to be strongly elastically coupled in th
motion and the effect of the interactions on the Peierls bar
is discussed. The applicability of a recent analytical expr
sion for the Peierls stress derived by Joo´s and Duesbery8 is
also examined.

We choose to study fcc metals for two reasons~i! the
experimentally observed dislocations have planar cores
should therefore be favorable cases for the PN model and~ii !
good interatomic potentials are available for further atomis
studies.18 The mechanical strength of close-packed metal
not determined by the intrinsic resistance to dislocation m
tion but depends on extrinsic obstacles, such as solute a
and precipitates, which block the motion of the dislocatio
In stronger covalent, ionic, and intermetallic crystals t
plastic properties are directly dependent on nucleation
mobility of dislocations. The intrinsic mobility is also a
important variable for creep behavior.13

The GSF surface plays an important role in propos
models for the brittle-ductile transition14–17and they can also
be used for calibration of model potentials for large-sc
simulations18 and as input to quasicontinuum models.19

In the next section we asses the accuracy of the pre
DFT method in this type of application by calculating valu
for stacking fault energy~SFE! of the Al, Ni, Cu, Pd, and Ag
metals. Stacking faults are local energy minima on the G
surface. In contrast to the rest of the GSF surface, the e
gies of these stable configurations can be experiment
measured. The GSF results for Pd and Al are then give
Sec. III and followed by a presentation of the PN model
Sec. IV. The PN model with the GSF data as input is appl
to the unsplit edge dislocations, the Shockley partials,
the superposed Shokley partials in Pd and Al in Sec.
Finally, the obtained dislocation energetics is discussed
Sec. VI.

II. CALCULATION OF STACKING FAULT ENERGIES
FROM FIRST PRINCIPLES

Total-energy calculations within DFT using a pseudop
tential approximation to replace the core electrons an
2487 © 1998 The American Physical Society
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plane-wave basis for the valence electrons has becom
standard model for solids.20–23 As SFE’s are of the sam
order as thea priori accuracy of the pseudopotential metho
it is essential to test the method. For that purpose we h
calculated SFE’s for some fcc metals, which are compa
with experiments and previous calculations. The SFE’s h
been calculated in two ways. First with the axial ne
nearest-neighbor Ising~ANNNI ! model24,25 and secondly
with a six atomic-layers thick slab calculation.

All supercell energies have been computed with nor
conserving pseudopotentials26,27 together with the local-
density approximation~LDA ! for the exchange and correla
tion energy of the electrons.11,28 We refer the reader to Refs
21–23 for further details of the method and give here o
some specifications. The energy integration over the B
louin zone has been made with a rectangulark-point grid
according to the Monkhorst-Pack scheme.29 This sampling is
crucial since energies of different supercells and hence
ferent Brillouin zones are compared. The fictitious tempe
ture for broadening of the electron states was set to 0.25
for Al and 0.1 eV for the rest of the metals.

A. ANNNI Calculations of SFE

In the ANNNI model a solid is built by atomic plane
with a prescribed stacking sequence and the total energ
the solid is expressed as a sum of coupling energies betw
the individual planes. The energy sum is truncated at n
nearest-neighboring planes and the needed coupling
stants can be calculated from small supercells.

If each planei is given a ‘‘spin variable’’s i with sign
depending on the stacking of the (i 11)th plane, the total
energy may be written as

E5J02J1(
i

s is i 112J2(
i

s is i 122J3(
i

s is i 13

2 . . . , ~1!

wheres i51 if the stacking of the (i 11)th planes follow the
. . . ABC . . . stacking ands i521 if they follow the
. . . CBA . . . stacking. The coupling constants are given
the following energy differences:

J15
1

4
E@AB#2

1

6
E@ABC#,

J25
1

8
E@ABCB#2

1

6
E@ABC#2

1

2
J1 ,

~2!

J35
1

2 S 1

6
E@ABCACB#2

1

3
E@ABC#2

2

3
J12

4

3
J2D ,

A

where for exampleE@AB#, represents the energy of a pe
odic supercell with . . .ABAB . . . stacking. When only
next-nearest planes are consideredJ3 vanishes and the
ANNNI model is obtained. To test the convergence of t
expansion in Eq.~1! we have calculatedJ3 for Al and Pd. Its
magnitude is found to be smaller than 0.3 meV, which
about a factor 5 smaller thanJ2 , which in turn is an order of
a
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magnitude smaller thanJ1 . Consequently, at least for Pd an
Al, J3 can be neglected. The size ofJ3 is also comparable to
the computational accuracy.

In the ANNNI model the energies of intrinsic~ISF!, ex-
trinsic ~ESF!, and twin boundary~TWB! stacking fault se-
quences are given by

g ISF54~J11J2!/A,

gESF5~4J118J2!/A, ~3!

gTWB5~2J114J2!/A,

whereA5A(3)a0
2/4 is the area per interface atom. Fora0 we

use the theoretical value of the equilibrium lattice constan
The convergence of SFE’s with respect to plane-wave

ergy cutoff is illustrated in Fig. 1. The energies conver
well for all metals, although Cu and Ni require high cutoff
In contrast, the behavior of the different metals is more sim
lar regardingk-point convergence, as seen in Fig. 2, whi
shows ISF energies calculated with increasingly den
k-point sampling. The grids are made denser in all directio
Previous calculations17,22 have used a sampling with ver
high k-point density in the reciprocal direction of@111#. We
find that convergence is not achieved until the sampling d
sity is increased in all directions.

The ANNNI results are presented in Table I and co
pared with experimental values.4 The calculated data ar
quite close to the experiments, keeping in mind that the
perimental situation is complicated and the uncertainties
the quoted values are quite large, especially for the lar
SFE’s.

ANNNI results for Al have been reported earlier and w
have reproduced the result by Hammer and co-worker22

FIG. 1. The figure shows convergence of intrinsic stacking fa
energy~ISF! with respect to plane-wave cutoff energy. The axes
normalized to the finally used energy cutoff~given in the legend of
Fig. 2! and ISF energies at corresponding cutoffs. Thek-point sam-
plings used in the test calculations are given in respective lege
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PRB 58 2489PEIERLS BARRIERS AND STRESSES FOR EDGE . . .
gISF566 meV/atom5156 mJ/m2, within 1 mJ/m2 using their
energy cutoff andk-point grid, but the present pseudopote
tial. Our ISF results for Cu and Ag also agree quite well w
those of Schweizer and co-workers, who obtained 61
24 mJ/m2 for Cu and Ag, respectively. They used a pseud
potential method with a mixed basis of both plane waves
localized functions.31

B. Slab calculations of ISF

The ANNNI model assumes the fault interactions to
short ranged. To estimate the errors due to neglect ofJ3 and
higher-order terms in Eq.~1! we have calculated ISF ene
gies with a six atomic-layers thick slab calculation. A
ISF amounts to sliding one half of the crystal a distan
a0 /A6 in the @121# direction. This may be accomplished b
tilting the @111# supercell vector. With this procedure th
fault-fault distance becomes six layers and the ISF is

FIG. 2. The figure shows convergence of intrinsic stacking fa
energy~ISF! with respect tok-point sampling. The grids range from
63633, 83834, . . . , to 20320310, except for Pd which star
at 1231238 and ends at 2532538. The axis are normalized to th
final sampling and ISF energies. The energy cutoffs are give
respective legend.

TABLE I. Stacking fault energies~in mJ/m2! calculated with the
ANNNI model for selected fcc metals. Three types of SFE’s
given: intrinsic ~ISF!, extrinsic ~ESF!, and twin boundary~TWB!
stacking fault. The energies are compared with experimental va
and for the ISF also with the a six-atomic-layers thick slab.

g ISF

g ISF

slab
g ISF

expt. gESF gTWB

gTWB

expt.

Ag 29 21 16 29 14 8
Al 161 153 166 147 73 75
Cu 53 51 45 54 28 24
Ni 185 182 125 175 87 43
Pd 192 186 180 178 89
-

d
-
d

e

e

energy difference between the untilted and tilted superce
The calculations are made withk-point grids of size 20
32034 for Cu and 1631634 for the rest of the metals an
the same plane-wave energy cutoffs as in Sec. II A, exc
for Al where 15 Ry have been used. This assures a con
gence in energy differences at least as good as for
ANNNI energies.

Our values ofg ISF for the six atomic layer thick slabs ar
compared to the ANNNI results in Table I. The differenc
for Ni, Pd, and Cu are within the limits by whichJ1 andJ2
are determined. The relative success of the ANNNI mo
confirms that SF’s have a short-ranged influence on the e
tron structure and that the SFE’s are dominated by the st
tural fcc-hcp (J1) energy difference.30 Only for Ag is the
ANNNI model relatively less accurate, probably becaus
large part of the SF is due to the long-ranged free-elect
like bonds.31,32

Stacking faults have also been calculated with all-elect
Green-functions techniques.30,33 To their advantage, the
implementations do not need periodic supercells and in p
tice, energies for infinite separation of faults may be cal
lated. The disadvantage is the use of a shape-restricted
tron potential, the atomic-sphere approximation~ASA!. The
ASA treats the interstitial regions between the atoms, imp
tant for solids with a relatively high charge density in th
region, less well. Due to the ASA the errors are significa
for Pd and even larger for Al and Ag.30

To summarize, our test shows that, together with the co
parison with previous calculations and with experimen
pseudopotential calculations of transition metal SFE’s g
results with high and sufficient accuracy.

III. GENERALIZED STACKING FAULTS
FOR PD AND AL

Next we consider the unrelaxed and relaxed GSF s
faces,gGSF(f), for Pd and Al on the~111! glide plane. The
generalized stacking fault vectorf, is the displacement of the
upper half-crystal relative to the one below. We have cal
latedgGSF(f) along two directions. Figures 3 and 4 show t
energetics for sliding along the@121# Shockley partial direc-
tion, while Figs. 5 and 6 show the corresponding curv
along the@110# edge direction. All fault energies have bee
computed in the same manner as the slabs in Sec. II B.
full slide along@121# amounts to the ISF given in Table I an
the ANNNI ISF energies are shown for comparison in t
corresponding figures.

The dependence of the fault-fault interaction on super
size has been tested by computing the@121# curve with nine
layers. The deviations are smaller than 3 mJ/m2. The curves
shown for@110# are mirrored aroundf 50.5, with f in units
of a0 /&, since they are periodic. The periodicity has be
checked by calculatinggGSF for f 51. The errors for Pd and
Al are less than 1 and 3 mJ/m2, respectively. Note that ou
@121# curves for Al differ from those of Kaxiras and
Duesbery,17 a fact that may be explained by their use of
primitive supercell for the bulk reference, which give
slowerk-point convergence.

Relaxation perpendicular to the~111! plane lowers ener-
gies considerably and changes the shape of the GSF cu
The relaxations were performed by first optimizing atom
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2490 PRB 58HARTFORD, VON SYDOW, WAHNSTRO¨ M, AND LUNDQVIST
FIG. 3. Generalized stacking fault curve for Pd sliding in t
@121# direction on the~111! plane. Figure 7 shows the correspon
ing Shockley partial Burgers vector for the slide. Relaxations
only allowed perpendicular to the~111! plane. Full relaxation in-
cludes optimization of both supercell volume and atomic positio
while atomic relaxation only includes relaxation of the latter. T
full slide is the intrinsic stacking fault~ISF! configuration and the
six atomic-layers slab curves are compared with the ANNNI va
for the ISF given in Table I.

FIG. 4. Same as in Fig. 3, but for Al.
coordinates following the Hellman-Feynman forces~atom
relaxation! and secondly by a combined optimization of s
percell volume and atomic coordinates~full relaxation!. The
fully relaxed ISF for Al is 143 mJ/m2 and for Pd it is
176 mJ/m2. In the@110# direction the optimal volume expan
sion is quite large, about 2% atf 50.5, but the lowering in

e

,

e

FIG. 5. Generalized stacking fault curve for Pd sliding in t
@110# direction on the~111! plane. The slide correspond to th
Burgers vector of the edge dislocation shown in Fig. 7. The ca
lations have been performed in the same manner as for the@121#
Shockley partials.

FIG. 6. Same as in Fig. 5, but for Al.
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PRB 58 2491PEIERLS BARRIERS AND STRESSES FOR EDGE . . .
energy is small compared to only atom relaxation. Such la
changes in volume would require modification of the dis
cation model to be considered in Sec. V.9 Therefore, we have
only calculated atom relaxed curves in that direction.

IV. PEIERLS-NABARRO MODEL

The classic Peierls-Nabarro~PN! model for planar dislo-
cations provides a continuum solution for the disregistry
the dislocation from which a misfit energy can be compu
and thus also energy barriers and stresses for dislocation
tion. In the PN model, a dislocation is introduced into
lattice with the assumption that the dislocation core, the
gion of inelastic displacement, is spread only along the g
plane. We may construct such a dislocation by separatin
solid into two halves, inserting the additional lattice plan
of the dislocation in the upper half, and then rejoining t
two halves. The dislocation generates stresses at
interface/glide plane which in the PN model are calcula
according to elasticity theory. The elastic stresses are
stored by atomic forces acting on either side of the gl
plane due to the misfit of atomic planes. The atomic fo
may be approximated by the appropriate GSF curve, as o
nally done by Christian and Vitek.6 The minimum energy
distribution of the dislocation occurs when the elastic a
atomic forces balance at each point in the glide plane.

Consider the geometry in Fig. 7. The dislocation line
along thez direction with Burgers vectorb5bb̂5b cosuẑ

1b sinux̂. The elastic stress generated in the glide planey
50) at a distancex from the dislocation line in the direction
of b̂ is given by,4

syb~x!5
Kb

2p
b

1

x
, ~4!

whereKb is an material-dependent elastic constant. For
isotropic medium,Kb5m@(12n)21 sin2 u1cos2 u, with m
being the the shear modulus andn Poisson’s ratio. Both Pd
and Al are, however, anisotropic and one has to resort to
elastic equations appropriate for an anisotropic medium.
have followed the procedure outlined in Refs. 4,34. The
quired input parameters,c11, c12, andc44, are taken from
experimental data35 and the obtained elastic constantsKb for

FIG. 7. Geometry of edge dislocations on the fcc~111! plane.
To the left, two dissociated Shockley partials (bp) separated by a
stacking ribbon region of widthdsplit . The Burgers vector (bp

5a0/61/2) of the partial is oriented in thê121& direction. The un-
split edge dislocation, to the right, has its vector (be5a0/21/2) in the

@ 1̄10# direction. The interplanar spacing in the direction of disloc
tion sliding (x) is a85a0 /(23/2).
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both a Shockley partial withb5a0 /A6(1/2,0,2)/2) and a
edge dislocation withb5a0 /&(1,0,0) are given in Table II.
The Burgers vectors are given in the Cartesian coordinate
Fig. 7.

The restoring atomic force per unit area is approxima
by the GSF surface,F(f)52¹gGSF(f). Accordingly, in the
b̂ direction we write

Fb„f b~x!…52
]gGSF„f b~x!…

] f b
, ~5!

where f b(x) denotes the disregistry of the two halves of t
crystal in directionb̂ as a function of the distancex in the
glide direction. The misfit density of the dislocation is r
lated to f b(x) through

rb~x!5
d

dx
f b~x!. ~6!

The PN integrodifferential equation is obtained by balanc
the elastic stresses caused by the dislocation with the re
ing atomic forces:

Kb

2p E
2`

`

rb~x8!
1

x2x8
dx85Fb„f b~x!…. ~7!

To find a misfit energy of the dislocation as a function
position on thex axis, let us sayu, the lattice discretenes
must be reintroduced. This is obtained in a natural way
summing up the misfit energy only at the positions of t
underlying atomic planes4,38

W~u!5 (
m52`

1`

a8gGSF@ f b~ma82u!#, ~8!

wherea8 is the interplanar distance along the sliding dire
tion x. The inelastic part of the energy cost to create a d
location is the minimum of the misfit energy,Wmisfit
5min W(u). The stress to overcome the barrier in the mis
energy is

s~u!5
1

b sin u

dW~u!

du
, ~9!

whereb sinu is the edge part of the Burgers vector~see the
Peach-Kohler formula4!. The Peierls stress (sP) of a dislo-
cation is the maximum ofs(u). The corresponding energ
barrier (WP) is the amplitude ofW(u).

-

TABLE II. Anisotropic elastic constants~in meV/Å3! for the
stress field of the edge and Shockley partial dislocations in Pd
Al.

Pd
edge

Pd
partial

Al
edge

Al
partial

Kb 486.1 433.0 249.3 226.6
Ksplit 296.2 147.3
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TABLE III. Inelastic misfit energies (Wmisfit), Peierls barriers (WP), and stresses (sP) for a single
Shockley partial and an edge dislocation in Pd. The values are computed from the numerical solution
PN model, Eq.~7!. The widths~j! of the calculated dislocation profiles is also presented. The Peierls str
of the numerical solutions are compared with results obtained from the analytical expression in Eq~11!,
using the maximum restoring forces (tmax) from the GSF curves. The isotropic shear modulus~m! for Pd is
328 meV/Å3.

j Wmisfit WP sP tmax x5
Kbb

4ptmax
sP(x)

(a8) ~meV/Å! ~meV/Å! (1025m) (1022m) (a8) (1025m)

@110# unrel 1.10 275 1.1 280 21.8 1.08 330
Atom rel 1.84 346 0.0013 0.33 14.3 1.65 9.2

@121# unrel 1.30 0.086 42 9.82 1.24 74
Full rel 1.40 0.014 7.0 8.41 1.44 21
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A. Analytical solution of PN model

For a sinusoidal form of the restoring force per unit ar
Fb( f )5t sin(2pf/b), it is possible to solve the PN equatio
analytically.36 The solution can be written as

f b~x!5
b

p
arctanS x

j D1
b

2
, ~10!

wherej5Kbb/(4pt) is the half width at half maximum o
the misfit density of the dislocation. Originally the magn
tude of the restoring forcet was deduced from elasticit
theory. A more natural definition is, however, to take t
maximum slope of the GSF curve,t5tmax[maxu]g/]fbu.

8,37

As seen when comparing the present GSF curve for Pd
Al with that of Si in Ref. 38, such a definition is able t
capture some of the large differences in chemical bond
which is not displayed by the elastic constants.

An analytical solution fors(u) with a sinusoidal restor-
ing force was given recently by Joo´s and Duesbery.8 For the
case of not too narrow dislocations, approximatelyj/a8
.0.5, they obtained the Peierls stress,

sP~j!5
Kbb

a8
expS 2

2pj

a8 D , ~11!

where j5Kbb/(4pt). With t5tmax for Si and Cu in the
new expression gives Peierls stresses of correct orde
magnitude.8 The original derivation for the Peierls stress w
formally only valid for very wide dislocations.2,3 In addition,
it had an unphysical summation forW(u) and its applicabil-
ity has been questioned.4,38 The work of Joo´s and Duesbery
have therefore restored credibility to the PN model and to
analytical expression for the Peierls stress in Eq.~11!.

B. Numerical solution of PN model

When solving the PN equation one can make use of
analytical expression in Eq.~10!.38–40We use a recent ansa
proposed by Gan and Jang,41

f b~x!5
b

p (
i

a iFarctanS x2xi

cij i
D

1~12ci !
j i~x2xi !

x21~cij i !
2G1

b

2
. ~12!
,

nd

,

of

e

e

The normalization of f b , *2`
1`rb(x)dx5b, requires that

( ia i51. It is customary to restricta i to non-negative values
in order to allow the ansatz~12! to be interpreted as a sum o
partial dislocation. This interpretation is not called for he
and to obtain good solutions for the@121# cases, which are
asymmetric inFb( f b), negativea i ’s are allowed. For the
same reason we chose two sets ofj5Kbb/(4pt) using
maximum positive@t5max(]g/]fb)# and negative restoring
force @t5umin(]g/]fb)u#. Inserting the ansatz in both sides o
Eq. ~7! reduces the integrodifferential equation to a set
nonlinear equations in the parametersa i , xi , andci which
are solved in a least-squares sense.

V. EDGE DISLOCATIONS IN PD AND AL

The PN equation@Eq. ~7!# is solved numerically using the
above ansatz for the disregistry. We use unrelaxed and
laxed GSF curves and consider both the unsplit edge an
single partial. Dislocation widths, misfit energies, Peie
barriers, and stresses are calculated from the numerically
tained disregistries as described in the previous section.

A. Unsplit edge

Although the unsplit edge is not observed experimenta
in Pd or Al it is interesting to compare the outcome of the P
model for that dislocation with the corresponding results
the ordinary partials. The symmetric GSF curve also allo
for a more fair comparison of the analytical expression in E
~11! with the the full solution.

Tables III and IV gives the PN model results for the ed
dislocations. The relaxed GSF curves are lowered and
tened and restoring forces are thus reduced and the disl
tions become broader. The lowering of the GSF curves
carried over toW(u) and together with the broadened di
registry the Peierls barriers and stresses become m
smaller. This illustrates the sensitivity of the barrier on t
maximum restoring forcetmax, expressed by the exponentia
dependence in Eq.~11!. The misfit energy for the relaxed P
edge is higher than for the unrelaxed. This may suggest
the relaxations of the GSF surface are incompatible wh
used for individual lattice planes in the PN model. That
the separate relaxation of the GSF surface and solution of
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TABLE IV. Same as Table III, but for Al. The isotropic shear modulus~m! for Al is 165 meV/Å3.

j
(a8)

Wmisfit

~meV/Å!
WP

~meV/Å!
sP

(1025m)
tmax

(1022m)

j5
Kbb

4ptmax

(a8)
sP(j)

(1025m)

@110# unrel 0.87 163 2.6 1250 27.3 0.88 1200
Atom rel 1.51 159 0.015 7.1 17.9 1.34 65

@121# unrel 1.17 0.12 110 13.0 0.97 410
Full rel 1.49 0.0090 8.5 10.9 1.16 130
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PN equation does not yield the variational energy mini
solution, but instead solutions with too low barriers.

As seen in Figs. 5 and 6 the unrelaxed GSF curves
close to sinusoidal. Hence, the numerical solution is clos
the analytical solution in Eq.~11!. The dislocation widths~j!
and Peierls barriers are compared in Tables III and IV. T
deviation from the sinusoidal form due to relaxation redu
the good agreement.

B. Shockley partial

Experimentally observed edge dislocations in fcc me
split and form an ISF ribbon bounded by two Shockley p
tials. For Al the splitting distance~dsplit in Fig. 7! is small
and the individual partials are overlapping. When the
equation is solved for a single partial the summation inW(u)
includes an arbitrary long ISF. This gives a constant shif
the misfit energy that vanishes fors(u). Results for the dis-
location energetics are presented in Tables III and IV. T
effect of relaxation is smaller than for the edge dislocatio
but still large.

Tables III and IV also presents results for the analyti
expression usingj5Kbb/(4ptmax). The discrepancy be
tween the analytical and numerical solution follows from t
asymmetry ingGSF, which increases with relaxation, esp
cially for Al.

C. Superposed Shockley partials

To study a complete split edge the solutions for the sin
partials are superposed. This may be warranted for Pd w
the splitting of the partials is quite large, that is, the par
cores should not overlap too much. For Al this is more qu
tionable, but the procedure should at least give a picture
the dislocation structure and an estimate for the barriers

The equilibrium splitting of two partials is a balance b
tween the gain in elastic energy and the cost of ISF ene
Elasticity theory gives the equilibrium separation4

dsplit5
b2Ksplit

2pg ISF
, ~13!

where b is the partial Burgers vector. The elastic consta
Ksplit is composed of a repulsive edge and an attractive sc
part. It is obtained from the anisotropic elastic equations
the same manner asKb and given in Table II.

Depending on the elastic coupling the two partials m
move separately or together and the misfit energy in Eq.~8!
is appropriately written as
a

re
to

e
s

ls
-

n

e
,

l

e
re
l
-

of

y.

t
w
n

y

W~ul ,ur!5 (
m52`

1`

a8gGSF@ f l~ma82ul!1 f r~ma82ur!#,

~14!

whereul and ur is the position of the left and right partia
respectively. If the coupling is strong it is possible to have
situation where one partial moves up on the energy barr
while the other moves downwards, hence lowering the to
barrier.44 Whether one partial is on top of the barrier or bo
are in an energy minimum position will depend on the sp
ting distance used for the superposition. As it is not poss
to find the exact equilibrium distribution on the underlyin
lattice nor the exact elastic interaction within the present
model we chosedsplit to be an integer timesa8 close to the
approximate equilibrium distance given by Eq.~13!. This
gives a distribution of planes inW for the superposed partial
similar to the single ones. The splitting distance for Pd is 8a8
and 5a8 for Al. The two partial cores in Pd are fairly sepa
rated~Fig. 8!, but are overlapping in Al~Fig. 10!.

Figures 9 and 11 show the relaxed misfit energ
W(ul ,ur), for Pd and Al. In both metals the minimum en
ergy barrier is along a very narrow valley on the diagon
(ul5ur). Thus, the partials are strongly coupled and mo
simultaneously. The misfit barriers for the unrelaxed dislo
tions are larger but still close to the diagonal. Values
Peierls energies and stresses for both unrelaxed and rel
superposed partials are given in Table V. Even though
Peierls barrier is lower for the relaxed edge, the misfit en
gies are much lower for the split dislocation, which ma

FIG. 8. Disregistry,f b(x), and dislocation density,rb(x), for
two superposed Shockley partials in Pd. The single partials
solutions for the relaxedgGSF curves. The separation between th
partials is chosen to be 8a8.
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them energetically favorable. Similar behavior is also o
served for ^110&$111% dislocations in Si.38 The obtained
Peierls stresses for the relaxed partials are close to ex
mental measurements, which report stresses for fcc meta
the order 1 – 531025m.42,43

VI. DISCUSSION AND CONCLUSIONS

A striking effect is the huge change in Peierls barrie
when thegGSF(f) is allowed to relax. A full atomistic simu-
lation would include more degrees of freedom and the ba
ers may therefore be further reduced. This implies that
PN stresses are too small, since the obtained stresse
already close to the experimental results. The low barr
may be a result of the separate relaxation of the GSF sur
and solution of the PN equation not yielding the variation
energy minima solution.

Recent work by Bulatov and Kaxiras9 includes a semidis-
crete and variational method for the relaxation of the G
surface when solving for the core structure and Peierls

FIG. 10. Same as in Fig. 8, but for Al. Here the separat
between the partials is chosen to be 5a8.

FIG. 9. Misfit energy for two superposed Shockley partials
Pd. The contour plot shows the misfit energy,W(ul ,ur), as a func-
tion of relative position on the glide plane of the left partial (ul) and
the right partial (ur). The 3D curve illustrates the energy barrier f
the minimum energy path. The innermost contour correspond
W51.531026 eV and the following are doubled in energy. Th
minimum energy path lies on the diagonal and its valley is v
narrow, which means that the partials are strongly elastic
coupled.
-

ri-
of

s

i-
e
are
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ce
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F
r-

rier. Their approach, when applied to the^110&$111% glide
screw in Si, gives a Peierls barrier two order of magnitud
lower than that obtained with an unrelaxed GSF curve us
the classic PN model. This Si glide-set dislocation is ve
narrow and the effects of the improved model likely to
smaller for the much wider dislocations in Pd and Al.@Joós
and Duesbery applied Eq.~11! to the wider shuffle set.#
However, including more degrees of freedom must red
the barriers compared to present unrelaxed results, but
necessarily below the fully relaxed barriers since they not
variationally obtained. The new approach also includes e
tic displacement perpendicular to the glide plane and the g
in misfit energy from the volume relaxation of the GSF cur
is reduced by the cost of elastic energy. From slab calc
tions for Pd and Al the reduction is estimated to be ab
50%. It seems plausible that the variational approach res
in barriers in between present unrelaxed and fully relax
solutions, which would form realistic upper bonds on t
Peierls barriers.

We believe the present implementation of DFT to gi
values of high and sufficient accuracy. Atomistic simulatio
also show that the superposition of single partials, and o
allowing a disregistry along one direction and not on t
whole of the GSF surface, are justified simplifications.18 An-
other concern is the use of linear theory of elasticity to c
culate the stresses in the left-hand side of the PN equa

FIG. 11. Same as in Fig. 9, but for Al. The innermost conto
corresponds toW5331026 eV and the following are doubled in
energy. Similar to Pd, the Al partials are also strongly elastica
coupled.

TABLE V. Inelastic misfit energies (Wmisfit), Peierls barriers
(WP), and stresses (sP) for two superposed Shockley partial
forming a stacking fault ribbon and a complete edge dislocat
~see Fig. 7!, in Pd and Al. The splitting distance (dsplit) of the
partials, or rather the approximate width of the ribbon, is chosen
be 8.0a8 for Pd and 5.0a8 for Al.

Wmisfit WP sP

~meV/Å! ~meV/Å! (1025m)

Pd unrel 209 0.094 27
Full rel 189 0.0099 3.4

Al unrel 113 0.13 67
Full rel 111 0.0070 3.3
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@Eq. ~7!# ~Ref. 45! and further atomistic simulations ar
needed in order to clarify the quality of the core structu
predicted by the PN model.18

Measurements of internal friction resonance, the so ca
Bordoni peak, in close-packed metals yields an ‘‘intern
stress’’ two order of magnitude greater than the Peierls st
obtained from yield stress data.46 The elastic coupling can
reduce the barriers as described in Sec. V C and have
suggested to be the reason for the observed difference
measured stresses.44 Even if present theoretical values ha
to be reconsidered with more appropriate account for
relaxation of the GSF curves the already low barriers for
single partials are not likely to increase by order of mag
tudes. The elastic coupling is evidently not the cause of
discrepancy in measured stresses. However, the coupling
make the total barrier sensitive to local values of elastic c
stants and ISF energies due to presence of vacancies
impurities, which could explain the broad spectra of me
sured Peierls stress of an individual metal.44 Bulatov’s and
Kaxiras’ improved PN model9 also addresses the neglect
changes in core structure during motion. It would be int
esting to study the sensitivity in Peierls stress due to ela
coupling with such a PN model.

As expected,tmax is playing a major role for the Peierl
stress. Hence, the analytical expression@Eq. ~11!# is able to
nd

.
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give present trends, but a single input parameter does
suffice quantitatively when the GSF curve deviate from
sinusoidal form. To judge the usefulness of the expressio
test against a larger set of data and a settlement abou
validity of the present PN model is necessary.

In summary, besides being an important conceptual t
the classic PN model also includes some quantitative ca
bilities. Presently the latter should be termed semiquant
tive as there is room for improvements even for the supp
edly favorable fcc metal case. A case which is suitable fo
thorough analysis of both the elastic and atomistic parts
the PN model and future efforts will focus on detailed co
parisons between the model and full atomistic simulation
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