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Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles
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We report generalized stacking fayleSP curves along th¢121] and[110] directions for Pd and Al,
calculated from first principles. The GSF curves are applied in the classic PN model to calculate Peierls
barriers and stresses for the Shockley partials and the unsplit edge dislocations in Pd and Al. The obtained
stresses using relaxed GSF curves agree well with experiments. The numerical results are also compared with
a recently derived analytical expression for the Peierls stress. The GSF curves have been calculated with a
pseudopotential implementation of density functional theory. The accuracy of the method have been tested by
calculating values for various stacking fault energies of Al, Ni, Cu, Ag, and Pd which favorably compare with
other theoretical and experimental valug30163-18288)02229-3

[. INTRODUCTION stresses compare well with experimental values. We also
present results for two dissociated partial dislocations. The
Mechanical properties of materials depend on phenomenpartials are found to be strongly elastically coupled in their
in a hierarchical structure from atomic up to a macroscopidnotion and the effect of the interactions on the Peierls barrier
|ength scalé. Today many atomic-scale phenomena are aciS discussed. The applicability of a repent analytical expres-
cessible for study with electron-structure theory. Similarly,Sion for the Peierls stress derived by Samd Duesbefyis
the continuum treatment of solids accounts successfully foRlso examined. _
macroscopic phenomena. However, there is gap in between, We choose to study fcc metals for two reasdhsthe
which is necessary to bridge in order to theoretically modeXperimentally observed dislocations have planar cores and
new materials. should therefore be favorable cases for the PN modeliand
On the microscale dislocations are recognized as key corgood interatomic potentials are available for further atomistic

cepts for the understanding of mechanical properties of crysstudies:® The mechanical strength of close-packed metals is
talline solids. The Peierls-Nabar@®N) model provides a ot determined by the intrinsic resistance to dislocation mo-

conceptual framework for dislocation structure andtion but depends on extrinsic obstacles, such as solute atoms
energetic$ but a quantitative agreement with experimentsand precipitates, which block the motion of the dislocations.
has been lacking and the model has not been thought useflil stronger covalent, ionic, and intermetallic crystals the
as a predictive todl. The model is essentially a continuum Plastic properties are directly dependent on nucleation and
treatment, but the dislocation core, the region of inelastignobility of dislocations. The intrinsic mobility is also an
displacement, is given an approximate atomistic descriptiorimportant variable for creep behavibt.

The forces in the core, where the atomic-scale discreteness The GSF surface plays an important role in proposed
rea”y counts, are Currenﬂy approximated with the generajfﬂOdElS for the brittle-ductile tranSitié _17and they can also
ized stacking faul{GSP surface®® The GSF surface is the be used for calibration of model potentials for large-scale
interplanar potential energy for sliding one half of a Crystals"‘”U'atiOnéB and as input to quasicontinuum modéls.

over the other half. Such a potential may nowadays be cal- In the next section we asses the accuracy of the present
culated accurately from first principles. This improved inputDFT method in this type of application by calculating values

gives a better ground for analysis and the PN model hafor stacking fault energySFE of the Al, Ni, Cu, Pd, and Ag
lately received increased attenti6i. metals. Stacking faults are local energy minima on the GSF

The possibility of accurate input is provided by the surface. In contrast to the rest of the GSF surface, the ener-
density-functional theoryDFT).1~*2In this theory the com- dies of these stable configurations can be experimentally
p|ex many_e|ectr0n prob|em is rep|aced by a Simp|er Onemeasured. The GSF results for Pd and Al are then glven. n
where a functional of the electron density is minimized.Sec. lll and followed by a presentation of the PN model in
Methodological advancement of DFT together with the in-Sec. IV. The PN model with the GSF data as input is applied
creasing performance of computers and numerical method® the unsplit edge dislocations, the Shockley partials, and
have made it realistic to assess the present types of questio¥® superposed Shokley partials in Pd and Al in Sec. V.
from first principles. Finally, the obtained dislocation energetics is discussed in

We report DFT results for both unrelaxed and relaxedSec. VI.

GSF curves of Pd and Al along th&21] and[110] crystal

directions. Thg GSF curves are appllled in the PN 'model 10 || CALCULATION OF STACKING FAULT ENERGIES
Shockley partials and edge dislocations and we discuss the FROM EIRST PRINCIPLES

various relaxations that can be used for the GSF curves. Dis-

location profiles are calculated, as well as barriers and Total-energy calculations within DFT using a pseudopo-
stresses for dislocation motion. The results for Peierldential approximation to replace the core electrons and a
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plane-wave basis for the valence electrons has become a
standard model for solid8-%® As SFE’s are of the same
order as the priori accuracy of the pseudopotential method,

it is essential to test the method. For that purpose we have
calculated SFE’s for some fcc metals, which are compared
with experiments and previous calculations. The SFE’s have
been calculated in two ways. First with the axial next-
nearest-neighbor IsingANNNI) modef*?® and secondly
with a six atomic-layers thick slab calculation.

All supercell energies have been computed with norm-
conserving pseudopotentidi$’ together with the local-
density approximatioriLDA) for the exchange and correla-
tion energy of the electrori$:?® We refer the reader to Refs.
21-23 for further details of the method and give here only
some specifications. The energy integration over the Bril-
louin zone has been made with a rectangWgroint grid
according to the Monkhorst-Pack schefA@his sampling is
crucial since energies of different supercells and hence dif-
ferent Brillouin zones are compared. The fictitious tempera- ‘ : : : :
ture for broadening of the electron states was set to 0.25 eV 08 10 12 14 16
for Al and 0.1 eV for the rest of the metals. Normalized cutoff energy

o—o Ag (10x10x5)
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FIG. 1. The figure shows convergence of intrinsic stacking fault
A. ANNNI Calculations of SFE energy(ISP) with respect to plane-wave cutoff energy. The axes are
In the ANNNI model a solid is built by atomic planes nprmalized to the fine_tlly used energy c_ut(xj;iven in the I(_egend of
with a prescribed stacking sequence and the total energy i9- 2 and ISF energies at corresponding cutoffs. Kioint sam-
the solid is expressed as a sum of coupling energies betweé)HngS used in the test calculations are given in respective legend.
the individual planes. The energy sum is truncated at next-
nearest-neighboring planes and the needed coupling co
stants can be calculated from small supercells.
If each planei is given a ‘“spin variable” o; with sign
depending on the stacking of thé+{1)th plane, the total
energy may be written as

nagnitude smaller thady, . Consequently, at least for Pd and
I, J3 can be neglected. The size ®f is also comparable to
the computational accuracy.

In the ANNNI model the energies of intrinsi¢SF), ex-
trinsic (ESP, and twin boundarTWB) stacking fault se-
guences are given by

E:JO_‘]ZLE_ O'iO'H.l_JZz (Tio-i+2_‘]32 Ti0+3 7ISFZ4(J1+J2)/A1
I I I
— (1) Yesr= (41 +8J,)/A, )
whereg;=1 if the stacking of thei(+ 1)th planes follow the Yrwe=(2J1+4J5)/A,

...ABC... stacking ando;=—1 if they follow the ) )
...CBA. .. stacking. The coupling constants are given bywhereA= (3)ag/4 is the area per interface atom. fegrwe
the following energy differences: use the theoretical value of the equilibrium lattice constants.

The convergence of SFE’s with respect to plane-wave en-
ergy cutoff is illustrated in Fig. 1. The energies converge
J1=7E[AB]- zE[ABC], well for all metals, although Cu and Ni require high cutoffs.
In contrast, the behavior of the different metals is more simi-
1 1 1 lar regardingk-point convergence, as seen in Fig. 2, which
J,=<E[ABCB]- ~E[ABC]- = J;, shows ISF energies calculated with increasingly denser
8 6 2 2) k-point sampling. The grids are made denser in all directions.
Previous calculatio$?? have used a sampling with very
high k-point density in the reciprocal direction pf11]. We
find that convergence is not achieved until the sampling den-
sity is increased in all directions.

The ANNNI results are presented in Table | and com-
where for exampléE[ AB], represents the energy of a peri- pared with experimental valuésThe calculated data are
odic supercell with ..ABAB... stacking. When only quite close to the experiments, keeping in mind that the ex-
next-nearest planes are considergg vanishes and the perimental situation is complicated and the uncertainties in
ANNNI model is obtained. To test the convergence of thethe quoted values are quite large, especially for the larger
expansion in Eq(l) we have calculated; for Al and Pd. Its  SFE'’s.
magnitude is found to be smaller than 0.3 meV, which is ANNNI results for Al have been reported earlier and we
about a factor 5 smaller thaly, which in turn is an order of have reproduced the result by Hammer and co-worKers,

o],

J —1 1E ABCAC 1E ABC 2J 4
37515 [ Bl 3 [ ] 3073
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energy difference between the untilted and tilted supercells.
16| | The calculations are made witk-point grids of size 20

o Ag (E*"“"=50 Ry) X20x 4 for Cu and 1& 16X 4 for the rest of the metals and
o—o Al (E*"*"=20 Ry) the same plane-wave energy cutoffs as in Sec. Il A, except

+—+Cu (E°:"‘:'=80 Ry) for Al where 15 Ry have been used. This assures a conver-
x— Ni (E**"=75 Ry)
=50 Ry)

—_
N
T

gence in energy differences at least as good as for the
ANNNI energies.

Our values ofy,ge for the six atomic layer thick slabs are
compared to the ANNNI results in Table I. The differences
for Ni, Pd, and Cu are within the limits by which, andJ,
are determined. The relative success of the ANNNI model
confirms that SF’s have a short-ranged influence on the elec-
tron structure and that the SFE’s are dominated by the struc-
tural fcc-hcp ;) energy differencé® Only for Ag is the
ANNNI model relatively less accurate, probably because a
large part of the SF is due to the long-ranged free-electron
like bonds®32
Stacking faults have also been calculated with all-electron

: : : : : Green-functions techniqué%3® To their advantage, the
0.0 Oﬁorm%ﬁzedogrid S(i)ise 1.0 implementqtions d_o _nqt need periodic supercells and in prac-
tice, energies for infinite separation of faults may be calcu-

FIG. 2. The figure shows convergence of intrinsic stacking faultlated. The disadvantage is the use of a shape-restricted elec-
energy(ISF) with respect tck-point sampling. The grids range from {ron potential, the atomic-sphere approximatié®A). The
6X6X3, 8X8X4, ..., to 20<20x 10, except for Pd which start ASA treats the interstitial regions between the atoms, impor-
at 12x 12x 8 and ends at 2825x 8. The axis are normalized to the tant for solids with a relatively high charge density in that
final sampling and ISF energies. The energy cutoffs are given i€gion, less well. Due to the ASA the errors are significant
respective legend. for Pd and even larger for Al and AY.

To summarize, our test shows that, together with the com-
71se=66 meV/atore156 mJd/n, within 1 mJ/nf using their  Parison with previous calculations and with experiments,
energy cutoff and-point grid, but the present pseudopoten- Pseudopotential calculations of transition metal SFE's give
tial. Our ISF results for Cu and Ag also agree quite well withesults with high and sufficient accuracy.
those of Schweizer and co-workers, who obtained 61 and
24 mJ/_n"r for Cu anq Ag, r_espectivgly. They used a pseudo- IIl. GENERALIZED STACKING FAULTS
potential method with a mixed basis of both plane waves and FOR PD AND AL
localized functions?

Pd (Ecmoff

-
\V]
T

Normalized ISF energy
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©
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Next we consider the unrelaxed and relaxed GSF sur-
B. Slab calculations of ISF faces,ygs(f), for Pd and Al on theg111) glide plane. The
) ) generalized stacking fault vectfris the displacement of the

The ANNNI model assumes the fault interactions to beypper half-crystal relative to the one below. We have calcu-
short ranged. To estimate the errors due to negleds@ind  |5ted y,c«(f) along two directions. Figures 3 and 4 show the
higher-order terms in Eq1) we have calculated ISF ener- anergetics for sliding along tHé.21] Shockley partial direc-
gies with a six atprmc-layers thick slab calculatlo.n. An tion, while Figs. 5 and 6 show the corresponding curves
ISF amounts to sliding one half of the crystal a distancey|ong the[110] edge direction. All fault energies have been
ao/1/6 in the[121] direction. This may be accomplished by computed in the same manner as the slabs in Sec. Il B. The
tilting the [111] supercell vector. With this procedure the fy| slide along[121] amounts to the ISF given in Table | and
fault-fault distance becomes six layers and the ISF is thene ANNNI ISE energies are shown for comparison in the

corresponding figures.

TABLE I. Stacking fault energiein m/nf) calculated with the The dependence of the fault-fault interaction on supercell
ANNNI model for selected fcc metals. Three types of SFE's aregjze has been tested by computing h21] curve with nine
given: intrinsic (ISF), extrinsic (ESP, and twin boundaryTWB)  |5vers. The deviations are smaller than 3 n#J/fhe curves
stacking fault. The energies are compared with experimental Value§hown for[110] are mirrored around=0.5, with f in units
and for the ISF also with the a six-atomic-layers thick slab. of a,/v2, since they are periodic. The periodicity has been
checked by calculatinggge for f=1. The errors for Pd and
Al are less than 1 and 3 mJ#mrespectively. Note that our
[121] curves for Al differ from those of Kaxiras and

YIsF YIsF YTwB
Yise  slab  expt.  yesr  Yrws expt.

Ag 29 21 16 29 14 8 Duesbery}’ a fact that may be explained by their use of a
Al 161 153 166 147 73 75 primitive supercell for the bulk reference, which give a
Cu 53 51 45 54 28 24 slowerk-point convergence.

Ni 185 182 125 175 87 43 Relaxation perpendicular to tH&11) plane lowers ener-

Pd 192 186 180 178 89 gies considerably and changes the shape of the GSF curves.

The relaxations were performed by first optimizing atomic
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FIG. 3. Generalized stacking fault curve for Pd sliding in the  FIG. 5. Generalized stacking fault curve for Pd sliding in the
[121] direction on thg(111) plane. Figure 7 shows the correspond- [110] direction on the(111) plane. The slide correspond to the
ing Shockley partial Burgers vector for the slide. Relaxations areBurgers vector of the edge dislocation shown in Fig. 7. The calcu-
only allowed perpendicular to thel11) plane. Full relaxation in- lations have been performed in the same manner as foflg
cludes optimization of both supercell volume and atomic positionsShockley partials.
while atomic relaxation only includes relaxation of the latter. The
full slide is the intrinsic stacking fauliSF) configuration and the ¢oordinates following the Hellman-Feynman forc@gom
six atomic-layers slab curves are compared with the ANNNI Va|UereIaxatior) and secondly by a combined optimization of su-
for the ISF given in Table I. percell volume and atomic coordinatéall relaxation. The

fully relaxed ISF for Al is 143 mJ/f and for Pd it is
176 mJ/m. In the[110] direction the optimal volume expan-
sion is quite large, about 2% &&0.5, but the lowering in
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o o
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5 5
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100 . L i

g 2%
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8 < Atom relaxation 3
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50 | + ANNNI 1 150 | < Atom relaxation J
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0 Il 1 1 1 Il 0 1 1 1 1
-02 00 02 04 06 08,10 12 00 02 0.4 0.6 08, 1.0
Slide along [121] (a/6 ) Slide along [110] (a,/2 ")

FIG. 4. Same as in Fig. 3, but for Al. FIG. 6. Same as in Fig. 5, but for Al.
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TABLE II. Anisotropic elastic constant§n meV/A3) for the

stress field of the edge and Shockley partial dislocations in Pd and
h b, | Oy 211] b )\[110]) x Al
Pd Pd Al Al
edge partial edge partial
Kp 486.1 433.0 249.3 226.6
K spii 296.2 147.3

FIG. 7. Geometry of edge dislocations on the {d¢d1) plane. . sy _
To the left, two dissociated Shockley partials,f separated by a both a Shockley partial with=a,/+6(1/2,0~v3/2) and a

stacking ribbon region of widthdg,;;. The Burgers vector b, edge dislocation W't}b:ao./‘fz(;o’o) are given in Tab_le .

=a,/67) of the partial is oriented in th&l21) direction. The un- 'II:'iZe surgers vectors are given in the Cartesian coordinates of
The restoring atomic force per unit area is approximated

by the GSF surface;(f) = —V ygsdf). Accordingly, in the

b direction we write

energy is small compared to only atom relaxation. Such large

changes in volume would require modification of the dislo- dvesdfp(X))

cation model to be considered in Sec? Vherefore, we have Fo(fo(x))=— oof, ®)

only calculated atom relaxed curves in that direction.

split edge dislocation, to the right, has its vectog= ay/2*?) in the

[TlO] direction. The interplanar spacing in the direction of disloca-
tion sliding (x) is a’' =aq/(2%?).

wheref,(x) denotes the disregistry of the two halves of the
IV. PEIERLS-NABARRO MODEL crystal in directionb as a function of the distancein the

The classic Peierls-Nabart®N) model for planar dislo- glide direction. The misfit density of the dislocation is re-
cations provides a continuum solution for the disregistry oflated tofy(x) through
the dislocation from which a misfit energy can be computed
and thus also energy barriers and stresses for dislocation mo-
tion. In the PN model, a dislocation is introduced into a
lattice with the assumption that the dislocation core, the re-
gion of inelastic displacement, is spread only along the glidelhe PN integrodifferential equation is obtained by balancing
plane. We may construct such a dislocation by separating #e€ elastic stresses caused by the dislocation with the restor-
solid into two halves, inserting the additional lattice planesing atomic forces:
of the dislocation in the upper half, and then rejoining the
two halves. The dislocation generates stresses at the K = ,
interface/glide plane which in the PN model are calculated > f oCPb(X )
according to elasticity theory. The elastic stresses are re-
Biane due 1o the misi of atomic plance. The atomic force. 10 find a misfit energy of the dislocation as a funcion of
may be approximated by the appropriate GSF curve, as origpos'tIon on_thex axis, let us sayd, t_he Ia_tt|ce discreteness
nally done by Christian and VitekThe minimum energy must pe remtroducgd: This is obtained in a na.tl.JraI way by
distribution of the dislocation occurs when the elastic and>- NG up the_ msﬂtéggergy only at the positions of the
atomic forces balance at each point in the glide plane. underlying atomic plan

Consider the geometry in Fig. 7. The dislocation line is oo

along thez direction with Burgers vectob=bb=b cos6z W= S ayesd fo(ma' —u)] ®)
+b sin 6x. The elastic stress generated in the glide plane ( m=—c
=0) at a distance from the dislocation line in the direction

of b is given by*

d
pp(X)= &fb(x)- (6)

—_— dx" =F(fp(x)). (7)

wherea’ is the interplanar distance along the sliding direc-
tion x. The inelastic part of the energy cost to create a dis-

K. 1 location is the minimum of the misfit energywsit
oo (X)= —2p= (4 =minW(u). The stress to overcome the barrier in the misfit
yb( ) 2 ’ .

m X energy is

whereK,, is an material-dependent elastic constant. For an

isotropic medium,K,=u[(1—v) ! sir? #+cos 6, with ()= 1 dWu)
being the the shear modulus andPoisson’s ratio. Both Pd 7 bsing du ’
and Al are, however, anisotropic and one has to resort to the

elastic equations appropriate for an anisotropic medium. Wahereb sin 6 is the edge part of the Burgers vectsee the
have followed the procedure outlined in Refs. 4,34. The rePeach-Kohler formuff. The Peierls stressof) of a dislo-
quired input parameterg,;, €1, andcy,, are taken from cation is the maximum oé(u). The corresponding energy
experimental dafd and the obtained elastic constaktgfor  barrier Wp) is the amplitude ofV/(u).

C)
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TABLE IIl. Inelastic misfit energies W,,isii), Peierls barriers Wp), and stressesofs) for a single
Shockley partial and an edge dislocation in Pd. The values are computed from the numerical solution of the
PN model, Eq(7). The widths(¢) of the calculated dislocation profiles is also presented. The Peierls stresses
of the numerical solutions are compared with results obtained from the analytical expression(Ii)Eq.
using the maximum restoring forces,(,,) from the GSF curves. The isotropic shear modyjusfor Pd is

328 meV/ A,
Kyb
& Winisfit Wp op Tmax X:4 ap(X)
TTmax
(@’)  (meVIA)  (meVIA)  (1075%u) (10 2u) (a") (107 5u)
[120] unrel 1.10 275 1.1 280 21.8 1.08 330
Atom rel 1.84 346 0.0013 0.33 14.3 1.65 9.2
[121] unrel 1.30 0.086 42 9.82 1.24 74
Full rel 1.40 0.014 7.0 8.41 1.44 21
A. Analytical solution of PN model The normalization off,, [*Zp,(x)dx=b, requires that

For a sinusoidal form of the restoring force per unit areaZi®i= 1. It is customary to restriat; to non-negative values

Fy(f )= 7 sin(2rfib), it is possible to solve the PN equation In order to allow the ansatd?) to be interpreted as a sum of
analytically®® The solution can be written as partial dislocation. This interpretation is not called for here

and to obtain good solutions for thi&21] cases, which are
b X asymmetric inFy(f,), negativee;’s are allowed. For the
fb(x):;arctarﬁg same reason we chose two sets &fK,b/(477) using
] ] . maximum positive] 7= max(@y/df,)] and negative restoring
where {=Kb/(4m7) is the half width at half maximum of  force[ 7= |min(gy/of,)[]. Inserting the ansatz in both sides of
the misfit density of the dislocation. Originally the magni- gq. (7) reduces the integrodifferential equation to a set of

tude of the restoring force—_ was dgduced from elasticity onlinear equations in the parameters x;, andc; which
theory. A more natural definition is, however, to take thegre solved in a least-squares sense.

maximum slope of the GSF curves ra=maxay/df,| 23’
As seen when comparing the present GSF curve for Pd and

b
+ > (10

Al with that of Si in Ref. 38, such a d_efinition_ is able to V. EDGE DISLOCATIONS IN PD AND AL
capture some of the large differences in chemical bonding,
which is not displayed by the elastic constants. The PN equatiofEq. (7)] is solved numerically using the

An analytical solution foro(u) with a sinusoidal restor- above ansatz for the disregistry. We use unrelaxed and re-
ing force was given recently by Js@nd DuesberyFor the laxed GSF curves and consider both the unsplit edge and a
case of not too narrow dislocations, approximatéha’ single partial. Dislocation widths, misfit energies, Peierls
>0.5, they obtained the Peierls stress, barriers, and stresses are calculated from the numerically ob-

tained disregistries as described in the previous section.
Kyb 2wé
op(§)= 7exr1( -—

ol (1

h b/( ) h for S d h A. Unsplit edge
where §=Kpb/(4m7). With 7= 7,5, for Si and Cu in the : _ :
new expression gives Peierls stresses of correct order of Although the unsplit edge is not observed experimentally

magnitudé® The original derivation for the Peierls stress was'" PdorAlitis iljteresti_ng to compare the outcome of the PN
formally only valid for very wide dislocation%? In addition, model f_or that d|§locat|on with the g:orrespondmg results for
it had an unphysical summation fév(u) and its applicabil- the ordinary partials. The symmetric GSF curve also allows

ity has been questiondd® The work of J6s and Duesbery for a more fair comparison of the analytical expression in Eq.

P 11) with the the full solution.
have therefore restored credibility to the PN model and to thé )
: : ; : Tables Ill and IV gives the PN model results for the edge
lytical for the Peierls st aq). . ;
analytical expression for the Felers stress in dislocations. The relaxed GSF curves are lowered and flat-

tened and restoring forces are thus reduced and the disloca-

tions become broader. The lowering of the GSF curves are
When solving the PN equation one can make use of thearried over tow(u) and together with the broadened dis-

analytical expression in EG10).%-*°We use a recent ansatz registry the Peierls barriers and stresses become much

B. Numerical solution of PN model

proposed by Gan and Jafy, smaller. This illustrates the sensitivity of the barrier on the
maximum restoring force,,,,, expressed by the exponential
f(x)= b S o arctaréx_xi> dependence in Eq11). The misfit energy for the relaxed Pd
g Cié; edge is higher than for the unrelaxed. This may suggest that
the relaxations of the GSF surface are incompatible when
f(1-c) &(X—X;) N b (12 used for individual lattice planes in the PN model. That is,
Vx2+(cig)?] 2 the separate relaxation of the GSF surface and solution of the
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TABLE IV. Same as Table lIl, but for Al. The isotropic shear modulus for Al is 165 meV/A®.

. Kpb
3 Winisfit Wp op Tmax AT Tmax opl(é)
(a’)  (meViIA)  (meviA)  (10%w) (107 2w) (a) (107 5u)

[110] unrel 0.87 163 2.6 1250 27.3 0.88 1200

Atom rel 151 159 0.015 7.1 17.9 1.34 65

[121] unrel 1.17 0.12 110 13.0 0.97 410

Full rel 1.49 0.0090 8.5 10.9 1.16 130
PN equation does not yield the variational energy minima +o
solution, but instead solutions with too low barriers. W(u,,u,) = E a' ygsd fi(ma' —u)+f(ma' —u,)],

m=—x

As seen in Figs. 5 and 6 the unrelaxed GSF curves are
close to sinusoidal. Hence, the numerical solution is close to
the analytical solution in Eq11). The dislocation width$¢) ) . ) )
and Peierls barriers are compared in Tables Iil and Iv. Thevhereu, andu, is the position of the left and right partial,

deviation from the sinusoidal form due to relaxation reducegespectively. If the coupling is strong it is possible to have a
the good agreement. situation where one partial moves up on the energy barrier,

while the other moves downwards, hence lowering the total
_ barrier** Whether one partial is on top of the barrier or both
B. Shockley partial are in an energy minimum position will depend on the split-
Experimentally observed edge dislocations in fcc metalging distance used for the superposition. As it is not possible
split and form an ISF ribbon bounded by two Shockley par-to find the exact equilibrium distribution on the underlying
tials. For Al the splitting distancédsy; in Fig. 7) is small  lattice nor the exact elastic interaction within the present PN
and the individual partials are overlapping. When the PNmodel we choselg; to be an integer timea’ close to the
equation is solved for a single partial the summatiokifu) approximate equilibrium distance given by E@.3). This
includes an arbitrary long ISF. This gives a constant shift ingives a distribution of planes W for the superposed partials
the misfit energy that vanishes fou). Results for the dis- similar to the single ones. The splitting distance for Pdéas$ 8
location energetics are presented in Tables Ill and IV. Theand 5’ for Al. The two partial cores in Pd are fairly sepa-
effect of relaxation is smaller than for the edge dislocationsrated(Fig. 8), but are overlapping in A(Fig. 10.
but still large. Figures 9 and 11 show the relaxed misfit energy,
Tables Il and IV also presents results for the analyticalW(u,,u;), for Pd and Al. In both metals the minimum en-
expression usingé=K,b/(471,,). The discrepancy be- ergy barrier is along a very narrow valley on the diagonal
tween the analytical and numerical solution follows from the(u;=u,). Thus, the partials are strongly coupled and move
asymmetry inygsg, Which increases with relaxation, espe- simultaneously. The misfit barriers for the unrelaxed disloca-
cially for Al tions are larger but still close to the diagonal. Values for
Peierls energies and stresses for both unrelaxed and relaxed
superposed partials are given in Table V. Even though the
Peierls barrier is lower for the relaxed edge, the misfit ener-
To study a complete split edge the solutions for the singlgjies are much lower for the split dislocation, which make
partials are superposed. This may be warranted for Pd where
the splitting of the partials is quite large, that is, the partial 1

(14

C. Superposed Shockley partials

cores should not overlap too much. For Al this is more ques-
tionable, but the procedure should at least give a picture of 0.8
the dislocation structure and an estimate for the barriers. ) 0.15
The equilibrium splitting of two partials is a balance be- > -
tween the gain in elastic energy and the cost of ISF energy. ®0-6 =
Elasticity theory gives the equilibrium separafion 54 0.1 ¢
©0.4 xo!
b2Ksplit ©
dsplit: 27T'Y|SF, (13) 0.2 0.05
whereb is the partial Burgers vector. The elastic constant 10 0

Kspiit is composed of a repulsive edge and an attractive screw
part. It is obtained from the anisotropic elastic equations in
the same manner d§, and given in Table II. FIG. 8. Disregistry,f,(x), and dislocation densityp,(x), for

Depending on the elastic coupling the two partials maytwo superposed Shockley partials in Pd. The single partials are
move separately or together and the misfit energy in(Bx. solutions for the relaxeg/gsr curves. The separation between the
is appropriately written as partials is chosen to bead.
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FIG. 9. Misfit energy for two superposed Shockley partials in ~ FIG. 11. Same as in Fig. 9, but for Al. The innermost contour
Pd. The contour plot shows the misfit ener@(u, ,u,), as a func-  corresponds tW=3x10"% eV and the following are doubled in
tion of relative position on the glide plane of the left partiaf)(and ~ energy. Similar to Pd, the Al partials are also strongly elastically
the right partial ¢;). The 3D curve illustrates the energy barrier for coupled.
the minimum energy path. The innermost contour corresponds to
W=1.5x10 eV and the following are doubled in energy. The
minimum energy path lies on the diagonal and its valley is veryrier. Their approach, when applied to tk€10{111} glide
narrow, which means that the partials are strongly elasticallyscrew in Si, gives a Peierls barrier two order of magnitudes
coupled. lower than that obtained with an unrelaxed GSF curve using

the classic PN model. This Si glide-set dislocation is very
narrow and the effects of the improved model likely to be
them energetica”y favorable. Similar behavior is also Ob'sma”er for the much wider dislocations in Pd and Wb,cs

—5 = 42,43 - ; ;
the order 1-510"°u. necessarily below the fully relaxed barriers since they not are
variationally obtained. The new approach also includes elas-
VI. DISCUSSION AND CONCLUSIONS tic displacement perpendicular to the glide plane and the gain

A striki ffect is the h h in Peierls bari in misfit energy from the volume relaxation of the GSF curve

striking effect is the huge change in Peierls barnersg o g ceq by the cost of elastic energy. From slab calcula-
When theyGS.F(f) is allowed to relax. A full atomistic simu- tions for Pd and Al the reduction is estimated to be about
lation would include more degrees of freedom and the barrigao, |t seems plausible that the variational approach results

ers may therefore be further reduced. This implies that thg, 5 riers in between present unrelaxed and fully relaxed
PN stresses are too small, since the obtained stresses Y,

. S @&utions, which would form realistic upper bonds on the
already close to the experimental results. The low barr|er|s_,eier|S barriers.
may be a result of the separate relaxation of the GSF surface
and solution of the PN equation not yielding the variational
energy minima solution.

Recent work by Bulatov and Kaxirascludes a semidis-
crete and variational method for the relaxation of the GS

surface when solving for the core structure and Peierls ba

We believe the present implementation of DFT to give
values of high and sufficient accuracy. Atomistic simulations
also show that the superposition of single partials, and only
I:aIIowing a disregistry along one direction and not on the
whole of the GSF surface, are justified simplificatiofign-
'Sther concern is the use of linear theory of elasticity to cal-
culate the stresses in the left-hand side of the PN equation

1
TABLE V. Inelastic misfit energiesWsi), Peierls barriers
0.8 (Wp), and stressesofp) for two superposed Shockley partials,
0.15 ; . . : .
- forming a stacking fault ribbon and a complete edge dislocation
ﬁO.B = (see Fig. 7, in Pd and Al. The splitting distanced{;;) of the
) 0.1 g partials, or rather the approximate width of the ribbon, is chosen to
o © be 8.&’ for Pd and 5.8’ for Al.
004 o
©
0.05 Winisfit Wp op
0.2 (meV/A) (meV/A) (10 5u)
Pd unrel 209 0.094 27
-10 10 Full rel 189 0.0099 3.4
Al unrel 113 0.13 67
FIG. 10. Same as in Fig. 8, but for Al. Here the separation Fy| rel 111 0.0070 3.3

between the patrtials is chosen to b&'5
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[Eqg. (7)] (Ref. 45 and further atomistic simulations are give present trends, but a single input parameter does not
needed in order to clarify the quality of the core structuresuffice quantitatively when the GSF curve deviate from the
predicted by the PN modéf. sinusoidal form. To judge the usefulness of the expression, a
Measurements of internal friction resonance, the so callegest against a larger set of data and a settlement about the
Bordoni peak, in close-packed metals yields an “internalyalidity of the present PN model is necessary.
stress” two order of magnitude greater than the Peierls stress |p summary, besides being an important conceptual tool
obtained from yield stress dat&The elastic coupling can the classic PN model also includes some quantitative capa-
reduce the barriers as described in Sec. V C and have bejjities. Presently the latter should be termed semiquantita-
suggested to be the reason for the observed differences {ye as there is room for improvements even for the suppos-
measured stress&SEven if present theoretical values have edly favorable fcc metal case. A case which is suitable for a
to be reconsidered with more appropriate account for thehorough analysis of both the elastic and atomistic parts of
relaxation of the GSF curves the already low barriers for thqhe PN model and future efforts will focus on deta“ed com-

single partials are not likely to increase by order of magni-parisons between the model and full atomistic simulations.
tudes. The elastic coupling is evidently not the cause of the

discrepancy in measured stresses. However, the coupling can

make the total barrier sensitive to local values of elast|<_: con- ACKNOWLEDGMENTS

stants and ISF energies due to presence of vacancies and

impurities, which could explain the broad spectra of mea- This work has been supported by the Swedish Board for

sured Peierls stress of an individual métaBulatov’'s and  Industrial and Technical Development and the Swedish

Kaxiras’ improved PN mod@lalso addresses the neglect of Natural Science Research Council. The DFT calculations

changes in core structure during motion. It would be inter-have been performed with a computer code developed by

esting to study the sensitivity in Peierls stress due to elastitlammer(Ref. 47). We are thankful to U. Engberg for his

coupling with such a PN model. assistance with some of the DFT calculations for the ANNNI
As expected; .y IS playing a major role for the Peierls model parameters. We have also benefited from discussions

stress. Hence, the analytical expresdiBg. (11)] is able to  with H. O. Andren.

IA. Kelly, Strong Solids2nd ed.(Oxford University Press, Ox- 2%P. J. H. Denteneer and W. van Haeringen, J. Phys.: Condens.

ford, 1973. Matter 20, L883 (1987).

2R. E. Peierls, Proc. Phys. Soc. Londs® 23 (1940. 25p_ J. H. Denteneer and J. M. Soler, Solid State Comi8n857

3F. R. N Nabarro, Proc. Phys. Soc. Londs® 256 (1947). (1991).

4J. P. Hirth and J. LotheTheory of Dislocations2nd ed.(Wiley, 26N Troullier and J. L. Martins, Phys. Rev. 83, 1993(1991.
New York, 1982. 27G. B. Bachelet, D. R. Hamann, and M. Sdely Phys. Rev. 26,

5V. Vitek, Philos. Mag.18, 773 (1968. 4199(1982.

6J. W. Christian and V. Vitek, Rep. Prog. Ph@8, 307 (1970. 283. P. Perdew and A. Zunger, Phys. Rev2® 5048(1981).

L. B. Hansen, K. Stokbro, B. I. Lundqvist, K. W. Jacobsen, and?°H. J. Monkhorst and J. D. Pack, Phys. Revl® 5188(1976.
D. M. Deaven, Phys. Rev. Letf5, 4444(1995. 30N, M. Rosengaard and H. Skriver, Phys. Rev.4B, 12 865

8B. Jom and M. S. Duesbery, Phys. Rev. L&t8 266 (1997. (1993.

V. V. Bulatov and E. Kaxiras, Phys. Rev. Le®8, 4221(1997.  3!S. Schweizer, C. Elsser, and M. Hanle, Phys. Rev. B48,

10p, Hohenberg and W. Kohn, Phys. R&26, B864 (1964). 14 706(1993.

11w, Kohn and L. Sham, Phys. Re¥40, A1133(1965. 325, Schweizer, C. Elsaer, K. Hummler, and M. Fale, Phys.

2R, Jones and O. Gunnarsson, Rev. Mod. PBs689 (1989. Rev. B46, 14 270(1992.

Bw. Blum, Materials Science and Technolgggdited by R. W.  23S. Crampin, K. Hampel, D. D. Vvedensky, and J. M. MacLaren,
Cahn, P. Haasen, and E. J. Krani¢€H, Berlin, 1992, Vol. 6. J. Mater. Res5, 2107(1990.

1E. Kaxiras and M. S. Duesbery, Phys. Rev. L@@, 3752(1993.  3*L. J. Teutonico, Acta Metall11, 1283(1963.
155, J. Zhou, A. E. Carlsson, and R. Thomson, Phys. Rev. T2tt.  3*Compiled by P. Eckerlin and H. Kandldrandolt-Banstein, Nu-

852 (1994). merical Data and Functional Relationships in Science and Tech-
18R, Thomson, Phys. Rev. B2, 7124(1995. nology, edited by K.-H. Hellwege(Springer-Verlag, Berlin,
17y, Sun and E. Kaxiras, Philos. Mag. 5, 1117(1997). 1972).
8B von Sydow, J. Hartford, and G. Wahnstrgunpublishedl 363, D. Eshelby, Philos. Magt0, 903(1949.

198, E. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag.78, 1529 873. J. Gilman, Scienc@61l, 1436(1993.

(1996. 38B. Jows, Q. Ren, and M. S. Duesbery, Phys. Rev5® 5890
20M. T. Yin and M. L. Cohen, Phys. Rev. B5, 7403(1982. (1994).
2IM. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. %A. J. E. Foreman, M. A. Jawson, and J. K. Wood, Proc. Phys.

Joannopoulos, Rev. Mod. Phy&4, 1045(1992. Soc. London, Sect. A4, 156 (195)).
22B. Hammer, K. W. Jacobsen, V. Miiman and M. C. Payne, J.*°F. Kroupa and L. Léjek, Czech. J. Phy®22, 813(1972.

Phys.: Condens. Matte}, 10 453(1992. “lyong X. Gan and Bor Z. Jang, J. Mater. Sci. Letb, 2044

23G. Kresse and J. Furthitier, Phys. Rev. B54, 11 169(1996. (1996.



2496 HARTFORD, VON SYDOW, WAHNSTR®, AND LUNDQVIST PRB 58

42W. J. McG. TegartElements of Mechanical MetallurgiMac- 6451(1994.

millan, New York, 1966. 46G. Fantozzi and C. Esnouf, J. PhyBarig 9, 557 (1983.
433, N. Wang, Mater. Sci. Eng., 206, 259 (1996. 4’pacapo version 1.18, Center for Atomic Scale Materials Physics
#4G. Schoeck and W. Rehl, Mater. Sci. Eng., AL89, 61 (1994. (CAMP), Denmarks Technical University, 1996.

453, J. Zhou, A. E. Carlsson, and R. Thomson, Phys. Re49,B



