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Magnetization and electrical resistivity studies have established thaBbg:Co0;_ , (LaBaQ is a metallic
ferromagnet whereas P8a, Co0;_, (PrBaQ is a magnetic semiconductor. The magnitudes of spontaneous
magnetizations are in agreement with intermedia@BaC and low-spin(PrBaQ cobalt states with itinerant
3d electronsRy sBa; sC00;_,, (RBaC,R=Sm, Eu, Gd, Th, Dyexhibit a sequence of a phase transitions at
temperaturesl;, Tc, and Ty on heating. BelowT; these materials are antiferromagnets, whereas in the
temperature interval betweél and T, a ferromagnetic behavior has been revealed. For TbBaC the tem-
peraturesT; and T are 245 and 285 K, respectively. The phase transitioh} & accompanied by a jump of
electrical resistivity and peak of magnetoresistance. For TbBaC an external magnetic field of 14 T leads to
decreasingl; from 245 to 85 K. At aroundT,, (337 K for TbBaQ the first-order phase transition from
semiconductive to quasimetallic stdtégh-temperature phasbas been observed. The transition occurs with-
out changes of orthorhombic symmetry, and the unit-cell volume of the high-temperature phase was shown to
be larger as compared to the low-temperature(@aperoximately 0.2% It is supposed that the transition&y
results from oxygen vacancy orderirf&0163-182¢08)03530-9

Recently, many investigations have been reported on the R, xBa,Co0;_, (R=La, Pr-Dy; 0.4<x<0.66) samples
LaCoQ; and Lg ,Sr,CoO; systems because of their inter- were prepared by a solid-state reaction. The powders of
esting and unusual magnetic and transport propefifes. R,0;, BaCQ;, and CqO, were weighed in the desired pro-
LaCoQ; exhibits a temperature-dependent transition betweeportions and milled with acetone. The resulting solids were
low-spin (S=0; tgg) and high-spin $=2; tégeé) states. pressed into pellets, heated at 1200 K, reground, and then
At around 500 K this compound shows a phase transitiotfired at 1490 K in air to form hard, dense bars. All the
from a semiconductive statdelow 500 K to a fairly con-  samples were cooled to room temperature at a rate of 100
ductive one with resistivity at about 18 O cm. The substi- K/h. The oxygen-deficient samples BBaC (R=Eu, Gd,
tution of L&®™ by divalent St* or B&™" leads to the appear- Tb, Dy) obtained in this way were annealed in air at 1100 K
ance of a ferromagnetic intermediate-spin state with itinerantor 12 h. We failed to obtain a ¥sBay sCo0;_ ,, sample with
3d electrons. The LgSrCo0; compound(LaSrQ is a  perovskite structure. However, we have managed to obtain a
metallic ferromagnet with a magnetic moment approximatelyY ; 4Dyq 0Ba sC00;_, (YBaC) single phase sample. Oxy-
1.5ug per formula unit and a Curie temperature of 232 K.gen content in the TbBaC sample was determined by ther-
The magnetic and transport properties of LgA,Co0O; (A mogravimetric analysis in high vacuum. One should note
=Ca, Sr, Bawere explained using Zener's double exchangealso that oxygen nonstoichiometry of the other studied
mechanisrh or Goodenough'’s itinerant-electron ferromag- samples is not zero. Magnetization measurements were done
netism modef The size of the lanthanide ion is well known with a commercial superconducting quantum interference
to influence strongly the magnetic and electrical properties oflevice magnetomete(MPMS 5, Quantum Design The
the compounds with perovskite structure. However, the dataneasurements were performed with zero-field-cogEEC)
on orthocobaltites of rare-earth elements doped By ®r  and field-cooled FC) samples. The electrical resistivity was
B&" are quite limite?'* The studies of measured by a standard four-electrode technique in a steady
R;1_,SrCo0O; (R=Pr, Nd, Sm, Elhave shown these ma- magnetic field up to 140 kOe. X-ray-diffractiqiXxRD) pat-
terials to be similar to La ,Sr,CoO; with T increasing terns of all theRBaC samples were completely indexed as
with x as well as with the size of the rare-earth fon. the perovskite-type structure and their lattice parameters are

In the present work, an attempt was made to synthesizlisted in Table |. The crystal-structure distortions increase as
theRBaC (R=Pr, Nd, Sm, Eu, Gd, Tb, Dycompounds in the lanthanide ionic radius decreases. The valuegofor
order to study the evolution of the magnetic and transporvariousRBaC compounds are listed in Table I. The values of
properties as a function of lanthanide ionic radii. We haveM¢ and T found by us for LaBaC are close to those re-
found thatRBaC (R=Sm, Eu, Gd, Th, Dy are magnetic ported by Patil and co-worket§.The magnitude of sponta-
semiconductors  exhibiting  both  antiferromagnetic-neous magnetizatio(36 emu/g at 4.2 Kis in agreement
ferromagnetic and insulator-metal transitions. with an intermediate spin state of cobalt with itineramt 3

0163-1829/98/58%)/24184)/$15.00 PRB 58 2418 © 1998 The American Physical Society



PRB 58 BRIEF REPORTS 2419

TABLE I. Symmetry, the unit-cell parameters at room temperature, TapndT, Ty temperaturesgthat
were indicated in the texibf RBaC compounds.

Lanthanoid ion ~ Symmetdy a(A) b(@A) c@) V (A} T, K" TcKS Ty K)

La C 3.893 59.00 225

Pr T 3.900 3.813 57.99 150

Nd T 3.899 3.804 57.83 140, 260 360
Sm (0] 3.915 3.890 3.784 57.63 120-200 280 370
Eu O 3.910 3.884 3.775 57.33 150-240 280 350
Gd O 3.909 3.876 3.768 57.09 225 280 360
Tb o 3.911 3.872 3.760 56.94 245 285 337
Dy T 3.889 3.756 56.81 265 330
Y T 3.884 3.748 56.54 250

&C - cubig T - tetragonal O - orthorhombic.
For SmBaC and EuBaC the rangesTofare given(see text
°For NdBaC two Curie temperatures are preseiises texk

electrons. However, PrBaC shows a much less magnetizatioFbBaC compoundFig. 2). The temperatur&; , at which the

at 4.2 K, approximately 5 emu/g or u3 per formula unit  first-order magnetic phase transition starts, decreases
(Fig. 1. Magnetization increases as temperature increases wgrongly with the increase of an external magnetic field.
to 100 K, likely due to Pr-sublattice contribution. The drops TbBaC also exhibits an anomalous behavior of the magneti-
of the magnetization of NdBaC &f-;=140 K and T,  zation neaff-=285 K andTy, =337 K(Fig. 2). T is just
=260 K are probably caused by the phase transition into théhe Curie temperature, becaud€H) dependences are linear
paramagnetic state in different magnetic phases. The fractiombove 285 K.

of the magnetic phase with high&g increases markedly in The magnetization behavior &8aC (R=Gd, Dy, V) is
SmBaC and especially in EuBaC compourifigg. 1). The presented in Fig. 3. GdBaC exhibits transitions Bt
large temperature hysteresis of FC magnetization of EuBaG225 K andT-=280 K, whereas the magnetic behavior of
(Fig. 1) is associated with a first-order magnetic phase tranbyBaC is more complicated. FC magnetization in the field
sition. Such a transition is much more pronounced in theof 200 Oe shows a minimum dt=45 K, and a large tem-
perature hysteresis within the temperature range of 70—-200
K. The magnetic susceptibility of YBaC is much less than

6'0-_ that forRBaC (R=Pr - Dy). ZFC and FC magnetizations do
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Temperature ( K ) FIG. 2. Temperature dependence of FC magnetization of TbBaC

on heating at various fields. The inset shows magnetization behav-

FIG. 1. Temperature dependence of FC magnetization foior on heating and on cooling in the temperature range 320-350 K
RBaC (R=Pr, Nd, Sm, Euat the field of 10.8 kOe and 200 Oe. at the field of 10 kOe.
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FIG. 4. Temperature dependences of resistittiby and middle

FIG. 3. Temperature dependence of FC magnetization foPanel3 and — magnetoresistance MR=[R(10 kOe)-R(0)]
RBaC (R=Gd, Dy, Y). X 100%/R(0) (bottom paneél for RBaC.

not coincide below 250 K even in the magnetic field of 500f the transition afl;, whereas the transition &k, is van-
kOe, apparently due to a large magnetic anisotropy. ZFQshed. However, the Curie temperatufg depends slightly
magnetization of YBaC shows two peaks: the first one at 5®n a barium content. The samples reduced in vacuum do not
K and the broad second one in the vicinity of 225 K. Belowshow a spontaneous magnetization and insulator-metal tran-
60 K the difference between ZFC and FC magnetizationsition. They are semiconductors with a relatively large acti-
increases sharply. It is worth noting that the magnetization avation energy of charge carriers. The XRD studies revealed
330 K (paramagnetic regimaes larger than at 100 K. atT,, an abrupt increase of the unit-cell parameters, and

The magnetic phase transitions are accompanied bg decrease of the parameteas the temperature increases.
anomalies in the electrical resistivityFig. 4). Below For TbBaC at 300 K thea, b, ¢ parameters are equal to
T;, RBaC (R=Sm - Th are semiconductors with a small 3.911, 3.872, 3.760 A, respectively, whereas at 350 K they
activation energy. At around; the resistivity drops, indicat- are 3.932, 3.846 and 3.852 A. The transition occurs without
ing a phase transition. The temperatiredepends strongly change of orthorhombic symmetry, and the unit-cell volume
on the external magnetic field, thus leading to a giant magef the high-temperature phase was shown to be smaller as
netoresistance. This effect is very pronounced in ToBaC. Atcompared to the low-temperature on@pproximately
aroundT the slope of the(T) curve changes due to another 0.05%. According to the dilatometric studies, the tempera-
magnetic phase transition. The transitionTatis accompa- ture hysteresis reaches 10 K.
nied by a peak of the magnetoresistance for a number of The magnetic properties of the orthocobaltites with the
orthocobaltites(Fig. 4). Near T,y the resistivity falls from perovskite structure depend upon the spin states 8f @ad
1072 O cm to 10 3 Q cm. The metallic phase of LaCgO Cd**, whether they are in the low-, intermediate-, or high-
exhibits the same magnitude of resistivityAbove Ty, the  spin states. The magnetic properties of, ¥, CoO; are
resistivity changes very slowly with temperature. similar to those for LgsSry sCoO; where the ferromagnetic

The field dependence of the magnetoresistance for TbBaitermediate spin state with itinerantd3electrons is
at various temperatures is shown in Figuper panél The  realized® In our opinion, the most appropriate explanation of
magnetoresistance increases steeply above the critical fieldagnetic and electrical properties of tRBaC series could
corresponding to the transition into a state with spontaneoulse based on the assumption that cobalt ions are in the low-
magnetization. The critical field depends linearly on tem-spin state and @& electrons are itinerant, due to a strong
perature. The results of the magnetization measurements cdybridization oft,, orbitals of cobalt and @ orbitals of oxy-
respond to the magnetoresistance data. gen. This assumption is in agreement with both the strong

It is worth pointing out that the spontaneous magnetizadependence off; on the external magnetic field and low
tion of R;_,Ba,Co0; (R = lanthanide ion, 0.4x=<0.66) spontaneous magnetization of the samples. It was established
solid solutions is maximal fox=0.5 compounds. The devia- that the samples of l,aSr, sCoO;_, prepared in air were
tion from the ideal ratidR:Ba to 1:1 leads to the broadening characterized with the magnitude piup to 0.12>* Accord-
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T ' ' ' i ' that the sign of exchange interactions depends strongly on

01 i interatomic distances, thus leading to the antiferromagnetic-
85K ferromagnetic transition &k;. The chemical inhomogeneity
-101 1 (associated apparently with a complex distribution of oxygen
— vacancies and rare-earth ions over the crystal lattezs to
X 207 1{6 K] the broadening transition &, that occurs in a wide tem-
E -30 perature range iRBaC (R=Nd, Sm, E) compounds. The
s 1§5K low-temperature phase of tHeRBaC(R=Sm, Eu, Gd, Tbh,
Dy) specimens is dominantly antiferromagnefeg. 1). The
-40- 1 L . 7
drop of the magnetization observed in YBaC originates ap-
501 Tb0 5Bao 5CoO3 159 K] parently from an oxygen deficit increasing with decreasing
300 3—————— ] lanthanide ionic radii. In this compound the dependence of

T magnetization from magnetic prehistory exists at tempera-
r c tures up to 250 K, being comparable to that for rare-earth
250 Y. YN T compounds. The anomalous behavior could be attributed to
~ \:8‘ . F the freezing of magnetic moments of clusters associated with
RN ] microdomains with a different content of Dy ions. Relatively
A ~-A high magnetic susceptibility in a paramagnetic phase indi-
. cates a possible spin state transition.
1507 AN A A The insulator-metal transition &ty, leads to decreasing
AF \A\ AF "A magnetic susceptibilityFig. 2). So we suppose that this tran-
100+ AHOrF o - sition is not dominantly magnetic in origin. The oxygen con-
- v - e tent in the TbBaC sample corresponds to the chemical for-
0 20 40 60 80 100 120 140 mula Thy sBay sC00;_ 1, , Wheren=8. From this point of
Field ( kOe ) view the transition affy, could be attributed to oxygen va-
, , cancy ordering. Most likely, the transition &f, leads to an
:[:::zl(cib k56e)—F 'Ff(lg)]gi%%g/‘:;'}%e) a?f\/ar';’;ignteet;rs;';i':;:; overlapping ofm* narrow band and wide valence one. This
) assumption is supported by spectroscopic studies of LgCoO
panej and theH-T phase diagrartbottom panelfor ToBaC (AF - indicating a small energy difference between théand of
antiferromagnetF - ferromagnet, circle - data obtained from mag- |. d ani dth Hubbard band of cobalt nital
netization measurement, triangle - data obtained from magnetor%'ﬁan anions an € upper rubbard band of coba al.
e suppose that &ty,, some of the Co-O distances decrease

sistance measurement, closed symbols -finish of the transition fro .
AF to F, open symbols - from F to AF abruptly because the unit-cell parameltedecreases mark-
' edly.

200+

Temperature (K)
B

ing to the thermogravimetric analysis data, the true chemical

formula of TbBaC is ThsBa, sC00, g;. Hence, the average This work was supported partly by the Belarus Fund for
magnetic moment can be calculated to be p2%per for-  Fundamental Researdfrant No. F96-13band the Polish
mula unit atT=0, whereas the observed magnetic momentState Committee for Scientific Researrant No. 2 PO3 B
at 250 K is close to 0.22g per formula unit. We suppose 095 12.
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