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Theoretical analysis of the experiments on the double-spin-chain compound KCuCl3

Tota Nakamura
Department of Applied Physics, Tohoku University, Sendai, Miyagi 980-8579, Japan

Kiyomi Okamoto
Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152-0098, Japan
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We have analyzed the experimental susceptibility data of KCuCl3 and found that the data are well explained
by the double-spin-chain models with strong antiferromagnetic dimerization. Large quantum Monte Carlo
calculations were performed in the spin systems with frustration. This was made possible by removing the
negative-sign problem with the use of the dimer basis that has spin-reversal symmetry. The numerical data
agree with the experimental data within 1% relative errors in the whole temperature region. We also present a
theoretical estimate for the dispersion relation and compare it with recent neutron-scattering experiments.
Finally, the magnitude of each interaction bond is predicted.@S0163-1829~98!04730-4#
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The low-dimensional quantum systems with an excitat
energy gap are now attracting much interest both experim
tally and theoretically.1 The possibility of high-Tc supercon-
ductivity upon doping carriers to the gapped insulator lies
the background. The spin-ladder model and its realizatio
a real compound SrCu2O3 may be the most well-known sub
stance for this scenario.2 Of course, various other compound
are also synthesized, which can be explained by the l
dimensional quantum spin Hamiltonian.3–8 These experi-
mental achievements now offer much data for theoretical
vestigations.

Tanakaet al.4 have measured the magnetic susceptibi
of the KCuCl3, and proposed that it can be explained by t
double-spin-chain Hamiltonian. The susceptibility data sh
the spin-gap behavior. They estimated the amount of the
citation gapD by fitting the low-temperature data with it
theoretical expression,x(T)}T21/2exp(2D/T), given by
Troyer et al.9 The estimated gap,D/kB;35 K, is consistent
with their recent measurements of the magnetization pro
at low temperature, which givesD/kB;31.1 K.10

For a thorough understanding of the system, it is nec
sary to determine the strength of each interaction bond of
model Hamiltonian that best describes the subject mate
For frustrated systems, one usually calculates all the eig
values of a given model Hamiltonian on a finite lattice by t
numerical diagonalization, and then compares the obta
physical quantities at finite temperatures with the experim
tal data. Since the numerical diagonalization technique is
stricted to very small sizes with 18S51/2 spins or less, the
results suffer a severe finite-size effect. The quantum Mo
Carlo ~QMC! method can handle much larger systems,
has not been applied to the frustrated systems because o
negative-sign problem. Recently, one of the authors
solved this problem in the double-spin-chain system.11 It
makes it possible to treat large system sizes even at very
temperatures, and thus we are able to compare directly
numerical results to the experimental data without suffer
the size effect.

In this paper, we calculate the susceptibility of the doub
spin-chain model with 162 spins, and aim at the determi
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tion of the interaction bonds that explain KCuCl3. For this
purpose, it is necessary to calculate the dispersion relatio
the excited state in comparison with the neutron-scatte
experimental results. The susceptibility alone is not suffici
to discuss the details of the system, since it is the integra
quantity. We use our analytic expression for the dispers
relation obtained recently for general double-spin-ch
models.12 Our analysis partly disagrees with the experimen
which may be understood by possible two-dimensional c
plings.

We consider the following spin Hamiltonian under th
open boundary conditions:

H5 (
n51

N21

$J1~sn•sn111tn•tn11!

1J2sn•tn1J3tn•sn11%1J2sN•tN . ~1!

Here,N is the linear size of the system, andusu5utu51/2.
Figure 1 shows the shape of the lattice.

Three cases of the above Hamiltonian,~i! J15J3, ~ii ! J3
50, and~iii ! J150, are especially investigated. In each ca
J2 is a set variable ranging fromJ2528 to J258. The first
one, J15J3, is what we call here the ‘‘zig-zag’’ or, more
commonly, the railroad-trestle model. This model has fr
tration for J2.0, and thus have not been analyzed on
thermodynamic properties yet. The second one is the o
nary two-leg ‘‘ladder’’ model, and the third one is th
‘‘bond-alternation’’ model. By changing the sign of theJ2
bond, the Hamiltonian can describe both the dimer-gap s
tem and the Haldane-gap system. The difference in the or
of the gap affects the structure of the excited states and

FIG. 1. Shape of the general double-spin-chain model.
2411 © 1998 The American Physical Society
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2412 PRB 58BRIEF REPORTS
the finite temperature behavior of various physical quantit
We also comment on this point at the end of this paper.

Before demonstration of the numerical evidence,
briefly summarize the simulational technique. We have d
the ordinary world-line QMC simulations, but the choice
the representation basis is considered different from the c
ventional sz one. Two spins,sn and tn , are coupled and
considered as a unit of an update. This dimer unit takes
states associated with thesz eigenvalues of each spin
usz,tz&. We rearrange these four states so that they have
spin-reversal symmetry

v15~ u↑,↑&1u↓,↓&)/A2, ~2!

v25~ u↑,↑&2u↓,↓&)/A2, ~3!

v35~ u↑,↓&1u↓,↑&)/A2, ~4!

v45~ u↑,↓&2u↓,↑&)/A2. ~5!

Here,↑ and↓ denote thesz eigenstates. Now, twoJ1 bonds
and oneJ3 bond become a single effective bond connect
the neighboring dimer units, and theJ2 bond contributes
only to the inner energy of a dimer unit. We can remove
negative-sign problem by using this representation basis.
Trotter numberm is chosen so thatb(2J11J3)/m varies
from 0.35 to 0.15 at each temperature, and the extrapolat
to the infinitem are done. A typical number of Monte Carl
steps is 500 000, divided into ten parts, to see the statis
deviation. The first 50 000 steps are discarded for the e
librium. The autocorrelation time of the susceptibility is le
than an order of unity.

We have performed simulations for several values ofJ2 in
each choice of theJ1 and J3 bonds. First, we have setJ1
5J3 and done simulations thoroughly by changing a value
J2 from 28 to 8 in a step of 2. A rough estimate for th
value ofJ2 is made at this stage. Then, we proceeded to
other cases,J150 andJ350.

Figure 2~a! shows the QMC results of the susceptibili
compared with the experimental data, and Fig. 2~b! is its
low-temperature plot. The experimental data are the m
mum susceptibility when the magnetic field is applied in t
cleavage plane. The absolute value of the susceptibility
pends upon the direction of the field, which can be und
stood by considering the anisotropy of theg value.4 Here, the
g value is determined by comparison at high temperatu
T.100 K. Error bars of the QMC data are almost neg
gible. The magnitude of each interaction bond is determi
in order that the low-temperature data agree quantitativ
with the experiment.

Triangles are the best fit to the experiment in the case
J15J3, and the values of the interaction bonds areJ15J3
58.35 K,J256J1, i.e., all the interaction bonds are antife
romagnetic. Theg value g52.05. Circles are those of th
ordinary ladder case, and the values areJ1512.3 K, J350,
J254J1, and g52.05. Crosses are the case of the bo
alternation model:J150, J3512.9 K, J254J1, and g
52.03. All three data quantitatively agree with the expe
ment at all the temperatures. Our estimate for theg value is
also consistent with the electron-spin resonance~ESR! mea-
surement, givingg52.05.10 Relative errors from the experi
s.
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ment are within 1% in every case, and are smallest in
‘‘ladder’’ case. However, it is not clear if the small devia
tions among the three cases are relevant or not, becaus
have used a very simplified model spin Hamiltonian for
real compound. Systematic errors from an adoption of t
model may be the most important ones. Therefore, we can
determine the strength of each interaction bond from the
ting of the susceptibility data alone. The only common fe
ture known from this plot is that theJ2 bond is strongly
dimerized antiferromagnetically, and thus the origin of t
gap is the dimer gap.

This conclusion contradicts the prediction by Tana
et al.4 that KCuCl3 is the Haldane chain. Thus, we clarify i
the following the difference of the susceptibility in th
dimer-gap system and that in the Haldane-gap system
Fig. 3, we plot a product of the susceptibility and the te
peraturexT against the temperature. This value is indepe
dent from the scale of the interaction bond. We use the lo
rithmic scale for the temperature axis so that the rescalin
the temperature by changing the values of interaction bo
just causes a parallel shift along the temperature axis. Cir
are the data of the dimer-gap system:J15J358.35 K, J2
56J1, g52.05, and crosses are those of the Haldane-
system:J15J3545 K, J2524J1, g52.00. These interac
tions are determined by fitting the low-temperature da
while theg value is estimated at high temperatures. As se
from this figure, the functional form ofxT in the Haldane-
gap system cannot be fit to the experiment by any para
shift.

FIG. 2. ~a! The QMC results of the susceptibility~symbols!
compared with the experimental data~line!; ~b! its low-temperature
plot. The number of the spins is 162 and the open boundary co
tions are used. The strength of each interaction bond is (n) Zig-
zag: J15J358.35 K, J256J1, g52.05, (s) Ladder: J1

512.3 K, J350, J254J1, g52.05, and (3) Bond alternation:
J3512.9 K, J150, J254J3, g52.03, respectively.
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For an explanation of this difference, let us consider
dimer limit J15J350, J2.0, where the ground state is a
array of independent singlet dimers and thus is nondege
ate. When the interactions between singlet dimers (J1 and
J3) are introduced, the ground state is somewhat modifi
but still has the nature of the singlet dimer. On the oth
hand, the ground state in the Haldane limit,J15J350, J2
,0, is an array of independent triplet dimers and is hig
degenerate. WhenJ1 andJ3 are switched on, the degenera
is lifted up, resulting in the unique ground state. The den
of states of low-lying excited states are larger than the sin
dimer case, reflecting this high degeneracy of the gro
state atJ15J350. Therefore, the susceptibility peak in th
Haldane system becomes lower and broader than in
dimer system. We may determine the origin of the gap fr
the full width at half maximum of the susceptibility, or th
functional form ofxT.

We determine the interaction bonds by the dispersion
lation of the excitation energy. This value is sensible to
details of the model. Recently, Katoet al.13 applied the
neutron-scattering analysis on this compound, and prese
the dispersion relation. We compare our analytic dispers
relation with this experiment.

In our previous paper,12 we have deduced an expressi
giving the dispersion of the general double-spin-chain s
tems as a function of the interaction bonds. There, we
ployed a single domain-wall variation after the nonlocal u
tary transformation14,15 is applied. This approximation is
quite excellent neark5p, checked with the numerical diago
nalization results of finite systems, and with exactly kno
results. On the other hand, it becomes overestimated as
wave numberk approaches zero.

By using the values of the interaction bonds obtain
from the susceptibility fitting, we give the dispersion of th
excitation energy in Fig. 4. The first excitation is atk5p in
the ‘‘zig-zag’’ and ‘‘ladder’’ models, and is atk50 in the
‘‘bond-alternation’’ model. Within our analysis, the first ex
citation is always atk5p for J1.min(J2,J3)/2, and is oth-
erwise atk50, where min(J2,J3) stands for the minimum
value ofJ2 andJ3.

The dispersion of the ‘‘ladder’’ case is consistent with t
experimental dispersion parallel to the double chain wh
the constant wave number perpendicular to the chaink' is

FIG. 3. Product of the susceptibility and the temperaturexT is
plotted against the temperature. The QMC results of the dimer-
system (s) and the Haldane-gap system (3) are compared with
the experimental data~line!. The strength of each interaction bon
is (s): J15J358.35 K, J256J1, g52.05, and (3): J15J3

545 K, J2524J1, g52.00, respectively.
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equal to zero. Our estimate of the gap isD/kB;38 K, which
is a little larger than the results of the magnetization proc
experiment.10 So, the ‘‘ladder’’ model may be the most fa
vorable candidate for explaining the KCuCl3 at the present
stage. However, it should be noticed that the experime
dispersion is dependent uponk' . If a double-chain is iso-
lated from each other, there should not be thek' depen-
dences. Therefore, it might be evidence of two-dimensio
interaction couplings. This point is left for future study.

One usually fits the susceptibility data to the theoreti
expressionx(T)5(1/2ApaT)exp(2D/T), given by Troyer
et al.9 supposing the formek5D1auk2pu2 for the magnon
dispersion. This expression is valid whenT!D,D, whereD
is the bandwidth of the magnon dispersion. If we take
effect of the bandwidth into account, we obtain

x~T!5
e2D/T

2pAaT
gS 1

2
,
D

T D , ~6!

whereg(x,p) is the incompleteg function defined by

g~x,p![E
0

p

tx21e2tdt. ~7!

SinceD!D from Fig. 4,x(T) behaves as

x~T!;5
e2D/T

2ApaT
S 12A T

pD
e2D/TD ~T!D!D!,

1

p
AD

a

e2D/T

T S 12
3D

T D ~D!T!D!.

~8!

Thus, the expression of Troyer overestimates the suscep
ity. In the fitting for KCuCl3 by Tanakaet al.,4 the theoreti-
cal curve of Troyer severely deviates from the experimen
curve for T.20 K, which is well explained byD
52.2 meV525 K of the ‘‘ladder’’ model in our estimate.

In summary, we have analyzed the susceptibility and
neutron-scattering measurements on the KCuCl3 from the
theoretical point of view. Large-scale quantum Monte Ca
simulations clarified that this compound is well explained
the double-spin-chain Hamiltonian with strongantiferromag-

p
FIG. 4. The dispersion relation of the excited states of the s

tem. Zig-zag:J15J358.35 K andJ256J1, Ladder:J1512.3 K,
J350, and J254J1, and Bond alternation:J3512.9 K, J150,
andJ254J3, respectively. The neutron-scattering experimental d
are plotted by circles for the constant wave number perpendicula
the chaink'50, and by solid squares fork'5p.
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netic dimerization. Since the susceptibility alone is not s
ficient to determine all the interaction-bond strengths,
also calculated the dispersion relation of the excited stat
comparison with recent neutron-scattering experiments.
long as we restrict our theoretical analysis to the isola
double-spin-chain Hamiltonian, the best one to explain b
measurements is the ladder model, which is defined byJ1
512.3 K,J254J1, J350, andg52.05. Thisg value agrees
with the ESR measurement.10 However, the experimenta
dispersion relation has a strong dependence on the con
wave number perpendicular to the chain,k' , which cannot
be explained by our theoretical analysis on the isola
double-spin-chain model. Thus, the system may have t
dimensional interactions that are not relevant at low temp
tures.

The quantum Monte Carlo simulation has become
most realistic method to investigate the various quasi-o
s.
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dimensional compounds that can be expressed by the ge
double-spin-chain Hamiltonian, even if the system has fr
tration. Present calculations can be extended to analyze o
experiments easily. For example, we comment on that
Cu2(1,4-Diazacycloheptane)2Cl4, recently done by Hamma
et al.7 Their susceptibility data are consistent with our calc
lations down to the lowest temperature that could not
obtained by numerical diagonalization. The choice of the
teractions isJ15J352.26 K, J256J1, andg52.04.
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