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Theoretical analysis of the experiments on the double-spin-chain compound KCugl
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We have analyzed the experimental susceptibility data of Kga@d found that the data are well explained
by the double-spin-chain models with strong antiferromagnetic dimerization. Large quantum Monte Carlo
calculations were performed in the spin systems with frustration. This was made possible by removing the
negative-sign problem with the use of the dimer basis that has spin-reversal symmetry. The numerical data
agree with the experimental data within 1% relative errors in the whole temperature region. We also present a
theoretical estimate for the dispersion relation and compare it with recent neutron-scattering experiments.
Finally, the magnitude of each interaction bond is predici80163-18208)04730-4

The low-dimensional quantum systems with an excitationtion of the interaction bonds that explain KCyCFor this
energy gap are now attracting much interest both experimerpurpose, it is necessary to calculate the dispersion relation of
tally and theoretically. The possibility of highT, supercon- the excited state in comparison with the neutron-scattering
ductivity upon doping carriers to the gapped insulator lies agxperimental results. The susceptibility alone is not sufficient
the background. The spin-ladder model and its realization ino discuss the details of the system, since it is the integrated
a real compound SrGM@; may be the most well-known sub- quantity. We use our analytic expression for the dispersion
stance for this scenarfoOf course, various other compounds relation obtained recently for general double-spin-chain
are also synthesized, which can be explained by the lowmodels'? Our analysis partly disagrees with the experiments,
dimensional quantum spin Hamiltonidrf These experi- which may be understood by possible two-dimensional cou-
mental achievements now offer much data for theoretical inplings.
vestigations. We consider the following spin Hamiltonian under the

Tanakaet al* have measured the magnetic susceptibilityopen boundary conditions:
of the KCuC}, and proposed that it can be explained by the
double-spin-chain Hamiltonian. The susceptibility data show N-1
the spin-gap behavior. They estimated the amount of the ex- H=, {31(0n- O g+ T Tosr)
citation gapA by fitting the low-temperature data with its n=1
theoretical expressiony(T)«T~ Y2exp(—A/T), given by
Troyeret al® The estimated gag\/kg~35 K, is consistent
with their recent measurements of the magn%ization ProcesSere, N is the linear size of the system, ahal|=| 74 =1/2.
at low temperature, which gives/kg~31.1 K. Figure 1 shows the shape of the lattice.

For a thorough understanding of the system, it is neces- "1 oo cases of the above Hamiltonidi, J; = Jg, (i) J3

sary to determine the strength of each interaction bond of thg0 and(iii) J,=0, are especially investigated. In each case
model Hamiltonian that best describes the subject matena!]2 is a set variable ranging frody=—8 to J,= 8. The first

For frustrated systems, one usually calculates all the eigeQ)-ne J,=1J,, is what we call here the “zig-zag” or, more
values of a given model Hamiltonian on a finite lattice by the _ m’mi)nlyaythe railroad-trestle model. This model has frus-

numgrlcal dlagqnahzafuqn, and then compares the ob_tame ation for J,>0, and thus have not been analyzed on its
physical quantities at finite temperatures with the experimen;,

tal data. Since the numerical diagonalization technique is ret_hermodynamm properties yet. The second_ one 1 t.he ordi-
stricted .to very small sizes with 18=1/2 spins or less, the nary two-leg f‘Iadder” model, and _the thlrd. one is the
results suffer a severe finite-size effect. The quanturT; Mont“bond-alternatu_)n” _model. By chgngmg the sian of g
Carlo (QMC) method can handle mucﬁ larger systems, bu ond, the Hamiltonian can describe both the dlmgr-gap sys-
has not been applied to the frustrated systems becausé of t em and the Haldane-gap system. The d|ff_erence in the origin
. : Fthe gap affects the structure of the excited states and thus

negative-sign problem. Recently, one of the authors has
solved this problem in the double-spin-chain systenit T e 1 T 1
makes it possible to treat large system sizes even at very low L 273 n  ‘n+l
temperatures, and thus we are able to compare directly the JZAZ,;I/]W
numerical results to the experimental data without suffering Ly,
the size effect. 6, S O3 o, O..1

In this paper, we calculate the susceptibility of the double-
spin-chain model with 162 spins, and aim at the determina- FIG. 1. Shape of the general double-spin-chain model.

+J20’n'Tn+J3Tn'0'n+1}+\]20'N'TN. (1)

0163-1829/98/58)/2411(4)/$15.00 PRB 58 2411 © 1998 The American Physical Society



2412 BRIEF REPORTS PRB 58

the finite temperature behavior of various physical quantities.

- . . 6 T T T T
We also comment on this point at the end of this paper. ~ Zig-zag
Before demonstration of the numerical evidence, we 5t o Ladder ]
briefly summarize the simulational technique. We have done al x Bond-alternation]

the ordinary world-line QMC simulations, but the choice of
the representation basis is considered different from the con-
ventional s* one. Two spins, and =,, are coupled and
considered as a unit of an update. This dimer unit takes four
states associated with th& eigenvalues of each spin,
|o?,7%). We rearrange these four states so that they have the
spin-reversal symmetry
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Here,T and | denote thes” eigenstates. Now, twd; bonds &1 ngndr'ﬁgegamn?
and onel; bond become a single effective bond connecting %’ 0l amd periment
w0 5 10 15 20 25 30 35 40

the neighboring dimer units, and thl bond contributes
only to the inner energy of a dimer unit. We can remove the

negative-sign problem by using this representation basis. The i 2. (a) The QMC results of the susceptibilitisymbols
Trotter numberm is chosen so thaB(2J,+Js)/m varies  compared with the experimental ddtime); (b) its low-temperature
from 0.35 to 0.15 at each temperature, and the extrapolationsiot. The number of the spins is 162 and the open boundary condi-
to the infinitem are done. A typical number of Monte Carlo tions are used. The strength of each interaction bond\is Zig-
steps is 500 000, divided into ten parts, to see the statisticabg: J,=J,=8.35 K, J,=6J;, g=2.05, (O) Ladder: J;
deviation. The first 50 000 steps are discarded for the equi=12.3 K, J;=0, J,=4J;, g=2.05, and &) Bond alternation:
librium. The autocorrelation time of the susceptibility is lessJ;=12.9 K,J;=0, J,=4J;, g=2.03, respectively.

than an order of unity.

We have performed simulations for several value3,ah ~ ment are within 1% in every case, and are smallest in the
each choice of thd; and J; bonds. First, we have s&;  “ladder” case. However, it is not clear if the small devia-
=Jz and done simulations thoroughly by changing a value otions among the three cases are relevant or not, because we
J, from —8 to 8 in a step of 2. A rough estimate for the have used a very simplified model spin Hamiltonian for a
value ofJ, is made at this stage. Then, we proceeded to theeal compound. Systematic errors from an adoption of this
other cases]); =0 andJ;=0. model may be the most important ones. Therefore, we cannot

Figure 2a) shows the QMC results of the susceptibility determine the strength of each interaction bond from the fit-
compared with the experimental data, and Figh)3ds its  ting of the susceptibility data alone. The only common fea-
low-temperature plot. The experimental data are the miniture known from this plot is that thd, bond is strongly
mum susceptibility when the magnetic field is applied in thedimerized antiferromagnetically, and thus the origin of the
cleavage plane. The absolute value of the susceptibility degap is the dimer gap.
pends upon the direction of the field, which can be under- This conclusion contradicts the prediction by Tanaka
stood by considering the anisotropy of thealue? Here, the et al* that KCuCl} is the Haldane chain. Thus, we clarify in
g value is determined by comparison at high temperatureghe following the difference of the susceptibility in the
T>100 K. Error bars of the QMC data are almost negli-dimer-gap system and that in the Haldane-gap system. In
gible. The magnitude of each interaction bond is determinedrig. 3, we plot a product of the susceptibility and the tem-
in order that the low-temperature data agree quantitativelperatureyT against the temperature. This value is indepen-
with the experiment. dent from the scale of the interaction bond. We use the loga-

Triangles are the best fit to the experiment in the case ofithmic scale for the temperature axis so that the rescaling of
J1=J3, and the values of the interaction bonds dfe=J;  the temperature by changing the values of interaction bonds
=8.35 K,J,=6J,, i.e., all the interaction bonds are antifer- just causes a parallel shift along the temperature axis. Circles
romagnetic. Theg value g=2.05. Circles are those of the are the data of the dimer-gap systein=J3;=8.35 K, J,
ordinary ladder case, and the values e 12.3 K,J;=0, =6J4, g=2.05, and crosses are those of the Haldane-gap
J,=4J,, and g=2.05. Crosses are the case of the bondsystem:J;=J;=45 K, J,=—4J;, g=2.00. These interac-
alternation model:J;=0, J;=129 K, J,=4J,, and g tions are determined by fitting the low-temperature data,
=2.03. All three data quantitatively agree with the experi-while theg value is estimated at high temperatures. As seen
ment at all the temperatures. Our estimate forghealue is  from this figure, the functional form ofT in the Haldane-
also consistent with the electron-spin resonafi€8R mea- gap system cannot be fit to the experiment by any parallel
surement, givingy= 2.05° Relative errors from the experi- shift.
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FIG. 3. Product of the susceptibility and the temperaiifeis FIG. 4. The dispersion relation of the excited states of the sys-

plotted against the temperature. The QMC results of the dimer-gajem. Zig-zag:J;=J3=8.35 K andJ,=6J;, Ladder:J;=12.3 K,
system ) and the Haldane-gap systenx) are compared with J;=0, andJ,=4J;, and Bond alternationJ;=12.9 K, J;=0,

the experimental datédine). The strength of each interaction bond andJ,=4J3, respectively. The neutron-scattering experimental data
is (0): J;=J3=8.35 K, J,=6J;, g=2.05, and K): J;=J3 are plotted by circles for the constant wave number perpendicular to
=45 K, J,=—4J;, g=2.00, respectively. the chaink, =0, and by solid squares fér, = 7.

For an explanation of this difference, let us consider theequal to zero. Our estimate of the gapigg~38 K, which
dimer limit J;=J3=0, J,>0, where the ground state is an s a little larger than the results of the magnetization process
array of independent singlet dimers and thus is nondegenegxperiment? So, the “ladder’” model may be the most fa-
ate. When the interactions between singlet dimeisdnd  vorable candidate for explaining the KCuyGit the present
Js) are introduced, the ground state is somewhat modifiedstage. However, it should be noticed that the experimental
but still has the nature of the singlet dimer. On the otherdispersion is dependent updn . If a double-chain is iso-
hand, the ground state in the Haldane lindi{=J;=0,J,  lated from each other, there should not be thedepen-
<0, is an array of independent triplet dimers and is highlydences. Therefore, it might be evidence of two-dimensional
degenerate. Whedy andJ; are switched on, the degeneracy interaction couplings. This point is left for future study.
is lifted up, resulting in the unique ground state. The density One usually fits the susceptibility data to the theoretical
of states of low-lying excited states are larger than the singleéxpressionX(T) =(1/2ymaT)exp(—A/T), given by Troyer
dimer case, reflecting this high degeneracy of the groungi g1 supposing the forng,= A+ alk— |2 for the magnon
state at);=J3=0. Therefore, the susceptibility peak in the dispersion. This expression is valid wh&rA,D, whereD
Haldane system becomes lower and broader than in thg the bandwidth of the magnon dispersion. If we take the

dimer system. We may determine the origin of the gap fromeffect of the bandwidth into account, we obtain
the full width at half maximum of the susceptibility, or the

functional form of yT. e AT 1D
We determine the interaction bonds by the dispersion re- T=—"—=v|5,=/, (6)
y p x(T) o \/a_Ty > T

lation of the excitation energy. This value is sensible to the

details of the model. Recently, Katet al'® applied the where y(x,p) is the incompletey function defined by

neutron-scattering analysis on this compound, and presented

the dispersion relation. We compare our analytic dispersion p

relation with this experiment. V(X,D)EJ’ t*~te~'dt. (7)
In our previous papel we have deduced an expression 0

giving the dispersion of the general double-spin-chain syssjnceD<A from Fig. 4, x(T) behaves as
tems as a function of the interaction bonds. There, we em-

ployed a single domain-wall variation after the nonlocal uni- e AIT T
(1— 2\ /—DeD/T> (T<D<A),
o

tary transformatiolf*'® is applied. This approximation is
quite excellent negg= 7, checked with the numerical diago- X(T)~ 2ymaT
nalization results of finite systems, and with exactly known 1 /D e—A/T( 3D)

results. On the other hand, it becomes overestimated as the —\/ = T

(D<T<A).
7= Va T

wave numbek approaches zero. ®)
By using the values of the interaction bonds obtained

from the susceptibility fitting, we give the dispersion of the Thus, the expression of Troyer overestimates the susceptibil-

excitation energy in Fig. 4. The first excitation iskat 7 in ity. In the fitting for KCuCl by Tanakaet al,* the theoreti-

the “zig-zag” and “ladder” models, and is &=0 in the cal curve of Troyer severely deviates from the experimental

“bond-alternation” model. Within our analysis, the first ex- curve for T>20 K, which is well explained byD

citation is always ak= 7 for J;>min(J,,J3)/2, and is oth- =2.2 meV=25 K of the “ladder” model in our estimate.
erwise atk=0, where mind,,J;) stands for the minimum In summary, we have analyzed the susceptibility and the
value ofJ, andJ,. neutron-scattering measurements on the Kgu@m the

The dispersion of the “ladder” case is consistent with thetheoretical point of view. Large-scale quantum Monte Carlo
experimental dispersion parallel to the double chain whersimulations clarified that this compound is well explained by
the constant wave number perpendicular to the ckaiis  the double-spin-chain Hamiltonian with stroagtiferromag-
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netic dimerization. Since the susceptibility alone is not suf-dimensional compounds that can be expressed by the general
ficient to determine all the interaction-bond strengths, wedouble-spin-chain Hamiltonian, even if the system has frus-
also calculated the dispersion relation of the excited state ifration. Present calculations can be extended to analyze other
comparison with recent neutron-scattering experiments. Asgxperiments easily. For example, we comment on that of
|Ong as we restrict our theoretical analySiS to the iSOIatE(tuz(l,4-Diazacyc|0heptan§£|4, recenﬂy done by Hammar
double-spin-chain Hamiltonian, the best one to explain bothet a7 Their susceptibility data are consistent with our calcu-
measurements is the ladder model, which is definedpy |ations down to the lowest temperature that could not be
=12.3 K,Jp=4J3, J3=0, andg=2.05. Thisg value agrees  gptained by numerical diagonalization. The choice of the in-
Wlth thg ESR measureme’r?t.However, the experimental (aractions is);=J;=2.26 K,J,=6J;, andg=2.04.
dispersion relation has a strong dependence on the constant
wave number perpendicular to the chain,, which cannot The authors would like to thank H. Tanaka, T. Kato, and
be explained by our theoretical analysis on the isolated. H. Reich for valuable discussions and for sending us the
double-spin-chain model. Thus, the system may have twoexperimental data. They also acknowledge thanks to H.
dimensional interactions that are not relevant at low temperaNishimori for his diagonalization packageTPACK VER. 2,
tures. and to N. Ito and Y. Kanada for their random-number gen-
The quantum Monte Carlo simulation has become theeratorRNDTIK. A part of the computations were carried out
most realistic method to investigate the various quasi-oneen a Facom VPP500 at the ISSP, University of Tokyo.
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