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Anisotropy-isotropy transition in a Sierpinski gasket fractal

Bibhas Bhattacharyya
Department of Physics, Scottish Church Calleg& 3, Urquhart Square, Calcutta 700 006, India

Arunava Chakrabarti
Department of Physics, University of Kalyani, Kalyani, West Bengal 741 235, India
(Received 6 November 1997; revised manuscript received 18 February 1998

The possibility of restoration of isotropy in a macroscopic scale has been addressed in the case of a
Sierpinski gasket fractal. In recent times it has been shown that for a resistor network with an anisotropic
distribution of the values of the resistances, isotropy, on the macroscopic scale is always restored in the case
of a Sierpinski gasket fractal. We show that the problem of isotropy restoration is not at all trivial when one
considers other problems on the same lattice. As examples, we discuss the cases of an anisotropic Ising model
and a tight-binding model for noninteracting electrons on a Sierpinski gasket fractal. While in the first case,
restoration of isotropy has been shown to be impossible, in the second one restoration does occur, but only in
a very restrictive sens¢S0163-18208)04029-9

The problem of restoration of macroscopic isotrgpp-  isotropic limit is impossible here. This result is in complete
mogenizatioh in fractals with microscopic anisotropy has contrast to a recent claim by Brody and Rita/e discuss the
received attention in recent literaturé.Barlow et al! ad-  cause of the difference in these two results. In the electronic
dressed the problem in the context of finitely and infinitely case, however, we show that a restoration to isotropy, as far
ramified fractals, and have concluded that restoration of isotas the values of the hopping integrals are concerned, is pos-
ropy iS universa'_ Such a phenomenon Stands out to be typﬁlble in a Very I’eStriCtive sense. In What f0||OWS we diSCUSS
cal for fractal systems and does not show up in regulaPur results.
lattices® In Ref. 1 a resistor network is constructed on a Anisotropic Ising model on a Sierpinski gasket
Sierpinski gasketSG) and a carpet to investigate the resto- ~ The Hamiltonian for the Ising model with ferromagnetic
ration of isotropy. Anisotropy is introduced through different coupling between nearest-neighbor spins is given by
values of the resistances connecting the nodal points. For an
SG, restoration has been shown to occur for all initial values H=-S Ji o0 1)
of the anisotropy parametét=R, /R, , R, andR, being the i
two different values of the resistances used. The rates of ] o )
restoration of isotropy have been calculated and differenfvhere the summation runs over all distinct nearest-neighbor
scaling regimes have been identified. Very recently, Lin andNN) pairs(ij). J;; = J, when bothi andj lie on a horizontal
Godd extended the ideas of Barloet al® to a variation of ~Pond[Fig. 1(a)], while J;;=J, for all other bondsJ, andJ,
the SG(the so-called three-simplex latticen which the re-  are different in the anisotropic Ilmlt. We (_:onS|der the param-
sistances are distributed in a hierarchical pattern. They repofiter spacely,J,=0 (ferromagnetic coupling
that the system undergoes an isotropy-anisotropy transition It is well knowrf' that in the isotropic limit §,=J,) and
on tuning the value of the hierarchical parameter. In both thén the decoupled one-dimensional chain limid, €0,y
works referred to above the problem has been investigated ifr 0) the transition temperatur€.=0. Therefore, it is ex-
terms of a resistor network. While the restoration seems alPected that, this system with# J, would not show a finite-
most inevitable in the case of resistive networks, it is nottemperature phase transition. However, it is interesting to see
known whether the same will occur for other problems asvhether such an anisotropic system tends to restore isotropy
well. We therefore find it highly interesting to address the
problem of restoration of macroscopic isotropy in fractals in
the context of two different problems. As a prototype ex-
ample of a finitely ramified fractal we choose an SG. We
then separately study the classical Ising model with aniso-
tropic interactions on this gasket and investigate the possibil-
ity of restoration of macroscopic isotropy. In the other prob-
lem we discuss the case of tightly bound noninteracting
electrons on the same lattice. In this case we distribute the
nearest-neighbor hopping integrals in an anisotropic fashion,
We study both the problems within the framework of a real-
space renormalization-groulRSRG method. In the first
problem, i.e., the spin model we analyze the flow of the FIG. 1. (a) Part of an infinite Sierpinski gasket aftg) its renor-
anisotropic exchange terms to show that a restoration to thealized version. Anisotropic coupling constants have been shown.

Ix

(b)
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on a larger length scale. To investigate this, we rescale the 2
lattice using the standard RSRG technifuEhe scaled lat-
tice is shown in Fig. (b). The renormalized coupling con- s
stants are given by '

) ,
Ky =7 N AK, K B(K K )ICAK K], @) B 1

1 0.5
Ky = ILA(K,. Ky )/B(K, Ky, 3)

where 0

A(Ky,K,)=e¥*x cosh &, +e 3 x+e "x cosh K +eXx,
(4) FIG. 2. Flow diagram in theK,-K, space. Initial points are
marked by solid circles.
B(Ky,Ky) =€ cosh X, +e~3x+e "x cosh K, +ex,
(5)  that for any starting point in the parameter space that is be-
low the isotropy line, the RG flow initially approaches the
C(Ky.,Ky)=e"x cosh K +e"x+2e " x cosh X, (6) isotropy line from below and finally reaches the (0,0) FP.
In both the situations above, the bending of the flow line
the Boltzmann constant. Primed quantities refer to the ren0|j-ndi.Cates that the pgrameters have en.tered the weak-coupling
malized values. It is easy to check that the above recursioff3'me- However, it shoulld be. ment_loned that, if we start
relations reproduce those of Gefenal? in the isotropic  With Ky=0, the RG flow is unidirectional to the (0,0) FP
limit J,=J,. Additionally, it is expected that, if one starts along theK, axis. This essentially shows that starting with a
with the initial value ofJ,=0 with any arbitrary nonzero set of decoupled c_haln_s one shogld not restore the coupling
value ofJ,, thend, should continue to be zero under suc- in the transverse direction at any iteration. If one starts very

cessive renormalization, since the gasket now consists ofgfse to theK, axis (the gasket now behaves as a set of

whereK;=J; /KT, i=x ory, T is the temperature, arklis

set of decoupled chains. On the other hand, even if we set, ain; very weakly coupled to each other i,n the transverse
irection, the RG flow bends towards ttg, axis at the very

Jx=0 andJ, nonzero at the beginning, should grow non- .
zero values under iteration, as different sites on the “hori-2Utset z;nd then continues t_o flow towards the (0,0) FP.
In Fig. 3 we plot the isotropy paramet&®®=K,/K,

zontal” axis will be connected via the “angular” bonds at | s 4 )
different scales of length. These two essential features argYx/Jy @gainst the number of iteratioms It is seen that for
correctly reproduced from the set of recursion relations de@!! initial values ofR, it ultimately flows away from unity,
rived above. Analysis of the recursion relatiof® and (3) |_nd|ca_t|ng'an absence of rest_orat'lon. The bending of the flow
reveals that there are two fixed poifEP’9): a stable one at IN€S in Fig. 2 are reflected in Fig. 3 also. It may be noted
(0,0) and an unstable one ak (). This shows that indeed that in Fig. 3 we have takedy =1 for all starting values of
T.=0 for such a system and any such system with fidjte R.I Howef\llqer, QneF.cag tChongy arbltrargyt_(fO{ the _lsamet
values ofR as in Fig. 3 to obtain a qualitatively similar se
andJy flows down to the FP at (0,0). However, when one diagrams which %Iwa s confirm ?hat there \yvill be no res-
addresses the question of restoration of isotropy, one shouf}f diagrams Y ,
look at the flow of the parametets, andK, or, at the ratio ~ toration of isotropy for the above spin model.
K, /K, under successive renormalization. It is extremely im- At this point, it is essential that we discuss the cause that
portary1t to appreciate that bokty, andK, approach zero un- makes our result totally different from that in Ref. 3. In their
y . [ H 1
der iteration as (0,0) is a stable fixed point. One can nov\yvo(;k,hBrc?‘dy anld B'ti ha\l{e rescaled b;(th th% Khor'lzontal
work out a little bit of algebra to discover that, when béth and the “angular” coupling constantsk and K, in our
and K, become very very small we call it the “weak-

coupling limit”), thenK;=KZ andK;=K?, so that the ratio e ' ' ' ' ' '

K)’(/K)’, either blows up or flows down to zero, depending on ‘ i
the initial choice of values. This is shown schematically in 351 ]
Fig. 2 where we have divided thi€,-K, parameter space 3r 7
into two zones by the “isotropy line 'K,=K, . Now if we 25 | -

start with a point above the “isotropy line,” for several ini- R 2l 4
tial stages of iteration the parameters approach the isotrog
line, but always from above. As we keep on renormalizing,
at one stage botK, andK, become very small, i.e., they
enter the “weak-coupling regime.” But, as the raiq /K, 0.5 7\/—\ 7
still remains less than unity and ls(é/K)’,:(KX/Ky)2 in this 0 ! : : : :

limit, the ratio keeps on decreasing and ultimately flows to 0 > 10 18 20 # 3 3
the value zero. This is why in Fig. 2 we find an initial bend-
ing of flow towards the isotropy line and then its recession FIG. 3. Variation of the ratid,/J, under iteration for different
from the same to the FP (0,0). A similar reasoning showsstarting values. The dotted line refersdp=J, .
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cas@ by an arbitrary factor at each step of renormalization.
The scale factor has been chosen to b€, () at thenth
stage of iteration. They have rescaled by this factor in order
to keep the value of the other coupling constant equal to
unity at all stages of renormalization. As a result, the cou-
pling constants arenever allowedto enter the “weak-
coupling regime” and hence there is an apparent restoration
of isotropy. t( n tx

To end this section we note that a similar decimation o ) o )
study can easily be done with the antiferromagnetic case as FIG- 4. The two distinct types of vertices with site energées
well. and u in the electronic case.

Tightly bound electron with anisotropic hopping ampli-
tudes on a Sierpinski gasket: where summation extends over NN pafi$). Hopping in-

We start by describing a single electron on an infinite SGegralt;;=t, for i andj lying on a horizontal bond antj;
lattice by the usual tight-binding Hamiltonian in the Wannier =t otherwise.e,, is the on-site potential at theth atomic
representation, site. In particular,e,= € for the siten joining onet, bond

with threet, bonds whilee,= u for the siten joining two't,
bonds with twot, bonds(Fig. 4).
_ T T Here also we use the RSRG scheme to rescale the lattice
H Z 6I|I><I|+<i2j> LI @ and this yields the following recursion relations:

: {

' (Z2—1)2—4Z°X—X?—27Z?X?—3Z7°XY—2Z%2Y - XY+ X3Y ®
(X+2Z2)24(2+Y)Z%2-1 ’

v X2Y2—2X2—A72XY—Y2—-272Y — 472X — 472+ 27%+2

(X+2%%+(2+Y)2%-1 ’ ©
ZZ
. (Y+2)(X+1) | 10
(X+2Z%)?%+(2+Y)Z?—1
|
where we have defined three dimensionless param¥teys Of the two stable FP’s the first one at (0,0,1) is stable in
andZ as follows: the sense that if we start out with small deviations from zero
in the values oiX andY, while maintainingZ=1, then the
(E—¢) system flows back to (0,0,1). This is, however, not a case of
X=—— (1) restoration of isotropy a&=t, /t, is always one. Linearizing
x Egs.(8)—(10) around the stable F®,4,1), we get an eigen-
value 4/5 which corresponds to an eigenvector
vo BEom 1z (8X.8Y.62)=(3.2,1). This implies that (4,4,1) is a stable
ty ' FP only if we start with initial values of the quantitiés Y,
and Z that lie on the eigenvector (3,2,1) terminating at
t (4,4,1) in the parameter space. For any such starting set of
Z= t_y (13)  values ofX, Y, andZ, the recursion relations flow down to
X

(4,4,1) even if we start witiz# 1. That is, starting with
microscopic anisotropy we can restore isotropy in the
—oo |imit ( n being the number of iteratiopprovided we are
Bn the line given bydX:8Y:6Z=3:2:1. Therestoration is,

Here, E is the energy of the electron and the paraméter
really measures the degree of anisotropy in hopping. Th

primed quant_ities in the recursion relat_ioﬁ&—(lO) refer to_ . therefore, highlyrestrictive We have been able to find two

the rgnormahzed Oones. we want to find out whether 1 ISgistinct scaling regimes for the isotropy parameteon the

possible to restore the isotropic lindt=1 at a Macroscopic |ine sX:5Y:6Z=3:2:1 around the EP (4,4,1). These are

scale under RSRG flow by starting from a microscopic anyjiscussed below:

isotropy, i.e.,Z#1; and even if it is possible, what are the (i) Z=1 andZ=<1: If we are close to the isotropic zone

restrictions imposed on the flow. either from above or below the value of unity, we can find
To this end we analyze the recursion relatié8ls-(10) to  the rate of restoration of isotropy by noting that

help us find the FP’s. These are (0,0,1), (4,4,18,%<,1),

(—=2,0,—-1) out of which the nontrivial stable FP’'s are

Z(n+1)_1zl_1(z(n)_1)
(0,0,1) and (4,4,1) while{2,0,—1) is an unstable FP. 5
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in the limit n—co. The superscript refers to the RG iteration. in the limit n—oo.

(i) Z>1: In this highly anisotropic region, one can ana- In conclusion, we note that a restoration to macroscopic
lyze the recursion relatioflL0) for Z’, keeping in mind that isotropy, starting from microscopic anisotropy, though al-
X andY will always be related t& in the mannerX=3Z  most trivially possible in the case of resistance networks on a
+1 andY=2Z+2, so that K,Y,Z) is a point on the above- fractal system, it is not so for other models on the same

mentioned eigenvector. The analysis then yieldsZrl,  fractal lattice. For simple Ising spins on a Sierpinski gasket
such a restoration has been shown to be impossible in con-
32 1 trast to a recent demand, whereas, for a tight-binding model
zZt=6— o) + (W) for noninteracting electrons isotropy in the large scale is re-
z 74 stored only for a very specific model.
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