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Anisotropy-isotropy transition in a Sierpinski gasket fractal
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The possibility of restoration of isotropy in a macroscopic scale has been addressed in the case of a
Sierpinski gasket fractal. In recent times it has been shown that for a resistor network with an anisotropic
distribution of the values of the resistances, isotropy, on the macroscopic scale is always restored in the case
of a Sierpinski gasket fractal. We show that the problem of isotropy restoration is not at all trivial when one
considers other problems on the same lattice. As examples, we discuss the cases of an anisotropic Ising model
and a tight-binding model for noninteracting electrons on a Sierpinski gasket fractal. While in the first case,
restoration of isotropy has been shown to be impossible, in the second one restoration does occur, but only in
a very restrictive sense.@S0163-1829~98!04029-6#
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The problem of restoration of macroscopic isotropy~ho-
mogenization! in fractals with microscopic anisotropy ha
received attention in recent literature.1,2 Barlow et al.1 ad-
dressed the problem in the context of finitely and infinite
ramified fractals, and have concluded that restoration of i
ropy is universal. Such a phenomenon stands out to be t
cal for fractal systems and does not show up in regu
lattices.1 In Ref. 1 a resistor network is constructed on
Sierpinski gasket~SG! and a carpet to investigate the rest
ration of isotropy. Anisotropy is introduced through differe
values of the resistances connecting the nodal points. Fo
SG, restoration has been shown to occur for all initial valu
of the anisotropy parameterH5Ry /Rx , Ry andRx being the
two different values of the resistances used. The rate
restoration of isotropy have been calculated and differ
scaling regimes have been identified. Very recently, Lin a
Goda2 extended the ideas of Barlowet al.1 to a variation of
the SG~the so-called three-simplex lattice! in which the re-
sistances are distributed in a hierarchical pattern. They re
that the system undergoes an isotropy-anisotropy trans
on tuning the value of the hierarchical parameter. In both
works referred to above the problem has been investigate
terms of a resistor network. While the restoration seems
most inevitable in the case of resistive networks, it is n
known whether the same will occur for other problems
well. We therefore find it highly interesting to address t
problem of restoration of macroscopic isotropy in fractals
the context of two different problems. As a prototype e
ample of a finitely ramified fractal we choose an SG. W
then separately study the classical Ising model with an
tropic interactions on this gasket and investigate the poss
ity of restoration of macroscopic isotropy. In the other pro
lem we discuss the case of tightly bound noninteract
electrons on the same lattice. In this case we distribute
nearest-neighbor hopping integrals in an anisotropic fash
We study both the problems within the framework of a re
space renormalization-group~RSRG! method. In the first
problem, i.e., the spin model we analyze the flow of t
anisotropic exchange terms to show that a restoration to
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isotropic limit is impossible here. This result is in comple
contrast to a recent claim by Brody and Ritz.3 We discuss the
cause of the difference in these two results. In the electro
case, however, we show that a restoration to isotropy, as
as the values of the hopping integrals are concerned, is
sible in a very restrictive sense. In what follows we discu
our results.

Anisotropic Ising model on a Sierpinski gasket:
The Hamiltonian for the Ising model with ferromagnet

coupling between nearest-neighbor spins is given by

H52(̂
i j &

Ji j s is j , ~1!

where the summation runs over all distinct nearest-neigh
~NN! pairs^ i j &. Ji j 5Jx when bothi and j lie on a horizontal
bond@Fig. 1~a!#, while Ji j 5Jy for all other bonds.Jx andJy
are different in the anisotropic limit. We consider the para
eter spaceJx ,Jy>0 ~ferromagnetic coupling!.

It is well known4 that in the isotropic limit (Jx5Jy) and
in the decoupled one-dimensional chain limit (Jy50,Jx
.0) the transition temperatureTc50. Therefore, it is ex-
pected that, this system withJxÞJy would not show a finite-
temperature phase transition. However, it is interesting to
whether such an anisotropic system tends to restore isot

FIG. 1. ~a! Part of an infinite Sierpinski gasket and~b! its renor-
malized version. Anisotropic coupling constants have been sho
2376 © 1998 The American Physical Society
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PRB 58 2377BRIEF REPORTS
on a larger length scale. To investigate this, we rescale
lattice using the standard RSRG technique.4 The scaled lat-
tice is shown in Fig. 1~b!. The renormalized coupling con
stants are given by

Kx85
1

4
ln@A~Kx ,Ky!B~Kx ,Ky!/C2~Kx ,Ky!#, ~2!

Ky85
1

4
ln@A~Kx ,Ky!/B~Kx ,Ky!#, ~3!

where

A~Kx ,Ky!5e3Kx cosh 6Ky1e23Kx1e2Kx cosh 2Ky1eKx,
~4!

B~Kx ,Ky!5e3Kx cosh 2Ky1e23Kx1e2Kx cosh 2Ky1eKx,
~5!

C~Kx ,Ky!5eKx cosh 4Ky1eKx12e2Kx cosh 2Ky , ~6!

whereKi5Ji /kT, i 5x or y, T is the temperature, andk is
the Boltzmann constant. Primed quantities refer to the ren
malized values. It is easy to check that the above recur
relations reproduce those of Gefenet al.4 in the isotropic
limit Jx5Jy . Additionally, it is expected that, if one start
with the initial value ofJy50 with any arbitrary nonzero
value of Jx , thenJy should continue to be zero under su
cessive renormalization, since the gasket now consists
set of decoupled chains. On the other hand, even if we
Jx50 andJy nonzero at the beginning,Jx should grow non-
zero values under iteration, as different sites on the ‘‘ho
zontal’’ axis will be connected via the ‘‘angular’’ bonds a
different scales of length. These two essential features
correctly reproduced from the set of recursion relations
rived above. Analysis of the recursion relations~2! and ~3!
reveals that there are two fixed points~FP’s!: a stable one a
~0,0! and an unstable one at (`,`). This shows that indeed
Tc50 for such a system and any such system with finiteJx
and Jy flows down to the FP at (0,0). However, when o
addresses the question of restoration of isotropy, one sh
look at the flow of the parametersKx andKy or, at the ratio
Kx /Ky under successive renormalization. It is extremely i
portant to appreciate that bothKx andKy approach zero un
der iteration as (0,0) is a stable fixed point. One can n
work out a little bit of algebra to discover that, when bothKx
and Ky become very very small~ we call it the ‘‘weak-
coupling limit’’ !, thenKx8.Kx

2 andKy8.Ky
2 , so that the ratio

Kx8/Ky8 either blows up or flows down to zero, depending
the initial choice of values. This is shown schematically
Fig. 2 where we have divided theKx-Ky parameter space
into two zones by the ‘‘isotropy line ’’Kx5Ky . Now if we
start with a point above the ‘‘isotropy line,’’ for several in
tial stages of iteration the parameters approach the isot
line, but always from above. As we keep on renormalizin
at one stage bothKx and Ky become very small, i.e., the
enter the ‘‘weak-coupling regime.’’ But, as the ratioKx /Ky

still remains less than unity and asKx8/Ky8.(Kx /Ky)
2 in this

limit, the ratio keeps on decreasing and ultimately flows
the value zero. This is why in Fig. 2 we find an initial ben
ing of flow towards the isotropy line and then its recess
from the same to the FP (0,0). A similar reasoning sho
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that for any starting point in the parameter space that is b
low the isotropy line, the RG flow initially approaches th
isotropy line from below and finally reaches the (0,0) FP.

In both the situations above, the bending of the flow lin
indicates that the parameters have entered the weak-coup
regime. However, it should be mentioned that, if we sta
with Ky50, the RG flow is unidirectional to the (0,0) FP
along theKx axis. This essentially shows that starting with
set of decoupled chains one should not restore the coupl
in the transverse direction at any iteration. If one starts ve
close to theKx axis ~the gasket now behaves as a set o
chains very weakly coupled to each other in the transve
direction!, the RG flow bends towards theKx axis at the very
outset and then continues to flow towards the (0,0) FP.

In Fig. 3 we plot the isotropy parameterR5Kx /Ky
5Jx /Jy against the number of iterationsn. It is seen that for
all initial values ofR, it ultimately flows away from unity,
indicating an absence of restoration. The bending of the flo
lines in Fig. 2 are reflected in Fig. 3 also. It may be note
that in Fig. 3 we have takenJy51 for all starting values of
R. However, one can chooseJy arbitrarily ~for the same
values ofR as in Fig. 3! to obtain a qualitatively similar set
of diagrams which always confirm that there will be no re
toration of isotropy for the above spin model.

At this point, it is essential that we discuss the cause th
makes our result totally different from that in Ref. 3. In the
work, Brody and Ritz3 have rescaled both the ‘‘horizontal’’
and the ‘‘angular’’ coupling constants (Kx and Ky in our

FIG. 2. Flow diagram in theKx-Ky space. Initial points are
marked by solid circles.

FIG. 3. Variation of the ratioJx /Jy under iteration for different
starting values. The dotted line refers toJx5Jy .
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2378 PRB 58BRIEF REPORTS
case! by an arbitrary factor at each step of renormalizatio
The scale factor has been chosen to be 1/Kx(n) at thenth
stage of iteration. They have rescaled by this factor in or
to keep the value of the other coupling constant equa
unity at all stages of renormalization. As a result, the c
pling constants arenever allowed to enter the ‘‘weak-
coupling regime’’ and hence there is an apparent restora
of isotropy.

To end this section we note that a similar decimat
study can easily be done with the antiferromagnetic cas
well.

Tightly bound electron with anisotropic hopping amp
tudes on a Sierpinski gasket:

We start by describing a single electron on an infinite
lattice by the usual tight-binding Hamiltonian in the Wann
representation,

H5(
i

e i u i &^ i u1(̂
i j &

t i j u i &^ j u , ~7!
r
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where summation extends over NN pairs^ i j &. Hopping in-
tegral t i j 5tx for i and j lying on a horizontal bond andt i j
5ty otherwise.en is the on-site potential at thenth atomic
site. In particular,en5e for the siten joining one tx bond
with threety bonds while,en5m for the siten joining two tx
bonds with twoty bonds~Fig. 4!.

Here also we use the RSRG scheme to rescale the la
and this yields the following recursion relations:

FIG. 4. The two distinct types of vertices with site energiese
andm in the electronic case.
X85
~Z221!224Z2X2X222Z2X223Z2XY22Z2Y2XY1X3Y

~X1Z2!21~21Y!Z221
, ~8!

Y85
X2Y222X224Z2XY2Y222Z2Y24Z2X24Z212Z412

~X1Z2!21~21Y!Z221
, ~9!

Z85
Z2~Y12!~X11!

~X1Z2!21~21Y!Z221
, ~10!
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where we have defined three dimensionless parametersX, Y
andZ as follows:

X5
~E2e!

tx
, ~11!

Y5
~E2m!

tx
, ~12!

Z5
ty

tx
. ~13!

Here, E is the energy of the electron and the parameteZ
really measures the degree of anisotropy in hopping.
primed quantities in the recursion relations~8!–~10! refer to
the renormalized ones. We want to find out whether it
possible to restore the isotropic limitZ51 at a macroscopic
scale under RSRG flow by starting from a microscopic
isotropy, i.e.,ZÞ1; and even if it is possible, what are th
restrictions imposed on the flow.

To this end we analyze the recursion relations~8!–~10! to
help us find the FP’s. These are (0,0,1), (4,4,1), (`,`,1),
(22,0,21) out of which the nontrivial stable FP’s ar
(0,0,1) and (4,4,1) while (22,0,21) is an unstable FP.
e

s

-

Of the two stable FP’s the first one at (0,0,1) is stable
the sense that if we start out with small deviations from z
in the values ofX andY, while maintainingZ51, then the
system flows back to (0,0,1). This is, however, not a case
restoration of isotropy asZ5ty /tx is always one. Linearizing
Eqs.~8!–~10! around the stable FP~4,4,1!, we get an eigen-
value 4/5 which corresponds to an eigenvec
(dX,dY,dZ)5(3,2,1). This implies that (4,4,1) is a stab
FP only if we start with initial values of the quantitiesX, Y,
and Z that lie on the eigenvector (3,2,1) terminating
(4,4,1) in the parameter space. For any such starting se
values ofX, Y, andZ, the recursion relations flow down t
(4,4,1) even if we start withZÞ1. That is, starting with
microscopic anisotropy we can restore isotropy in then
→` limit ( n being the number of iterations! provided we are
on the line given bydX:dY:dZ53:2:1. Therestoration is,
therefore, highlyrestrictive. We have been able to find tw
distinct scaling regimes for the isotropy parameterZ on the
line dX:dY:dZ53:2:1 around the FP (4,4,1). These a
discussed below:

~i! Z*1 andZ&1: If we are close to the isotropic zon
either from above or below the value of unity, we can fi
the rate of restoration of isotropy by noting that

Z~n11!21.
4

5
~Z~n!21!
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in the limit n→`. The superscript refers to the RG iteratio
~ii ! Z@1: In this highly anisotropic region, one can an

lyze the recursion relation~10! for Z8, keeping in mind that
X andY will always be related toZ in the manner,X53Z
11 andY52Z12, so that (X,Y,Z) is a point on the above
mentioned eigenvector. The analysis then yields, forZ@1,

Z~n11!562
32

Z~n!
1OS 1

Z~n!2D
.

in the limit n→`.
In conclusion, we note that a restoration to macrosco

isotropy, starting from microscopic anisotropy, though a
most trivially possible in the case of resistance networks o
fractal system, it is not so for other models on the sa
fractal lattice. For simple Ising spins on a Sierpinski gask
such a restoration has been shown to be impossible in c
trast to a recent demand, whereas, for a tight-binding mo
for noninteracting electrons isotropy in the large scale is
stored only for a very specific model.
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