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Periodic orbit theory for realistic cluster potentials

Erik Koch
Max-Planck-Institut fu¨r Festkörperforschung, D-70569 Stuttgart, Germany

~Received 9 January 1998!

The formation of supershells observed in large metal clusters can be qualitatively understood from a periodic
orbit expansion for a spherical cavity. To describe the changes in the supershell structure for different mate-
rials, one has, however, to go beyond that simple model. We show how periodic orbit expansions for realistic
cluster potentials can be derived by expandingonly the classical radial action around the limiting case of a
spherical potential well. We give analytical results for the leptodermous expansion of Woods-Saxon potentials,
and show that it describes the shift of the supershells as the surface of a cluster potential becomes softer.
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I. INTRODUCTION

One of the most surprising aspects of the physics of m
clusters is the supershell structure observed in m
abundance spectra.1–4 This feature can be traced back to
beating pattern in the density of states for typical clus
potentials.5 The conceptual framework for understandi
how this quantum interference comes about is provided
periodic orbit theory.6,7 The elegance of this approach res
on the fact that the periodic orbit expansion~POE! is known
analytically for the spherical cavity. For this model potent
it was found that the most important contributions to t
oscillating part of the density of states stem from the t
shortest planar periodic orbits: triangular and square orb
Since these contributions oscillate with similar frequenci
their interference gives rise to a beating pattern, hence su
shells.

Although a spherical potential well is a good first appro
mation to a cluster potential, this model clearly cannot
count for the changes in the electronic shell and supers
structure observed for clusters made of different material
is therefore desirable to understand how the periodic o
expansion is modified as one considers more realistic m
potentials. A straightforward approach for doing so is
solve the action integrals, which lie at the heart of perio
orbit theory, numerically. That way, however, most of t
elegance and power of the periodic orbit expansion is l
An analytical expression, on the other hand, may well rev
the relevant parameters determining the supershell struc
and provide insight into how it changes as the cluster po
tial is varied. They should prove especially helpful in t
search for better self-consistent models, which properly
scribe the experimental data.

While the simple spherical, homogeneous jelliu
model8,9 works quite well for the alkali clusters, it fails to
describe the supershell structure observed in GaN .4 Attempts
to improve the situation include, e.g., the introduction
smooth jellium profiles,10 the inclusion of pseudo
potentials,11–13 or the consideration of surface roughness.14

The present work arises from the desire to understand
simple spherical, homogeneous jellium model. An analy
of the density dependence of the electronic supershell
jellium clusters showed that the supershells are shifted as
PRB 580163-1829/98/58~4!/2329~11!/$15.00
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potential at the cluster surface becomes softer.15 It has been
demonstrated that this shift can be understood in the fra
work of a periodic orbit expansion for typical self-consiste
cluster potentials.16 The purpose of the present paper is
give a derivation of the leptodermous expansion, which
quires the linearization ofonly the radial action. We further-
more analyze the validity of the approximations involve
and show comparisons with quantum-mechanical calc
tions.

To set the stage for the semiclassical treatment of e
tronic supershells, Sec. II gives a review of the shell corr
tion methods.17–19 These methods establish a systematic
lation between self-consistent calculations and one-elec
calculations for suitable model potentials. We stress the
that it is decisive to choose families of potentials that va
smoothly with cluster size, to describe the electronic sh
structure properly.

Section III is devoted to periodic orbit expansions. W
sketch the derivation of the POE for the oscillating partr̃ of
the density of states using the path-integral formalism alo
the lines given by Gutzwiller.7 Special attention is paid to th
rate of convergence of the sum over classical periodic orb
Since the shell and supershell structure observed in the m
spectra of metal clusters are not directly linked tor̃ but
rather the variationsẼ in total energy, we proceed to derive
a periodic orbit expansion forẼ. We find that the latter ex-
pansion converges much more rapidly than that for the d
sity of states, hence making any artificial smoothing of t
spectrum, commonly introduced to lessen the contribution
the longer orbits tor̃,6,5,20superfluous. To assess the validi
of the expression forẼ, we check the truncated POE again
the quantum-mechanical result. This comparison shows
in the size range, which seems experimentally accessiblẼ
is well described by a truncated POE, taking only triangu
and square orbits into account. This justifies the comm
practice of truncating the POE after the two shortestplanar
orbits.

In Sec. IV we show how to extend the periodic orb
expansion ofẼ to more realistic potentials. We start from th
observation that the surface widtha of the cluster potential is
an important parameter determining the supersh
structure.15 The basic idea is then to expand the action in
grals entering the POE around the analytically known res
2329 © 1998 The American Physical Society
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2330 PRB 58ERIK KOCH
for a potential well. It turns out that the actions can be ve
well approximated by linear functions in the surface para
etera/R0, whereR0 is the radius of the cluster. Thus a fini
surface width leaves the frequencies in the POE unchan
and, to first order, only introduces phase shifts. Taking a
the change of the Fermi energy into account, we can un
stand the changes in the electronic shells and supers
introduced by a soft potential surface. The technical det
of the leptodermous expansion for Woods-Saxon poten
are described in the Appendix. To simplify the notation,
set\2/2m to unity, i.e., we give lengths in Bohr radii (a0),
and energies in Rydberg.

II. SHELL CORRECTION METHODS

The total energyE(N) of clusters havingN valence elec-
trons can be split into smooth and oscillating parts:

E~N!5Ē~N!1Ẽ~N!. ~1!

The smooth part describes the overall change in energ
the cluster size increases, and is given by a liquid d
expansion21,22

Ē~N!5a1N1a2N2/31a3N1/31•••. ~2!

The oscillating part is responsible for the shell structure.
The idea of shell correction methods is to give a presc

tion for determiningẼ(N) from a one-particle calculation
These methods were pioneered by Strutinsky and
workers, who showed how the oscillating part of the to
energy resulting from a Hartree-Fock calculation for atom
nuclei can be determined from the sum of the single-part
energies(em of a suitably defined potential.17,18 A similar
result holds forẼ(N) extracted from local-density-functiona
calculations.19 The latter are more common for met
clusters.9,23,24 For clarity, and to fix the notation, we give
short outline of the relevant argument.

To find the ground-state energy of a system ofN electrons
using density-functional theory, we use the Kohn-Sh
formalism.25,26Starting from some electron densityn0(r ) we
have to solve the Kohn-Sham equations with the potenti

VKS~rW !5Vext~rW !1E d3r 8
n0~rW8!

urW2rW8u
1Vxc@n0#. ~3!

Having found theN lowest eigenstatescm(rW) with energies
em , an estimate of the total energy of the system is given
the variational expression

E@n0#5Ekin@n0#1ECoul@n0#1Exc@n0#, ~4!

where the kinetic energy is given by
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Ekin@n0#5 (
m51

N

em2E d3r d3r 8
n0~rW !n~rW !

urW2rW8u

2E d3rVxc@n0#n~rW !2E d3rVext~rW !n~rW !,

~5!

and the Coulomb energy is the sum of the Hartree ene
the interaction of the electron density with the external p
tential ~e.g., the potential arising for the ion cores!, and the
electrostatic self-energy of the ionic cores

ECoul@n0#5
1

2E d3r d3r 8
n~rW !n~rW8!

urW2rW8u

1E d3rVext~rW !n~rW !1EI . ~6!

The ‘‘new’’ electron densityn(rW) in the above expressions i
given by(mucm(rW)u2.

Let us assume thatn0(rW) was chosen close to self
consistency. Thenn(rW) will not differ too much fromn0(rW),

n~rW !5n0~rW !1dn~rW !, ~7!

and we can expand the expression for the total energy~4! in
powers ofdn. Using

1

2E d3r d3r 8
nn

urW2rW8u
52

1

2E d3rd3r 8
n0n0

urW2rW8u

1E d3r d3r 8
n0n

urW2rW8u
1O 2~dn!

and

we can, to first order indn, write the total energy as a func
tional of only the initial electron densityn0(r ):

E5(
m

«m2
1

2E d3r d3r 8
n0~rW !n0~rW8!

urW2rW8u

2E d3rVxc@n0#~rW !n0~rW !1Exc@n0#1EI . ~8!

A good choice forn0 is the electron densitynTF resulting
from an extended Thomas-Fermi~ETF! calculation. Since
nETF(N;r ) varies smoothly as the number of the valen
electronsN in the cluster is changed, all terms in Eq.~8!,
except for the first one, contribute exclusively to the smo
part Ē(N) of the total energy. That is, to first order indn, all
electronic shell effectsẼ(N) are contained in the sum of th
one-particle energies(em . Hence the oscillating partẼ(N)
of the total energy can be determined from the spectrum
the family V(N;r ) of Kohn-Sham potentials which aris
from the electron densitynETF(r ). More generally, the above
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reasoning holds for allfamiliesof electron densitiesn0(N;r )
that are close to self-consistency andsmooth in N.

It is common practice to immediately work with param
etrized potentialsV(N;r ). Usually they are chosen to fi
experiments or the results of self-consiste
calculations.27,5,28,10 Imagining that these potentials aris
from a hypothetical family of electron densities, the abo
arguments still apply. The prototype of such a phenome
logical shell model is the Woods-Saxon potential27,5,28

V~N;r !5
2V0

11exp@~r 2r sN
1/3!/a#

. ~9!

Variants are the Wine-bottle potential5 and the Woods-Saxon
potential with asymmetric surface,10

V~N;r !5
2V0

11exp$@r 2~r sN
1/31DR!#/ f ~r !%

, ~10!

where f (r ) is an analytical function modeling the potenti
near the cluster surface.

To get a feeling for the approximations involved, we co
pare the results of a self-consistent calculation for galli
clusters to the oscillating part of the total energy found us
a family of model potentials~Fig. 1!. For the self-consisten
calculations we used the homogeneous, spherical jell
model.9 The potentials for the one-particle calculation we
obtained by fitting a function of type~10!,

V~N;r !5
2V0

11exp@~r 2R~N!!/a~r !#
, ~11!

where R(N)5r sN
1/31D(r ) and a(r )5a01a1tanh$@a2(r

2R(N)#%, to the self-consistent Kohn-Sham potentials for j
lium clusters having 1500, 3000, 4500, and 6000 vale
electrons.

To emphasize the importance of the smoothness of
model potentialsV(N;r ) in N, and to demonstrate from wha
subtle cancellations the electronic shell structure arise
self-consistent calculations, in Fig. 2 we show the oscillat
part of the total, the kinetic, the Coulomb, and the exchan
correlation energy determined from a jellium calculation

FIG. 1. Comparison of the oscillating partẼ(N) of the total
energy obtained from a self-consistent calculation using the ho

geneous spherical jellium model~dotted line! to theẼ(N) extracted
from the sum of the one-particle energies of a family of mo
potentials~full line!. The model potentials are given in Eq.~10!,
with parameters r s52.19a0, V051.04 Ry, DR50.73a0, a0

51.03a0, a151.13a0, anda250.21a0.
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gallium clusters. Even though in this calculation we are de
ing with the self-consistent potentials and electron densi
~i.e., dn50), Ekin(N), which contains the sum of the Kohn
Sham energies, is by far not the only term contributing
Ẽ(N). More surprisingly the electronic shell structure as
vealed byẼ cannot be found in anysingle contributions to
the total energy. For the self-consistent calculation, it rat
results from the subtle interplay of the different oscillatin
terms.

III. PERIODIC ORBIT EXPANSION „POE…

As we saw in Sec. II, the oscillating partẼ of the total
energy can be extracted from the sum(« i of the N lowest
eigenenergies for a suitably chosen familyV(N;r ) of model
potentials. The determination of the electronic shell and
pershell structure is thus reduced to an eigenvalue prob
for these potentials. Furthermore, the radius of the clus
we are interested in is considerably larger than the de Bro
wavelength of the electrons at the Fermi level. The semic
sical approximation therefore seems well suited for solv
the single-electron problem in question. In fact, for t
spherical cavity, a simple rescaling of the Schro¨dinger equa-
tion shows that the limitR→` is identical to the semiclas
sical limit \→0.

The salient feature of the semiclassical approach to de
mining the electronic shell and supershell structure is tha
provides a natural splitting of the density of states~and con-
sequently the total energy! into smooth and oscillating parts
The smooth part corresponds to Thomas-Fermi theory, w
the quantum corrections are given by a sum over the n
trivial periodic orbits. For an understanding of the oscillati
part Ẽ of the total energy, we need only consider the latt

In the present section we derive the POE for spher
potential wells. Starting from the oscillating partr̃(k)dk of

o-

l

FIG. 2. Oscillating part of the total energy and of contributio
to it @cf. Eq. ~4!#, obtained from a self-consistent calculation usi
the homogeneous, spherical jellium model.
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2332 PRB 58ERIK KOCH
the density of states for a given potentialV(r ), we proceed to
a POE for the oscillating partẼ(N) of the total energy for a
family V(N;r ) of potentials. We illustrate the results by giv
ing explicit expressions for infinite potential wells. The
will be the points of reference for the leptodermous exp
sion discussed in Sec. IV. We furthermore use the sphe
cavity to assess the validity of the various approximatio
made, by comparing the semiclassical results to the res
obtained from numerically solving the Schro¨dinger equation.

A. POE for the density of states

The periodic orbit expansion for the density of sta
r(E) can be derived starting from the path-integral repres
tation of the energy-dependent Green’s functionG(rW,rW0 ;E)
by taking the semiclassical limit\→0.7,29–31 r(E) is then
given by

r~E!dE52
1

p
I TrG~E1 i e!dE. ~12!

In the semiclassical limitG(rW,rW0 ;E) is given by a sum over
classical paths. Taking the trace ofG(rW,rW0 ;E) involves inte-
grating overrW0 and taking the limitrW→rW0. The integration is
done in the semiclassical limit. The stationary-phase con
tion then requires that the final moment along the class
path equals the initial moment. The limitrW→rW0 closes the
paths. Thus, since the paths return torW0 with the same mo-
mentum, they are closed in phase space, i.e., they are
odic. There are two distinct classes of such orbits. The
consists of only thedirect path, the length of which vanishe
as rW→rW0. It consequently islocal and gives rise to the
Thomas-Fermi density of statesr̄. The second class consis
of periodic orbits of finite length. Thesenonlocalpaths give
rise to a quantum correction tor̄. Hence in the semiclassica
approximation the density of states is given by the lo
Thomas-Fermi term with nonlocal corrections described b
sum over periodic orbits:

r~E!dE5@ r̄~E!1 r̃~E!#dE. ~13!

In a spherical potential well, i.e., a potential with at mo
two radial turning points, all periodic orbits can be eas
enumerated: A periodic orbit is characterized by the num
l of times it winds around the origin, and the numbern of
times it traverses the outer turning point. By symmetry
orbits (l,n) that only differ in orientation are equivalen
Figure 3 shows some of the periodic orbits for a spher
cavity. The periodic orbits for a general spherical poten
well are more rounded, but are still described by the pa
(l,n).5,32 The periodic orbit expansion for the oscillatin
part of the density of states is thus given by a sum over
families of equivalent orbits (l,n),

r̃~E!dE5 (
~l,n!

A~l,n!cosS S~l,n!

\
2w~l,n!DdE, ~14!

whereS(l,n) is the classical action for an orbit (l,n), and
w (l,n) is the Maslov phase. The amplitude with which t
orbit (l,n) contributes is given by
-
al
s
lts

s
-

i-
al

ri-
st

l
a

t

r

ll

l
l
s

e

A~l,n!5
4

Apn

L ~l,n!

\

]sr /\

]E U]2sr\

]L2 U21/2

, ~15!

with L denoting the angular momentum andsr the radial
action.7

For a spherical cavity of radiusR0, the terms that ente
the periodic orbit expansion take a simple form: The clas
cal action of an orbit equals its length times the wave vec
k,

S~l,n!~k!/\52nkR0sinS pl

n D ; ~16!

the phase is given by

w~l,n!5S 3

2
n1l2

1

4Dp; ~17!

and the amplitude takes the form

A~l,n!5AkR0
5/2a~l,n! , ~18!

with the dimensionless geometry factors

a~l,n!5
2

Apn
AsinS pl

n D sinS 2pl

n D . ~19!

The a (l,n)’s determine the relative importance of the pe
odic orbits in the POE@Eq. ~14!#. Their values for the first
few periodic orbits are shown in Fig. 4 (ki50). We note that
the amplitudes for the linear orbits (l,2l) vanish. This can
be understood by a simple dimensional argument.6 Since the
sum in the POE is overall periodic orbits, the number o
different but equivalent orbits (l,n) will be reflected in the
amplitudea (l,n) . To parametrize all the different orienta
tions of the linear orbits, it is sufficient to give the coord
nates of one of their outer turning points. Since for a sph
cal potential well the outer turning point lies on the surfa
of a sphere, the manifold of the linear orbits has dimension
All the higher orbits are not linear but lie in a plane, so w
need an additional parameter to fix the orientation of t
plane. The manifold of the planar orbits are therefore thr
dimensional~‘‘there are many more planar than linear o
bits’’ !. Thus the linear orbits do not contribute to the leadi
order of the periodic orbit expansion. The largest amplitud
are found for the triangular~1,3! and the square~1,4! orbit.

FIG. 3. Some periodic orbits for a spherical cavity. They a
characterized by the pair (l,n), wherel denotes the number o
times the orbit revolves around the origin before it closes on its
andn is the number of vertices it has. Note that (nl,nn) is the orbit
obtained by traversing (l,n) n times.
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The contribution from other orbits is, however, still larg
i.e., one has to include many periodic orbits in a partial su
mation of Eq.~14! before one obtains a result close tor̃.
This slow convergence is to be expected since the densi
states for a finite system is given by a sum ofd functions
which cannot easily be reproduced by a sum of analyt
functions. To improve the convergence of the expansion,
can replace thed peaks in the density of states by Lorent
ians of widthg. This corresponds to introducing a comple
wave vectork5kr1 ik i in the periodic orbit expansion. A
can be seen from Fig. 4, a finite value ofki serves to reduce
the contribution of higher orbits considerably. Howev
since the shell and supershell structures in metal clusters
not directly linked tor̃ but rather to the variationsẼ in the
total energy, we proceed to derive a periodic orbit expans
for Ẽ. As we will see, such an expansion converges m
more rapidly than that for the density of states. We theref
need not introduce any smoothing.

B. POE for the total energy

To find a periodic orbit expansion for the oscillating pa
Ẽ of the total energy using the POE forr̃, we start from the
integral

E~N!5E
0

EF~N!

Er~N;E!dE, ~20!

where the Fermi energyEF(N) is fixed by the number of
electronsN in the cluster,

N5E
0

EF~N!

r~N;E!dE. ~21!

Similar equations hold in Thomas-Fermi theory. Subtract
the corresponding Thomas-Fermi expression from Eq.~21!,
we find

05E
ĒF~N!

EF~N!

r̄~N;E!dE1E
0

EF~N!

r̃~N;E!dE. ~22!

Since the smooth part of the density of states does not
much over the small intervalĒF , . . . ,EF , we can approxi-
mate the first integral in the above expression

FIG. 4. Amplitudesa (l,n) with which the periodic orbits (l,n)

contribute to the oscillating partr̃ of the density of states. Show
are the amplitudes~crosses! for no (ki50) and for an intermediate
(ki50.1) smoothing. To guide the eye, the amplitudes for a giv
number of turns are connected by lines.
-
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ẼF(N) r̄(N;EF). We then can use the above equation
solve forẼF(N). In a similar fashion we can approximate th
difference of Eq.~20! and its Thomas-Fermi counterpart b

Ẽ~N!'ẼF~N!EF~N!r̄~N;EF!1E
0

EF~N!

Er̃~N;E!dE.

Using the approximate expression forẼF from Eq. ~22!, we
find

Ẽ~N!'E
0

EF~N!

@E2EF~N!#r̃~N;E!dE. ~23!

Since the integrand vanishes at the upper limit of integrat
it is now possible to approximateEF(N) by its Thomas-
Fermi counterpartĒF(N). Integrating by parts, we finally
arrive at

Ẽ~N!'2E
0

ĒF~N!
dEE

0

E

dE8r̃~N;E8!, ~24!

i.e., to find an approximation to the oscillating part of th
total energy we have to integrate twice over the oscillat
part of the density of states.

Using Eqs.~24! and~14!, we find, for spherical cavities o
radiusR0(N), the expansion

Ẽ~N!'Ak̄FR0k̄F
2 (

~l,n!

4a~l,n!

Ŝ~l,n!
2

cos~Ŝ~l,n!k̄FR02w~l,n!!

~25!

which is similar to Eq.~14!, the main difference being the
change in the amplitudes: Due to the twofold integration
amplitudes are divided by the square of the dimension
classical actionŜ(l,n)5S(l,n) /(\kR0). The new geometry
factors are thus given by

b~l,n! :5
4a~l,n!

Ŝ~l,n!
2

. ~26!

They are plotted in Fig. 5. A comparison witha (l,n) ~Fig. 4!
shows how the contributions of the long orbits@with large

n

FIG. 5. Amplitudesb (l,n) with which the periodic orbits (l,n)

contribute to the oscillating partẼ of the total energy. Comparison
with Fig. 4 shows that the dominance of the short, planar orb

which for the oscillating partr̃ of the density of states has to b
enforced by introducing an artificial smoothingki , occurs naturally

for Ẽ.
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2334 PRB 58ERIK KOCH
classical action; see Eq.~16!# to the POE forẼ(N) are re-
duced. This improvement of convergence can be unders
intuitively since E(N) is continuous, while the density o
states is highly singular, being a forest ofd functions.

To check the approximations made in the derivation
Eq. ~24!, we compare the results of a truncated periodic o
expansion forẼ with the oscillating partẼQM of the total
energy derived from a quantum-mechanical calculati
Such a comparison for spherical cavities of radiusR05N1/3

is shown in Fig. 6. It turns out that the truncated POE
reproduceẼQM very well, even if only a few periodic orbits
are included. In particular, the first two supershells can
described using only the triangular and square orbits. H
ever, for even larger sizesN it seems that higher orbits ar
needed to describe the structure inẼQM . We note that due to
its nature of being a semiclassical result, the periodic o
expansion forẼ will not converge toẼQM but to its semi-
classical approximation.

IV. LEPTODERMOUS EXPANSION

So far we only have explicit expressions of the perio
orbit expansion for cavity potentials. We now want to exte
the POE to more realistic potentialsV(r ), like the Woods-
Saxon potential@Eq. ~9!#. These potentials differ from the
cavity potential by having a surface of finite widtha. Since
the slope of the cavity potential is infinite at the surfac
dV(r )5V(r )2Vcav i ty is never a small quantity. But, rewrit
ing integrals overV(r ) in a suitable way, we can use th
surface widtha as an expansion parameter.

From Eq.~25!, we see that we need to find expressions
~i! the action integralŜ(l,n) for orbits (l,n), ~ii ! the Fermi

FIG. 6. Comparison of the periodic orbit expansion for the

cillating partẼ of the total energy to the quantum-mechanical res

for spherical cavities. The plots showẼ obtained from a truncated
periodic orbit expansion, including more and more orbits. The
bits were included in the order of decreasing amplitude: (1,3),~1,4!,
~1,5!, ~1,6!, ~1,7!, ~1,8!, ~1,9!, ~2,6!, ~2,5!, ~2,7!, ~1,10!, ~2,8!, and

~1,11!. ẼQM from the quantum-mechanical calculation is shown
the dotted line.
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wave vectork̄F in the Thomas-Fermi approximation, and~iii !
the phasesw (l,n) . For this we proceed as follows. We firs
introduce the idea of the leptodermous expansion for in
grals over the potentialV(r ) for classical action. We find an
expansion

Ŝ~l,n!5Ŝ~l,n!
cav i ty12n Î s

a

R0
. ~27!

Then we estimate the change ink̄Fr s due to the finite surface
width. To first order ina, we find

k̄Fr s5S 9p

4 D 1/3

1S c11c2

a

r s
DN21/3. ~28!

Finally we estimate the phasew (l,n) . Rearranging terms in
powers ofN1/3, the argument of the cosine in Eq.~25! then
reads

S 9p

4 D 1/3

Ŝ~l,n!
cav i tyN1/31Ŝ~l,n!

cav i tyS c11c2

a

r s
D

12nS 9p

4 D 1/3

Î s

a

r s
2w~l,n! , ~29!

i.e., the first-order terms in the leptodermous expansion g
rise to aphase shiftin the periodic orbit expansion, while th
frequenciesS(l,n)

cav i ty are unchanged.

A. Classical action

To introduce the basic idea of the leptodermous exp
sion, we first consider potentials that differ from the cav
potential only in a small region around the cluster surfa
say forr .R02a. It is then straightforward to split the radia
integrals into two parts, one integral over the interiorr
50, . . . ,R02a and one over the surface regionr 5R0
2a, . . . ,r out . Thus the radial action can be rewritten as

sr /\5E
r in

r outAE2V~r !2L2/r 2dr

5E
r in

R02a
A.dr1E

R02a

r out A.dr. ~30!

The first integral is the action integral for a spherical cav
of radiusR02a, which we know already. The second int
gral can, in general, not be solved analytically. But for sm
a we can obtain a good approximation by neglecting
variation of the angular momentum term over the small
terval @R02a,r out#, e.g., settingL2/r 2 to L2/R0

2.
Realistic cluster potentials are not that simple. In

Woods-Saxon potential there is no obvious point that se
rates bulk from surface. We can still make the same an
by choosing some smalla, but we have to make sure that ou
result does not depend on our specific choice. To do so,
add and subtract the integral*0

R02aAE1V02L2/R0
2dr to Eq.

~30!. UsingV(r )'2V0 for r ,R02a, we find

-

lt

-
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sr /\'E
r in

R02a
AE1V02L2/r 2dr

1E
0

r outAE2V~r !2L2/R0
2dr

2E
0

R02a
AE1V02L2/R0

2dr. ~31!

Using againL2/r 2'L2/R0
2 for r P@R02a,r out#, we can ex-

tend the upper limit of integration of the first and third int
grals fromR02a to r out . The first integral is then the radia
action for the cavity potential, and the two other terms g
the correction due to the soft surface of the potentialV(r ).
Introducing dimensionless quantitiesâ5a/R0, ŝ5s/kR0,
andL̂5L/\kR0, with k5AE1V0, and expanding in power
of the reduced surface-widthâ, we obtain

ŝr~P,L̂,â!5 ŝr
cav i ty~ L̂ !1 Î s~P,L̂ !â1O~ â2!, ~32!

where P5A(E1V0)/V0, and ŝr
cav i ty(L̂)5A12L̂2

2L̂arccos(L̂) is the reduced radial action for a spherical ca
ity. In the Appendix it is shown how to calculateÎ s for a
Woods-Saxon potential.

Given the expansion for the radial action, we now proce
to calculate the action for a periodic orbit (l,n),

Ŝ~l,n!52n ŝr12plL̂ ~l,n! . ~33!

The angular momentumL (l,n) associated with the orbit ca
be determined from the periodicity condition: In order
close afterl turns and having traversed the outer turni
point n times, the angleF swept during one radial oscilla
tion must bepl/n. With Eq. ~32!, this leads to

pl

n
5F52

] ŝr

]L̂
5arccos~ L̂ !2

] Î s

]L̂
â1O~ â2!. ~34!

Taking the derivative with respect toâ at â50, we can solve
for the first-order correction in the reduced angular mom
tum:

L̂ ~l,n!5L̂ ~l,n!
cav i ty2A12~ L̂ ~l,n!

cav i ty!2
] Î s~P,L̂ ~l,n!

cav i ty!

]L̂
â. ~35!

We can use this to expandŝr
cav i ty(L̂) in Eq. ~32! around

L̂ (l,n)
cav i ty5cos(pl/n). Inserting into Eq.~33!, we see that the

first-order correction inŝr
cav i ty cancels that coming fromL̂.

Thus to first order inâ the reduced action for a periodic orb
(l,n) is given by

Ŝ~P,L̂ ~l,n! ,â!5Ŝ~l,n!
cav i ty12n Î s~P,L̂ ~l,n!

cav i ty!â1O~ â2!.
~36!

This result is independent of the specific form of the pot
tial, as long as an expansion~32! of the radial action exists
e

-

d

-

-

B. Fermi level

We now turn to the problem of determining the Ferm
wave vectork̄F in the extended Thomas-Fermi approxim
tion for a cluster withN electrons. In an infinite system w
havek̄Fr s5(9p/4)1/3. For a finite system there will be cor
rections arising form the surface

k̄Fr s5~9p/4!1/31cFN21/31••• . ~37!

The surface term can be calculated from the quantu
mechanical scattering phasew(k) at the surface
potential,33,34

cF52
3

k̄F
2E0

k̄FS p

4
2w~k! D k dk. ~38!

Assuming that the potential is slowly varying at the ou
turning point, we can determine the scattering phase from
classical action.

For a slowly varying potential, the WKB wave function i
the regionr !R02a, where the potential is practically con
stant is31

uWKB~r !}cosS E
r

r out
k~r ! dr2

p

4 D , ~39!

while the quantum-mechanical wave function is

uQM~r !}cos@k~R02r !2w~k!#. ~40!

In the semiclassical limit, i.e., for largeR0, both expressions
should be equal. Choosingr 50, we find

w~k!52S E
0

r out
k~r ! dr2kR0D 1

p

4
~41!

5
p

4
2 Î s~P,0!ka1O~a2!, ~42!

where in the last equation we have used the linearization~32!
of the radial action. We note that forL50 the leptodermous
expansion is exact, i.e., there are no higher-order term
Eq. ~32!. From Eq.~38!, the surface parameter is thus

FIG. 7. Surface termcF in the asymptotic expansion ofk̄Fr s @cf.
Eq. ~37!# as a function of the surface widtha for a Woods-Saxon
potential. The potential parameters areV050.45 Ry and r s

54a0). The crosses were obtained by fitting the Fermi wave vec
from full quantum-mechanical calculations for clusters w
50, . . . ,8000 electrons. The dashed line gives the estimate ofcF as
given by Eq.~43!.
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cF52
3a

k̄F
2 E0

k̄F
Î s@P~k!,0#k2dk ~43!

52S 9p

4 D 1/3

Î N~PF!
a

r s
. ~44!

The analytic expression ofÎ N for Woods-Saxon potentials i
calculated in the Appendix@Eq. ~A10!#.

It is interesting to note that we can obtain the same re
from expanding the Thomas-Fermi integral in powers ofa

N5E
0

r out
@ĒF2V~R!#3/2r 2dr5

~ k̄FR0!3

3
1~ k̄FR0!3Î Nâ,

~45!

and solving fork̄Fr s . In fact, in the approximation consid
ered here, both approaches are equivalent.

It is important to realize that the above reasoning involv
two, possibly conflicting, approximations. In ansatz~39! for
the semiclassical wave function, we have assumed that
potential is slowly varying, i.e., thata is large enough, while
for the leptodermous expansion of the radial action of
orbits with LÞ0 we require thata is small.

To see how well expression~43! for cF works, we com-
pare it to the surface term obtained by fitting the Fermi wa
vector kF(N) calculated quantum mechanically for Wood
Saxon potentials holding 50,. . . ,8000 electrons~see Fig. 7!.
As expected, our approximation approaches the quant
mechanical result in the limit of large surface widtha
~slowly varying potential regime!. But it also works quite
well for relatively smalla. For very smalla the approxima-
tion of course breaks down, since our ansatz does not
scribe the crossover from the slowly varying potential
gime to the potential step ata50, for which the phase in
uWKB(r ) is arctan(k/k) instead ofp/4. Using this phase in
the above derivation, we recover the correct surface par
eter for the finite potential well.

Since for largera the approximation tocF runs roughly
parallel to the true value of the surface term, one might
prove the accuracy of the leptodermous expansion by s
ing Eq.~43! by a constant (a-independent! amountc1. Since
the Woods-Saxon potential in one dimension is exac
solvable,35,36 this is straightforward.

C. Maslov phase

For separable potentials, the Maslov phase is determ
by the phases that the semiclassical wave function picks
at the classical turning points. For a given periodic or
(l,n) there are 2l turning points in theq motion, each
contributing a phasep/2. The same orbit also has 2n radial
turning points. Then inner turning points ‘‘see’’ the smooth
centrifugal potential, and hence also contributep/2. The
phasefout at the outer turning point depends on the shape
the potentialV(r ) at the surface. The Maslov phase for t
orbit is then given by

w~l,n!5@~1/21fout /p!n1l21/4#p. ~46!

For a step potential, we can findfout by matching the
semiclassical radial wave function to the boundary condit
lt
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at the turning point. For an infinite potential wellfout5p,
while for a well of depthV0 fout52arctan(k/k), wherek
5AV02k2. For a slowly varying potential, on the othe
hand, the standard result obtained by linearizing the poten
around the classical turning point isfout5p/2.

The Woods-Saxon potential for a typical cluster has
surface width ofa50.5 . . . 1.5a0. As we have seen above
for such values ofa the potential is already in the slowl
varying regime. We therefore use

w~l,n!5@n1l21/4#p. ~47!

D. Leptodermous POE

We can now collect all the contributions to calculate t
effect of a softening of the potential at the surface on
periodic orbit expansion~25! of the oscillating partẼ of the
total energy. The frequencies associated with the perio
orbits turn out to be unchanged; to first order there is onl
phase shift

Ẽ~N!} (
~l,n!

b~l,n!cosF S 9p

4 D 1/3

Ŝ~l,n!
cav i tyN1/31DF~l,n!G ,

~48!

with

DF~l,n!5S 9p

4 D 1/3

@2n Î s~P,L̂ !2Ŝ~l,n!
cav i ty Î N~P!#

a

r s

2@n1l21/4#p. ~49!

We stress again that we have made two, possibly confl
ing, approximations. On the one hand, the leptodermous
pansion of the radial action relies on the fact that the surf
width a is small, while a slowly varying potential assump
tion enters in the calculation of the scattering phase. To
how the above expression works in practical calculations,
compare the periodic orbit expansion~48! with the result of
quantum-mechanical calculations for Woods-Saxon pot
tials with parameters typical for an alkali metal cluster; s
Fig. 8. The agreement is surprisingly good. The shift of t
supernodes with increasing surface width is well describ
and also the shell oscillations are quite well reproduced.
could obtain even better agreement by numerically fitting
action integrals~see Fig. 10! and the surface coefficientcF
with linear functions ina. In that sense the concept of th
surface introducing just a phase shift in the periodic or
expansion seems to be applicable even beyond the ra
where the analytical expressions from the leptodermous
pansion are good approximations.

Taking only triangular and square orbits into account,
shift in the shell ~supershell! oscillations is given by
(DF (1,3)6DF (1,4))/2. As we can see from Eq.~49!, the con-
tributions coming fromcF almost cancel for the supershell
since the classical actions for the triangular and the squ
orbit are so similar. Because of this cancellation of errors
shift of the supershells with the surface width is very w
described in the leptodermous expansion.16 The shell oscil-
lations are more sensitive to approximations. But the m
important feature, namely, that shells are hardly affected
changes in the surface width, is also well reproduced.
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V. CONCLUSIONS

Using periodic orbit theory, we see that the electro
supershell structure is a sensitive probe for the surface
clusters. There is a pronounced effect of the width of
surface region on the position of the supershells. The le
dermous expansion around the limiting case of a spher
cavity provides a natural framework for understanding
shift of the supershells with increasing surface width. A p
ticularly nice feature of the leptodermous expansion, as
have presented it here, is the fact that the expansion of
radial action is theonly input we need. All other quantitie
entering the periodic orbit expansion can be easily deri
from the radial action. It is therefore straightforward to app
the formalism to other types of potentials.

The shift in the electronic supershells that is described
the leptodermous expansion has been seen in numerical
ies of Ẽ for soft potentials,28 and it has been used to unde
stand the results of self-consistent jellium calculations.16 The
observations of a shift proportional to the surface width c
be regarded as a signature of the leptodermous regime. E
tually the leptodermous approximation will break dow
since for extremely soft potentials the planar orbits withl
51 cease to exist. For such potentials star orbits become
leading terms, which causes a change in thefrequencyof the
shell and supershell oscillations37,38 as opposed to a chang
in the phaseonly.

It is interesting to compare the leptodermous expansio
the semiclassical sum over periodic orbits with the quantu
mechanical perturbation theory. In quantum mechanics
would expect perturbation theory to break down when
shifts of the energy levels are of the order of their spaci
For the potentials we have considered here, the change i
energy levels is quite large, especially for the levels w
high angular momentum, which are most sensitive to
potential at the surface. Typical shifts of the energy lev
with the surface widtha for a set of Woods-Saxon potentia
are shown in Fig. 9. Nevertheless, the electronic shells
not that strongly affected, because the levels with large

FIG. 8. Oscillating partẼ of the total energy for Woods-Saxo
potentialsV(r )52V0 /„11exp$@(r2R(N)#%/a… with different sur-
face widtha. R(N)5N1/3r s with r s54a0 andV050.45. The dotted
lines give the results of quantum-mechanical calculations. The
lines are obtained from the leptodermous expansion~48!, including
only triangular and square orbits.
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gular momentum, which are mostly responsible for the os
lations in the total energy, are shifted by large, but simil
amounts. It seems that since the semiclassical periodic o
expansion does not deal with individual energy levels
only with the collective changes in the spectrum, it works
well, even for large surface widthsa.

The leptodermous expansion should also be of use in
derstanding experiments probing the transport propertie
high-mobility semiconductor microstructures.39 The oscilla-
tions in the conductance of quantum dots are quite well
scribed by simple cavity potentials. At first sight this see
surprising, since the confining potential of a quantum do
expected to be rather smooth. However, if these poten
are still in the leptodermous regime, it is clear that calcu
tions using simple cavity potentials~or billiards! already de-
scribe the qualitatively correct physics.
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APPENDIX: LEPTODERMOUS EXPANSION
FOR A WOODS-SAXON POTENTIAL

In this appendix we show how to evaluate the integrals
the leptodermous expansion for a Woods-Saxon poten
~9!.

1. Radial action

For a potential with small surface widtha the radial ac-
tion can be approximately written as@see the discussion afte
Eq. ~31!#

ll

FIG. 9. Shift in the energy levels«n,l for Woods-Saxon poten-
tials with different surface widtha. The parameters for the poten
tials are V050.45 Ry, R0550a0, and a50.5a0 , . . . ,1.5a0. For
given angular momentuml the levels are plotted one above th
other. Each line shows«n,l as a function ofa, with a increasing
from left to right.
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sr /\'E
r in

R0AE1V02L2/r 2dr1E
0

r outAE2V~r !2L2/R0
2dr

2E
0

R0AE1V02L2/R0
2dr. ~A1!

The first integral is the radial action for the spherical cavi
The third integral is trivial: the integrand is a constant. Intr
ducingk5AE1V0 andL̂5L/\kR0 to simplify the notation,

it is given by \kR0A12L̂2. The second integral is mor
difficult. Rewriting the Woods-Saxon potential~9! as
-
si

d
r
a

ia
ou

ar
.
-

V~r !52V01
V0

2 F11tanhS r 2R0

2a D G , ~A2!

and substitutingy5(r 2R0)/a, we are led to

A2â

P E
21/2â

artanh~c!
Ac2tanh~y!dy, ~A3!

with c52P2(12L̂2)21, P5A(E1V0)/V0, and â5a/R0.
This expression can be evaluated analytically:
2âH A12L̂2artanh
A12L̂22

11tanh~21/â!

2P2

12L̂2
2A 1

P2 2~12L̂2!arctan
A12L̂22

11tanh~21/2â!

2P2

1/P22~12L̂2!
J . ~A4!
on
ure
tial
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ma-
ore
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-
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re-

e

Since the ansatz@Eq. ~A1!# is already a first-order approxi
mation, we need only the expansion of the above expres
for small a. For the second term this is straightforward:

arctanA.5arcsin~PA12L̂2!1O~ â2!. ~A5!

The first term is a bit more difficult, since forâ→0 the
artanhA. diverges as 1/2â. We find

2â artanhA.5112â ln~2PA12L̂2!1O~ â2!. ~A6!

Collecting our results, we see that we can expand the ra
action for a Woods-Saxon potential with surface parametea
around the radial action of the corresponding spherical c
ity. The term of first order ina is given by Î s(P,L̂)â, with

Î s~P,L̂ !5
2

P
@PL ln~2PL!2A12PL

2arcsin~PL!#, ~A7!

where we have introducedPL5PA12L̂2.

FIG. 10. Change of the radial action~in units of\) for Woods-
Saxon potentials with different surface widtha. The parameters for
the potential areV050.45 Ry andR0540a0. The full lines give
the radial actionsr(E) for a triangular and a square orbit.k
5(9p/4)1/31/r s . The dotted line shows the change in the rad
action for the triangular orbit as calculated using the leptoderm

expansion (Î ska). The dashed line shows the same for the squ
orbit.
on
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To check how good this linearization of the radial acti
works in practice, we compare it to numerical results. Fig
10 shows such a comparison for a Woods-Saxon poten
that roughly resembles a sodium cluster with 1000 electro
As can be seen, the leptodermous expansion works q
well. It is exact forL50 ~which is the quantity entering in
the calculation ofcF). For the triangular orbit the approxi
mation is very good even for rather large surface widthsa.
For the square orbit the expansion still works well, althou
we start to see deviations for largera. This is due to the fact
that in the leptodermous expansion we make an approxi
tion in the angular momentum term, which becomes m
critical for orbits with largen. It is worth noting that the
change in the radial action is surprisingly linear ina. This
means that we could obtain results in the spirit of the lep
dermous expansion~i.e., having only phase shifts in the pe
riodic orbit expansion!, by fitting the results of numerica
calculations of the action integrals with a linear functio
Using such fits, we could improve the accuracy of our
sults.

2. Fermi level

From Eq.~43!, the surface term fork̄Fr s in the leptoder-
mous expansion is given by

cF52
3a

k̄F
2 E0

k̄F
Î s~P,0!k2dk. ~A8!

Inserting Eq.~A7!, we find

cF52
6V0

3/2a

k̄F
2 E

0

PF
@P2ln~2P!2PA12P2arcsin~P!#dP,

~A9!

with P5k/AV0. The first integral is straightforward, and th
second is easily evaluated by substitutingy5arcsin(P). We
thus obtain Eq.~44! with

Î N~P!52S ln~2P!1F 1

P2 21G3/2

arcsin~P!2
1

P2D . ~A10!
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