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Periodic orbit theory for realistic cluster potentials
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The formation of supershells observed in large metal clusters can be qualitatively understood from a periodic
orbit expansion for a spherical cavity. To describe the changes in the supershell structure for different mate-
rials, one has, however, to go beyond that simple model. We show how periodic orbit expansions for realistic
cluster potentials can be derived by expandimdy the classical radial action around the limiting case of a
spherical potential well. We give analytical results for the leptodermous expansion of Woods-Saxon potentials,
and show that it describes the shift of the supershells as the surface of a cluster potential becomes softer.
[S0163-18298)03327-X

[. INTRODUCTION potential at the cluster surface becomes sdftérhas been
demonstrated that this shift can be understood in the frame-
One of the most surprising aspects of the physics of metavork of a peripdice orbit expansion for typical self-consistent
clusters is the supershell structure observed in masg&/uster potential$® The purpose of the present paper is to
abundance spectfa* This feature can be traced back to a 91V€ @ derivation of the leptodermous expansion, which re-
beating pattern in the density of states for typical clustefduires the linearization adnly the radial action We further-

potentials> The conceptual framework for understanding more analyze the validity of the approximations involved,

how this quantum interference comes about is provided b"’.md show comparisons with quantum-mechanical calcula-

periodic orbit theory’” The elegance of this approach rests - , ,
o ; . X To set the stage for the semiclassical treatment of elec-
on the fact that the periodic orbit expansid?OBE is known

i ) . : . tronic supershells, Sec. Il gives a review of the shell correc-
analytically for the spherical cavity. For this model potential iy, method<’-1° These methods establish a systematic re-

it was found that the most important contributions {0 the|ation petween self-consistent calculations and one-electron
oscillating part of the density of states stem from the tWocg|culations for suitable model potentials. We stress the fact
shortest planar periodic orbits: triangular and square orbitshat it is decisive to choose families of potentials that vary
Since these contributions oscillate with similar frequenciessmootmy with cluster size, to describe the electronic shell
their interference gives rise to a beating pattern, hence supestructure properly.
shells. Section Il is devoted to periodic orbit expansions. We
Although a spherical potential well is a good first approxi- sketch the derivation of the POE for the oscillating padf
mation to a cluster potential, this model clearly cannot acthe density of states using the path-integral formalism along
count for the changes in the electronic shell and supersheihe lines given by Gutzwillef.Special attention is paid to the
structure observed for clusters made of different materials. Ifate of convergence of the sum over classical periodic orbits.
is therefore desirable to understand how the periodic orbiSince the shell and supershell structure observed in the mass
expansion is modified as one considers more realistic modelectra of metal clusters are not directly linked fobut

potentials. A. stralghtforward appr oach for doing so IS 10 5ther the variation& in total energy we proceed to derive
solve the action integrals, which lie at the heart of periodic

orbit theory, numerically. That way, however, most of the & periodic orbit expansion fdE. We find that the latter ex-

elegance and power of the periodic orbit expansion is losfP@nsion converges much more rapidly than that for the den-

An analvtical expression. on the other hand. mav well reveai'ty of states, hence making any artificial smoothing of the
y P ’ » may pectrum, commonly introduced to lessen the contribution of

the relevant parameters determining the supershell structuren, .~ 6520 .
and provide insight into how it changes as the cluster potent- e longer orbl_ts tq); ““superfluous. To assess the valu_dlty
tial is varied. They should prove especially helpful in the Of the expression foE, we check the truncated POE against
search for better self-consistent models, which properly dethe quantum-mechanical result. This comparison shows that
scribe the experimental data. in the size range, which seems experimentally accesdible,
While the simple spherical, homogeneous jelliumis well described by a truncated POE, taking only triangular
modef® works quite well for the alkali clusters, it fails to and square orbits into account. This justifies the common
describe the supershell structure observed ig GAttempts ~ Practice of truncating the POE after the two shorfeahar
to improve the situation include, e.g., the introduction oforbits.
smooth ]e|||um pr0f||e§'0 the inclusion of pseudo- In Sec. IV we show how to extend the periOdiC orbit
potentials:'~*3or the consideration of surface roughn&ts.  expansion of to more realistic potentials. We start from the
The present work arises from the desire to understand thebservation that the surface widihof the cluster potential is
simple spherical, homogeneous jellium model. An analysisn important parameter determining the supershell
of the density dependence of the electronic supershells istructure'® The basic idea is then to expand the action inte-
jellium clusters showed that the supershells are shifted as thgrals entering the POE around the analytically known results
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for a potential well. It turns out that the actions can be very no(ryn(r)
R . . . _ 3 3., 0
well approximated by linear functions in the surface param- E,,[ng]= >, e#—f d°r d°r' ——=—
wn=1

etera/Ry, whereR, is the radius of the cluster. Thus a finite Ir=r’|

surface width leaves the frequencies in the POE unchanged

and, to first order, only introduces phase shifts. Taking also —f d3rvxc[n0]n(F)—J’ d3r Ve, (r)N(r),
the change of the Fermi energy into account, we can under-

stand the changes in the electronic shells and supershells (5)

introduced by a soft potential surface. The technical details
of the leptodermous expansion for Woods-Saxon potential
are described in the Appendix. To simplify the notation, we
set#2/2m to unity, i.e., we give lengths in Bohr radiag),
and energies in Rydberg.

nd the Coulomb energy is the sum of the Hartree energy,
e interaction of the electron density with the external po-
tential (e.g., the potential arising for the ion coyeand the
electrostatic self-energy of the ionic cores

1 n(ryn(r’
Ecm[”o]:—J d3r dgf'—(ﬁ) E )
Il. SHELL CORRECTION METHODS 2 [r—r’|
The total energye(N) of clusters havindN valence elec- 3 -
trons can be split into smooth and oscillating parts: + | drVe(r)n(r) +E, . (6)

o The “new” electron densitm(?) in the above expressions is
E(N)=E(N)+E(N). (D) given by= |y, ()% )
Let us assume thahy(r) was chosen close to self-
The smooth part describes the overall change in energy @@nsistency. Then(r) will not differ too much fromng(r),

the cluster size increases, and is given by a liquid drop . . .
expansiof?2 n(r)=ng(r)+én(r), (7

and we can expand the expression for the total enéfgin
powers ofén. Using

1 nn 1 ngh
—f d3r d3r' —— =——f d3rd3r’ ——
2 2 Ir—r'|

E(N)=a;N+a,NZ3+a;N¥3+ .. . 2

The oscillating part is responsible for the shell structure.
The idea of shell correction methods is to give a prescrip-

tion for determiningE(N) from a one-particle calculation. Jd3r a3
These methods were pioneered by Strutinsky and co-
workers, who showed how the oscillating part of the total
energy resulting from a Hartree-Fock calculation for atomicand
nuclei can be determined from the sum of the single-particle E,. Tlo]
energiesSe, of a suitably defined potential:*® A similar E..[n] = Ez[no) + /d3 §n(7) + O*(én)
result holds folE(N) extracted from local-density-functional —z—j
calculations® The latter are more common for metal =Vaclnol(7)
clusters’®32*For clarity, and to fix the notation, we give a we can, to first order iBn, write the total energy as a func-
short outline of the relevant argument. tional of only the initial electron densityiy(r):

To find the ground-state energy of a systenNadlectrons
using density-functional theory, we use the Kohn-Sham 1 No(r)ng(r’)
formalism?®2% Starting from some electron densiiy(r) we E=2 &, ff dr &' —=——
have to solve the Kohn-Sham equations with the potential K’ r=r’|

|+(92(5n)

R _J dsrvxc[no](r)no(r)‘l'Exc[n0]+E| . (8)
- - olr’)

VKS(r)=Vext(r)+f o IF—r'| +Vid Nol- ) A good choice fom, is the electron densitg resulting
from an extended Thomas-Ferr(iETF) calculation. Since
nete(N;r) varies smoothly as the number of the valence

Havmg found theN lowest eigenstates,, (r) with energies ~electronsN in the cluster is changed, all terms in E@),
, an estimate of the total energy of the system is given byexcept for the first one, contribute exclusively to the smooth

the variational expression partE(N) of the total energy. That is, to first order &m, all
electronic shell effect&(N) are contained in the sum of the
E[No]=Exin[No]+ Ecoul Nol+ Exd Nol, 4) one-particle energiexe,, . Hence the oscillating pag(N)

of the total energy can be determined from the spectrum of
the family V(N;r) of Kohn-Sham potentials which arise
where the kinetic energy is given by from the electron densitye((r). More generally, the above
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FIG. 1. Comparison of the oscillating pa(N) of the total 340 _
energy obtained from a self-consistent calculation using the homo- i :2
geneous spherical jellium modglotted ling to theE(N) extracted 2
from the sum of the one-particle energies of a family of model = 1t 3
potentials(full line). The model potentials are given in E.0), o 9 /\/\M/\/\/\/\[WWV\/\N\/\WW
with parametersr,=2.1%,, V,=1.04 Ry, AR=0.73,, a, “_uéz qE :
=1.03%,, a;=1.13,, anda,=0.21a,. -2
5 10 15
reasoning holds for afamiliesof electron densitieag(N;r) N

that are close to seli-consistency sswiaoth in N FIG. 2. Oscillating part of the total energy and of contributions

_lt is commqn practice to immediately work with param- to it [cf. Eq. (4)], obtained from a self-consistent calculation using
etrized potentialsV(N;r). Usually they are chosen to fit e homogeneous, spherical jellium model.
experiments or the results of self-consistent
calculations’’*?810 |magining that these potentials arise __,. I .
. : o gallium clusters. Even though in this calculation we are deal-
from a hypothetical family of electron densities, the above:

arguments still apply. The prototype of such a phenomeno'—ng with the self-consistent potentials and electron densities

logical shell model is the Woods-Saxon poterfia? (i.e., 8n=0), Ey;,(N), which contains the sum of the Kohn-
Sham energies, is by far not the only term contributing to

~V, ~E(N). More surprisingly the electronic shell structure as re-

1+exg (r—rN¥3)/a] vealed byE cannot be found in an;;mgle contrlbgtlon_s to

the total energy. For the self-consistent calculation, it rather
Variants are the Wine-bottle potenfiaind the Woods-Saxon results from the subtle interplay of the different oscillating
potential with asymmetric surfac8, terms.

V(N;r)

T 1+exp[r—(rNY3+ AR /()

V(N:r) (10) lil. PERIODIC ORBIT EXPANSION (POE)
. . ] . ) As we saw in Sec. Il, the oscillating péit of the total
wheref(r) is an analytical function modeling the potential energy can be extracted from the siig; of the N lowest
near the cluster surface. o eigenenergies for a suitably chosen familyN;r) of model
To get a feeling for the approximations involved, we com-stentials. The determination of the electronic shell and su-
pare the results of a self-consistent calculation for ga”'unbershell structure is thus reduced to an eigenvalue problem
clusters to the oscillating part of the total energy found usingoy these potentials. Furthermore, the radius of the clusters
a family of model potential¢Fig. 1). For the self-consistent \ye are interested in is considerably larger than the de Broglie
caIcuI%tlons we used the homogeneous, spherical jelliunyayelength of the electrons at the Fermi level. The semiclas-
model” The potentials for the one-particle calculation weregjcq| approximation therefore seems well suited for solving
obtained by fitting a function of typ€l0), the single-electron problem in question. In fact, for the
_vV spherical cavity, a simple rescaling of the Sainger equa-
0 (11)  fion shows that the limiR—c° is identical to the semiclas-
1+exg (r—R(N))/a(r)]’ sical limit #—0.
where R(N)=rNY3+A(r) and a(r)=ay+astanH[ayr The salient feature of the semiclassical approach to deter-

—R(N)]}, to the self-consistent Kohn-Sham potentials forjel_mining the electronic shell and supershell structure is that it

lium clusters having 1500, 3000, 4500, and 6000 vaIeanrOVides a natural splitting of the density of statesd con-
electrons ' ' ' sequently the total energjinto smooth and oscillating parts.

To emphasize the importance of the smoothness of th he smooth part corresponds to Thomas-Fermi theory, while

model potentiald/(N;r) in N, and to demonstrate from what the qluan'_[ug"_n corﬁcu'gns are gévent byd«_a sur:tr(])ver thlf' tF‘O”'
subtle cancellations the electronic shell structure arises iH'V'a periodic orbits. or an understanding ot the oscillating

self-consistent calculations, in Fig. 2 we show the oscillatingP@'t E of the total energy, we need only consider the latter.
part of the total, the kinetic, the Coulomb, and the exchange- [N the present section we derive the POE for spherical
correlation energy determined from a jellium calculation forpotential wells. Starting from the oscillating partk)dk of

V(N;r)=
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the density of states for a given potentélr), we proceed to —
a POE for the oscillating paB(N) of the total energy for a (v)

family V(N;r) of potentials. We illustrate the results by giv- 1w a3 a4 1y ae  an

ing explicit expressions for infinite potential wells. These
will be the points of reference for the leptodermous expan- @ @ @ @

sion discussed in Sec. IV. We furthermore use the spherical

X - ) o 24 Q» e @D
cavity to assess the validity of the various approximations
made, by comparing the semiclassical results to the results @ @
obtained from numerically solving the Schlinger equation.
(3.6) 3,7
A. POE for the density of states FIG. 3. Some periodic orbits for a spherical cavity. They are

The periodic orbit expansion for the density of statescharacterized by the pail(v), where\ denotes the number of
p(E) can be derived starting from the path-integral represent—imes the orbit revolves around the origin before it closes on itself,

. - - andv is the number of vertices it has. Note thad(nv) is the orbit
tation of the energy-dependent Green'’s functiefr,rg;E) obta]i}ned by traversing\(») n times. (n)
by taking the semiclassical limit—0."?973! p(E) is then ’
iven b
Ve BY . 4 Loy, 05 Ih|o%s i1
O gy b GE | 7|

with L denoting the angular momentum asgd the radial
ERN H 7
In the semiclassical limiG(r,ry;E) is given by a sum over 2action: _ _ _
lassical paths. Taking the trace®fr r-E) involves inte- For a spherical cavity of radiuR,, the terms that enter
classical paths. Taking the trace®(r,ro;E) involves inte the periodic orbit expansion take a simple form: The classi-

grating overr, and taking the limir —r,. The integration is  ¢a action of an orbit equals its length times the wave vector
done in the semiclassical limit. The stationary-phase condig

tion then requires that the final moment along the classical’
path equals the initial moment. The Iinﬁt—>Fo closes the

paths. Thus, since the paths returrfgowith the same mo-
mentum, they are closed in phase space, i.e., they are pe{he phase is given by
odic. There are two distinct classes of such orbits. The first

consists of only thelirect path the length of which vanishes

3 1
as r—ry. It consequently islocal and gives rise to the @(A,v):(i”ﬂ‘_z) ™ (17)
Thomas-Fermi density of states The second class consists
of periodic orbits of finite length. Thegeonlocal paths give

rise to a quantum correction o Hence_m the semiclassical Ap)= \/FRS’Za(A,,,), (18)
approximation the density of states is given by the local _ _

Thomas-Fermi term with nonlocal corrections described by avith the dimensionless geometry factors

sum over periodic orbits:

EENENY
p(E)AE=[p(E)+p(E)]dE. (13 o= Ty VAN SR

In a spherical potential well, i.e., a potential with at mostThe «(, ,)’s determine the relative importance of the peri-
two radial turning points, all periodic orbits can be easilyodic orbits in the POEEQ. (14)]. Their values for the first
enumerated: A periodic orbit is characterized by the numbefew periodic orbits are shown in Fig. 4;=0). We note that
\ of times it winds around the origin, and the numbeof  the amplitudes for the linear orbita (2\) vanish. This can
times it traverses the outer turning point. By symmetry allbe understood by a simple dimensional argunfesince the
orbits (\,») that only differ in orientation are equivalent. sum in the POE is oveall periodic orbits, the number of
Figure 3 shows some of the periodic orbits for a sphericafifferent but equivalent orbits\(v) will be reflected in the
cavity. The periodic orbits for a general spherical potentialamplitude «(, ,). To parametrize all the different orienta-
well are more rounded, but are still described by the pairdions of the linear orbits, it is sufficient to give the coordi-
(\,v).5% The periodic orbit expansion for the oscillating nates of one of their outer turning points. Since for a spheri-
part of the density of states is thus given by a sum over th€al potential well the outer turning point lies on the surface
families of equivalent orbitsX, v), of a sphere, the manifold of the linear orbits has dimension 2.

All the higher orbits are not linear but lie in a plane, so we
~ S need an additional parameter to fix the orientation of this
p(E)dE= ; AnnC0§ —— ~@nn|dE, (14 plane. The manifold of the planar orbits are therefore three-

) dimensional(“there are many more planar than linear or-
where S, ,y is the classical action for an orbit(v), and  bits”). Thus the linear orbits do not contribute to the leading
®(\.» is the Maslov phase. The amplitude with which the order of the periodic orbit expansion. The largest amplitudes
orbit (\,v) contributes is given by are found for the triangulafl,3) and the squarél,4) orbit.

1 (15)
p(E)dE=— —3 TIG(E+ie)dE. (12)

Sov (K= 2kaOsin( WT)\) (16)

and the amplitude takes the form

(19

(277')\
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FIG. 5. Amplitudesg,, ,y with which the periodic orbitsX, )
contribute to the oscillating payt of the density of states. Shown contribute to the oscillating pak of the total energy. Comparison

are the amplitude&crossesfor no (k;=0) and for an intermediate with Fig. 4 shows that the dominance of the short, planar orbits,

(k;=0.1) smoothing. To guide the eye, the amplitudes for a giverhich for the oscillating parp of the density of states has to be
number of turns are connected by lines. enforced by introducing an artificial smoothikg, occurs naturally

for E.
The contribution from other orbits is, however, still large,
i.e., one has to include many periodic orbits in a partial SumEF(N);(N;EF). We then can use the above equation to
mation of Eq.(14) before one obtains a result close g0 solve forEg(N). In a similar fashion we can approximate the
This slow convergence is to be expected since the density gfifference of Eq(20) and its Thomas-Fermi counterpart by
states for a finite system is given by a sumédfunctions
which cannot easily be reproduced by a sum of analytical - ~ — Ee(N)
functions. To improve the convergence of the expansion, one E(N)~Er(N)ER(N)p(N;Ef) + fo Ep(N;E)dE.
can replace thé peaks in the density of states by Lorentz-
ians of widthy. This corresponds to introducing a complex Using the approximate expression g from Eq. (22), we
wave vectork=Kk, +ik; in the periodic orbit expansion. As find
can be seen from Fig. 4, a finite valuelgfserves to reduce
the contribution of higher orbits considerably. However, ~ Er(N) ~
since the shell and supershell structures in metal clusters are E(N)~ fo [E-Er(N)]p(N;E)dE. (23

not directly linked top but rather to the variationg in the

total energy, we proceed to derive a periodic orbit expansioﬁince the integrand vanishes at the upper limit of integration
it is now possible_to approximaté(N) by its Thomas-

for E. As we will see, such an expansion converges much ) i i
more rapidly than that for the density of states. We thereford €Mi counterpar&g(N). Integrating by parts, we finally

need not introduce any smoothing. arrive at

~ E. E ~
B. POE for the total energy E(N)~— fEF(N)d Ef dE'p(N;E"), (24
0 0

To find a periodic orbit expansion for the oscillating part

E of the total energy using the POE fpr we start from the
integral

FIG. 4. Amplitudesa,, ,) with which the periodic orbitsX, v)

i.e., to find an approximation to the oscillating part of the
total energy we have to integrate twice over the oscillating
part of the density of states.

Using Eqgs{(24) and(14), we find, for spherical cavities of

Er(N)
E(N)= fo Ep(N;E)dE, (20 radiusRy(N), the expansion
where the Fermi energig(N) is fixed by the number of - dap ) . —
electronsN in the cluster, E(N)~ VkFRoE(;) = cog Sy, ,)KeRo— @(r, 1))
S0
F (25
N=f p(N;E)dE. (21) L - .
0 which is similar to Eq.(14), the main difference being the

_ . . . . change in the amplitudes: Due to the twofold integration the
Similar equations hold in Thomas-Fermi theory. SUbtraCt'ngampI%udes are di?/ided by the square of the din?ensionless

the corresponding Thomas-Fermi expression from (Bdj), . A
P g P &0 classical actionS;, ,)=S,,,)/(7kRy). The new geometry

we find \
factors are thus given by
ER(N)— EF(N)~
0= ff p(N;E)dE+f p(N;E)dE. (22 Ao
ER(N) 0 Bow ' == — ) (26)
. . g
Since the smooth part of thg density of states does not vary (,v)
much over the small intervadtg, ... Er, we can approxi- They are plotted in Fig. 5. A comparison with, ,y (Fig. 4)

mate the first integral in the above expression byshows how the contributions of the long orbjisith large
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A=1,v=3.4

wave vectokg in the Thomas-Fermi approximation, atiii)

the phasesp(, ,). For this we proceed as follows. We first
introduce the idea of the leptodermous expansion for inte-
grals over the potential (r) for classical action. We find an
expansion

ool b bl b

~ P ~ a
Son =St +2vlsm (27)
0

STTTIIEN | P!

Then we estimate the changeﬁﬁrS due to the finite surface
width. To first order ina, we find

E(Ry)
Aorma ¢

b il

1/3
+

— 9
k,:rS: T

NiB Finally we estimate the phasg, ,). Rearranging terms in
powers ofN3 the argument of the cosine in E@5) then
reads

E(Ry)

a
cit czr—) N3 (28)
S

(=]

FIG. 6. Comparison of the periodic orbit expansion for the os-
cillating partE of the total energy to the quantum-mechanical result

for spherical cavities. The plots shdiobtained from a truncated ( 13

periodic orbit expansion, including more and more orbits. The or- 9_77
bits were included in the order of decreasing amplitude: (113%), 4
1,9, (1,6, (1,7, (1,8, (1,9, (2,6), (2,9, (2,7, (1,10, (2,8), and

(1,11. EQM from the quantum-mechanical calculation is shown by +2v

the dotted line.

N ) " ) a
cavit 1/3 avit
o N +S(C>\,u)y(01+czr_s)

2 Isr__ PN (29

S

977)1/3& a

) o ~ i.e., the first-order terms in the leptodermous expansion give
classical action; see E416)] to the POE forE(N) are re- e 1o aphase shiftn the periodic orbit expansion, while the
duced. This improvement of convergence can be understo%quencieﬁaﬂty

intuitively since E(N) is continuous, while the density of no) are unchanged.
states is highly singular, being a forest &functions.

To check the approximations made in the derivation of A. Classical action
Eq. (24), we compare the results of a truncated periodic orbit  Tg introduce the basic idea of the leptodermous expan-
expansion forE with the oscillating partEq)y of the total  sion, we first consider potentials that differ from the cavity
energy derived from a quantum-mechanical calculationpotential only in a small region around the cluster surface,
Such a comparison for spherical cavities of radRgs=N®  say forr >R, a. It is then straightforward to split the radial
is shown in Fig. 6. It turns out that the truncated POE'sintegrals into two parts, one integral over the interior
reproduceEqy very well, even if only a few periodic orbits =0, ... Ro—a and one over the surface regian=R,
are included. In particular, the first two supershells can be-a, ... Iy . Thus the radial action can be rewritten as
described using only the triangular and square orbits. How-

ever, for even larger sizes it seems that higher orbits are Mout

needed to describe the structureBigy . We note that due to S /h= Jr_ VE=V(r)—L%/r*dr

its nature of being a semiclassical result, the periodic orbit "

expansion forE will not converge toEqy but to its semi- _ RO?Q\/—err Fout Jdr (30
classical approximation. fin ' Ro—ar

The first integral is the action integral for a spherical cavity
of radiusRy— «, which we know already. The second inte-
So far we only have explicit expressions of the periodicgral can, in general, not be solved analytically. But for small
orbit expansion for cavity potentials. We now want to extenda we can obtain a good approximation by neglecting the
the POE to more realistic potentialg(r), like the Woods- Variation of the angular momentum term over the small in-
Saxon potentia[Eq. (9)]. These potentials differ from the terval[Ro— a,r o], €.9., settind-2/r? to L?/R3.
cavity potential by having a surface of finite widéh Since Realistic cluster potentials are not that simple. In a
the slope of the cavity potential is infinite at the surface,Woods-Saxon potential there is no obvious point that sepa-
SV(r)=V(r)—Vcaity is never a small quantity. But, rewrit- rates bulk from surface. We can still make the same ansatz
ing integrals oveV(r) in a suitable way, we can use the by choosing some smadl, but we have to make sure that our
surface widtha as an expansion parameter. result does not depend on our specific choice. To do so, we
From Eq.(25), we see that we need to find expressions foradd and subtract the integrjéﬁo_a\/E+Vo— L2/R2dr to Eq.
(i) the action integraAB(A,V) for orbits (\,v), (ii) the Fermi  (30). UsingV(r)~ —V, for r<Ry—a, we find

IV. LEPTODERMOUS EXPANSION
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Ro—a 2.0 T T T
sr/ﬁwJ' VE+Vo—L2/r2dr L
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Tout 5750 " . +j/+/ ’
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0 . +’,,
05f L+t .
Ryp—«a e
—f VE+Vo—L%Radr. (31 oob”
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Using againL?/r?~L2?/R3 for r e [Ry— T ou¢], We can ex-
tend the upper limit of integration of the first and third inte-  FIG. 7. Surface terns; in the asymptotic expansion &fr ¢ [cf.
grals fromRy— « tor,,;. The first integral is then the radial Eq. (37)] as a function of the surface widtn for a Woods-Saxon
action for the cavity potential, and the two other terms givepotential. The potential parameters ak=0.45 Ry andr

the correction due to the soft surface of the potenti@l). =4a,). The crosses were obtained by fitting the Fermi wave vector

; ; ; S o from full quantum-mechanical calculations for clusters with
Introducing dimensionless quantities=al/R,, s=s/kRy, S )
~ g o d 0 > Ro 50, ... 8000 electrons. The dashed line gives the estimatg: @is
andL =L/AkRy, with k= JE+V,, and expanding in powers given by Eq.(43).

of the reduced surface-widfh, we obtain
B. Fermi level

s(P.La=st*Y(D)+iyP,D)a+0(@?, (32 We now turn to the problem of determining the Fermi
L _ wave vector?,: in the extended Thomas-Fermi approxima-
where P=\(E+V()/V,, and s/*Y(L)=v1-L? ton for a cluster withN electrons. In an infinite system we
- I:arccos(:) is the reduced radial action for a spherical cav-have?FrS:(gﬁm)lB_ For a finite system there will be cor-
ity. In the Appendix it is shown how to calculafg for a  rections arising form the surface
Woods-Saxon potential. _
Given the expansion for the radial action, we now proceed Ker = (97/4) 3+ ceN~ Y3+ ... | (37)

to calculate the action for a periodic orbit (), The surface term can be calculated from the quantum-

mechanical scattering phasep(k) at the surface

Son=2v8+2m\Li . (33 potential®®*
The angular momenturh, ,) associated with the orbit can 3 (il
be determined from the periodicity condition: In order to cpz—P— F Z—(p(k))k dk. (38

close afterA turns and having traversed the outer turning

point » tlmbes, t?e anglfb swept drl:,r"]g %ne radial oscilla-  Agqming that the potential is slowly varying at the outer
tion must bewh/v. With Eq. (32), this leads to turning point, we can determine the scattering phase from the
classical action.

TN s, ~ Ol ~p For a slowly varying potential, the WKB wave function in
- —0=- P arccosL) - ﬂ—£a+ O@%). (34 the regionr<R,—a, where the potential is practically con-
stant ist
Taking the derivative with respect éoata=0, we can solve oot -
for the first-order correction in the reduced angular momen- uWKB(r)occos< f k(r) dr— Z)’ (39
tum: r

while the quantum-mechanical wave function is

r (" cavit (" cavit zaTS(P'I:?)?UISy)‘
Loun=Linn’ = V1I=(LGE)Y) Ta- (39 Ugm(r)=cog k(Ro—r)—¢(K)]. (40)
In the semiclassical limit, i.e., for larg®,, both expressions

We can use this to expargf®™(L) in Eq. (32) around Should be equal. Choosimg=0, we find
I:(Cff'li;y=cos(7'r)\/v). Inserting into Eq.(33), we see that the

Tou T
first-order correction irsc®'Y cancels that coming frorh. e(k)= —( fo K(r) dr—kR, t7 (41
Thus to first order ira the reduced action for a periodic orbit
(\,v) is given by ——
=7 ~Is(P.Oka+ O(a?), (42)

S(P.Lix,.2) =S +2vi(P.LE ) a+ O(a?). _ _ -
(36)  Where in the last equation we have used the lineariz48an
of the radial action. We note that far=0 the leptodermous
This result is independent of the specific form of the poten-expansion is exact, i.e., there are no higher-order terms in
tial, as long as an expansi@82) of the radial action exists. Eg. (32). From Eq.(38), the surface parameter is thus
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3a (ke at the turning point. For an infinite potential web, = 7,
Cp=— _—2f I P(k),0]k2dk (43)  while for a well of depthV, ¢,,=2arctank/k), where

kg Jo =V,—k2. For a slowly varying potential, on the other
3 hand, the standard result obtained by linearizing the potential
__ (9_77) NG )E (44) around the classical turning point &, ;= 7/2.
4 NEF g The Woods-Saxon potential for a typical cluster has a

] A .. surface width ofa=0.5...1.5%,. As we have seen above,

The analytic expression of, for Woods-Saxon potentials is t5r such values ofa the potential is already in the slowly

calculated in the AppendiiEg. (A10)]. varying regime. We therefore use
It is interesting to note that we can obtain the same result
from expanding the Thomas-Fermi integral in powersof eon=[v+N—14]7. (47)
Fout — keRo)®  — .
N:f t[E,:—V( R)]¥%2dr= (':T())+(kFRO)3| N, D. Leptodermous POE
0

(45) We can now collect all the contributions to calculate the
effect of a softening of the potential at the surface on the

and solving forkers. In fact, in the approximation consid- periodic orbit expansiof25) of the oscillating parE of the
ered here, both approaches are equivalent. total energy. The frequencies associated with the periodic
It is important to realize that the above reasoning involvesorbits turn out to be unchanged; to first order there is only a
two, possibly conflicting, approximations. In ans@d®) for  phase shift
the semiclassical wave function, we have assumed that the
potential is slowly varying, i.e., that is large enough, while - 97\ Y ity
for the leptodermous expansion of the radial action of the E(N)“(;V) ,B(M)cos{ T) Sfm) N +Aq’(m>}’
orbits with L #0 we require that is small. ' (48)
To see how well expressio@3) for cg works, we com- )
pare it to the surface term obtained by fitting the Fermi wave/Vith
vector kg(N) calculated quantum mechanically for Woods- 13
Saxon potentials holding 50, . ,8000 electrongsee Fig. 7. AD, )= (9_”) [20] (P L)_‘ScauityiN(p)]E
As expected, our approximation approaches the quantum- " 4 ’ 7 Is
mechanical result in the limit of large surface width
(slowly varying potential regime But it also works quite

v_veII for relatively smalla. For very smalia the approxima- We stress again that we have made two, possibly conflict-
tion of course breaks down, since our ansatz does not dgsy approximations. On the one hand, the leptodermous ex-
scribe the crossover from the slowly varying potential ré-pangion of the radial action relies on the fact that the surface
gime to t_he potential _step @=0, for Wh_'Ch th_e phase N width a is small, while a slowly varying potential assump-
Uwke(r) is arctanil/k) instead ofm/4. Using this phase in oy enters in the calculation of the scattering phase. To see
the above derivation, we recover the correct surface parangjo,y the above expression works in practical calculations, we
eter for the finite potential well. compare the periodic orbit expansit#8) with the result of
Since for largera the approximation t@g runs roughly - q,antum-mechanical calculations for Woods-Saxon poten-
parallel to the true value of the surface term, one might iM+ja15 with parameters typical for an alkali metal cluster: see
prove the accuracy of the leptodermous expansion by shiftjg g The agreement is surprisingly good. The shift of the
ing Eq. (43) by a constantd-independentamountc,. Sincé g pernodes with increasing surface width is well described,
the Woods-Saxon potential in one dimension is exactly;nq aiso the shell oscillations are quite well reproduced. We

—[v+N—=1/4]m. (49

35,36 thic i H . ; L
solvable;>*"this is straightforward. could obtain even better agreement by numerically fitting the
action integralgsee Fig. 19 and the surface coefficiem
C. Maslov phase with linear functions ina. In that sense the concept of the

For separable potentials, the Maslov phase is determinedHrface introducing just a phase shift in the periodic orbit
by the phases that the semiclassical wave function picks ug*Pansion seems to be applicable even beyond the range
at the classical turning points. For a given periodic orbitWhere the analytical expressions from the leptodermous ex-
(\,v) there are 2 turning points in the motion, each Pansion are good approximations. o
contributing a phaser/2. The same orbit also has/2adial Taking only triangular and square orbits into account, the
turning points. Thev inner turning points “see” the smooth Shift in- the shell (supershe)l oscillations is given by
centrifugal potential, and hence also contribute2. The (AP 3+ AP (14)/2. As we can see from E¢9), the con-
phased,, at the outer turning point depends on the shape Ofr'lbutlons coming froncg almost cancel for the supershells,

the potentialV(r) at the surface. The Maslov phase for the SINC€ the classical actions for the triangular and the square
orbit is then given by orbit are so similar. Because of this cancellation of errors the

shift of the supershells with the surface width is very well
@onn=L(L12+ oyl m) v+ N —1/4] 7. (46) described in the leptodermous expansidihe shell oscil-
lations are more sensitive to approximations. But the most
For a step potential, we can findl,,; by matching the important feature, namely, that shells are hardly affected by
semiclassical radial wave function to the boundary conditiorchanges in the surface width, is also well reproduced.
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0.2 -~ - //|=2o

~ - - Pl =18

E (Ry)

04T~ e

—
=0

5; 10 - 15 : E20 FIG. 9. Shift in the energy levels, , for Woods-Saxon poten-
N3 tials with different surface widtla. The parameters for the poten-
_ tials areVy=0.45 Ry, Ry=508,, anda=0.53,, ...,1.5,. For

FIG. 8. Oscillating parE of the total energy for Woods-Saxon given angular momenturh the levels are plotted one above the

potentialsV(r)=—Vo/(1+exp[(r—R(N)]//a) with different sur-  other. Each line shows,, as a function ofa, with a increasing

face widtha. R(N) =N*¥ ¢ with r¢=4a, andV,=0.45. The dotted  from left to right. Y

lines give the results of quantum-mechanical calculations. The full

lines are obtained from the leptodermous expanéi@, including

only triangular and square orbits. gular momentum, which are mostly responsible for the oscil-

lations in the total energy, are shifted by large, but similar,
amounts. It seems that since the semiclassical periodic orbit
expansion does not deal with individual energy levels but

Using periodic orbit theory, we see that the electroniconly with the collective changes in the spectrum, it works so
supershell structure is a sensitive probe for the surface ofell, even for large surface widttes
clusters. There is a pronounced effect of the width of the The leptodermous expansion should also be of use in un-
surface region on the position of the supershells. The leptoderstanding experiments probing the transport properties of
dermous expansion around the limiting case of a sphericatigh-mobility semiconductor microstructurésThe oscilla-
cavity provides a natural framework for understanding thetions in the conductance of quantum dots are quite well de-
shift of the supershells with increasing surface width. A par-scribed by simple cavity potentials. At first sight this seems
ticularly nice feature of the leptodermous expansion, as Weurprising, since the confining potential of a quantum dot is
have presented it here, is the fact that the expansion of théxpected to be rather smooth. However, if these potentials
radial action is theonly input we need. All other quantities e still in the leptodermous regime, it is clear that calcula-

entering the_ perio_dic orpit expansion can be easily derivegigns using simple cavity potentialsr billiards) already de-
from the radial action. It is therefore straightforward to apply ¢ripe the qualitatively correct physics.

the formalism to other types of potentials.
The shift in the electronic supershells that is described by
the leptodermous expansion has been seen in numerical stud-

ies of E for soft potential$® and it has been used to under-
stand the results of self-consistent jellium calculatittiBhe It is a pleasure to thank O. Gunnarsson for his invaluable
observations of a shift proportional to the surface width can P '

be regarded as a signature of the leptodermous regime. Evefdvice. Helpful discussions with T. P. Martin and M. Brack
tually the leptodermous approximation will break down, are gratefully acknowledged. A. Burkhardt, A. Schuhmacher,

since for extremely soft potentials the planar orbits with and K. R@8mann did a great job supporting us with Com-
=1 cease to exist. For such potentials star orbits become tH¥/t€r Algebra Tools.
leading terms, which causes a change inftequencyof the
shell and supershell oscillatioHs® as opposed to a change
in the phaseonly. APPENDIX: LEPTODERMOUS EXPANSION

It is interesting to compare the leptodermous expansion of FOR A WOODS-SAXON POTENTIAL
the semiclassical sum over periodic orbits with the quantum-
mechanical perturbation theory. In quantum mechanics we |n this appendix we show how to evaluate the integrals in
would expect perturbation theory to break down when thethe leptodermous expansion for a Woods-Saxon potential
shifts of the energy levels are of the order of their spacing(9).
For the potentials we have considered here, the change in the
energy levels is quite large, especially for the levels with
high angular momentum, which are most sensitive to the 1. Radial action
potential at the surface. Typical shifts of the energy levels
with the surface widtta for a set of Woods-Saxon potentials ~ For a potential with small surface wid#n the radial ac-
are shown in Fig. 9. Nevertheless, the electronic shells arton can be approximately written §see the discussion after
not that strongly affected, because the levels with large anEg. (31)]

V. CONCLUSIONS
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RO I Fout 2 5 VO r— RO
s lh~ VE+Vo—L?/redr+ VE—=V(r)—L“/Rgydr V(r)=—Vy+ > 1+tan 5a || (A2)
lin 0
_ fRO /E+V0— LZ/_Rgdr. (A1) and substituting/=(r —Rp)/a, we are led to
0
The first integral is the radial action for the spherical cavity. \/Eé artanh(c)
The third integral is trivial: the integrand is a constant. Intro- P J_ 1 ve—tanhy)dy, (A3)

ducingk= VE+V, andL = L/#kR, to simplify the notation,

it is given by #kRy\1—L2. The second integral is more with c=2P?(1-L?)—1, P=\[(E+V,)/V,, anda=a/R,.
difficult. Rewriting the Woods-Saxon potentid) as This expression can be evaluated analytically:

e 1+tank(— 1/a) o 1+tanh(—1/2a)

2a — 2p?2 1 - 2p2 . (A%)
Vv1—L“artanh = —1\/ =3 —(1-L%)arctan > =
1-1 P 1/P2—(1-L?

Since the ansatEq. (Al)] is already a first-order approxi- To check how good this linearization of the radial action
mation, we need only the expansion of the above expressiomorks in practice, we compare it to numerical results. Figure
for smalla. For the second term this is straightforward: 10 shows such a comparison for a Woods-Saxon potential
that roughly resembles a sodium cluster with 1000 electrons.
arctan/. =arcsifP\V1—L2?)+ 0(a?). (A5)  As can be seen, the leptodermous expansion works quite

well. It is exact forL=0 (which is the quantity entering in
The first term is a bit more difficult, since faa—0 the the calculation ofcg). For the triangular orbit the approxi-
artanh/. diverges as 12 We find mation is very good even for rather large surface widihs

For the square orbit the expansion still works well, although

- _ - [1_72 a2 we start to see deviations for larger This is due to the fact
2a artanh/.=1+2a IN(ZPV1-L5)+0(@%). (A6) that in the leptodermous expansion we make an approxima-

Collecting our results, we see that we can expand the radidion in the angular momentum term, which becomes more
action for a Woods-Saxon potential with surface parameter critical for orbits with larger. It is worth noting that the

around the radial action of the corresponding spherical cavchange in the radial action is surprisingly linearan This

ity. The term of first order ira is given byi (P,()a, with means that we cpu!d obtaiq results in the spi_rit o_f the lepto-
dermous expansiofi.e., having only phase shifts in the pe-
) ) riodic orbit expansiop by fitting the results of numerical
I4(P,L)= B[PL In(2P,_)—dl—PEarcsir(P,_)], (A7) calculations of the action integrals with a linear function.
Using such fits, we could improve the accuracy of our re-
sults.

where we have introduced, =P+/1—L2. _
2. Fermi level

00 From Eq.(43), the surface term fokgr in the leptoder-
02p 1 mous expansion is given by
04 ]
; a (i ,
i ost N Cr=— = | 1(P,OK3dk. (A8)
“ osf o kg /o
A1.0F () Inserting Eq.(A7), we find
42 . , . 312
0.0 05 1.0 1.5 2.0 6Vya (P
a(a,) Cp=— {2 f F[P2In(2P)— Py1—P?arcsir(P)]dP,
0

F
FIG. 10. Change of the radial actigim units of#) for Woods- (A9)

Saxon potentials with different surface widih The parameters for . o . .
the potential ar&/,=0.45 Ry andR,=40a,. The full lines give  With P=k/\Vo. The first integral is straightforward, and the
the radial actions,(E) for a triangular and a square orbk. ~ Second is easily evaluated by substitutyrg arcsinP). We
=(97/4)*1/r . The dotted line shows the change in the radialthus obtain Eq(44) with

action for the triangular orbit as calculated using the leptodermous
expansion iska). The dashed line shows the same for the squamf'\l(P):2

+
orbit. In(2P)

3/2 1
arcsinP)— PT) . (A10)
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