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Dynamics and fluctuations during MBE on vicinal surfaces. Il. Nonlinear analysis
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This paper is the natural next step beyond the linear regime presented in the preceding paper. By concen-
trating on the situation close to the step morphological instability threshold, we derive nonlinear evolution
equations for interacting steps on a vicinal train. This treatment is coherent in that it retains only relevant
nonlinearities close enough to the threshold. Our analysis provides the expression of the coefficients in terms
of thermodynamic and transport coefficients. Numerical analysis of these equations reveals spatially and
temporally disordered patterns. We give a criterion specifying the region where step roughness is due to both
stochastic effect&associated with various sources of ngiaad deterministic onestemming from determin-
istic spatiotemporal chapsOutside this region, the roughness is dominated by either stochastic or determin-
istic effects. Starting from the discrete versighis is taken to mean that each step is described as an)esftity
step dynamicgthat is to say, each step is separately described by an evolution equetioderive a coarse-
grained evolution equation for the surface. This results in an anisotropic Kuramoto-Sivashinsky equation
including propagative effects. Numerical analysis reveals situations where the original surface undergoes a
secondary instability leading ultimately to a rough pattern. The surface looks as if two-dimensional nucleation
were allowed. Implication and outlooks are discus$&@.163-18208)06127-X]

I. INTRODUCTION dangerous modes are the long-wavelength ones. This will
imply that close to the threshold the dynamics is local in both
This paper considers the nonlinear evolution of steps on apace and time. We shall derive in a coherent way nonlinear
vicinal surface submitted to molecular beam epitaxy in aevolution equations for steps dynamics. We consider the
regime where growth is achieved by step flow, that is to saygeneral case where the steps are not synchronized, though it
two-dimensional(2D) island nucleation is prohibited. The will emerge that the in-phase motion is the most dominant
model rests on that of Burton, Cabrera, and Frank supplesne. As a simple introduction we shall first concentrate on
mented with step noninstantaneous kinetics, elastic interache case of an isolated step. This will allow us to rederive
tion, and fluctuations. Starting from this modglenerally  from an integral equation the evolution equation derived by
combining basic principles, namely, conservation and kineti®enaet al? This will serve as a preparation for the deriva-
laws), we shall derive continuum evolution equations fortion of the evolution equations in a train. This is a problem
steps dynamics, from which the surface evolution equationvhere each step is interacting with its neighbors via both the
can be extracted. Unlike phenomenological studies, thisliffusion field and the elastic one. We shall then analyze the
work provides a general basis for the derivation of evolutionequations numerically. We find generically disordered pat-
equations, where the form, magnitude of nonlinearities, anderns. We specify both static and dynamical structure factors.
expression of coefficients are extracted in a systematic markor the spatial behavior, we find that the value of the expo-
ner. It also shows that phenomenological studies can lackent of the structure factor as a function of the wave number
several terms. A typical example is that this treatment allowss the same as the one of an isolated step on a large scale. On
a derivation of the Kardar-Parisi-ZhahgKPZ) equation short scales, rather strong correlations are found. The dy-
from microscopic consideration, an equation that holds fomamical structure factor reveals a typical frequency associ-
an isolated step and when allowance is made of finite desor@ted with propagative effects. Indeed, phase shifts between
tion. For a train of steps we obtain equations for nonlineatwo steps evolve in a propagative manner. This is even rec-
interacting lines. ognized in the linear dispersion relation, where the eigen-
We have presented in the preceding paftereafter re- value has an imaginary part when the phase shift is nonzero.
ferred to as ) the model equations and studied the equilib-Moreover, localized fluctuations appearing on a step are al-
rium and nonequilibrium features in the linear regime. Weways advected upward, that is, they propagate in the direc-
have seen that as the deposition flux is increased, we reachtian opposite the global train motion.
critical value, above which the steps become morphologi- The next step is devoted to the continuum limit starting
cally unstable. This implies that nonlinear effects becomdrom the discrete version derived from the integral equations.
important. At arbitrary distance from the threshold dynamicsThat is, from the step evolution equations we derive a
is highly nonlinear. However, by concentrating on the situa-coarse-grained equation for the surface evolution. This re-
tion close to the threshold, we can extract from the nonlocasults in an anisotropic Kuramoto-Sivashinsky equation with
and nonlinear equations only the part that is relevant in thigpropagative terms. It emerges from our study that the vicinal
regime. A weakly nonlinear analysis becomes legitimate. Orsurface may suffer a secondary instability, leading ultimately
the other hand, because of translational symmetries, the mott a rough surface. The structure is very reminiscent of that
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appearing on a nominal surface and is implied by the
Ehrlich-Schwebel effect. A similar behavior has been found f dt’fdx’
by Rostet al® in a model equation having a completely dif-

Y(AD) e—AI/T—(AX2+ AZ?) /4D At
47DAt

ferent form and introduced in the context of growth in the 1 al'
absence of desorption. XV oat| — o AXFAL [—Qcdo+T k' — Q7]
The scheme of this paper is as follows. In Sec. Il we deal IX

with the limit of an isolated step. In Sec. Ill, we write the ,
evolution equations for the train. In Sec. IV we present the —(V+'§’)—Q( — %Q;Jrq;
main lines of the derivations. Section V deals with the ex- ax’
ploitation of the nonlinear results of step dynamics. Section
VI is devoted to the continuum limit. The conclusion and
outlooks is the subject of Sec. VII. Details and some lengthy
expressions are relegated to the Appendixes.
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II. ISOLATED STEP
A. Integral formulation

Before tackling the problem of a train of steps on a vicinal 1 0
surface, which is the main purpose of this paper, we shall ~— E(_chqU+FK_Q77+)a (4)
first depict the dynamics of an isolated stephe derivation
presented here differs significantly from that given in thewhere we have definedx=x—x’, At=t—t’, andA{=¢
original paper, by direct use of an integral formulation. Thus — ¢’. This result is a closed integro-differential equation for
we find it worthwhile to devote a brief discussion to this the isolated step, which exhibits explicitly the nonlinear and
point. nonlocal features of the step dynamics. The only reference to
It is possible to derive a closed integro-differential equa-what happens on the terraces is due to the cumulated effect
tion for the meander of an isolated stépe., without refer-  of the conserved and nonconserved fluctuations of the ada-
ring to the adatom concentratipavhen the model is one tom concentration. The deterministic part of this equation
sided @_—=). For the sake of simplicity, we restrict our depends only on the step configuration and of its history.

analysis to the instantaneous attachment case0. Using This type of formulation offers possibilities in numerical
the relation(22) in I, the concentration in front of the step.  treatmerit of step dynamics. Here we intend to extract ana-
is related to the meandérby Iytically the relevant nonlinearities by means of a multiple

scale analysis close to the instability threshold.

[1+(a¢'1x")?]M? B. Linear analysis and spatiotemporal scales

u
—+:Tf dt’de’
2

Our calculation is based on an expansion with respect to a

G ou’ small parameter that measures the departure from the insta-
xD|u, —-G—| —(V+{")GU, bility threshold
an’ an’
O—0gz
+fo dt'f dx’J dz'(f'-V-q') e=—, )
0Bz
XG(x=x",{=2"t—-t'), (1)  whereog; is the value of the supersaturation at the instabil-

ity threshold[see Eq.(68) in I]. The spatiotemporal active

where G=G(x—x',£(x,t)— £(x',t'),t—t") and Z=azldt scales are fixed by the linear analysis and behave as

The prime indicates that the arguments afeandt’ [for
example, /={(x,t) and {'=¢(x’,t")]. The concentration
u, and its normal derivative obey the relatidsgee Eqs(24)
and (14) in 1]

x~ e, t~elt, (6)

whered, andJ, are exponents to be determined below.

To leading order, Eq(4) provides the mean velocity
= ocd/D/ 7 for a straight step. This velocity is proportional
u,= —chq(ﬂ— 'e—Qn,, (2)  tothe departure from equilibrium through the supersaturation
o. Equation(4) is expanded to first order ififsee Eq(AL1)].
In Fourier space, we find an equation for the Fourier trans-

au, 1 V+{ form of the meandet = fdx[dtZ(x,t)e """ which is
=5 ———==*0na.|. (3 written as
an . ol
+ —
% XakCok=Buok- (7)

Inserting these expressions into Ed), we find Xok IS the susceptibility of the step meander
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FIG. 1. Dispersion relation for an isolated step. The most un-

stable mode has a wave numtier k.~ €*?

rate isi w=iwmax~ €.

and its linear growth
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Xok =10 .

Xo-(l—\/kzxg—l—in-i-l). (8)

The step is subject to a noigeresulting from a combination
of the Langevin forces introduced in the modgélobeys the
following correlations law at equilibrium:

1/2

N C)

(|Bukl >—M—Afu‘i)[|Awk|2+Re(A k>](

where A = (k®+iw/D+ 1/x%)*2 The additional contribu-

tions coming from the departure from equilibrium are found

to be negligible.
In the quasistatic and long-wavelength limitso& Dk?

<1/7), the dispersion relation in Fourier space is of the form

iw(k)=eak®—bk*. (10

If a>0 (or o>2I'/Qcdxs [see Eq.(67) in 1]), a straight
step is unstable. The most unstable mode kgay
=¢e'2\/a/2b. The growth rate of this mode i$wnay
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Since the dynamics are local, a Taylor expansibg?
~(Ax)%(9¢l9x)?+4 (whereh denotes higher-order terins
is allowed, so that

Y(AD)

——VJdtJd 4DAt
V[r\Y 11a§2
=2i0) |72l

Inserting this term into Eq(10) expressed in real space and
using Eq.(7) for the noise term, we find the noisy Kuramoto-
Sivashinsky equation

At/f—Ax2[1+(ag/ax)z]mom

(13

a D 9L
i _chqi(g_ O'Bz)ﬁ

D?r o 7 V(o
Qe —° BZ il
Oceq p + 5 ) P +2(ax +B, (149
where the Langevin forcg obeys[see Eq.(9)]
D 1/2
<|ﬂwk|2>=292c2q(;) (15)

in the quasistatic and long-wavelength limits.

Note that below the instability thresholdr& ogy), the
fourth derivative can be ignored in E{.4) (since there is no
need for a cutoffand we recover the KPZ equation.

The form of the nonlinearity was expected since the trans-
lational invariance of the step properties with respect to the
step position forbids nonlinearities that inclugdut allows
its derivatives?"{/9x". The first nonlinearitfwhich is com-
patible withx— —x symmetry that satisfies this condition is
(aZ19x)2. This nonlinearity appears in a wide variety of out
of equilibrium systems, such as laminar flame propagation
and solidification at large undercoolifigand its genericity
has been showh.

Note that the prefactor of the nonlinearity/2

coq\/D/7/2 is proportional to the departure from equilib-
rium via o. This indicates that this nonlinear term is absent
at equilibrium. An important property of this term is that it
cannot be obtained from an energetic picture via the relation
a¢lat=6HI 6, where’H is an energy functional: The out-

= €?a’/4b (see Fig. 1 These relations provide the order of of-equilibrium dynamics of the meander does not possess a
magnitude of the scales associated with active modes. Thisyapunov functional. Defining the dimensionless variables
defines the characteristic spatiotemporal scales of the instg-— (8/3)42/x,, ~t:(E;DchquZ/:’axg)t, and h=¢/x,, Eq.

1/2

bility. and t

-2
~27 W€ %,

In real space we havex~2m/Ky €
which lead to

1

d==5, %h=-2. (11)

C. Relevant nonlinearity

An inspection of Eq{(4) shows that the first nonlinearity

is provided by the term

Y(AY)

__ ' ' At/r—(Ax2+ AZ?)IAD At
[ at [ e Y40 |

12

(14) takes the form

ah #h  *h An[oh)?
E—_Vﬁ—ﬂﬁ-i-i(;) + 0, (16)
with the noise correlation
(6(x,h)6(x",h"))=0,8(x—x")8(t1-1"), (A7)
where we have defined the parameters
AN=ologz, (18)

v=(0—0gz)/2087,
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pn=2(1+cl20g7)/3,
R

o= (3/8) YT/ yXs.

D. Competition between stochasticity and determinism

We have already given a brief account of this question.
Here we provide a simple discussion on the competition be- '
tween noise and the deterministic instability. Since the steps '
are one-dimensional entities, they are subject to large statis- /! %
tical fluctuations. When driven out of equilibriufe.g., dur- ’ %
ing growth, the steps are also subject to a morphological *
instability. In this section we develop an analysis of the com- ! R
petition between these two phenoména.

Let us rescale Eq16) using the transformations

(0)

\
N
N
¥
7"?

~ Sy
(19 BZ

h(T,7()=ahH(X,T). FIG. 2. Roughness of an isolated step as a function of the su-
persaturation. The dashed lines indicate the linear theory. The solid

line indicates the nonlinear deterministic theory. The asterisks are

The result is an evolution equation expressed in termx, of
the results of numerical simulations.

T, andH,
oH 9°H J*H 12y 2
o _ 2 -1 _ 4 -1 MN
aT ayay v X2 a, o x4 90||—7/2~1 (24)
14
2
Since the region of this competition is around the threshold

, M [dH
T+ apa,ay E W

+0. (20

where nonlinearities become relevant, we canisetl and
pu=1. This leads to a Ginzburg-Landau-like criterion, ex-
pressing the width of the region where competition between
statistical noise and deterministic chaos is strong. This is

(O(X,THO(X',T")) = foap, 2aya; *6(X—X")S(T—T"). readily given by
21
(2 v|~ 65" (25)
0

We define the Langevin forc® = o, *a; *6, whose corre-
lation reads

First, we choose the prefactors of the linear terms of(E0).
27 then the meander is governed by sta-

to be one(actually, any factor of that order will provide the If v<0 and|v|> 6;
same resulis That is to say, we assume that only lineartistical fluctuations. Ifr>0 and|v|< 63", the roughness is

behavior fixes the spatial and temporal scales. This yields of deterministic origin. In that case the dynamics of the me-
ander is chaotic in space and time since it is governed by the

deterministic Kuramoto-Sivashinsky equation. The short-
' = (22) length-scale modes play the role of an effective ndsm-

# tiotemporal chaos produces its own ngida between, when
27 poth noise and deterministic chaos are present.

In reality nonlinear terms will intervene as soon as the insta}v|< 6§
bility develops and fix the amplitude of modulation. As is Note that the determination of the region where stochastic

visible in Eq.(20), the amplitude scale enters the nonlinearand deterministic effects compe(25) did not require the
term. Because the noise is additive in E20) its correlation  knowledge of the spectrum behaviof{l{,|?) ~1/k?). The
is inversely proportional to the amplitude squared. This isexplicit form of the roughneségiven in Ref. 8 did, how-
expressed by Eq21), wherea;, ? enters. Therefore the am- ever, need that informatiofsee Fig. 2 As for the study of
plitude of the modulation is determined either by the nonlin-the roughness, we refer to Ref. 8.

ear deterministic part or by the noise amplitude. These two
conditions are obtained by setting either the prefactor of the

| V| 1/2 V2

a:
SR

Ill. TRAIN OF STEPS

nonlinear term or the amplitude of the noise to order one. _
This entails two different scalings fd, A. Spatiotemporal scales

Let us now consider the case of a train of steps. We still

|| o ut 23 consider the quasistatic limit. We first determine the spa-

=3~ an=0p | |3/4' (23 tiotemporal scalings from an inspection of the linear disper-

sion relation. Here, besides the tih@and the lateral space

The region where both statistical fluctuations and determinvariablex, we have an additional discrete degree of freedom,

istic chaos are present is the region where these two scalingghich is the indexmn of the steps. We also have to determine
are of the same order of magnitude. This leads to its scaling behavior. To do so, we consider its Fourier con-
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® scaling of the space and time variables. As a consequence of
these scalings, the leading order and the subdominant term of
Eq. (28) are written as

k ~¢e” Im[iw(k,®)]=Dgy+ Pk3g,. (29)

1/2

0o andg, are calculated from a large-scale limit < and
®~ €, with e—0) of g. Their expressions are given in Ap-
o~ & pendix B. Note thatbk?g,~ €2. This term is therefore of the
max same order as the real part of the dispersion relation. This
corresponds to time scalés e 2.

The other term isbgg~e. It introduces a shorter time
scale associated with the propagative effectse 1. The
O=0 positive sign ofg, indicates that the perturbations are ad-

vected backwardin the —z direction.

B. Multiple scale analysis

=g

Let us first give a general discussion based on scaling and
symmetry to derive the form of the relevant nonlinear equa-

FIG. 3. Dispersion relation of a train of steps. The most unstablgjons. In Sec. IV we outline how these equations are ex-

mode has a wave numbket= k.~ "2 and its linear growth rate is  tracted from the microscopic model.
Mot ) . ; 0sCo _
iw=iwmax~ €. The phase cutoff idy~e. The translational invariance of the whole train of steps

. ) ) . implies that { can appear in the equation of motion in
jugate variableP. The most unstable mode is the in-phasetwo different ways: first, in terms of its derivatives

mode (@ =0). Its linear dispersion relation is similar to EQ. with respect tox (9¢/dx, #2¢/ax? ...), andsecond, in

(10): terms of finite difference expressions with respect to the
, ) step index [{m(X,t) ={m-1(X:t),  {mea(X,t) + Lmoa(X,1)
iw(k,®=0)=eak’—bk*. (2600 —27,(x,1), ...]. Mixtures are also possibleZm(x,t)/dx

— 3 m-1(X,t)/dx, ....] Since we must preserve the sym-

The real part of o concerns the growth or decay rate of the metry  X——X, some terms are forbidden

small perturbations. The imaginary part nb depicts the ;- (x t)/gx, ...]. This allows us to determine the scaling

propagation of these perturbations. Here the imaginary pags || the possible nonlinearities that are quadratic jn
of iw is equal to zero antw is real. The dispersion relation

(26) leads to the same exponents as in the case with an iso- ({ma1— Lo)?~ €202,

lated step forx andt: 9,=-—1/2 and 9,=—2. Now we

consider modes such thét+#0 and®<1. Theniw has an a\?

imaginary part. Since we are interested in the stability of the ((9_x) ~el?, (30

train of steps, we first restrict ourselves to the real part of the

dispersion relation. Their dispersion relation has the form e

(see Fig. 3 (§m+1—§m)§~62§2,
Rdiw(k,®)]=eak’®—bk*—c®?. (27

etc. It is easy to check that the dominant term dg/¢x)2.

We now determine the scaling @b. The modes® that Since the linear propagative ternﬁ_sorrequnding to the
contribute to the instability are those for which there exists dmaginary part of the linear dispersion relatjafo not con-
value k* such that RBw(k*,®)]>0. This condition is ful- tribute to the scaling properties of the instability itsébiut
filled for ®<d,=ea/2\bc. Moreover, to be relevant, the do for propagation; see belgywe shall first omit them. The
cd? term in Eq.(27) must be at least of the same order ashonlinear equation of motion of the meander then takes the
the other terms, which scale lik&, so thatb=e. We there- 0™

fore conclude thatb~e€. In real space this means thgt,

— ¢+ is of the same order ag’,,. We define the exponent I _ ca Plm b *¢m
O, via the relationd ~ e~ ?m. Here we havey,=—1. ot Ix2 x4
The imaginary part of the dispersion relation is deduced
from the expression of the susceptibilitieg. (B16) in 1]. +C[ {ma 1%, 1) F Lo 10X, 1) = 2L (X, 1) ]
This leads to 5
+d %) (31
Im[i w(k,®)]=sin(®)g(k?). (28 ax |

Since sin@)=0 when® =0 or ® =7, there is no propaga- We will check later thatl has noe dependence. This equa-
tive effect for the in-phase and the out-of-phase modes. Thion allows us to determine the scaling of the meander by
imaginary part of the dispersion relation does not affect thenaking the nonlinear term~ e£?) scale like the other terms
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(~€?¢). We find {~ e. It follows immediately that the non-
linearities of higher order i (cubic, quartic, etg.provide
higher-order terms.

The full equationwith the linear propagative termtakes
the form[see Eq(B7)]

+ C[§m+1(xat) + gm—l(xit) - ng(X,t)]

2 4 2
Plm P d(%) |
ox

ax? ax*
The expression of the coefficients is given in Appendix B.

(92§m_1
NG

m_ oo e
ot =0Jo §m+1 gm—l Jd2

C?zgm+1 _

NG

—e€a -b

(32

IV. MAIN STEPS IN THE CALCULATION

We use the quasistatic approximatitsee the preceding
papej. First, we look for a stationary concentrationfor a

DYNAMICS AND FLUCTUATIONS. . . ..

... 2281
n+ms<4
. E . an+mé«+18 (—);n-%—mé/Jr (AX)m
+ 0+ o n+ (9Xn+m n+ ﬂXrH—m m!

10 10 10
+nzl ')’n-%—)(n_AXnZ4 7n+Xn+(AX)2n§8 Yn—-7+Xn

Mos i (—AX)" 3¢
dz n=0 nl ox"
072U0+ (92[,104r (92L|04r
tx1—— —Axxa—— T (AX)xg———, (39
dz 0z iz

where y,=1vy1, ¥5= Y2, ¥6= Y2, ¥Y7= Y3, ¥8= Y4 Y9= Vs

+ 6, andy,0= 7. The concentration’ , together with the
Green’s function, is expanded in a similar way. Then the
integration overx’ andt’ is performed. The result is for-
mally written in a truncated Taylor expansion of an expres-
sion involving the two functiong andZ, :

given configuration of the steps. Then, we determine the step

velocity from the mass conservation at the steps. In this ap-
proximation, the meander dynamics is local in time. We then
perform a local spatial expansion of all the quantities in-
volved in the intregro-differential system of equations pro-

vided by the Green’s functions formalis(B5). The deriva-
tives with respect toc with an order higher than 4 are not
relevant becausedf ""¢/ax* ") ~ 3 M2< €3, which is the
order of the terms of Eq(31). The concentratiom is ex-
panded as a function of the meander

3”5 9"{
=Ug+ T+ 2 Nt n
oX
10 2
dUo d"Uo 4+
) YoeXnt 6t (33)

Ug is the concentration whefi= ¢, =0. x, are the relevant
quadratic nonlinearitiesee Appendix B u_ is expanded in
a similar way.

The Green’s functions formalism provides integro-
differential equations including not only quantitiesich asu
or {) at givenx andt, but also an integral contribution of
these quantities over space and time.x/eandt’ denote the
integration variables. The quasistatic approximation implie
that in the kernel of the integral equation bath and ¢’
depend ont and not ont’. More precisely,u’=u(r’,t")
=u(r’,t) (with a similar relation for the step positiprCon-
sequently, the dependence Onappears only in the Green'’s
function. We defineAx=x—x". We then perform a local
expansion of the meander

LN (—AX)
mzw:;o—i( ' ")
= X n! (34)
MLy (—AX)"
(X )=2 gn =29
n=0 gx n!

The concentratioru’ =u(x’,t) is then expanded with the
help of these relations

“€ "L

Fi— (G +Fpy ——(X,1)
ax"

0=

10

+nzl F o Xn(X,1), (36)

where the coefficients,, F,,, and F, are known quanti-

ties. Since/, and{_ are small but arbitrary functions at this
stage, we must have,=0, F,, =0, andFXn=0. This rela-
tions leads to a linear system of equations for the parameters
an, Bn, andy,. We finally solve this linear system and find
the expressions af,,, B,,, andy, . The next step consists in
calculating the step velocity from the mass conservation at
the steps

V+¢ U+  Up_q_
5§ 2112 — D( - . (37)
14 %6m an an
X

The normal derivativegu/dn are evaluated with the help of
the deterministic part of the relatiof24) of the preceding
aper. We can check that the linear part gives the same result
s that obtained from a local expansida{0) of the sus-
ceptibility, which is given by Eq(B15) of the preceding
paper. The resulting nonlinear evolution equation of the me-
ander is given by Eq(32).

V. NONLINEAR STEPS DYNAMICS

The dynamics of a train of steps obeying E8p) is stud-
ied numerically in this section. We consider the case where
the supersaturation is large enouglbove the thresholdso
that the noise term is irrelevarisee Sec. Il . We first
normalize the deterministic part of E¢32) to reduce the
description to a minimum number of independent param-
eters. We define the variableés T, and¢ as

x=e"g, X, t=€ng T, (=€"gk. (39
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The normalization constants are defined in Appendix B. The Static Spectrum *k?
evolution equation of a train of steps then reduces to a three
parameter equation 10 ' ' ' A

1
_(§m+1_§m—l)

€

(92

o
0 2(9X2

aT

1
+a'_2(§m+l+§m71_2§m) .
€ 10" b

2
(?2 34
fm fm

Xz gx*

780
X

(39

The numerical study of this equation is performed with a
train of 11 steps using 1024 mesh points. The lateral size o
the surface isL=27/0.007~=900. We have used periodic | _s
boundary conditions in both directions. The duration of a I
simulation ist=(1024x 10?) X (2x10 2). The spectra are
averaged over eight simulations. We evaluate two quantities
the static spectrum of a step

<|§k|2>=”d(“;:)fj fdi:leji—i<fmfww>

(40) 10° 10" 10° 10'
k

nd the temporal rum
and the temporal spectru FIG. 4. Static spectrum of the meander as a function of the wave

vector.a=1 andny= n,=0.1. The static spectrum is multiplied by
(&%) k?, so that we can easily identify the 2 behavior at smalk. We
© recall that the most unstable mode has a wave vdcta? Y2,

dk dk d® do' [ do’
:f f (Zw)zf f (2m)? J‘Z<§wk®§w’k’¢’>' The short time behavior is a consequence of the propagative
effects. The perturbations are advected backward with the
(41)  velocity vg=—lwg.

In this preliminary version, it must be understood that longer

simulations are necessary if one wants to extract character- VI. CONTINUUM THEORY
istic exponents. This will be the task of a future work. Here
the simulation is only indicative of the detection of special
frequencies.

In the previous sections the step was considered as an
entity. This section aims at describing the surface evolution
) ) at large scales, starting from steps dynamics where the step
We first study the case of weak propagative effects. We,qtion |oses its meaning. We consider for that purpose that
therefore takea=1 and 7=7,=0.1. The dynamics iS q steps are separated by a distance that is small in compari-
found to be spatiotemporally chaotic. The steps evolve rapsg 1o the characteristic length scale, namely, the diffusion
idly into the in-phase mode. The static spectrum of a Step igyngih More generally, this study focuses on scales that are

identical to that for an isolated step governed by thejrge in comparison to the interstep distance. We hence de-
Kuramoto-Sivashinsky equatiofsee Fig. 4. In particular, fine the functionZ(y,x,t) of the continuum variablg as

for small wave vectors|£,/%) ~k 2. There is a bump cen- £(y=mag.x.t) = {n(x.t), where ag is the atomic height.
tered on the most unstable wave vedtor 1/y2. The tem-  The finite difference expressions with respectrtare inter-

poral spectrum has no characteristic frequency. This meangeieq as differentiation with respectydn a Taylor expan-
that the meander is strictly temporally chaotsee Fig. 5. sion. For example

To study the opposite situation where propagative effects
are important, we use another set of parametersl and

70= 12="4. The static spectrurtFig. 6) is still similar to the ar  ad a¥¢
one of the previous case. However, the temporal spectrum is {mr1—{mo1=2ap—+ = —+. (42
different (Fig. 7). There appears a characteristic frequency J 3 dy

wq (we can observe the next harmonic as yeway from
these frequencies the spectrum is similar to the previous on&ince the phas@ in the Fourier space scales likg this
This means that we have temporal chaos at low frequenciesxpression implies thay~e 1. The second term on the
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Temporal spectrum

Spatial Spectrum *k?

100 T T T 10 T T T
10% 1
10% | 1
10° t .
10° | 1
10* 1
10° | 1
10° e T x " 2 2 T “5 “ 1
10 10 10 10 10 10 10 10 10
® k
FIG. 5. Temporal spectrum integrated okeand®. «=1 and FIG. 6. Static spectrum of the meander=1 and »y= 7,=4.

no=1,=0.1. There is no characteristic frequency.

The static spectrum is similar to the one obtained in the case of
weak propagative effects, wherg= 7,=0.1.

right hand side of Eq(42) indicates that the first correction

is ~ €. The evolution equation of the trai(B7) is now ag ag
written as v(z)= I—g - I_Z
L i L0 2
—=2a +cag—— a ap |0 a
ot 0(90 %o )0y O oy? 2T a—§< -2z|+/. (49
y

We now look for the evolution equation of the surface

(43)  Since{~ e, we also have~ e. Furthermore, the first correc-

tion in Eq. (46) is of ordere® (i.e., two orders smaller than
the first term. Moreover, the derivatives af with respect to

height. Following the notations of Fig. 8, we define two £

equivalent representations of the position of the surface

I
2(y,x,t) =~ a—Y+ {(y.0),
0

Ao
Mz, x,t)=— l—z+ v(zZ,t).

2
v ag d¢ a ‘
. A R
Iz 12 gy I
(47)
(44) Pv add | ap )
L2025 2,04
az> 13 gy? I

Using Eq.(43), we are now able to write the evolution equa-

For convenience, we will omit the time dependence ahd  tion of the surface
v in the following. A geometrical relation follows immedi-

ately from Eq.(44),

v(2)= ?{( - ?zﬂL v(2)

whose first-order expansion inreads

&v_Z 9%\ v
T —got gz 9z

(45)
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Temporal Spectrum

10 - S —
30.0
20.0
N
10% + . 10.0
80.0 100.0 120.0
X
I
0.00000 1.00000
FIG. 9. Initial stage at=50 and with7,=0. Stripes take place.
Y - PY . P*Y  *Y  I*Y . aY) 2 49
. e a7z axe axt X
10 x |- 1 L
10° 10" 10° 10’ 10° where the variableX andT are normalized according to Eq.
® (38), Y=¢€"4(ap/l)g,v, andZ=€e [ (bc)Y¥al]z. We have
FIG. 7. Temporal spectrumyr=1 and 77o=7,=4. There is a  introduced the notatio'@ZIZBZ/ﬁ. .
characteristic pulsation fap=5 and another fot=10. This equation has been studied by Rost and Ringhe

absence of the propagative ter(the term proportional to
e?;z). Their result indicates that a chaotic pattern should arise.
d—lowever, it has been shown elsewh&that the presence of

Rropagative terms could cause drastic changes in the mor-

normalize space, time, and the amplitude of the perturbatiophology of the surface. We therefore perform a numerical
v. The propagative term proportional ¢ can be absorbed study of the full equatidn

in the time derivative by means of a Galilean transformation
X—X+got. We obtain a one-parameter equation Deterministic surface roughening

To simplify the numerical investigations and obtain th
physical pertinent parameters of this equation, it is useful t

We shall restrict ourselves to a brief summary. The deter-
ministic part of Eq.(49) is studied numerically in this sec-
tion. The simulations are done on a 64-unit lattice with pe-
riodic boundary conditions. We present the results obtained
for two different values ofz,, with random initial condi-
tions.

In the first case there is no propagative téfig=0. We
see first the primary instability of the meander. Ripples form

on the surfacéFig. 9;t=>50). This morphology is then de-
Nz) T ) stabilized(see Fig. 10f=10%.
) In the second case there is a strong propagative #rm
=5. There is also the same primary instability as in the
previous cas€Fig. 11). The surface is destabilized on shorter
time scales. The resulting morphology is chaotic. The pattern
has lost the— —z symmetry(Fig. 12. The whole pattern is
advected in the direction. We plan to report extensive stud-
ies elsewhere.

2(y) VII. CONCLUSION

FIG. 8. In the continuum limit two representations are possible: In this and the preceding paper we have given a general
Z(y,x,t) or Y(z,x,t). description of vicinal surfaces dynamics. In the first paper we
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t=10000 t=10000

30.0 30.0

20.0

10.0

80.0 100.0 120.0
X

80.0 100.0 120.0
X

B B

1292.0 1294.0 1296.0 3180.0 3185.0

FIG. 10. At a larger time t=10% and with7,=0 the initial

pattern is destabilized FIG. 12.t=10* and%,=5. The pattern is chaotic. The surface

has lost the symmetrg— —z.

dealt with the presentation of the full model including an , )

appropriate Langevin formalism. The linear theory was ther{nterstep distance, or the Erlich-Sciubel length. Close to
presented. Several different features were revealed. Amorf§is threshold the roughness divergasnatural consequence
them is the behavior of the out-of-equilibrium roughness.f tiltallznstablllt)). Inial/tzraln_of steps this divergence behaves
Elastic repulsions are overcome by diffusive repulsion@S€ ~ and notas ““asis the case for an isolated step (
thereby leading to a drastic reduction of the step meandefS the distance from the threshaldClose to the threshold
This should be the first noticeable feature manifested out dfonlinear terms become important. This paper has been de-
equilibrium. On increasing the incoming flux, the steps pe-voted to this situation. We have conqentrated on the situation
come morphologically unstable. We have given a transparerff0se to the instability threshold. This has the advantage of
criterion for the instability. The dimensionless critical super-@xtracting from a multiscale analysis the relevant nonlineari-
saturation is given by the ratio of a capillary length ti€S: We have shown, on the proviso that desorption is not
(QT/kgT) over the smallest lengttihe diffusion length, the negligibly small(see below, that the first nonlinearity falls

in the KPZ class. While this nonlinearity is usually intro-
duced phenomenologically, here we derive it from physical
first principles. Moreover, this allows us to determine its
amplitude as a function of thermodynamic and transport co-
efficients. Each step is governed by a partial differential
equation, coupled to its neighbors, through both the adatom
diffusion and the elastic field. The relevant nonlinearity is of
KPZ or Kuramoto-Sivashinsk§KS) type. The equation con-
tains in addition propagative terms leading to advection in
the direction opposite the train motion. The propagative
character is due to coupling to other steps and to the break-
down of the mirror symmetry along the vicinal direction.

We have analyzed the case of an isolated step. In that
limit the equation is of KPZ or noisy-KS typ@epending on
whether the incoming flux is below or above its critical
valug. We have pointed out the strong competition between
80.0 100.0 120.0 stochastic effectéthermal noise that is strong due the inher-

X ent one-dimensional character of the sjegosd deterministic
effects(produced by spatiotemporal chaoBy using simple

scaling arguments we have determined the region around the
critical supersaturation where stochasticity and determinism

t=50

30.0

20.0

10.0

0.00000 1.00000 compete. Outside this region the dynamics is of either KPZ
(below thresholdor KS (above thresholdtype.
FIG. 11. Primary instability of the vicinal surface=50 and In a train of steps new coupling terms appear, which are

7,="5. There is no difference from the ca%e=0. either of diffusive or propagative nature. In order to make
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contact with traditional surface phenomenological equations,

we have determined from step equations the evolution equa- < -Qq,+ Z’chqa

tion for the surface starting from individual step descriptions.

Close to the threshold the equation is of anisotropic Y(At)

Kuramoto-Sivashinsky type, containing propagative terms +Qj dt'f dx'f dz’

[Eqg. (49)]. This equation differs from those used phenom- 4mDAt

enologically in the literature by the presence of propagative AT A+ (2 — )2 , ,

terms®! It will thus be an important task for future investi- e  MTIRCHETOUIRAE —V- ). (A1)

gation to elucidate their effects in the study of kinetic rough-In Fourier space, Eq(Al) is easily integrated, using the

ening of a vicinal surface, such as that studied by Wolf.  relations for the deterministic part, with ¢
The continuum versiofiEq. (49)] of our step equations =g H(@AtTkA,

has been analyzed numerically. At small times the surface

develops ripples that are elongated along the step motion.

This is the consequence of the step morphological instability. f dt’f dx’ LAt)e—M/T—<A><>2/4'3At

As time elapses, the ripples undergo a zigzag instali8itg- 4mDAt

ondary instability, an instability leading ultimately to a ,

rough surface. The morphology is very reminiscent of that xi( _ EAXJFAg

obtained when 2D nucleation is present. This morphology 2At IX

also bears resemblance to that obtained by Rost.® in

which desorption was ignored. Lok X<k?

There are several future lines of investigations. First, our =T 1+ XA gk : (A2)

s wk

equations can now be fully integrated without resorting to

the near-threshold limit. We hope to report along these lines Y(AD)

in the future. In the nonlinear study we have limited our- J dtrJ dx’ — g~ AUT=(Ax)2/4DAtg ~i(wAt+kAX)

selves to the situation where desorption was not negligible 4mwDAt

on all scales of interest. We have assumed that the wave-

length of the pattern is large in comparison to all other _ 1

lengths and in particular larger than the diffusion length. If 2X5Awk,

this does not hold, a full study is necessary. This is the re-

gime where many growth experiments are performed. FronyhereA = (k?+iw/D + 1/D 7)*2. The resulting equation is

the analytical point of view, it turns out that the no- given by Eq.(7).

desorption limit is singular in the sense that the amplitude

does not scale down to zero at the instability Iirlﬁim this . APPENDIX B: MULTIPLE SCALE ANALYSIS

work we have not taken into account 2D nucleation. This

phenomenon would constitute a step in the approaching dy- We here perform a multiple scale analysis, where we de-

namics of a nominal high symmetry surface, a regime thatermine the prefactors of Eq31). We will therefore only

has induced recently several investigatiohs. consider the deterministic part of the equations. In Sec. Ill B
we have shown that the nonlinearity of this equation is
(9Z19x)2. We therefore have to take into account all the

ACKNOWLEDGMENTS nonlinearities whose derivatives can lead to this term. We

will first look for the nonlinearities that appear in the nor-

malized concentration.. between the stepm andm+1. It

ap_as been shown in Sec. Il B that the terms coming from the

elastic repulsion do not provide relevant nonlinearities. We

GwiII therefore not consider them. The concentration on a ter-

race therefore depends only on the position of the steps that

surround it. To simplify the expressions, we use the notation

{={pnand{,;={n1- We define

(A3)
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APPENDIX A:

LINEAR ANALYSIS FOR AN ISOLATED STEP Xl:%é& X2=CL4 stégi Xa= g&_{
; ; ; X’
To first order inZ, Eq. (4) reads
24 74 24
Xs={—— Xe={imr Xo=l——,  (BD)
O_F (92§+Q +f dt’f dy Y(At) ax ax
22 2 X 47DAt o1 ot ot e
+ +
Xe—At/r—(Ax)ZMDAt st(g) ) X9:25 g, Xlo:( ax) .
1 al’ , . .
% it LAX+ A¢ [_chqg] The starting eqyatlons to be developed @ex the preceding
t X paper, Appendix B
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_ 7’8++710— \ Y10+

d, d. 2D 4,

2
o0 au Ys— | Y Yo | [ ¢
+TDJ dl“; G(At,AX,é’,—g)—*— +i+2i+2i)(_m) + 4
—o an d_ d, d_ X
JG (B4)
—u} —(At,AX, "= ()
an We finally find an equation of the form
+ oo .
—Tﬁ dx ZLulG(ALAX I+~ ) W e (azgm+1 Plm-1
ot Jolém+1 m-1 Jd2 0"X2 07X2
+oo au’
—TDJ dr;(G(At,Ax,Hg;—g)— P
e on Felémia(}0 +émo1(x) —2Lm(x 0] —ea—3
' &G(At Ax,I+ =) ] (B2) 4 2
—uU_ —— ,AX, - , J J
n - b {;ud(ﬁ) , ®5)
X X
1 o fe o L where
—Eu,= dA ty 7 dx J'ul G(At,AX, " —1—¢4)
0 — o
DJdeF’GAA "—I ouy =£h
+T i S ( tv Xag - _§+) &n XS DO'
BAINCT ))
_u+_ ’ X1 764
J
A b=DTx, -2,
+o . 0
—o| Tax it eataxdi -2
1 |A Qc
o o c=D ot (2 ~d?)|,
—7D B dry G(AI,AX,§+—§+)E XsDg |4 2x3Dg
’aG(AtA =t )) (B3) Y I B
_u—_ H X! - il
an +T b d=o[1- ———|, (B6)
2 Xs foDo
where the prime for a function of andt refers to the argu-
mentsx’ andt’. The main steps of the calculation are de-
scribed in Sec. IV. The nonlinear part of the evolution equa- Qc.. B
tion reads go=Do Zeq_Oz'
s 2Dg
2
1 5§m) e+ Y-V |[m
D 4t o \dydo 2DJY ox ByGo
nonfin 92=DoQcCeq——3 -
2 2 4'IDO
RELE m+1 L Y- m-1
d, X d_ IX The mean step velocity has the expression
+2’}’9_+(07§m+1)(%) Qe f
g
d, ax ox _ eq O' (B7)

XSDO
Yo- ( ﬁgml) ( agm)

We have used the notations
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1 2 ; 2
By=—{(d,+d_)*+2(d, +d_)xssinh(1/xs) +2(d d_ +x5)[ coshil/xs) — 1]},
XS

d,+d_

Xs

d.d_
1+ — )[cosm/xs)—l]l })
XS

. fo[dy+d_ d.d_ .
+2 smh(l/xs)g coshil/xs) + ——sinh(1/x;)
0

2 [d,+d_
-2 sinh(1/x,) +

1 d,+d_ f, |
Co=\5sinh(1/xs) +— |+

2 Xs Do) 2xDy Xs
|2
— —sintP(1/x,)
X

S

o 1 [d,+d_

oaz 4 sinf/xg) | Xs

2Kd++d)ig],

Xs Xs

- (B8)
X2 D
d.d_\| . l|d,+d_ d.d_
Go=| 1————|sinh(I/xg) — — sinh(I/xs) +| 1+ ———|coshl/xy) |.
XS S S XS

To recover the case of an isolated step, we take the limit in Eq. (B7). We find the same result as Ed.4).
We now return to the case of a train of steps. We introduce the normalized vangblesand ¢ via the relations

x=eng, X, t=€g 1T, (=e€'qé. (B9)

The normalization constants are

1_\/?; 1 o 21 (1 | B, )1 ®10
= ) =——1X [} = - .
gx XS Co gt D 7'2 SDQCO g( G'chq XS Dofo

The three parameters of the resulting equation reads

Xs BoG 1 ByC X2 Co| A aQcey(d>—d?)
Br=00Ceq— —5—, Bo== — g, a=——| ot —— |, (B11)
41" Dgfq € Dofp I foll 2x3Dqfq
The evolution equation of the meander now takes the form
2

Im & |1 1 Pém I Em [ Im

—=| Bo—Bo— | = — o)t a— tém1—2Em) — —> — +|— B12)

oT (:80 BZ 19)(2 6(§m+l gm 1) 62(§m+1 gm 1 fm) 19)(2 19X4 aX (
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