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Dynamics and fluctuations during MBE on vicinal surfaces. II. Nonlinear analysis

O. Pierre-Louis* and C. Misbah
Laboratoire de Spectrome´trie Physique, Universite´ Joseph Fourier, CNRS, Grenoble I, Boıˆte Postale 87,

Saint-Martin d’Hères, 38402 Cedex, France
~Received 2 September 1997!

This paper is the natural next step beyond the linear regime presented in the preceding paper. By concen-
trating on the situation close to the step morphological instability threshold, we derive nonlinear evolution
equations for interacting steps on a vicinal train. This treatment is coherent in that it retains only relevant
nonlinearities close enough to the threshold. Our analysis provides the expression of the coefficients in terms
of thermodynamic and transport coefficients. Numerical analysis of these equations reveals spatially and
temporally disordered patterns. We give a criterion specifying the region where step roughness is due to both
stochastic effects~associated with various sources of noise! and deterministic ones~stemming from determin-
istic spatiotemporal chaos!. Outside this region, the roughness is dominated by either stochastic or determin-
istic effects. Starting from the discrete version~this is taken to mean that each step is described as an entity! of
step dynamics~that is to say, each step is separately described by an evolution equation!, we derive a coarse-
grained evolution equation for the surface. This results in an anisotropic Kuramoto-Sivashinsky equation
including propagative effects. Numerical analysis reveals situations where the original surface undergoes a
secondary instability leading ultimately to a rough pattern. The surface looks as if two-dimensional nucleation
were allowed. Implication and outlooks are discussed.@S0163-1829~98!06127-X#
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I. INTRODUCTION

This paper considers the nonlinear evolution of steps o
vicinal surface submitted to molecular beam epitaxy in
regime where growth is achieved by step flow, that is to s
two-dimensional~2D! island nucleation is prohibited. Th
model rests on that of Burton, Cabrera, and Frank sup
mented with step noninstantaneous kinetics, elastic inte
tion, and fluctuations. Starting from this model~generally
combining basic principles, namely, conservation and kin
laws!, we shall derive continuum evolution equations f
steps dynamics, from which the surface evolution equa
can be extracted. Unlike phenomenological studies,
work provides a general basis for the derivation of evolut
equations, where the form, magnitude of nonlinearities,
expression of coefficients are extracted in a systematic m
ner. It also shows that phenomenological studies can
several terms. A typical example is that this treatment allo
a derivation of the Kardar-Parisi-Zhang1 ~KPZ! equation
from microscopic consideration, an equation that holds
an isolated step and when allowance is made of finite des
tion. For a train of steps we obtain equations for nonlin
interacting lines.

We have presented in the preceding paper~hereafter re-
ferred to as I! the model equations and studied the equil
rium and nonequilibrium features in the linear regime. W
have seen that as the deposition flux is increased, we rea
critical value, above which the steps become morpholo
cally unstable. This implies that nonlinear effects beco
important. At arbitrary distance from the threshold dynam
is highly nonlinear. However, by concentrating on the situ
tion close to the threshold, we can extract from the nonlo
and nonlinear equations only the part that is relevant in
regime. A weakly nonlinear analysis becomes legitimate.
the other hand, because of translational symmetries, the
PRB 580163-1829/98/58~4!/2276~13!/$15.00
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dangerous modes are the long-wavelength ones. This
imply that close to the threshold the dynamics is local in b
space and time. We shall derive in a coherent way nonlin
evolution equations for steps dynamics. We consider
general case where the steps are not synchronized, thou
will emerge that the in-phase motion is the most domin
one. As a simple introduction we shall first concentrate
the case of an isolated step. This will allow us to reder
from an integral equation the evolution equation derived
Benaet al.2 This will serve as a preparation for the deriv
tion of the evolution equations in a train. This is a proble
where each step is interacting with its neighbors via both
diffusion field and the elastic one. We shall then analyze
equations numerically. We find generically disordered p
terns. We specify both static and dynamical structure fact
For the spatial behavior, we find that the value of the ex
nent of the structure factor as a function of the wave num
is the same as the one of an isolated step on a large scale
short scales, rather strong correlations are found. The
namical structure factor reveals a typical frequency ass
ated with propagative effects. Indeed, phase shifts betw
two steps evolve in a propagative manner. This is even
ognized in the linear dispersion relation, where the eig
value has an imaginary part when the phase shift is nonz
Moreover, localized fluctuations appearing on a step are
ways advected upward, that is, they propagate in the di
tion opposite the global train motion.

The next step is devoted to the continuum limit starti
from the discrete version derived from the integral equatio
That is, from the step evolution equations we derive
coarse-grained equation for the surface evolution. This
sults in an anisotropic Kuramoto-Sivashinsky equation w
propagative terms. It emerges from our study that the vici
surface may suffer a secondary instability, leading ultimat
to a rough surface. The structure is very reminiscent of t
2276 © 1998 The American Physical Society
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PRB 58 2277DYNAMICS AND FLUCTUATIONS . . . . II. . . .
appearing on a nominal surface and is implied by
Ehrlich-Schw!bel effect. A similar behavior has been foun
by Rostet al.3 in a model equation having a completely d
ferent form and introduced in the context of growth in t
absence of desorption.

The scheme of this paper is as follows. In Sec. II we d
with the limit of an isolated step. In Sec. III, we write th
evolution equations for the train. In Sec. IV we present
main lines of the derivations. Section V deals with the e
ploitation of the nonlinear results of step dynamics. Sect
VI is devoted to the continuum limit. The conclusion an
outlooks is the subject of Sec. VII. Details and some leng
expressions are relegated to the Appendixes.

II. ISOLATED STEP

A. Integral formulation

Before tackling the problem of a train of steps on a vicin
surface, which is the main purpose of this paper, we s
first depict the dynamics of an isolated step.2 The derivation
presented here differs significantly from that given in t
original paper,2 by direct use of an integral formulation. Thu
we find it worthwhile to devote a brief discussion to th
point.

It is possible to derive a closed integro-differential equ
tion for the meander of an isolated step~i.e., without refer-
ring to the adatom concentration! when the model is one
sided (d2→`). For the sake of simplicity, we restrict ou
analysis to the instantaneous attachment cased150. Using
the relation~22! in I, the concentration in front of the stepu1

is related to the meanderz by

u1

2
5tE dt8E dx8F @11~]z8/]x8!2#1/2

3DS u18
]G

]n8
2G

]u18

]n8
D 2~V1 ż8!Gu18 G

1VtE dt8E dx8E dz8~ f 82“•q8!

3G~x2x8,z2z8,t2t8!, ~1!

where G5G„x2x8,z(x,t)2z(x8,t8),t2t8… and ż5]z/]t.
The prime indicates that the arguments arex8 and t8 @for
example,z5z(x,t) and z85z(x8,t8)]. The concentration
u1 and its normal derivative obey the relations@see Eqs.~24!
and ~14! in I#

u152Vceq
0 s1Gk2Vh1 , ~2!

]u1

]n
5

1

D S V1 ż

A11S ]z

]xD 2
1Vn•q1D . ~3!

Inserting these expressions into Eq.~1!, we find
e

l

e
-
n

y

l
ll

-

E dt8E dx8
Y~Dt !

4pDDt
e2Dt/t2~Dx21Dz2!/4DDt

3H 1

2Dt S 2
]z8

]x8
Dx1Dz D @2Vceq

0 s1Gk82Vh18 #

2~V1 ż8!2VS 2
]z8

]x8
qx81qz8D

1 ż8~Vceq
0 s2Gk81Vh18 !J

1VE dt8E dx8E dz8
Y~Dt !

4pDDt

3e2Dt/t2@Dx21~z82z!2#/4DDt$ f 82“•q8%

5
1

2
~2Vceq

0 s1Gk2Vh1!, ~4!

where we have definedDx5x2x8, Dt5t2t8, and Dz5z
2z8. This result is a closed integro-differential equation f
the isolated step, which exhibits explicitly the nonlinear a
nonlocal features of the step dynamics. The only referenc
what happens on the terraces is due to the cumulated e
of the conserved and nonconserved fluctuations of the a
tom concentration. The deterministic part of this equat
depends only on the step configuration and of its history

This type of formulation offers possibilities in numeric
treatment4 of step dynamics. Here we intend to extract an
lytically the relevant nonlinearities by means of a multip
scale analysis close to the instability threshold.

B. Linear analysis and spatiotemporal scales

Our calculation is based on an expansion with respect
small parameter that measures the departure from the in
bility threshold

e5
s2sBZ

sBZ

, ~5!

wheresBZ is the value of the supersaturation at the instab
ity threshold@see Eq.~68! in I#. The spatiotemporal active
scales are fixed by the linear analysis and behave as

x;eqx, t;eq t, ~6!

whereqx andq t are exponents to be determined below.
To leading order, Eq.~4! provides the mean velocityV

5sceq
0 AD/t for a straight step. This velocity is proportiona

to the departure from equilibrium through the supersatura
s. Equation~4! is expanded to first order inz @see Eq.~A1!#.
In Fourier space, we find an equation for the Fourier tra
form of the meanderzvk5*dx*dtz(x,t)e2 ivt2 ikx, which is
written as

xvk
21zvk5bvk . ~7!

xvk is the susceptibility of the step meander
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xvk
215 iv1S D

t D 1/2

Gk2Ak2xs
21 ivt111

Vceq
0

t

3s~12Ak2xs
21 ivt11!. ~8!

The step is subject to a noiseb resulting from a combination
of the Langevin forces introduced in the model.b obeys the
following correlations law at equilibrium:

^ubvku2&5
V2ceq

Re~Lvk!
@ uLvku21Re~Lvk

2 !#S D

t D 1/2

, ~9!

whereLvk5(k21 iv/D11/xs
2)1/2. The additional contribu-

tions coming from the departure from equilibrium are fou
to be negligible.

In the quasistatic and long-wavelength limits (iv!Dk2

!1/t), the dispersion relation in Fourier space is of the fo

iv~k!.eak22bk4. ~10!

If a.0 „or s.2G/Vceq
0 xs @see Eq.~67! in I#…, a straight

step is unstable. The most unstable mode iskmax

5e1/2Aa/2b. The growth rate of this mode isivmax
5e2a2/4b ~see Fig. 1!. These relations provide the order
magnitude of the scales associated with active modes.
defines the characteristic spatiotemporal scales of the in
bility. In real space we havex;2p/kmax;e21/2 and t
;2p/vmax;e22, which lead to

qx52
1

2
, q t522. ~11!

C. Relevant nonlinearity

An inspection of Eq.~4! shows that the first nonlinearit
is provided by the term

I 52VE dt8E dx8
Y~Dt !

4pDDt
e2Dt/t2~Dx21Dz2!/4DDt.

~12!

FIG. 1. Dispersion relation for an isolated step. The most
stable mode has a wave numberk5kmax;e1/2 and its linear growth
rate isiv5 ivmax;e2.
is
ta-

Since the dynamics are local, a Taylor expansionDz2

;(Dx)2(]z/]x)21h ~whereh denotes higher-order terms!
is allowed, so that

I 52VE dt8E dx8
Y~Dt !

4pDDt
e2Dt/t2Dx2@11~]z/]x!2#/4DDt

.
V

2 S t

D D 1/2F211
1

2 S ]z

]xD 2G . ~13!

Inserting this term into Eq.~10! expressed in real space an
using Eq.~7! for the noise term, we find the noisy Kuramoto
Sivashinsky equation

]z

]t
52Vceq

0 D

2
~s2sBZ!

]2z

]x2

2Vceq
0 D2t

4
S s1

sBZ

2
D ]4z

]x4
1

V

2 S ]z

]xD 2

1b, ~14!

where the Langevin forceb obeys@see Eq.~9!#

^ubvku2&52V2ceq
0 S D

t D 1/2

~15!

in the quasistatic and long-wavelength limits.
Note that below the instability threshold (s,sBZ), the

fourth derivative can be ignored in Eq.~14! ~since there is no
need for a cutoff! and we recover the KPZ equation.

The form of the nonlinearity was expected since the tra
lational invariance of the step properties with respect to
step position forbids nonlinearities that includez but allows
its derivatives]nz/]xn. The first nonlinearity~which is com-
patible withx→2x symmetry! that satisfies this condition is
(]z/]x)2. This nonlinearity appears in a wide variety of o
of equilibrium systems, such as laminar flame propagati5

and solidification at large undercooling,6 and its genericity
has been shown.7

Note that the prefactor of the nonlinearityV/2
5sceq

0 AD/t/2 is proportional to the departure from equilib
rium via s. This indicates that this nonlinear term is abse
at equilibrium. An important property of this term is that
cannot be obtained from an energetic picture via the rela
]z/]t5dH/dz, whereH is an energy functional: The out
of-equilibrium dynamics of the meander does not posses
Lyapunov functional. Defining the dimensionless variab
x̃5(8/3)1/2x/xs , t̃ 5(8DVceq

0 sBZ/3xs
2)t, and h5z/xs , Eq.

~14! takes the form

]h

] t̃
52n

]2h

] x̃2
2m

]4h

] x̃4
1

l

2 S ]h

] x̃
D 2

1u, ~16!

with the noise correlation

^u~ x̃,h!u~ x̃8,h8!&5u0d~ x̃2 x̃8!d~ t̃ 2 t̃ 8!, ~17!

where we have defined the parameters

l5s/sBZ , ~18!

n5~s2sBZ!/2sBZ ,

-
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m52~11s/2sBZ!/3,

u05~3/8!1/2kBT/gxs .

D. Competition between stochasticity and determinism

We have already given a brief account of this questio8

Here we provide a simple discussion on the competition
tween noise and the deterministic instability. Since the st
are one-dimensional entities, they are subject to large st
tical fluctuations. When driven out of equilibrium~e.g., dur-
ing growth!, the steps are also subject to a morphologi
instability. In this section we develop an analysis of the co
petition between these two phenomena.8

Let us rescale Eq.~16! using the transformations

t̃ 5a t
21T, x̃5ax

21X,
~19!

h~ t̃ ,x̃!5ahH~X,T!.

The result is an evolution equation expressed in terms oX,
T, andH,

]H

]T
52ax

2a t
21n

]2H

]X2
2ax

4a t
21m

]4H

]X4

1ahax
2a t

21 l

2 S ]H

]X D 2

1Q. ~20!

We define the Langevin forceQ5ah
21a t

21u, whose corre-
lation reads

^Q~X,T!Q~X8,T8!&5u0ah
22axa t

21d~X2X8!d~T2T8!.
~21!

First, we choose the prefactors of the linear terms of Eq.~20!
to be one~actually, any factor of that order will provide th
same results!. That is to say, we assume that only line
behavior fixes the spatial and temporal scales. This yield

ax5S unu
m D 1/2

, a t5
n2

m
. ~22!

In reality nonlinear terms will intervene as soon as the ins
bility develops and fix the amplitude of modulation. As
visible in Eq. ~20!, the amplitude scale enters the nonline
term. Because the noise is additive in Eq.~20! its correlation
is inversely proportional to the amplitude squared. This
expressed by Eq.~21!, whereah

22 enters. Therefore the am
plitude of the modulation is determined either by the nonl
ear deterministic part or by the noise amplitude. These
conditions are obtained by setting either the prefactor of
nonlinear term or the amplitude of the noise to order o
This entails two different scalings forh,

ah5
unu
l

, ah5u0
1/2 m1/4

unu3/4
. ~23!

The region where both statistical fluctuations and determ
istic chaos are present is the region where these two sca
are of the same order of magnitude. This leads to
.
-
s

is-

l
-

-

r

s

-
o
e
.

-
gs

u0

m1/2l2

unu7/2
;1. ~24!

Since the region of this competition is around the thresh
where nonlinearities become relevant, we can setl.1 and
m.1. This leads to a Ginzburg-Landau–like criterion, e
pressing the width of the region where competition betwe
statistical noise and deterministic chaos is strong. This
readily given by

unu;u0
2/7. ~25!

If n,0 andunu@u0
2/7 then the meander is governed by st

tistical fluctuations. Ifn.0 andunu!u0
2/7, the roughness is

of deterministic origin. In that case the dynamics of the m
ander is chaotic in space and time since it is governed by
deterministic Kuramoto-Sivashinsky equation. The sho
length-scale modes play the role of an effective noise~spa-
tiotemporal chaos produces its own noise!. In between, when
unu,u0

2/7, both noise and deterministic chaos are prese
Note that the determination of the region where stocha
and deterministic effects compete~25! did not require the
knowledge of the spectrum behavior (^uhku2& ;1/k2). The
explicit form of the roughness~given in Ref. 8! did, how-
ever, need that information~see Fig. 2!. As for the study of
the roughness, we refer to Ref. 8.

III. TRAIN OF STEPS

A. Spatiotemporal scales

Let us now consider the case of a train of steps. We s
consider the quasistatic limit. We first determine the s
tiotemporal scalings from an inspection of the linear disp
sion relation. Here, besides the timet and the lateral space
variablex, we have an additional discrete degree of freedo
which is the indexm of the steps. We also have to determi
its scaling behavior. To do so, we consider its Fourier c

FIG. 2. Roughness of an isolated step as a function of the
persaturation. The dashed lines indicate the linear theory. The s
line indicates the nonlinear deterministic theory. The asterisks
the results of numerical simulations.
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jugate variableF. The most unstable mode is the in-pha
mode (F50). Its linear dispersion relation is similar to E
~10!:

iv~k,F50!5eak22bk4. ~26!

The real part ofiv concerns the growth or decay rate of t
small perturbations. The imaginary part ofiv depicts the
propagation of these perturbations. Here the imaginary
of iv is equal to zero andiv is real. The dispersion relatio
~26! leads to the same exponents as in the case with an
lated step forx and t: qx521/2 and q t522. Now we
consider modes such thatFÞ0 andF!1. Theniv has an
imaginary part. Since we are interested in the stability of
train of steps, we first restrict ourselves to the real part of
dispersion relation. Their dispersion relation has the fo
~see Fig. 3!

Re@ iv~k,F!#5eak22bk42cF2. ~27!

We now determine the scaling ofF. The modesF that
contribute to the instability are those for which there exist
value k* such that Re@iv(k* ,F)#.0. This condition is ful-
filled for F,F05ea/2Abc. Moreover, to be relevant, th
cF2 term in Eq.~27! must be at least of the same order
the other terms, which scale likee2, so thatF>e. We there-
fore conclude thatF;e. In real space this means thatzm
2zm11 is of the same order asezm . We define the exponen
qm via the relationF;e2qm. Here we haveqm521.

The imaginary part of the dispersion relation is deduc
from the expression of the susceptibility@Eq. ~B16! in I#.
This leads to

Im@ iv~k,F!#5sin~F!g~k2!. ~28!

Since sin(F)50 whenF50 or F5p, there is no propaga
tive effect for the in-phase and the out-of-phase modes.
imaginary part of the dispersion relation does not affect

FIG. 3. Dispersion relation of a train of steps. The most unsta
mode has a wave numberk5kmax;e1/2 and its linear growth rate is
iv5 ivmax;e2. The phase cutoff isF0;e.
rt

o-

e
e

a

d

e
e

scaling of the space and time variables. As a consequenc
these scalings, the leading order and the subdominant ter
Eq. ~28! are written as

Im@ iv~k,F!#.Fg01Fk2g2 . ~29!

g0 andg2 are calculated from a large-scale limit (k;e1/2 and
F;e, with e→0) of g. Their expressions are given in Ap
pendix B. Note thatFk2g2;e2. This term is therefore of the
same order as the real part of the dispersion relation. T
corresponds to time scalest;e22.

The other term isFg0;e. It introduces a shorter time
scale associated with the propagative effectst;e21. The
positive sign ofg0 indicates that the perturbations are a
vected backward~in the 2z direction!.

B. Multiple scale analysis

Let us first give a general discussion based on scaling
symmetry to derive the form of the relevant nonlinear eq
tions. In Sec. IV we outline how these equations are
tracted from the microscopic model.

The translational invariance of the whole train of ste
implies that z can appear in the equation of motion
two different ways: first, in terms of its derivative
with respect tox (]z/]x, ]2z/]x2 . . . ), and second, in
terms of finite difference expressions with respect to
step index @zm(x,t)2zm21(x,t), zm11(x,t)1zm21(x,t)
22zm(x,t), . . . ]. Mixtures are also possible@]zm(x,t)/]x
2]zm21(x,t)/]x, . . . .# Since we must preserve the sym
metry x→2x, some terms are forbidde
@]zm(x,t)/]x, . . . #. This allows us to determine the scalin
of all the possible nonlinearities that are quadratic inz,

~zm112zm!2;e2z2,

S ]z

]xD 2

;ez2, ~30!

~zm112zm!
]2z

]x2
;e2z2,

etc. It is easy to check that the dominant term is (]z/]x)2.
Since the linear propagative terms~corresponding to the
imaginary part of the linear dispersion relation! do not con-
tribute to the scaling properties of the instability itself~but
do for propagation; see below!, we shall first omit them. The
nonlinear equation of motion of the meander then takes
form

]zm

]t
52ea

]2zm

]x2
2b

]4zm

]x4

1c@zm11~x,t !1zm21~x,t !22zm~x,t !#

1dS ]zm

]x
D 2

. ~31!

We will check later thatd has noe dependence. This equa
tion allows us to determine the scaling of the meander
making the nonlinear term (;ez2) scale like the other terms

le
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(;e2z). We findz;e. It follows immediately that the non
linearities of higher order inz ~cubic, quartic, etc.! provide
higher-order terms.

The full equation~with the linear propagative terms! takes
the form @see Eq.~B7!#

]zm

]t
5g0~zm112zm21!2g2S ]2zm11

]x2
2

]2zm21

]x2 D
1c@zm11~x,t !1zm21~x,t !22zm~x,t !#

2ea
]2zm

]x2
2b

]4zm

]x4
1dS ]zm

]x
D 2

. ~32!

The expression of the coefficients is given in Appendix B

IV. MAIN STEPS IN THE CALCULATION

We use the quasistatic approximation~see the preceding
paper!. First, we look for a stationary concentrationu for a
given configuration of the steps. Then, we determine the
velocity from the mass conservation at the steps. In this
proximation, the meander dynamics is local in time. We th
perform a local spatial expansion of all the quantities
volved in the intregro-differential system of equations p
vided by the Green’s functions formalism~B5!. The deriva-
tives with respect tox with an order higher than 4 are no
relevant because (]41nz/]x41n);e31n/2!e3, which is the
order of the terms of Eq.~31!. The concentrationu is ex-
panded as a function of the meander

u15u011 (
n50

4 S an1

]nz

]xn
1bn1

]nz1

]xn D
1 (

n51

10

gn1xn1z
]u01

]z
1x1

]2u01

]z2
. ~33!

u0 is the concentration whenz5z150. xn are the relevant
quadratic nonlinearities~see Appendix B!. u2 is expanded in
a similar way.

The Green’s functions formalism provides integr
differential equations including not only quantities~such asu
or z) at givenx and t, but also an integral contribution o
these quantities over space and time. Letx8 andt8 denote the
integration variables. The quasistatic approximation imp
that in the kernel of the integral equation bothu8 and z8
depend ont and not ont8. More precisely,u8[u(r 8,t8)
.u(r 8,t) ~with a similar relation for the step position!. Con-
sequently, the dependence ont8 appears only in the Green’
function. We defineDx5x2x8. We then perform a loca
expansion of the meander

z~x8,t8!5 (
n50

4
]nz

]xn

~2Dx!n

n!
,

~34!

z1~x8,t8!5 (
n50

4
]nz1

]xn

~2Dx!n

n!
.

The concentrationu85u(x8,t) is then expanded with the
help of these relations
p
p-
n
-
-

s

u18 5u011 (
n,m

n1m<4 S an1

]n1mz

]xn1m
1bn1

]n1mz1

]xn1m D ~Dx!m

m!

1 (
n51

10

gn1xn2Dx(
n54

10

g̃n1xn1~Dx!2(
n58

10

gn271xn

1
]u01

]z
(
n50

4
~2Dx!n

n!

]nz

]xn

1x1

]2u01

]z2
2Dxx4

]2u01

]z2
1~Dx!2x8

]2u01

]z2
, ~35!

where g̃45g1, g̃55g2, g̃65g2, g̃75g3, g̃85g4, g̃95g5

1g6, andg̃105g7. The concentrationu28 , together with the
Green’s function, is expanded in a similar way. Then t
integration overx8 and t8 is performed. The result is for
mally written in a truncated Taylor expansion of an expre
sion involving the two functionsz andz1 :

05 (
n50

4 S Fn

]nz

]xn
~x,t !1Fn1

]nz1

]xn
~x,t !D

1 (
n51

10

Fxn
xn~x,t !, ~36!

where the coefficientsFn , Fn1 , andFxn
are known quanti-

ties. Sincez1 andz2 are small but arbitrary functions at thi
stage, we must haveFn50, Fn150, andFxn

50. This rela-
tions leads to a linear system of equations for the parame
an , bn , andgn . We finally solve this linear system and fin
the expressions ofan , bn , andgn . The next step consists in
calculating the step velocity from the mass conservation
the steps

V1 ż

F11S ]zm

]x D 2G1/25DS ]um,1

]n
2

]um21,2

]n
D . ~37!

The normal derivatives]u/]n are evaluated with the help o
the deterministic part of the relation~24! of the preceding
paper. We can check that the linear part gives the same re
as that obtained from a local expansion (k→0) of the sus-
ceptibility, which is given by Eq.~B15! of the preceding
paper. The resulting nonlinear evolution equation of the m
ander is given by Eq.~32!.

V. NONLINEAR STEPS DYNAMICS

The dynamics of a train of steps obeying Eq.~32! is stud-
ied numerically in this section. We consider the case wh
the supersaturation is large enough~above the threshold!, so
that the noise term is irrelevant~see Sec. II D!. We first
normalize the deterministic part of Eq.~32! to reduce the
description to a minimum number of independent para
eters. We define the variablesX, T, andj as

x5eqxgx
21X, t5eq tgt

21T, z5eqzgzj. ~38!
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The normalization constants are defined in Appendix B. T
evolution equation of a train of steps then reduces to a th
parameter equation

]jm

]T
5S h02h2

]2

]X2D 1

e
~jm112jm21!

1a
1

e2
~jm111jm2122jm!

2
]2jm

]X2
2

]4jm

]X4
1S ]jm

]X
D 2

. ~39!

The numerical study of this equation is performed with
train of 11 steps using 1024 mesh points. The lateral siz
the surface isL52p/0.007.900. We have used periodi
boundary conditions in both directions. The duration o
simulation is t5(10243102)3(231022). The spectra are
averaged over eight simulations. We evaluate two quantit
the static spectrum of a step

^ujku2&5E E dv dv8

~2p!2 E E dF dF8

~2p!2 E dk8

2p
^jvkFjv8k8F8&

~40!

and the temporal spectrum

^ujvu2&

5E E dk dk8

~2p!2 E E dF dF8

~2p!2 E dv8

2p
^jvkFjv8k8F8&.

~41!

In this preliminary version, it must be understood that long
simulations are necessary if one wants to extract chara
istic exponents. This will be the task of a future work. He
the simulation is only indicative of the detection of spec
frequencies.

We first study the case of weak propagative effects.
therefore takea51 and h05h250.1. The dynamics is
found to be spatiotemporally chaotic. The steps evolve r
idly into the in-phase mode. The static spectrum of a ste
identical to that for an isolated step governed by
Kuramoto-Sivashinsky equation~see Fig. 4!. In particular,
for small wave vectors,̂ujku2& ;k22. There is a bump cen
tered on the most unstable wave vectork51/A2. The tem-
poral spectrum has no characteristic frequency. This me
that the meander is strictly temporally chaotic~see Fig. 5!.

To study the opposite situation where propagative effe
are important, we use another set of parameters:a51 and
h05h254. The static spectrum~Fig. 6! is still similar to the
one of the previous case. However, the temporal spectru
different ~Fig. 7!. There appears a characteristic frequen
v0 ~we can observe the next harmonic as well!. Away from
these frequencies the spectrum is similar to the previous
This means that we have temporal chaos at low frequenc
e
e-

of

s:

r
r-

l

e

p-
is
e

ns

ts

is
y

e.
s.

The short time behavior is a consequence of the propaga
effects. The perturbations are advected backward with
velocity v052 lv0.

VI. CONTINUUM THEORY

In the previous sections the step was considered as
entity. This section aims at describing the surface evolut
at large scales, starting from steps dynamics where the
notion loses its meaning. We consider for that purpose
the steps are separated by a distance that is small in com
son to the characteristic length scale, namely, the diffus
length. More generally, this study focuses on scales that
large in comparison to the interstep distance. We hence
fine the functionz(y,x,t) of the continuum variabley as
z(y5ma0 ,x,t)5zm(x,t), where a0 is the atomic height.
The finite difference expressions with respect tom are inter-
preted as differentiation with respect toy in a Taylor expan-
sion. For example,

zm112zm2152a0

]z

]y
1

a0
3

3

]3z

]y3
1h . ~42!

Since the phaseF in the Fourier space scales likee, this
expression implies thaty;e21. The second term on the

FIG. 4. Static spectrum of the meander as a function of the w
vector.a51 andh05h250.1. The static spectrum is multiplied b
k2, so that we can easily identify thek22 behavior at smallk. We
recall that the most unstable mode has a wave vectork5221/2.
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right-hand side of Eq.~42! indicates that the first correctio
is ;e3. The evolution equation of the train~B7! is now
written as

]z

]t
52a0S g02g2

]2

]x2D ]z

]y
1ca0

2 ]2z

]y2

2a
]2z

]x2
2b

]4z

]x4
1dS ]z

]x
D 2

. ~43!

We now look for the evolution equation of the surfa
height. Following the notations of Fig. 8, we define tw
equivalent representations of the position of the surface

Z~y,x,t !52
l

a0

y1z~y,t !,

~44!

Y~z,x,t !52
a0

l
z1y~z,t !.

For convenience, we will omit the time dependence ofz and
y in the following. A geometrical relation follows immedi
ately from Eq.~44!,

y~z!5
a0

l
zS 2

a0

l
z1y~z!D , ~45!

whose first-order expansion inz reads

FIG. 5. Temporal spectrum integrated overk andF. a51 and
h05h250.1. There is no characteristic frequency.
y~z!5
a0

l
zS 2

a0

l
zD

1
a0

2

l 2
zS 2

a0

l
zD ]z

]y
S 2

a0

l
zD 1h . ~46!

Sincez;e, we also havey;e. Furthermore, the first correc
tion in Eq. ~46! is of ordere3 ~i.e., two orders smaller than
the first term!. Moreover, the derivatives ofy with respect to
z are

]y

]z
52

a0
2

l 2

]z

]y
S 2

a0

l
zD 1h ,

~47!

]2y

]z2
5

a0
3

l 3

]2z

]y2 S 2
a0

l
zD 1h .

Using Eq.~43!, we are now able to write the evolution equ
tion of the surface

]y

]t
5

2

l S 2g01g2

]2

]x2D ]y

]z

1
c

l 2

]2y

]z2
2ea

]2y

]x2
2b

]4y

]x4
1d

l

a0
S ]y

]xD 2

. ~48!

FIG. 6. Static spectrum of the meander.a51 andh05h254.
The static spectrum is similar to the one obtained in the case
weak propagative effects, whereh05h250.1.
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To simplify the numerical investigations and obtain t
physical pertinent parameters of this equation, it is usefu
normalize space, time, and the amplitude of the perturba
y. The propagative term proportional tog0 can be absorbed
in the time derivative by means of a Galilean transformat
x→x1g0t. We obtain a one-parameter equation

FIG. 7. Temporal spectrum.a51 andh05h254. There is a
characteristic pulsation forv.5 and another forv.10.

FIG. 8. In the continuum limit two representations are possib
Z(y,x,t) or Y(z,x,t).
o
n

n

]Y

]t
5h̃2

]3Y

]ZX2
1

]2Y

]Z2
2

]2Y

]X2
2

]4Y

]X4
1S ]Y

]X D 2

, ~49!

where the variablesX andT are normalized according to Eq
~38!, Y5eqz(a0 / l )gzy, andZ5e21@(bc)1/2/al#z. We have
introduced the notationh̃252b2 /Aa.

This equation has been studied by Rost and Krug9 in the
absence of the propagative term~the term proportional to
h̃2). Their result indicates that a chaotic pattern should ar
However, it has been shown elsewhere10 that the presence o
propagative terms could cause drastic changes in the m
phology of the surface. We therefore perform a numeri
study of the full equation.

Deterministic surface roughening

We shall restrict ourselves to a brief summary. The de
ministic part of Eq.~49! is studied numerically in this sec
tion. The simulations are done on a 64-unit lattice with p
riodic boundary conditions. We present the results obtai
for two different values ofh̃2, with random initial condi-
tions.

In the first case there is no propagative termh̃250. We
see first the primary instability of the meander. Ripples fo
on the surface~Fig. 9; t550). This morphology is then de
stabilized~see Fig. 10;t5104).

In the second case there is a strong propagative termh̃2
55. There is also the same primary instability as in t
previous case~Fig. 11!. The surface is destabilized on short
time scales. The resulting morphology is chaotic. The patt
has lost thez→2z symmetry~Fig. 12!. The whole pattern is
advected in thez direction. We plan to report extensive stu
ies elsewhere.

VII. CONCLUSION

In this and the preceding paper we have given a gen
description of vicinal surfaces dynamics. In the first paper
:

FIG. 9. Initial stage att550 and withh̃250. Stripes take place
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dealt with the presentation of the full model including
appropriate Langevin formalism. The linear theory was th
presented. Several different features were revealed. Am
them is the behavior of the out-of-equilibrium roughne
Elastic repulsions are overcome by diffusive repulsio
thereby leading to a drastic reduction of the step mean
This should be the first noticeable feature manifested ou
equilibrium. On increasing the incoming flux, the steps b
come morphologically unstable. We have given a transpa
criterion for the instability. The dimensionless critical supe
saturation is given by the ratio of a capillary leng
(VG/kBT) over the smallest length~the diffusion length, the

FIG. 10. At a larger time (t5104) and with h̃250 the initial
pattern is destabilized.

FIG. 11. Primary instability of the vicinal surface.t550 and
h̃255. There is no difference from the caseh̃250.
n
ng
.
,
r.

of
-
nt
-

interstep distance, or the Erlich-Schw!bel length!. Close to
this threshold the roughness diverges~a natural consequenc
of the instability!. In a train of steps this divergence behav
ase21/4 and not ase21/2 as is the case for an isolated stepe
is the distance from the threshold!. Close to the threshold
nonlinear terms become important. This paper has been
voted to this situation. We have concentrated on the situa
close to the instability threshold. This has the advantage
extracting from a multiscale analysis the relevant nonline
ties. We have shown, on the proviso that desorption is
negligibly small~see below!, that the first nonlinearity falls
in the KPZ class. While this nonlinearity is usually intro
duced phenomenologically, here we derive it from physi
first principles. Moreover, this allows us to determine
amplitude as a function of thermodynamic and transport
efficients. Each step is governed by a partial differen
equation, coupled to its neighbors, through both the ada
diffusion and the elastic field. The relevant nonlinearity is
KPZ or Kuramoto-Sivashinsky~KS! type. The equation con
tains in addition propagative terms leading to advection
the direction opposite the train motion. The propagat
character is due to coupling to other steps and to the bre
down of the mirror symmetry along the vicinal direction.

We have analyzed the case of an isolated step. In
limit the equation is of KPZ or noisy-KS type~depending on
whether the incoming flux is below or above its critic
value!. We have pointed out the strong competition betwe
stochastic effects~thermal noise that is strong due the inhe
ent one-dimensional character of the steps! and deterministic
effects~produced by spatiotemporal chaos!. By using simple
scaling arguments we have determined the region around
critical supersaturation where stochasticity and determin
compete. Outside this region the dynamics is of either K
~below threshold! or KS ~above threshold! type.

In a train of steps new coupling terms appear, which
either of diffusive or propagative nature. In order to ma

FIG. 12. t5104 and h̃255. The pattern is chaotic. The surfac
has lost the symmetryz→2z.
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2286 PRB 58O. PIERRE-LOUIS AND C. MISBAH
contact with traditional surface phenomenological equatio
we have determined from step equations the evolution eq
tion for the surface starting from individual step descriptio
Close to the threshold the equation is of anisotro
Kuramoto-Sivashinsky type, containing propagative ter
@Eq. ~49!#. This equation differs from those used pheno
enologically in the literature by the presence of propaga
terms.9,11 It will thus be an important task for future invest
gation to elucidate their effects in the study of kinetic roug
ening of a vicinal surface, such as that studied by Wolf.11

The continuum version@Eq. ~49!# of our step equations
has been analyzed numerically. At small times the surf
develops ripples that are elongated along the step mo
This is the consequence of the step morphological instabi
As time elapses, the ripples undergo a zigzag instability~sec-
ondary instability!, an instability leading ultimately to a
rough surface. The morphology is very reminiscent of t
obtained when 2D nucleation is present. This morpholo
also bears resemblance to that obtained by Rostet al.,3 in
which desorption was ignored.

There are several future lines of investigations. First,
equations can now be fully integrated without resorting
the near-threshold limit. We hope to report along these li
in the future. In the nonlinear study we have limited ou
selves to the situation where desorption was not neglig
on all scales of interest. We have assumed that the w
length of the pattern is large in comparison to all oth
lengths and in particular larger than the diffusion length
this does not hold, a full study is necessary. This is the
gime where many growth experiments are performed. Fr
the analytical point of view, it turns out that the no
desorption limit is singular in the sense that the amplitu
does not scale down to zero at the instability limit.12 In this
work we have not taken into account 2D nucleation. T
phenomenon would constitute a step in the approaching
namics of a nominal high symmetry surface, a regime t
has induced recently several investigations.13
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APPENDIX A:
LINEAR ANALYSIS FOR AN ISOLATED STEP

To first order inz, Eq. ~4! reads

05
G

2

]2z

]x2
1

V

2
h11E dt8E dx8

Y~Dt !

4pDDt

3e2Dt/t2~Dx!2/4DDt

3H 1

2Dt S 2
]z8

]x
Dx1Dz D @2Vceq

0 s#
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s
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e

-

e
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y.

t
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-
le
e-
r
f
-

m

e

s
y-
t

al-

d

2 ż82Vqz81 ż8Vceq
0 sJ

1VE dt8E dx8E dz8
Y~Dt !

4pDDt

3e2Dt/t2@Dx21~z82z!2#/4DDt$ f 82“•q8%. ~A1!

In Fourier space, Eq.~A1! is easily integrated, using th
relations for the deterministic part, with z
5e2 i (vDt1kDx)zvk ,

E dt8E dx8
Y~Dt !

4pDDt
e2Dt/t2~Dx!2/4DDt

3
1

2Dt S 2
]z8

]x
Dx1Dz D

5
zvk

2xs
S 211xsLvk2

xsk
2

Lvk
D , ~A2!

E dt8E dx8
Y~Dt !

4pDDt
e2Dt/t2~Dx!2/4DDte2 i ~vDt1kDx!

5
1

2xsLvk

, ~A3!

whereLvk5(k21 iv/D11/Dt)1/2. The resulting equation is
given by Eq.~7!.

APPENDIX B: MULTIPLE SCALE ANALYSIS

We here perform a multiple scale analysis, where we
termine the prefactors of Eq.~31!. We will therefore only
consider the deterministic part of the equations. In Sec. II
we have shown that the nonlinearity of this equation
(]z/]x)2. We therefore have to take into account all t
nonlinearities whose derivatives can lead to this term.
will first look for the nonlinearities that appear in the no
malized concentrationu6 between the stepsm andm11. It
has been shown in Sec. III B that the terms coming from
elastic repulsion do not provide relevant nonlinearities. W
will therefore not consider them. The concentration on a t
race therefore depends only on the position of the steps
surround it. To simplify the expressions, we use the notat
z5zm andz15zm11. We define

x15
1

2
z2, x25zz1 , x35

1

2
z1

2 , x45z
]z

]x
,

x55z
]z1

]x
, x65z1

]z

]x
, x75z1

]z1

]x
, ~B1!

x85S ]z

]xD 2

, x952
]z

]x

]z1

]x
, x105S ]z1

]x
D 2

.

The starting equations to be developed are~see the preceding
paper, Appendix B!
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2
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u15E

0
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dD tH tE
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dx ż8u18 G~Dt,Dx,z82z!

1tDE
2`

1`

dGs8S G~Dt,Dx,z82z!
]u18

]n

2u18
]G

]n
~Dt,Dx,z82z!D

2tE
2`

1`

dx ż18 u28 G~Dt,Dx,l 1z18 2z!

2tDE
2`

1`

dGs8S G~Dt,Dx,l 1z18 2z!
]u28

]n

2u28
]G

]n
~Dt,Dx,l 1z18 2z!D J , ~B2!

2
1

2
u25E

0

`

dD tH tE
2`

1`

dx ż8u18 G~Dt,Dx,z82 l 2z1!

1tDE
2`

1`

dGs8S G~Dt,Dx,z82 l 2z1!
]u18

]n

2u18
]G

]n
~Dt,Dx,z82 l 2z1!D

2tE
2`

1`

dx ż18 u28 G~Dt,Dx,z18 2z1!

2tDE
2`

1`

dGs8S G~Dt,Dx,z18 2z1!
]u28

]n

2u28
]G

]n
~Dt,Dx,z18 2z1!D J , ~B3!

where the prime for a function ofx and t refers to the argu-
mentsx8 and t8. The main steps of the calculation are d
scribed in Sec. IV. The nonlinear part of the evolution eq
tion reads

S 1

D

]zm

]t
D

nonlin

5S g81

d1

1
g102

d2

1
V

2D D S ]zm

]x
D 2

1
g101

d1
S ]zm11

]x
D 2

1
g82

d2
S ]zm21

]x
D 2

12
g91

d1
S ]zm11

]x
D S ]zm

]x
D

12
g92

d2
S ]zm21

]x
D S ]zm

]x
D

-
-

5S g81

d1

1
g102

d2

1
V

2D
1

g101

d1

1
g82

d2

12
g91

d1

12
g92

d2
D S ]zm

]x
D 2

1 h .

~B4!

We finally find an equation of the form

]zm

]t
5g0~zm112zm21!2g2S ]2zm11

]x2
2

]2zm21

]x2 D
1c@zm11~x,t !1zm21~x,t !22zm~x,t !#2ea

]2zm

]x2

2b
]4zm

]x4
1dS ]zm

]x
D 2

, ~B5!

where

a5D
G

xs

f 0

D0

,

b5DGxs

C0

D0

,

c5D
1

xsD0
F A

l 4
f 01

sVceq

2xs
3D0

~d2
2 2d1

2 !G ,

d5
V

2 F12
l

xs

B0

f 0D0
G , ~B6!

g05Ds
Vceq

xs
2

B0

2D 0
2

,

g25DsVceq

B0G0

4D 0
3

.

The mean step velocityV has the expression

V5D
sVceqf 0

xsD0

. ~B7!

We have used the notations
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B05
1

xs
2 $~d11d2!212~d11d2!xssinh~ l /xs!12~d1d21xs

2!@cosh~ l /xs!21#%,

C05X1
2

sinh~ l /xs!S d11d2

xs

1
f 0

D0
D 1

l

2xsD0
H S d11d2

xs
D 2

22Fd11d2

xs

sinh~ l /xs!1S 11
d1d2

xs
2 D @cosh~ l /xs!21#G J C

1
s

sBZ

1

4 sinh~ l /xs!
H d11d2

xs
S l 2

xs
2

2sinh2~ l /xs!D 12 sinh~ l /xs!
f 0

D0
S d11d2

xs

cosh~ l /xs!1
d1d2

xs
2

sinh~ l /xs!D
22

l ~d11d2!

xs
2

f 0

D0
J , ~B8!

G05S 12
d1d2

xs
2 D sinh~ l /xs!2

l

xs
Fd11d2

xs

sinh~ l /xs!1S 11
d1d2

xs
2 D cosh~ l /xs!G .

To recover the case of an isolated step, we take the limitl→` in Eq. ~B7!. We find the same result as Eq.~14!.
We now return to the case of a train of steps. We introduce the normalized variablesX, T, andj via the relations

x5eqxgx
21X, t5eq tgt

21T, z5eqzgzj. ~B9!

The normalization constants are

gx5
1

xs

A f 0

C0

, gt5
1

Dt2
Gxs

f 0

D0C0

, gz5
2G

sVceq
S 12

l

xs

B0

D0f 0
D 21

. ~B10!

The three parameters of the resulting equation reads

b25sVceq

xs

4G

B0G0

D 0
2f 0

, b05
1

e

B0C0

D0f 0
2

, a5
xs

2

G

C0

f 0
F A

l 4
1

sVceq~d2
2 2d1

2 !

2xs
3D0f 0

G . ~B11!

The evolution equation of the meander now takes the form

]jm

]T
5S b02b2

]2

]X2D 1

e
~jm112jm21!1a

1

e2
~jm111jm2122jm!2

]2jm

]X2
2

]4jm

]X4
1S ]jm

]X
D 2

. ~B12!
n
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