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We develop a full nonlinear theory including fluctuations for the study of dynamics of vicinal surfaces
during molecular beam epitaxy. We consider the situation where the surface grows through step flow. The
model is based on the Burton-Cabrera-Frank one, in which kinetic attachments, elastic interactions, and sta-
tistical fluctuations, through Langevin forces, are incorporated. Green’s functions techniques are used. The step
dynamics are governed in the general case by nonlinear and nonlocal coupled equations. At equilibrium we
recover known results and some of them are revisited. For example, we find that the step meander behaves at
equilibrium asw~1[In(L)]*? (I is the mean interstep distance andhe lateral step extehtThe quantity
a=1/2 or 1 depending on whether the elastic interaction i§ lm( 142. During step flow growth the steps
repel each other via the diffusion field. This repulsion prevails over the elastic one. It leads to an exponent 1/4;
w~1%4 Because the diffusive repulsion is much bigger than the elastic one, nonequilibrium conditions should
first result in a drastic reduction of the vicinal surface fluctuat&teps wandering and terrace width fluctua-
tions). However, on further increase of the incoming flaxthe steps become morphologically unstable. This
instability is driven by adatom diffusion. It is of deterministic origin and must be distinguished from purely
statistical fluctuations. At the instability threshold and in the linear regime, the roughness behaves as
~e 212 (¢ is the distance from the instability threshpfdr an isolated step and~ e~ Y4 In(L)]*? for a
train of steps. The exponent 1/4 is a direct consequence of step-step interaction. At the instability point
nonlinear terms become relevant. The nonlinear regime is discussed in detail in the following paper.
[S0163-182¢08)06027-5

I. INTRODUCTION focus on the dynamics of vicinal surfaces during MBE. More
precisely, our study concerns surface growth through step

Many semiconductors are produced by molecular beanflow. Several behaviors will emerge. For example, nonequi-
epitaxy (MBE). Understanding of how and by which mecha- librium conditions leadif the incoming flux is not too large
nisms production of solids is often hampered by deterministo a drastic reduction of the surface fluctuations. That is to
tic and stochastic roughness is of a paramount importance @ay, the steps wandering and terrace width fluctuations are
the technological level. Indeed, one of the main objectives osignificantly reduced as soon as the system is driven away
MBE is to produce abrupt surfaces on the atomic scales fofrom equilibrium. If the incoming flux is large enoudh.g.,
several application. This is, however, altered in several ina few monolayers per second forBL1) at T~600 °C| dif-
stances by the appearance of undesirable roughness, whifdrent phenomena appear: These are morphological instabili-
may be of either stochastic or deterministic nature. There ares due to nonequilibrium conditions that cause the step pro-
situations, however, where such roughness may become vefije to become unstable against protuberance. This may either
advantageous. This is the case of the fabrication of quantumot affect too much step-flow growth or, on the contrary,
dots, which is a topic of much current interest. At the sameaesult ultimately in a largely rough surface through second-
time this problem raises challenging and subtle questions ary instabilities, depending on the regions in parameter
fundamental nonequilibrium statistical physics. space.

The advent of microscopic techniques such as scanning The most noticeable feature of a step is its meander. Me-
tunneling microscopySTM) and reflection electron micros- andering is manifest from STM visualizatibfor example.
copy has induced a surge of interest in the study of botlThe relatively important step wandering is due to the one-
structural and dynamical properties of surfaces. Growth oflimensional character of the step; an isolated step is ex-
solids with atomically controlled morphologies can proceedpected to be rough at all temperatures at large scales. For
either on a high symmetry singular surface or on a vicinalexample, an isolated step wanders at equilibrium on average
(steppedi surface. The latter situation offers, in principle, the a distance|/L from its flat configuration. Fluctuations in the
advantage of producing layer by layer growth through stegstep profilez= /(x) are governed by the Boltzmann distribu-
flow. It can also be used to produce low-dimensional archition
tectures such as quantum wires due to the availability of
nucleation centers along the steps. There is now ample evi-

dence that during many technologically important processes L

(such as growth and reactipateps play an active role. For —(7/2)f [9x{17dx
this reason considerable attention, both experimental and P{{}~exp 0 ,
theoretical, is being devoted to this topic. This paper will kgT
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where v is the free energy per unit length of step ahdhe  detachment noise at the stgpsn which we have given re-
temperaturéwe consider the case wheyes isotropid. This  cently a brief accourft. The general resulting dynamical
distribution yields trivially the static fluctuation spectrum equations are coupled nonlinear and nonlocal stochastic
(&l _)s=KkgT/yk?, wherek=2nm/L, and the step width equations for the instantaneous step positions. We shall ex-

W= (({%)eg ¥ via the relation ploit them in the linear and weakly nonlinear regimes.
In the linear regimgwhere the deposition flux is small
kgTL enough, diffusion (which is a passive quantity at equilib-
2 . . .
Wg= 12y . 1 rium) becomes active: It leads to repulsion between steps.

We shall refer to it agliffusive repulsionThis repulsion can
This result is akin to the Brownian motion of a partfcle b€ understood as follows. First, usually adatoms that come

whose trajectory suffers excursions that increasdfaie the from the lower terra_ce are more easily incorp_or_ated in the
course of time or a polymer whose meander “diverges” with step than those coming from the upper one._Thls is dug to the
the number of monomers ad\. Ehrlich-Schweebel (ES) effect” In the following reasoning

In a train, like on a vicinal surface, the steps interact withPréSented in this introduction, we assume that only adatoms
each other. At equilibrium, most important is the elastic in-2€l0nging to the lower terrace contribute to step motibe
teraction, which behaves either ad?L(l is the interstep ©ne-sided modgl The mass current at the step(vgnen the
distance® or In(l). The former case concerns homoepitaxydiffusion length defined as,= VD7, whereD is the adatom
with the same atomic environment on each terrace. The segliffusion constant and- atomic desorption rate, is bigger

ond case should show up eitiérin the case where a film is th_an the interstep distandg proportional_tol, the terrace
on top of a vicinal substrate dii) if two adjacent terraces width ahead of the step. If this terrace width becomes larger

have different structures and/or propertisee belows A  (due to some fluctuatiorthan that of the two adjacent ones,
typical example is $001), which is known to show a recon- this implies that it will immediately shrink since the step
struction (1x2)-(2x1); from one terrace to the next the Velocity of the upper stefthe ascending onevill be larger.
dimer rows are perpendicular to each other. Elastic repulsiofonversely, if the width becomes smaller, the ascending step
may limit the wandering of a step. A step forward was con-decelerates, leading thereby to a terrace width increase. The
ducted by Bartelet al,> who provided an expression for the fesponse of the step to terrace width fluctuations is mediated

meanderw, as a function of relevant parametefisritten by the diffusion field. This phenomenon can be viewed as the
here for ar? elastic repulsion 112) result of a diffusive repulsion. We shall see that for typical
deposition fluxes, the diffusive repulsion prevails over the

2|14 elastic one. As a consequence, the step meander is no longer
(kgT) . . :
= _ [ 2 controlled by the elastic repulsiofexcept for large tilt
s , ) o
8yA angles, but rather by diffusion. We shall show that the dy-

namical meander behaves typically(f® a small Schwebel

where A is the strength of the elastic interaction. This ex-effect and where adatoms are supposed to instantaneously
pression was derived for a wandering step between two rigidick to the ascending step

ones. A typical example would be the case of081). In

general, however, steps execute collective motions and all

relative fluctuations are allowed. It will emerge in this paper Wp=
that if all motions are allowed, the meander takes the form

Im where(} is the atomic area:gq the equilibrium adatom con-
— [In(L&/12)]"2 &) centration,F the deposition rateD the adatom diffusion
V2 ’ constant, andl=D/v the Schwebel length ¢ is the stick-
ing kinetic coefficient for the descending atom$he pres-

wherea is an atomic distance. This result shows that allow-ence of D/F together withd above signals the nonequilib-
ing for all motions converts the/L behavior typical for an  rium nature of the mechanism by which the meander is fixed.
isolated step into a logarithmic divergence, which is characSince, as we stated, the diffusive repulsion is larger than the
teristic of a two-dimensional problem. On the other hand, forelastic one, we expect the nonequiliborium meander to be re-
a givenL, there are logarithmic corrections as far as theduced. That is to say, nonequilibrium effecter not too
dependence on the tilt angler the interstep distangds large fluxe$ should first lead to a smoothening of the steps.
concerned. This should constitute the first noticeable qualitative feature

During growth by MBE, the mechanisms that control theto be observed in experiments. In an analogy with equilib-
evolution of the growth morphology include in addition rium theory, we shall see that the repulsive diffusion in this
deposition, diffusion of adatoms, desorption, and the stickingegime should behave liken(l).
kinetics at the steps. This process of evolution of surfaces by On further increasing the incoming flux, diffusion causes
the addition of particles is a prototype of problems in opend morphological instability of the steps, as shown by Bales
nonequilibrium systems where the traditional approach ofind Zangwill® This is the one-dimensional analog of the
equilibrium statistical mechanics is difficult to apply. The Mullins-Sekerkd instability. We shall give here a very trans-
first aim of this paper is to present the general formulation ofoarent condition for the instability onset. The critical flux is
step dynamics including the relevant ingredients, togethefixed by a ratio between a length associated with (8tebi-
with an appropriate Langevin formalism for the different lizing) line tension F=chgq7/kBT) over the smallest de-
sources of noiséshot noise, diffusion noise, and attachment/stabilizing length in the problem: the diffusion length, the
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Ehrlich-Schwebel” effecy. This effect leads to several im-
portant features and will be included here. Moreover, steps
interact with each othefeven at equilibrium through the
elastic field. This may lead to meander restrictions. This ef-
fect can show up in particular in a regime where steps form
bunches(step bunching is not discussed heoe when the
misorientation angle is large. On the other hand elastic inter-
actions should often play a decisive role in the choice of
surface morphologies and their effects must be estimated.
Finally, on the one hand, adatoms have ample time to diffuse
to highly coordinated lattice sites between two deposition

@ events and a smooth morphology is expected. However, both

) . shot noise and théconservedl diffusive noise will always
066069 b——rz reinstitute themselves to roughen the steps on some scales.
0000000660000 Moreover, adatoms are attached more easily to existing pro-
. ) tuberances, thereby leading to morphological instabilities.

FIG. 1. F is the flux of atoms landing on the terraces. The These instabilities may ultimately result in a completely
adatoms diffuse on the terraces with the diffusion constarktheir 4,51 surface. Crystal morphologies are the result of a subtle
e e s ooty My betueen thermodynani., easi efeland
on both sideg of the steps. To stick to a st)(/ap the adatom Eominkineti? (e.g, depos'itipn' anq diffusic)reffects of both sto-
' ' Chastic and deterministic origins.

f h h h h i hich i . .
om the upper terrace has to go through a posit@n which s Let us now introduce the model equations. ketlenote

energetically unfavorable because it has fewer neighbors. The adﬁ;] \ b f adat it facadat
toms therefore have to surmount an additional energy bakier e areal(number of adatoms per unit surfacdatom con-

This is called the Erlich-Schwbel effect and leads to a difference centration on the terraces. It obeys, in the general case, the

between the kinetic coefficients, >v_ . stochastic equation
ES lengthd, or the interstep length. In the linear regime e, C B
and at the instability threshold, the meander is expected to E_DV ¢ ?+F+f V-a. ©)

diverge, which is a natural consequence of an instaflitf.
€ denotes the departure from the critical flux, the meandeWhile the quasisteady approximatidsetting the left-hand
for an isolated stelf diverges likewp~ e~ Y2 We shall show side equal to zejois often legitimate(see latey, we shall
that in a train of steps, we hawe,~ ¢~ ** instead. keep for the moment the full dynamical equation. Here
As the threshold is approached fluctuations become arbis the desorption ratd) is the diffusion constant of the ada-
trarily large so that disregarding nonlinearities is illegitimate.toms, and~ is the adatom incoming flux. The other terms are
The nonlinear treatment is presented in detail in the follow-f, a shot noise related to the adsorption/desorption process,
ing paper. andq, a conserved noise associated with fluctuations of the
The scheme of this paper is as follows. In Sec. Il we writediffusion current. We shall specify below the amplitudes of
down and comment on the model equations. We shall thethese stochastic quantities. It must be mentioned at this stage
make use of a Green’s function formalism to establish arthat both the nonconserved and the conserved noise are cru-
integral dynamical equation describing steps dynamics. Irial for the large scale dynamics, contrary to what is stated in
Sec. lll we deal with the linear problem and derive a nonlo-Ref. 12. Indeed, while the diffusion along the steps is irrel-
cal linear Langevin equation. In Sec. IV we recall known evant at large scaldas one can intuitively expectdiffusion
results at equilibrium and present different features. Sectioin the orthogonal direction is relevant at all scales. The or-
V is devoted to the out-of-equilibrium regime. The main re-thogonal part plays for the steps a very similar role to that
sults are summed up in Sec. VI. Many lengthy expressionslue to a deposition flux for growth on a surface.
together with several technical manipulations are relegated to On both sides of the steps, the incoming adatom flux is
the Appendixes. linearly related to the departure from equilibrium. In a pic-
ture in the manner of Onsager,
1. MODEL
A. Model equations +n-(=DVc+q) . =v.(C—Ceqt 7+), (6)
Figure 1 represents a typical vicinal surface. In thewherez. are attachment-detachment Langevin foreess
Burton-Cabrera-Frartkmodel, incoming adatoms diffuse on the unit normal vector at the step pointing from the upper
the terrace with a diffusion constat may evaporate with a terrace into the lower one, and. are phenomenological
frequency 1#, and stick instantaneously to the steps. Thekinetic coefficients having the dimension of a velocity.
growth operates in a regime known step flow Step flow In expression(6) c.q refers to the equilibrium concentra-
occurs at not too low temperature and for not too large tertion at a step modified by interactions with the neighboring
race width; otherwise two-dimensional island formationsteps as well as by curvature effects. t&& denote the equi-
takes place. We will return to this point in the discussion. librium concentration of an isolated straight step. At equilib-
In general, the adatoms stick more easily when they com&um, the chemical potentials of the adatoms on the terraces
from the lower side than from the upper ofihis is the w4 and atoms in the crystals are equal:
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lu‘s(ps)::“g(pgaceq)a (7) 14 Q A 1
whereps andp, are the pressures at the step on the solid side ea” kBT (I+Zme1—Lm)®
and in the gas atmosphere, respectively. For small departures
from equilibrium one expects that a linear expansion of the 1
chemical potentidP difference is legitimate. For small N ﬁ) } (13
.. crep e . 0 (I+§m gm 1)
deviations from the equilibrium reference potc., and ) )
p=p,y, a linear expansion of Eq7) leads to The set of Egs(5) and (6), with ceq given by Eq.(13),
uniquely determine the concentration fields everywhere on
s Ipg the terraces if the step positions and geometry were given.
(Ps—Pg) =(Ceq— cgq) — . (8 The present problem is a free boundary problem, where an
ap Jc pgycgq additional constraint must be evoked to complete the de-

0
Pg -Ceq
scription. This follows from mass conservation equations.

The derivatives can be expressed explicitly. Indeedindeed, mass conservation expressed at each step then deter-
dps/dp=1 is the atomic aredthis is an exact thermody- mines the normal step velocity

namic quant|ty In the ideal gas approximatiodug/dc
—kBT/c . The total mechanical equilibrium involves the
hydrostat|c pressure together with other forgeg., the elas-
tic ones. If £ refers to the total energy modified by the line

stiffness and elastic effects, then mechanical equilibrium imThe normal velocity can be expressed as a function of the
plies step position as

} . (19

~ SE - V+aZlot
PP s © "L+ (ag 02

where £ takes the form(we assume here that the step- stepWhe.reV is the drift velocity of a l.Jm.form train. .
Finally, to complete our description, we must specify the

interaction is inversely proportional to the square of the dis-
y prop g amplitudes of the Langevin forces. A local thermodynamic

(15

tance
equilibrium approximation allows us to extend the equilib-
+oo L Py 21172 rium expression of the amplitudes of the Langevin forces to
E= > dx[ Y 1+ _m) the out of equilibrium situatioisee Appendix A Their cor-
m=—c Jo X relations take the forms
LA 1 } 10 (Ami(1, D (r',1))=2Dc(r,0)68;, (16
6 (|_§m+§m+1)2 ( t)
wherem labels a step, is the mean interstep distance, and (Fm(r, O (r',t7))=2 4, (17)
is the step line tension. We disregard here anisotropy effects,
which can easily be incorporated in the model. For the sake c.(x,t)
of simplicity, we use a first-neighbor interaction approxima- (e (K1) Py = (X ,17) ) = ——— 6, (19
tion. A generalization to further neighbors is readily made. Ve

The order of magnitude of these energies is simply extractegnere 5 is an abbreviation fos(r —r') 8(t—t ") Smme and
from a dimensional analysisy and 4 can be related to a c. is the adatom concentration close to the step.
macroscopic quantity, namely, the Young moduiirs 10'° Two relevant quantities that characterize the meander
Pa and an atomic lengt~3x10~1%m (for silicon). Froma  {,,(x,t) of the steps in a train are the step roughngsand
dimensional analysis, we havg~Ea?~10 °Jm ! and the interstep correlatior3(p). The rms roughness is defined
A~Ea*~10"2J m. Note that sinca<|, A/I2<y because by

Aly12~ (all)2< 1. With the help of Eq(10), Eq. (9) can be

. 1
rewritten as w2=lim =| = j dx] £m(X,1)]? (19
" tg—= o0 o N mf
A 1 1 . . — .
Ps—Pg= YKm+ — = 1k in a train of N steps of lengtiL. The definition of the inter-
3V(+Lmi1—=m)° I+ &= &m-1) step correlation§(p) is
11
where k., is the step curvature counted to be positive for a G(p)= lim f N 2 Lf dX] Zm(X,1) = Lmp(X,1) ]2
convex profile. More precisely, it is given by to—e toJ0 N m=0 20
B %L ml IX2 One of the first goals will be to determine these quantities
Km=— [(oC /ax)2+1]3’2' (12 and analyze their far reaching consequences. This will con-
m

stitute a preliminary task before tackling the out-of-
Using Eq.(11), we obtain from Eq(8) equilibrium regime, which is the main purpose of this paper.
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B. Green’s functions formalism be thought of as the mean excursion length of an atom before

Equations(5), (6), and (14) completely describe the dy- it sticks to a step. IfN _is the n_umber of steps, Eq22)
namics of the vicinal surface. We shall first convert themCorresponds to 1 equations, while we haveN8 unknowns

into an integral formulation by means of Green’s function'" total, uy. and . However, with the help of Eq24),
techniques. This will allow us to relate the concentrationEd- (14) provides the normal velocity of a step as a function

field to its normal derivative at the step. In what follows we Of the concentration fields. We then haveN other equa-
use a normalized field=Q(c— 7F) instead of the concen- tions. The problem is ngl posed. These equations are h|_g_hly
tration c. Equation(5) then becomes nonlinear and nonlocal in space and time. The nonlinearities

originate from the boundary conditiori§) and (14), as well
Ju , u as from the free boundary character. The latter source of
S =DPVau-—+Q(f-V-q). (21)  nonlinearity was hidden in the original equations. Use of
Green'’s functions techniques makes it transparent. In this
We obtain two integral equations far={,+ml and r  context this type of technique was used earifef The non-
={m+1+(m+1)l (any quantity to be evaluated &} will be  |ocal effects are due to the self-interaction of a st is,
indicated by the symbot, which means on the right- and even an isolated step is governed by nonlocal dynanaicd
left-hand sides, respectivelyTheir derivation is detailed in the mutual step-step interaction via the diffusion field and
Appendix B. We find elastic coupling. We shall concentrate here on a linear re-
gime (small variations of the meanderwhich is valid at
f‘ dt equilibrium and for a weakly out-of-equilibrium regime. A
o nonlinear analysis is discussed in the following paper.
au’ G
+DTJ drg(e——u’—
an’ an’

Tf dx' (V+Z)u'G

2'=(m+ D+ IIl. LINEAR ANALYSIS

We study regression of fluctuations in the linear regime.

'=ml+¢! . . . . . i
#mmit i Since in the linear regime Fourier modes do not couple, it
(e (M D e o suffices to consider one Fourier component. In an infinite
+Qrf_ dt f_ dx f . dz'(f'-Vv’.q")G train of steps, the Fourier transform pfthis definition holds
™+ m for any quantity will be defined as
1
=§u(r,t)|i, (22 m=+o

+ o0 + o0 .
Loko= E dt’f dxé’m(xyt)e—l(wt-%—kx-%—mcl))’

m=—o —

whereG(r—r',t—t") is the free propagator and is given by

(see Appendix B (25
wherew, k, and® are the Fourier conjugate variablestof
G(r—1"t—t')= Y(t-t") oxd — t—t’ x, andm. For { we retain the linear terms only, while the
’ (t—t')4mDr r normalized concentration field is developed in the follow-
ing way:
(x—x’)2+[z—z’+V(t—t')]2]
- , u=up+us+b. (26)

4D(t—t’)
23) Hereuy is the zeroth-order fieldisted in Appendix B 2, u;

is a small deviation corresponding to the deterministic part,
whereY is the Heaviside function. The quantities indicatedandb is a term standing for the stochastic part. When plug-
by prime are understood to depend handt’ (note that ging Eq.(26) into the integral equatiof22) and linearizing
becausés is a function of both variables, we do not specify in u; and{ we obtain a zeroth-order equatiixing u,) and
the variables We can express the normal derivativewés  a linear contribution relating the;’s to Z,/’s and a relation
a function ofu. Indeed, using Eq6) with c.q given by Eq.  determining the fluctuating pabtas a function of the already
(13), we obtain introduced Langevin forces. Use of Fourier transforms al-

lows us to diagonalize these equations and we can eliminate

M 9+i( o0+ ) Uy,ke t0 the advantage af g . Finally, using Eq(14), we
|, d D 4. Uz 022Ceq 7= obtain an inhomogeneous expression §gke , Which takes
N N the form
1 r A 1
+— ol D — =
di K 3 (l +§m+1_§m)3 gwk‘l) katl)ﬂwkfl)! (27)
where y is the linear susceptibility of the steps apdis a
_ 1 noise resulting from the Langevin forces introduced above.
— |, (24) : . o . .
(I+&m—Eme1)® 1 Their general expressions is given in Appendix B. We would

0 ) ) like to mention that this result involves very lengthy algebra,
whereo= 7F/Ceq—1 is the supersaturatiod,. =D/v* are  \hjch is avoided here. Note that in real space, @3) rep-
lengths that we shall refer to as the ES lengths resents amonlocalLangevin equation with aolorednoise in
=0%cQ,y/ksT, and A=02cd, (A/kgT). The lengthd, can  both space and time.
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We can now evaluate the expression of the roughmess Before treating the out-of-equilibrium situation, we shall first
of the step. From the very definition of the roughnfBg.  study their equilibrium properties.
(19)] we have

dk
A IV. EQUILIBRIUM THEORY REVISITED
w
f f S lal?)
(28 A. Equilibrium static spectrum

do ) _ _ _ _ _
<|,8a,kqu| M X kol In this section we discuss some immediate results con-
_ _ _ cerning equilibrium. This task constitutes an interesting
The interstep correlation function takes the fo@(p), check of the formalism. We shall limit ourselves in this dis-

cussion to the static features. An extensive analysis including
(29 dynamical evolution of fluctuations at equilibrium is pre-
sented elsewher@.We shall exploit first the general linear

G(P) =([{m(X,) = Lmrp(X,1)]?)

f f f —{| Bokal?) relation(27) at equilibrium and in the quasistatic approxima-
2m tion (see later (w<Dk?). Using the expressions given in
X | X ok L 1—cog p®)]. Appendix B for 8 and y, we get

Ay
202¢ gq_D{fk—i—Z[l cog®)]}
<ﬁwkq>,3 wk-®) _ _ D 5, (30)

, A Ay
k2 +2 [1-cog®)] | D{fit 21~ cod ®)]}

(Cokdl-w-k-o)=

kaan w—k—®

where we have defined whereL is the step lengtiFig. 2). This is a well-known
result. Note the analogy with one-dimensional Brownian mo-

1 tion, wherelL represents time.
Ak: k2+ > (31)

s C. Entropic confining: A step between two walls
The case where a step fluctuates at equilibrium between
two straight and motionless stefiee Gruber-Mullins case

The static spectrum of the meander is found by integrating
Eq. (30) with respect tow. We find

f=2[cosiA)—1]+A(d, +d_)sinh(Ad). (32

KT
(Skol-k-a0)= = : (33

) A
vke+2 |—4[1—cos(<I>)]

I+z 1-z

We recall that in real space E@7) is nonlocal and the noise L
is colored in a complicated manner. Nevertheless, the static
spectrum takes the simple form given by E8@) in all situ-
ations. This is a result of the fact that the dynamical equa-
tions can be derived from a Lyapunov functional. We can
alternatively obtain this result from equipartition of the step

energy on the Fourier modes.

x )

B. Isolated step . —

w
Before considering the case_of a train of steps, let us first .4 step (2) Step between two walls (b)
recall the well-known expression of the roughness for an
isolated step. The associated energy i€
=(y/2)[§dz(9¢9x)?. The roughness reads FIG. 2. At equilibrium, the roughness of an isolated staypis
proportional to the square root of the lengttof the stepw~ L2
* kaT  koT (b) A step fluctuates between two straight and motionless steps. The
2_ B B . . . . ) .
W —L, (34) steps interact via an elastic repulsion potential| <, wherel is

k=2m/L L'yk2 12y the interstep distance. Thew~1.
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(Fig. 2 has been studied by Bartadt al® Their expression the interstep distance. For example, for a small interstep dis-
of the roughness is recovered here. Our model is easiltance, a small number of steps, and a large enough lateral
modified to treat this case. For that purpose we &gt;  step extentfor example N=10,1=10, andL=10°) condi-
={mn-1=0. There is no more translational invariance with tion (38) is not verified. Then the step roughness reads
respect to the directiom and no morep variable in Fourier

space. Following the same line as in Sec. IiA particular I [ (keT)2\ ™ [2N]) 22
in Eq(33), we set cosp)=0, which is equivalent to setting W= N I —1| - (40
{m+1=¢{m—1=0], the following static spectrum is obtained:
In this casew is linear inl and the cutoff follows here from
kgT a finite number of steps.
(ﬁk@f—kf@:—ﬁ- (35
yk2+2 K E. Interstep correlations and terrace width fluctuations

At equilibrium, the step correlations are predicted to di-
verge logarithmically with the distance between the stéps
1/4 above the roughening temperature. The calculation of the

Using EQq.(28), the roughness is then easily calculated

2
=l (kBTA) (36) correlations is straightforward from Eq9). We find
8yA
: . 5 o LkgTI?
in agreement with Bartekt al. Gs(P)=<(§m—§m+p) )= ap, (41)

20

D. Step roughness on a vicinal surface

where
If all the steps meander, the step roughness can be calcu-
lated from expressiof83). The divergence of the static spec- B \/Ef d® (1—cogp®]) 42
trum at®=0 andk=0 is interpreted as a Goldstone mode @p= 27 (1—cog d])Y2

related to the translational invariance of an infinite train of

steps. This leads to a logarithmic divergence of the meandérhe logarithmic divergence af,, is shown in Appendix C.
with the size of the train. This is easily seen by analyzing theExperimentally, these correlations have been studied by
behavior of the static spectru(83) in the long-wavelength Heyraudet al® as a function ofp. The comparison of our
limit (k,®—0), where the divergence occurs. A finite num- expressior(41) to their experimental values allows us to de-
ber of stepsN or a finite length of the stepls introduces a  duce the productyA. If we take their experimental value
cutoff ®o=2m/N or ky=2m/L. The behavior of the rough- obtained fory [from the study of fluctuations of an isolated
ness is controlled by the largest term of the denominator oftep, using expression34)], y=1.1x10"9°Jm! at

Eqg. (33) when®=®, andk=k,. There are two possible 1-1173 K2 we find A=1x10"28 I m.

cases(i) The line tension term dominates. This entails that |, another paper Alfonset all® have investigated the

- statistics of the terrace width fluctuations. This quantity is

A iven here by Eq(41) with p=1:
oy Ny @n 9V y Eq(41) with p=1:
) , D) 2 kgTI? “3
Taking A/y~a“, we find the condition stl)=— = -
a /'}’A
L<EN (39) Using the experimental results of Alfonsa al,'® we find
a A=1x10"%8 J m. This estimate is quite consistent with the

Even in a small bunch oN=10 steps, with an interstep one given above by analyzing the functiGi(p). However

. 19 S
distancel = 107 atomic lengths, this condition is fulfilled for 1€ absolute value provided by Alfonset a_ll'_ s A=3
L<10° atomic lengths. We therefore expect conditi@) > 10 *°J m(actually, they used another definition dfthan
to be safely fulfilled in real systems. The roughness takes thehat we use here; their definition is six times smaller than

following form in this case: ours. This is about three times smaller than what we gave
above. This discrepancy comes from the fact that they used
I [ (kgT)? v o1 Eq. (36) as an approximation of the terrace width
= a i [In(La/l9)]™s (39  fluctuations and not Eq.(43) as it should be. Inspection of
m\ Y

Eqgs.(36) and(43) reveals that the value ol extracted from

where a=(1/7)(A/y)Y2 which has the dimension of a Ed. (43) is bigger than that obtained from E(36) by a
length and is of the order of an atomic length. The roughnestactor 3272~ 3. This explains the discrepancy.

is not linear inl. This is to be contrasted with E@36),

where the neighboring steps are frozen. While an experimen- V. OUT OF EQUILIBRIUM

tal study to detect the logarithmic divergence is challenging,
this is an interesting result in itself on the conceptual level.
(i) The second case corresponds to a situation where the During growth, we expect two qualitatively different phe-
elastic effect becomes important. This occurs when reducingomena induced by the Ehrlich-Sctabel effect. First, the

A. General features
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train of steps is stabilized against step bunching and/or step —

crossing. Figure 3 summarizes this effect. Second, a straight m-1 m—_>——>__>

step is morphologically unstable when the supersaturation m+l

o= TF/cgq— 1 exceeds a threshold value denoted below by

ogz. This was shown by Bales and Zangilor a train of ——

synchronized stepsf{(=0 in our mode). This is easily un- m-1 -~ m:1—>——>__>

derstood for an isolated step in the presence of desorption

(see Fig. 4 Far from the step, the concentration is constant FIG. 3. The Schuebel effect leads to a repulsion between steps
and equal te,,= 7F. A fluctuation of the position of the step during growth. For the sake of simplicity, we consider a one-sided
leads to an increase of the concentration gradient in front offodel (strong ES effegt The adatom coming from the upper ter-
it (very much like in electrostatics when high curvatures on g€ cannot attach to a step(=0). If desorption is small, the
conductor cause an increase of the electric fiakid there- velocity of a stepV is approximately proportional to the number of

fore to an increase of the incoming adatom flux on the Io eadatoms that land on the lower terrace. This number is proportional
! : Ing ux WLy the terrace width. HenceV is proportional to the width of the

terrace. If there is no attachment from the upper terrace or ify ey terrace. We consider a train of steps initially separateti by
the jump over the ES barrier is not instantaneous, the pertulyow let the mth step fluctuate from its original position in the

bation grows and the step is unstable. Moreover, fluctuations.z girection. Its velocity will increase and that of then¢ 1)th

associated with shot noise, conserved noise, and attachmestép will decrease. The train of steps is stable.

detachment noise at the steps roughen the steps. The step

meander thus stems from a cooperative effect between sto- Small ES effect and weak desorption.

chastic and deterministic effects. By a weak ES effect we meant, ,d_<I and a weak
If the diffusion process is fast enough, the time derivativedesorptionx;>1. The adatoms coming from the lower ter-

in Eq. (5) can be neglected. This is the quasistatic approxitace stick more easily to the step. We shall set bethw

mation. This means that the diffusion field adapts itself in-=0 (attachment is instantanegusr the sake of simplicity.

stantaneously to the step motion. In other words, the diffulUsing the expression of the response functjpprgiven in

sion time for an adatom to find a coordination site on the steg\ppendix B, we find to leading order ik a polynomial of

is typically of the ordert;~1%/D. This time is to be com- order 2. Realizing that co®{ (entering the expansion gf)

pared with the advance time of the step by an amount of theroducesly,_; + {1, we can immediately write the evolu-

order of an atomic distance. This is approximately given bytion equation in real space as

t,~ QY9 QOF|. The quasistatic approximation is valid as long

as t;>t,. For example, for $111) at T=1000 K, D/Q Im Afl1 D chq d_\?
~10°s %, QF~1s ', |~10” atomic lengths, and therefore "~ | 5| 77 2°m + e O mm
t;=10"* s<t,=10"2. This means that for not too large ter-
race widths, sufficiently large diffusion constants, and rea- Id_{2r o 2Ln | D A
sonably small fluxes, this approximation is valid. These con- T T QCo |5t T I'+-
ditions coincide with the ones needed to prevent island 27 \d- X !
nucleation on the terraces, a phenomenon that is not consid- ac®  ¢2 P2 00
ered here. - —0,—+ —0| {mi1—Lmon
We shall first consider the case where desorption is not T 6 Ix? 27
negligible on length and time scales of interest. We will re- 5/ 2 5
turn later to the opposite situation. + P mes  9ma y (44)
6\ ox? ax? m
B. Growth with adatom desorption where we have defined the operafithat acts on a function

In this section we shall first consider the situation of weak3n as“g“:. 290~ 9n+1—On-1- Th_e a_mplltude of th_e result-
. o ing Langevin force is found in this limit to obewsing the
enough fluxes in order to prevent the Bales-Zangwill insta- finiti h . . . .
bility. It will appear that the elastic repulsion is immediately definition (27) and.t € expression ¢ given n Appendl)g B
: e ; expanded according to the regime we are interested in
overcome by the diffusive repulsion. The meander of a step
at equilibrium is caused by statistical fluctuations and limited

.. R . 2
by elastic interactiongsee Eq. 3f. Here the meander will P 2.0 2
be fixed by the diffusive repulsion, (B0, 0 By (1,17)) = 20%Coq | 5+ O
The calculation can be made in the general case, but we ®
shall limit ourselves to the case where desorption is small X Emm 6(r—r")é(t—t"). (45

(but nonzerd. We expect this limit to represent many situa-
tions in MBE growth. Moreover, we shall distinguish be- Using Eq.(27) in this limit, the roughness is easily calcu-
tween a small and a large ES effect. On the other hand, thiated:
evolution equation is nonlocal in space. We shall discuss
below the limit of long wavelengths, that is, we consider the %2l 1a
situation wherek\ o<1, with \o=max,!). In this limit = 1/2( S 2)
dynamics become local. godZ

_— 46
2(T/10c? “9



PRB 58 DYNAMICS AND FLUCTUATIONS ... . I. ... 2267

Let us first discuss the situation of a translationally invari-
ant train. We concentrate on the situation where the ES effect
is very large, so that the probability for an adatom to descend
a step is very small. This is expected to be the case for small
enough temperatures. Formally, this amounts to letting
—oo, This is the so-called one-sided model, where step dy-
namics are due to the adatoms coming from one side,
namely, the lower one.

If desorption is negligible and the ES effect is large, we
A expect that the step dynamics can be described by that of a
v ‘:' : Pl conserved quantity. Indeed, this limit prohibits the terrace

phnb from exchanging mass with either the atmosphere or adja-
(+) cent terraces. Following the same strategy as in Sec. VB

adatom
(o]

(') (that is, expandingy to leading order irk, here the expan-
step sion is valid forkl<1), we obtain in real space

FIG. 4. An adatom diffusing on the lower terra¢¢) has a
higher probability to stick on a protuberance of the step. The in- Im —OF
coming adatom flux is therefore higher on the protuberance. The ?_ (1= Lm)
dashed lines are isoconcentration lines. If the ES effect is important

(-), the protuberence increases. Diffusion destabilizes the steps 92 |2
during growth. This effect overcomes the smoothening due to the +—= —OF—(2¢{m—L¢me1)
step stiffness when the supersaturatioexceeds a threshold value X 2
g .

o o4 P 1P
Making use of the definition of~ rF/cgq (when desorption g8l3 ox2 3 42

is negligible, x3=D, andI'=Q%cg,y/kgT, we recover Eq.

(4). We see here the effect of the diffusive repulsion: the step 4ol =T Pem Al E 19_2 0 .
must smoothen as the incoming flux increases; o~ 4. PV IRT 3 ax2 mém
We have seen in E36) that the elastic interactiofwhich is
taken as 17) produces a meander|. In order to produce a +H,,, (49
meander~1'4 in an energetic picture, the effective energy
of the diffusive repulsion must behave as where the resulting noisid,,, satisfies the correlation law
E~1In[1]. 47 28
P\ — 2 0o~
This dynamical smoothening leads to a reduction of the ter- (Hin(r, OHm (17,1 =2Q7DCed ax2’ (50

race width fluctuations. This is measured by the ratio
The first term tells us that the drift velocity of a step in a

Gp(l) & X A/chq) v uniform train is proportional to the forward terrace width.

TG (1) _Ed 312 (48 The other term corresponds to dynamics of a conserved
S - quantity 9¢/at=— 93/ dx. At equilibrium, that is, forF =0,

For S(111), at a high enough temperature, we expegt  Ed. (49) is of fourth order in space. This is symptomatic of

~0,d_~10, A/chqwl, andx.~10*, where lengths are @n effective diffusion along the steps: Adatoms make large

measured in atomic units. For-10° ando~10"2. we find  €Xcursions on the terraggvithout escaping it, because de-
R~10 1. sorption is absent at the scale of the terrace and the ES effect

Studying the terrace width fluctuations for straight stepsS Srong so that no mass exchange between terrace dccurs
in the F/D—0 and7—0 limit, in a Monte Carlo simulation Pefore they stick to the upper step. This is a pure one-
Krug and Schimsch&R found that the terrace with fluctua- d|men§|onal diffusion with an effective dlffuswnyDI.. .
tions should behave like”2, compared td ¥ in our model. As is seen from Eq(49), the absence of desorption im-

We give in the next section an argument for their finding. Mediately lead to an instability signalezd by the negative sign
of the first term in curly brackets<FI<¢,,). Except when

finite size effects are importaigsee Sec. V I} a determin-
istic instability is present and a special treatment of the
If desorption is completely negligible, that is to say, if the roughness is necessasee later. It is however instructive to
diffusion lengthx, is much bigger than all scales of interests see why Krug and Schimschai®sstudy based on Monte
(I, d., and the wave vectdk), the straight step is in prin- Carlo simulations has led to a terrace width fluctuation that
ciple unstable however small the incoming flux is. It isincreases a2 This result follows directly from the fact
shown below that, though this situation is more unstable thathat if meandering is forbidden together with desorption and
that corresponding to the case with desorption, a finite flux in the presence of a strong ES efféas is assumed in their
required to induce the instability. This is due to the fact thatwork), then the step dynamics is governed by &) where
the system always exhibits finite size effects. all derivatives with respect tg are absent,

C. No desorption and a strong ES effect
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0l meander to exhibit a divergence as well. The general discus-
— =QF({me1—Lm) + (1), (51  sion for a train is presented in Appendix C. It is interesting
ot first to recall the results for an isolated step. The static spec-

where we have added a different source of noise related ffum of an isolated step is of the forisee Eq.(C1) in

the fully nonequilibrium shot nois@ot present in our origi- APPendix C, where we sdt=c<]

nal formulation assuming a local equilibrigmThis shot

noise is well known to have a varian¢é(t)f(t'))~FI5(t

—t') (the factorl comes simply from the fact the velocity of (Gt~ PR (54

the step is related to that of the surface by the tilt angle,

which is proportional to 1J. Then a simple calculatiofafter ~ Wheree=1—o/ag;. The roughness then redds

Fourier transforming in® and v and integrating over the

two variable$ leads tow~ 12, which is the result of Krug +e gk 1 |Y2 L2

and Schimschak. Introducing such a formulation of noise in w= L 2T k2] b2 (59)

. . . . ) € €
our full study is of course feasible, but will constitute the
subject of future work. The meander of an isolated step diverges like*3/ in
agreement with Refs. 10 and 21. The exponent is different in

D. Higher fluxes: A deterministic instability the case of a train. Indeed, in that case the phbhsater-

At higher fluxes, the supersaturation reaches the morphovenes in the static spectrum. The part of this static spectrum

logical instability threshold. Starting from the general disper-that leads to_the divergence of the roughness has the form
sion relation given in Appendix B, we can show that the(See Appendix &

bifurcation occurs fok=0 and® =0, that is to say, this is

the most dangerous modenhich is due to the existence of a (Ceal )~ 1 (56)
Goldstone mode Then it is sufficient to expand the disper- REETKTPT 2 [1—cog d)a(k)’

sion relation for smalk to determine the threshold value.

The leading term behaves k& and setting the prefactor to wherea(k) is a complicated expression resulting from inter-
zero provides us with the general expression for the threstactions between step$or details see Appendix JC This

old condition. The calculation is straightforward and the re-leads to a different exponent. Indeed, the roughness is given

sult can be written as by
or Dy v dk (27 dd 1 vz
TBZ= " : : (52 W~ f —f 5= :
Qceq (d_—d,)sinh(1/x) 2niL 2mJo 27 ek?+[1—coqP)]a(k)

whereDy is defined in Appendix B anﬂzﬂzcgqy/kBT. In
the case of instantaneous kinetics from the lower terrac&incea(k)#0 for k—0 (this simply means that there are

(d.=0), this condition reduces to interactions between straight st@ps
20 {1 + Licoth(lx)] 2r/Qcy, ( J'+oc dk 1 V2 0Ly Y2 .
= c _+1xcoth(I/xg) |= ———. w~ — ~ .
OBz eq s s min(d_,1,x,) ol 27T (ek?)V2a(k)L2 el
(53

] N _The change between Eg&5) and (58) is the result of the
We assume in writing the second form that one length igepulsive interaction of each step with its neighbors. In the
esting since it shows that only the smallest length is relevandystem is logarithmic instead of being algebraic. Further-
for the instability. The physical reason is the following. For more, the divergence caused by the morphological instability
example, ifl <xs,d_, this means that all adatoms on the j5 ajs0 weakenedw~ e~ 4 instead ofw~ e~ 3. The quali-

terrace of width will potentially contribute to the instability. tative behavior ofw as a function of the incoming flux is
The threshold value for the supersaturation is fixed Bl displayed in Fig. 5.

Conversely, ifxs<l,d_, then only those adatoms that reach | the case of weak evaporatidrexs and far from this
the step will cause the instability, while several of those thaghreshold ¢<og,), the terrace width fluctuation§p(1)
were originally available on the terrace will regain the atmo-ge simply related to the step roughness ®y(1)=2w?
sphere before attaining the step; desorption plays the role gkee Appendix € Actually, we always have the inequality
a short circuit against the instability. Finally, if_ is the Gp(1)<2w? at equilibrium. Nevertheles$Sp(1) does not
smallest length, the adatoms will at most attempt an eXCUrgiverge when the supersaturation increases and reaghes

sion of orderd_ before they attach to a step. _ For p not too large p<x/(12+1d. +1d_)], Gp(p) ex-
One of the most important features during MBE is that theyipits a linear dependence @

steps are morphologically unstable above a critical value of

deposition flux. This is a deterministic instability and by its B
very definition any fluctuation at the threshold will blow up G, (p)=Gp(1)| 1+ pl(l +d++d‘)/ 1— E ! UIUBZ) ,
rapidly in the course of time. This is signaled by the diver- 2x§ \ 2 1+ olog

gence of the response functign We expect, therefore, the (59)
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W W, ‘ go beyond that order. Since the most unstable mode is the
/4 mode® =®, stability is achieved under the condition
w~(0-q))
QOF<QOFg,=2®ZDI/(d,.—d_)I? (61)

The step roughness is then well defined. Now we use Egs.
(28) and (B13) in the no-desorption limit £—) to calcu-
late the roughness

1/4
w ~ (/o) | ODCokgT(1+d, +d )| ¥
W:
2yF(d% —d?)

: (62

G ()2G (1) which leads to an expression similar to E46), in the case
° ¢ of a weak ES effectd, ,d_<I). In a train ofN=100 steps
; o on a S{111 surface, withd,=0, d_=10, =10,
0 % Wle o I/Qcg,=1, and DcJ=10°, we find QFg,=1s* and
_ 74 71 . . . .

FIG. 5. Step roughness as a function of the supersaturation QFejas= 10 S Sl_ncecbo Is inversely proportlc_)nal o,
=1F/Ceq—1 in the case of a weak Ehrlich-Sctwbel effect. When the pondltl_(_)n(Gl) IS V|0Iat_ed for I_arge enough trains, so that
the supersaturation increases, the roughness goes through differém9 'nStab'“t_y mamfeStS itself without a ,threShOId'
regimes. First, whenr< o, the supersaturation is constant. If ~ |f there is in fact a weak desorption, the cutoff,
Telas< 0<0pz(1— €, the diffusive repulsion overcomes the elas- =27/N can be interpreted as a consequence of a finite dif-

tic repulsion and the roughness decreasgs~ (/o). When  fusion lengthxs. This simply means that steps separated by
oaA(1—€)<o<og, the roughness diverges,~(o—og,) " Y4 N steps or more cannot be coupled via adatom diffusion. Let

The terrace width fluctuatiop(1) remains finite in this region. Us estimate this cutofll. The adatom motion can be seen as

Wheno> oy, the steps are morphologically unstable and a non-the result of hopping between steps with the mean velocity

linear analysis is necessary. v, . This velocity is the result of diffusion and attachment
kinetics. Thus we have [ '=I/D+v;*+v_!. After each

where o, is defined in Appendix C. Ifp>x2/(12+1d hop the adatom “choose” arbitrarily to go to one of its two
+1d_), Gp(p)~In(p). At large enough scales and whether _neighbors. Therefore, the resulting adatom r_notipn is Brown-
or not we are at equilibrium, the correlations together withian. A well-known result for Brownian motion is that the
the roughness diverge logarithmically with the size of thedeparture from the initial position of the particle is propor-
system? whereas the interstep correlation functi@y(p) tional to the square root of the numpgr of hops. The number
remains finite at the morphological instability threshetd Of hops needed to go from one position to anotiesteps
= o5 for a given value op. further, is thergforg?\lz. The distance covered py an adatom
In principle, in the absence of desorption and as shown bfpefore desorption is, 7=N?I and the cutofiN is given by
the term~F in Eq. (49), the steps are always unstable. WeN=Xs//I(I+d,+d_). We insert this relation into the ex-
show now that finite size effects introduce always a restricpression of(0Fgz [Eq. 61] as a function of the cutoff. We
tion on a minimal value. For that purpose we consider thdind
dispersion relatiorgwritten in Appendix B in the limit of no
desorptionand in the case of a finite train of steps. A finite ,2U(1+d, +d_)
number of stepN introduces a phase cutofby=2=/N. O 7Fgz=(2m) W
Taking thek=0 limit, we obtain that the diffusive repulsion T
overcomes the elastic repulsion IfQF>QF.,s This expression is in agreement with E§2) in the larger
=2®2D(A/N1*)(1+d_+d,)/(d®> —d?). We now consider limit, which gives the same result, without the > pref-
meandering stepk 0). The main contribution to the me- actor. Many other phenomena can lead to this kind of cutoff,
ander comes from the most dangerous modes, i.e., the modggch as a vacancy or defect nucleation. This study is generic
with the smallest value of. For these mode®~d,<1. and shall be the framework of future developments that take
We write the real part of the dispersion relation resultinginto account phenomena leading to nonconserved dynamics

(63

from Eq.(B11) to leading order irk and ®, at large scales.
P2 o2 —d2+ VI. SUMMARY
. _ - 2

Re[m(k,@)]——;QF(Hd +d )2+ —Do T A general conclusion together with an outlook is pre-
A sented in the following paper. Here we simply sum up the
|2 k2 main results. This paper has dealt with the general formula-

+QF —(d;—d,) . (60 tion of dynamics on a vicinal surface during MBE growth.

2 (I+d +d-) The model uses that of Burton, Cabrera, and Fraskpple-

mented with elasticity, noninstantaneous and asymmetric
This is stable against meandering if the prefactokkdfis  (the Ehrlich-Schwebel effecy adatoms kinetics at the steps,
negative. Note that because we are interested in a situatiand an appropriate Langevin formalism. The noise sources
where the leading term ik is stabilizing, there is no need to that are involved are the shot noise, diffusion noise, and
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noise associated with attachment/detachment at the steps. c0
The full formalism has been tested at equilibrium. This was a B,=2—. (A7)
necessary check for the self-coherence of the model. Several T

features at equilibrium were recovered and some other as—h lation | £ th h vd h .
pects discovered. A more extensive discussion in that regimene correlation laws of the attachment/detachment ngise
are calculated in a similar way. A linearization of H34)

is presented in Ref. 16. Out of equilibrium we have identified 9 ith th luti . f th d
a diffusive repulsion that prevails in most realistic cases oveProvides us with the evolution equation of the meander at

the elastic repulsion. This has led to the derivation of a sca/€duilibrium
ing law for step wandering. The diffusive repulsion partially
orders the train fluctuation; terrace width fluctuations to- @ D

gether with step wandering are significantly reduced by non- 4 d,
equilibrium effects. This discovery is not devoid of experi-

mental testability. When the system is driven further away

from equilibrium by increasing the incoming flux, the steps +—
suffer a morphological instability. We have given a transpar- d-
ent picture of what fixes the critical flux. At the instability (A8)
threshold, fluctuations diverge. We have shown how the di- ) .
vergence occurs as a function of the system size and th&/e then calculate the static spectrum of the mearder
distance from the threshold. At the instability threshold, nonfourier space

linear effects can no longer be disregarded. This part is the

A
Qn,—T'k— |_4(2§m_§m+1_§m1)1

A
Qn_ —T'k— |_4(2§m_§m+1_§m—1)‘|-

subject of the following paper. D d:B, +d?B,_
(fknp@k—tb):d g A ,
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here the amplitud®, andB, are defined by

At equilibrium we must recover Eq33), where the phasé

designates the Fourier conjugate variable of the discrete label

of the stepsm. Comparing this static spectrum to the one
At equilibrium the flux isFeq=cg4/7 and the concentra- obtained by Eq(A8) fixes the amplitudes of the attachment

tion ¢ fluctuates around the mean valugq. According to ~ NOIS€S

Eq. (5), these fluctuations obey

APPENDIX A: AMPLITUDE OF THE LANGEVIN FORCES

2¢c?
0 B, =—. (A1)
J 0 2 0,_ S Ceq I
a(c—ceq)=DV (C—Ceg)— +f-V-q. (Al =
T

_ _ o The amplitude of the Langevin forces have been calcu-
This leads to the static spectrum of the equilibrium fluctua4ated at equilibrium. We use a local thermodynamic equilib-

tions rium approximation, which allows one to extend the above
noise forces to the out-of-equilibrium caSeThe Langevin
0 0 1 k?B.+B, AD forces are thus obtained by substituting in the above relations
<(C Ceq)k(c Ceq)fk>_ z DK2+1/7 (A2) ng by c:
where the correlations of the Langevin forces are written as (Ami(r,1)qm(r',t"))=2Dc(r,t) 65, (A12)
(i1 D) G (1)) =B85, (A3) c(rt)
(fm(r,t)fm,(r’,t’))ZZTﬁ, (A13)
(Fn(r, ) F L (r',t")) =By, (A4)
where & is an abbreviation foS(r —r’) 8(t—t) 8y m: and (Mm% 0) 7+ (X7, 17))
i,j stand forx or z. Moreover, we know# that 2. (x.1)
. , , = T S(x =X ) B(t—t ) Sy, (AL4)
(= (r)(c—c(r',t")y=cdd(r—r)a(t—t"). Ve "

A5
(A% wherec.. is the concentration on both sides of the step. This
Confronting Eq.(A2) with Eq. (A5), we obtain implies that we consider features on spatial and temporal
0 scales that are large in comparison to the mean free paths and
Bc=2Dcgy, (A6) collision frequenciesthe traditional hydrodynamical linit
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APPENDIX B: GREEN'S FUNCTION FORMALISM

m-1 B - - _m+l m+2
1. Green’s function g /
Equations(5), (6), and (14) completely describe the dy-
namics of the vicinal surface. It is possible to convert them
into an integral form by means of Green’s function tech- |
nigues. For convenience we use the normalized concentra y
tion u=Q(c— 7F) instead of the concentration Equation
(5) then becomes u \u u L e
m-i,- \m-1,+ m+1,+ mt2,- | Ml
u v + DV? +Q f-v. B1
(9t - u ( Q) ( ) Cm_, C (;mz
where we have written it in a frame moving with the velocity
V corresponding to the uniform train. The free propagator
associated with E(5) satisfies the equation \/
\
d d , . .
DV2—1+ T——1V— G(r—r't—t") FIG. 6. The steps are labeled with the indaxThe normalized
gt dz concentrations on both sides of the stepsuge andu,, _ . In the

Green’s formalism expressions, the integration is made along the

==d(r—r)s(t—t’). B2 ontourc (dashed ling

To determineG we take the Fourier transform of E(B2),

which is defined by indicates that the arguments afex’, andz’. Using simple
manipulations together with use of properties of the Green’s
" function G,
é(k,w):J dt’f szr'G(r—r,t—t’) .
- imG(r—r’ e)— o(r—r'), (B7)
Xeiw(t—t’)+ik-(r—r’)_ (Bg) e—0
G obeys the equation lim G(r—r’,t—t")=0, (B8)

t’—mo

(—DK2+i7Vk,—iwr—1)G(k,)=—1. (B4)  We obtain

The Green’s function then reads t
(r t)—f dt’

Tf dx' (V+ ' )Hu'G
G(r—r’t—t’)

' =(m+1)+0,

Ju
+D7-f dril G—-u’ —

+oo —Ia)(t t ik-(r—r) ; ,
J de J on on z'=ml+{!
— 2T (2m)? 1+ DK +i(wT— TVkZ) "
(B5)
+QTJ f
which is easily integrated to yield ER3). We multiply Eq. - -
(B2) by u and Eq.(B1) by G and we take the difference. (M4 1)1+ Lye g
Then we integrate this expression in space over a terrace xj dz'(f'-V’'-q")G. (B9)
(Fig. 6 and in time from— tot— €. The resulting equation mi+ ¢,
is written as

dI'{ is the step arclength element. In the above equation, the
concentration on a terrace is calculated as a function of the
t—e ; ; ; A
Ozf dt’f f [ +D(GV2U’ — U’ V2G)] concentration at the adjacent steps and their normal deriva
—w tives. The quantity can be any point on a terrace. When
tme | 5, discontinuity ofdG/dn’, which gives an extra contribution,
] dt dr F9GIIN' N AT errace= 120 stept [ 3G/ IN'h' AT Y| gqep. In-

deed, an analysis of this integral close to the step shows a

duces the term 11‘25tep. This is usually known as the
double layer theorerff: Evaluating the integral equation at
SinceG depends on both the-r’ andt—t’ we shall omitit the step, we obtain two equations far{,+ml and z

taking the limitr =r g ,care should be taken since due to the
t-e ) S-function contribution on one side of the step, which pro-
+Q7 dt’ der'(f—Vq)G. (B6)
to specify the arguments. For the other quantities a prime= {41+ (m+1)l. They take the form of Eq22).

Jd J
V—(GU)—7—(GU")
9z’ at’
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2. Linear analysis

The zeroth-order field on both sides of the steps and the mean velocity of the train are obtained to leading order. They are
given by

0 d, +d_coshl/xg) + xssinh(1/xg)

U0+=— chq N y
(dy +d_)coshI/xs) + (Xs+d d_ /xs)sinh(1/xy)
d_+d_ coshl/xg)+ xgsinh(1/x
u07 __ ()'chq + h/\ S) S r( S.) , (BlO)
(dy+d_)coshl/xg)+ (Xg+d,d_ /xg)sinh(1/xg)
Ve 000 (E V2 2xJcoshl/xg)— 1]+ (d, +d_)sinh(I/xs)
f\ 7] (dy+d_)coshl/xg)+ (xs+d.d_ /xg)sinh(1/xe)

The expression of the susceptibility and of the resulting noise involved inN&Qg.are provided. In Fourier space, the
inverse of the susceptibility is

A, A
Xopp=i0+ K Fk2+2|—4[1—cos(<1>)]){2[cosr(AwkI)—1]+Awk(d++d_)sinl”(AwkI)+2[1—cos{<1>)]}
Qcgyo[dy—d_ AR | |
_— A (d+do)| XA sinhp — | sinf(A 1) —cosh — | cosiA ] ) +cog®P) | +| cosh —| —1
DDy Xs Xs Xs Xs
2 ; e Aokl 2 2 2 | ; |
X[(XsA o) = LISIN(A i)t —i si(P) —]| d{ +dZ —2x5+2(dd_+x5)cosh — | +2xg(d+d_)sinhf —| | ],
S XS XS
(B11)
where we have used the notations
U:TF/ng—l,
A o= \io/D+K>+ 12,
d,+d_ I d.d_ ) I
Do= cosh — | + >—+1|sinh —/, (B12)
Xs Xs Xg Xs

D=(d, +d_)A ,,COSHA )+ (d,d_AZ, +1)siINA(A ).

The resulting noise that enters H&Y7) is written in Fourier space as a function of the Langevin forces introduced before:

Awk

:Bwk<l>: {[COSHAwkl ) + Awkd—Sin“Awkl ) - e—iCI)] 77+,a)k(D+ [COS“Awkl ) +Awkd+8in“Awkl ) - eiCI)] 77—,a)k(D}

Qo 4
+ 5[ dz' (sinl A (1 — 2" )]+ A, d—_coshH A (I —2") ]+ e " *[sinh(A 2" ) + A, d COSHA 1 2 ) I[ ok (Z')
0

— ikl wka(2')]—{COSHA (1 =2) ]+ Ay d—SinH A (1 = 2") ] — 7" *[cosH A 2"
A k4 SINNA 4 Z") THA wklz, 0k (Z7))- (B13)

APPENDIX C: OUT-OF-EQUILIBRIUM STEP ROUGHNESS AND INTERSTEP CORRELATIONS

We have calculated the step roughness and the interstep correlations in the quasistatic approximation. The step roughness
is given by Eq.(28), where use is made of EgB11) and (B13) in a long-wavelength limit. For small enough fluxes, the
equilibrium part of the noise amplitude dominates. When the diffusive repulsion is stronger than the elastic one and if the step
stiffness overcomes the diffusive instability,
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w? _J+w dkfzw dd fot+2[1—coqd)] -
02°  J-w 2m)y 2w o chqad2 ' €Y
cq ['(1- ology)k?fo+[1—cog®)]| 2I'| 1+ — |K2+——>5—
(0] Doxs
where we have defined
d=d?—d?,
aI' D, ©2
o9= — X,
*acd, ¢
d,+d_
fo= sinh(1/x) + 2[ coshl/xg) —1].
XS
The roughness is
1 o —-1/2
w? x2p Y2 1 2 L a7 fo . 1 fo| 22
= 5 72 _arcsl — T2, =
Q dV2oTcly) | [, o7 1L o4 1_1) 4) m
Jo 0o OBz
L d [20/(I'/Qcg) 1M
Xarcsinfh =— C3
wag%gZ\/ o )fo ( a) 9
1-—|—+[1+—
opz 4 (0]

The dependence on=1—o/ogz implies that close to the instability threshdsmall €) the squared roughness behaves like
w?~ e Y2 and thus

w~e M4 (C4)

In the limit where desorption is small, expressi@B) reduces to

w? (gl +d, +d.) v 1+1)1’2+E_1/2[|(|+d++d_)]1’23
Q 2T od? o9 2Xq ™
] L 2d%0 vz
X arcsin) =— , (CH
2 2 o
Ix3(1+d, +d_)| 1+ —
(4]

with og=4I(l +d++d_)/chqd2 in this limit.
In a similar manner, the interstep correlations defined by(Eg). are calculated under the same conditions as those that
have led to Eq(C1),

G(p) [ QcexiDy
2

2 | 1(P)- (Co)
d?oT| 1+ —
Jo

We have defined

" )_wa@ {fot2[1—cog®)]}[1—cogpP)] 7

~Jo 2w {go+2[1-cog®) ]} 1-cog P)]¥Z’
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where

g

1__
go=fo =3 (Cy

1+~

0]

Note that unlike the roughness, the correlations do not di-
verge with the length of the steps, but there is still a diver-
gence for large, whereG(p) ~In[p]. To show the logarith-

mic divergence of (p), we shall first note that

I(p+1)—1(p)
1/2
=J2_gof” dq)( +i3|n2(<D)> Sif(2p+1)®]
0 g

sif(2p+1)d]

(C9

\/7(fo a0 [

andl(0)=0, so that we have integrals of the form

172
1+—SII’12(CD)>

I(p)= fowdq>h[qzsin2(cp)]sir[(2p+ 1)®], (C10

whereh is a regular function ofy?sir?(®) and g®=4/g,.
Using a Taylor expansion df,

Ip) = foﬂd(bnzo [o2SirB(®)]"h, sin[ (2p+ 1)®]

— 2
- ngo hnq nUnp

1 * q 2n ,
= 2 ( n
2p+1 =0 \2p+1
- 1 /
p—e= 2p+1 ho (C1Y
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where we have definedJ,,= [5(d®/ ) sirt(P)sin (2p
+1)®], which is easily integrated),,=(2/m) (2n)!/(2p
+1)2"*1 h, and h/ are functions ofn. Thus I(p+1)
=1(p)~ 1/(2p+ 1) for largep and thenl (p) ~In(p).
Sincel (0)=0, we can calculate the terrace width fluctua-
tions Gp(1) with the help of Eq(C9) for p=1:

Gp(1) x2p Y2 1 2
= 12—
Q dy2a(I'/Qc,) 1+
0o

X {\Jgo+ (2+ fo—gol2)arcsi (1+go/4) ~Y2]}.
In the case of small desorption

1/2

Gp(1) (dy+d_+1)x2

0 -

20(d? - di)(r/ncgq)( 1+ i)
0o
(C12
so that, SiNC&Zm(r,t){ms1(r,t))=w?—G(1)/2,

(gm(rat)§m+l(r=t)>

I 1 1/2
s\ 1— 7
OBz
L 2d?%0 vz
xarcsin

(o
Fx§(|+d++d)(1+ —
0o
Far from the morphological instability o(<ogz), 2w?
=Gp(1) (becausd <x,), the terrace width fluctuation is
equal to the sum of the fluctuations of its neighboring steps.
The steps seem to be uncorrelated. When the supersaturation
increases and reaches the instability threshefti diverges
but Gp(1) does not. This means that the terraces are still
well defined when the morphological instability occurs. This
is not contradictory since the first unstable mode is the in-
phase mode.
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