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Dynamics and fluctuations during MBE on vicinal surfaces. I. Formalism and results
of linear theory

O. Pierre-Louis* and C. Misbah
Laboratoire de Spectrome´trie Physique, Universite´ Joseph Fourier, CNRS, Grenoble I, Boıˆte Postale 87,

Saint-Martin d’Hères, 38402 Cedex, France
~Received 28 July 1997; revised manuscript received 30 December 1997!

We develop a full nonlinear theory including fluctuations for the study of dynamics of vicinal surfaces
during molecular beam epitaxy. We consider the situation where the surface grows through step flow. The
model is based on the Burton-Cabrera-Frank one, in which kinetic attachments, elastic interactions, and sta-
tistical fluctuations, through Langevin forces, are incorporated. Green’s functions techniques are used. The step
dynamics are governed in the general case by nonlinear and nonlocal coupled equations. At equilibrium we
recover known results and some of them are revisited. For example, we find that the step meander behaves at
equilibrium asw; l a@ ln(L)#1/2 ( l is the mean interstep distance andL the lateral step extent!. The quantity
a51/2 or 1 depending on whether the elastic interaction is ln(l) or 1/l 2. During step flow growth the steps
repel each other via the diffusion field. This repulsion prevails over the elastic one. It leads to an exponent 1/4;
w; l 1/4. Because the diffusive repulsion is much bigger than the elastic one, nonequilibrium conditions should
first result in a drastic reduction of the vicinal surface fluctuation~steps wandering and terrace width fluctua-
tions!. However, on further increase of the incoming fluxF, the steps become morphologically unstable. This
instability is driven by adatom diffusion. It is of deterministic origin and must be distinguished from purely
statistical fluctuations. At the instability threshold and in the linear regime, the roughness behaves asw
;e21/2L1/2 (e is the distance from the instability threshold! for an isolated step andw;e21/4@ ln(L)#1/2 for a
train of steps. The exponent 1/4 is a direct consequence of step-step interaction. At the instability point
nonlinear terms become relevant. The nonlinear regime is discussed in detail in the following paper.
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I. INTRODUCTION

Many semiconductors are produced by molecular be
epitaxy~MBE!. Understanding of how and by which mech
nisms production of solids is often hampered by determin
tic and stochastic roughness is of a paramount importanc
the technological level. Indeed, one of the main objectives
MBE is to produce abrupt surfaces on the atomic scales
several application. This is, however, altered in several
stances by the appearance of undesirable roughness, w
may be of either stochastic or deterministic nature. There
situations, however, where such roughness may become
advantageous. This is the case of the fabrication of quan
dots, which is a topic of much current interest. At the sa
time this problem raises challenging and subtle question
fundamental nonequilibrium statistical physics.

The advent of microscopic techniques such as scan
tunneling microscopy~STM! and reflection electron micros
copy has induced a surge of interest in the study of b
structural and dynamical properties of surfaces. Growth
solids with atomically controlled morphologies can proce
either on a high symmetry singular surface or on a vici
~stepped! surface. The latter situation offers, in principle, th
advantage of producing layer by layer growth through s
flow. It can also be used to produce low-dimensional arc
tectures such as quantum wires due to the availability
nucleation centers along the steps. There is now ample
dence that during many technologically important proces
~such as growth and reaction! steps play an active role. Fo
this reason considerable attention, both experimental
theoretical, is being devoted to this topic. This paper w
PRB 580163-1829/98/58~4!/2259~17!/$15.00
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focus on the dynamics of vicinal surfaces during MBE. Mo
precisely, our study concerns surface growth through s
flow. Several behaviors will emerge. For example, noneq
librium conditions lead~if the incoming flux is not too large!
to a drastic reduction of the surface fluctuations. That is
say, the steps wandering and terrace width fluctuations
significantly reduced as soon as the system is driven a
from equilibrium. If the incoming flux is large enough@e.g.,
a few monolayers per second for Si~111! at T;600 °C# dif-
ferent phenomena appear: These are morphological insta
ties due to nonequilibrium conditions that cause the step p
file to become unstable against protuberance. This may e
not affect too much step-flow growth or, on the contra
result ultimately in a largely rough surface through seco
ary instabilities, depending on the regions in parame
space.

The most noticeable feature of a step is its meander. M
andering is manifest from STM visualization1 for example.
The relatively important step wandering is due to the o
dimensional character of the step; an isolated step is
pected to be rough at all temperatures at large scales.
example, an isolated step wanders at equilibrium on aver
a distanceAL from its flat configuration. Fluctuations in th
step profilez5z(x) are governed by the Boltzmann distribu
tion

P$z%;expS 2~g/2!E
0

L

@]xz#2dx

kBT
D ,
2259 © 1998 The American Physical Society
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2260 PRB 58O. PIERRE-LOUIS AND C. MISBAH
whereg is the free energy per unit length of step andT the
temperature~we consider the case whereg is isotropic!. This
distribution yields trivially the static fluctuation spectru
^zkz2k&s5kBT/gk2, where k52np/L, and the step width
ws[(^z2&eq)

1/2 via the relation

ws
25

kBTL

12g
. ~1!

This result is akin to the Brownian motion of a particl2

whose trajectory suffers excursions that increase asAt in the
course of time or a polymer whose meander ‘‘diverges’’ w
the number of monomers asAN.

In a train, like on a vicinal surface, the steps interact w
each other. At equilibrium, most important is the elastic
teraction, which behaves either as 1/l 2 ( l is the interstep
distance!4 or ln(l). The former case concerns homoepita
with the same atomic environment on each terrace. The
ond case should show up either~i! in the case where a film is
on top of a vicinal substrate or~ii ! if two adjacent terraces
have different structures and/or properties~see below!. A
typical example is Si~001!, which is known to show a recon
struction ~132!-~231!; from one terrace to the next th
dimer rows are perpendicular to each other. Elastic repuls
may limit the wandering of a step. A step forward was co
ducted by Barteltet al.,5 who provided an expression for th
meanderws as a function of relevant parameters~written
here for an elastic repulsion;1/l 2)

ws5F ~kBT!2

8gÂ G 1/4

l , ~2!

where Â is the strength of the elastic interaction. This e
pression was derived for a wandering step between two r
ones. A typical example would be the case of Si~001!. In
general, however, steps execute collective motions and
relative fluctuations are allowed. It will emerge in this pap
that if all motions are allowed, the meander takes the for

ws8.
l

A2p
F ~kBT!2

gÂ G 1/4

@ ln~Lã/ l 2!#1/2, ~3!

whereã is an atomic distance. This result shows that allo
ing for all motions converts theAL behavior typical for an
isolated step into a logarithmic divergence, which is char
teristic of a two-dimensional problem. On the other hand,
a given L, there are logarithmic corrections as far as t
dependence on the tilt angle~or the interstep distance! is
concerned.

During growth by MBE, the mechanisms that control t
evolution of the growth morphology include in additio
deposition, diffusion of adatoms, desorption, and the stick
kinetics at the steps. This process of evolution of surfaces
the addition of particles is a prototype of problems in op
nonequilibrium systems where the traditional approach
equilibrium statistical mechanics is difficult to apply. Th
first aim of this paper is to present the general formulation
step dynamics including the relevant ingredients, toget
with an appropriate Langevin formalism for the differe
sources of noise~shot noise, diffusion noise, and attachme
-
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detachment noise at the steps!, on which we have given re
cently a brief account.6 The general resulting dynamica
equations are coupled nonlinear and nonlocal stocha
equations for the instantaneous step positions. We shall
ploit them in the linear and weakly nonlinear regimes.

In the linear regime~where the deposition flux is sma
enough!, diffusion ~which is a passive quantity at equilib
rium! becomes active: It leads to repulsion between ste
We shall refer to it asdiffusive repulsion. This repulsion can
be understood as follows. First, usually adatoms that co
from the lower terrace are more easily incorporated in
step than those coming from the upper one. This is due to
Ehrlich-Schw!bel ~ES! effect.7 In the following reasoning
presented in this introduction, we assume that only adato
belonging to the lower terrace contribute to step motion~the
one-sided model!. The mass current at the step is~when the
diffusion length defined asxs5ADt, whereD is the adatom
diffusion constant andt atomic desorption rate, is bigge
than the interstep distancel ) proportional tol , the terrace
width ahead of the step. If this terrace width becomes lar
~due to some fluctuation! than that of the two adjacent one
this implies that it will immediately shrink since the ste
velocity of the upper step~the ascending one! will be larger.
Conversely, if the width becomes smaller, the ascending
decelerates, leading thereby to a terrace width increase.
response of the step to terrace width fluctuations is media
by the diffusion field. This phenomenon can be viewed as
result of a diffusive repulsion. We shall see that for typic
deposition fluxes, the diffusive repulsion prevails over t
elastic one. As a consequence, the step meander is no lo
controlled by the elastic repulsion~except for large tilt
angles!, but rather by diffusion. We shall show that the d
namical meander behaves typically as~for a small Schw!bel
effect and where adatoms are supposed to instantaneo
stick to the ascending step!

wD5S VDceq
0 kBT

2gd2F
D 1/4

l 1/4, ~4!

whereV is the atomic area,ceq
0 the equilibrium adatom con

centration,F the deposition rate,D the adatom diffusion
constant, andd5D/n the Schw!bel length (n is the stick-
ing kinetic coefficient for the descending atoms!. The pres-
ence ofD/F together withd above signals the nonequilib
rium nature of the mechanism by which the meander is fix
Since, as we stated, the diffusive repulsion is larger than
elastic one, we expect the nonequilibrium meander to be
duced. That is to say, nonequilibrium effects~for not too
large fluxes! should first lead to a smoothening of the step
This should constitute the first noticeable qualitative feat
to be observed in experiments. In an analogy with equi
rium theory, we shall see that the repulsive diffusion in th
regime should behave likel ln(l).

On further increasing the incoming flux, diffusion caus
a morphological instability of the steps, as shown by Ba
and Zangwill.8 This is the one-dimensional analog of th
Mullins-Sekerka9 instability. We shall give here a very trans
parent condition for the instability onset. The critical flux
fixed by a ratio between a length associated with the~stabi-
lizing! line tension (G5V2ceq

0 g/kBT) over the smallest de
stabilizing length in the problem: the diffusion lengthxs , the
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PRB 58 2261DYNAMICS AND FLUCTUATIONS . . . . I. . . .
ES lengthd, or the interstep lengthl . In the linear regime
and at the instability threshold, the meander is expecte
diverge, which is a natural consequence of an instability.10 If
e denotes the departure from the critical flux, the mean
for an isolated step10 diverges likewD;e21/2. We shall show
that in a train of steps, we havewD;e21/4 instead.

As the threshold is approached fluctuations become a
trarily large so that disregarding nonlinearities is illegitima
The nonlinear treatment is presented in detail in the follo
ing paper.

The scheme of this paper is as follows. In Sec. II we wr
down and comment on the model equations. We shall t
make use of a Green’s function formalism to establish
integral dynamical equation describing steps dynamics
Sec. III we deal with the linear problem and derive a non
cal linear Langevin equation. In Sec. IV we recall know
results at equilibrium and present different features. Sec
V is devoted to the out-of-equilibrium regime. The main r
sults are summed up in Sec. VI. Many lengthy expressi
together with several technical manipulations are relegate
the Appendixes.

II. MODEL

A. Model equations

Figure 1 represents a typical vicinal surface. In t
Burton-Cabrera-Frank11 model, incoming adatoms diffuse o
the terrace with a diffusion constantD, may evaporate with a
frequency 1/t, and stick instantaneously to the steps. T
growth operates in a regime known asstep flow. Step flow
occurs at not too low temperature and for not too large
race width; otherwise two-dimensional island formati
takes place. We will return to this point in the discussion

In general, the adatoms stick more easily when they co
from the lower side than from the upper one~this is the

FIG. 1. F is the flux of atoms landing on the terraces. T
adatoms diffuse on the terraces with the diffusion constantD. Their
characteristic wandering time before evaporation ist. Attachment-
detachment processes are characterized by kinetic coefficientn6

on both sides of the steps. To stick to a step, the adatom com
from the upper terrace has to go through a position~a!, which is
energetically unfavorable because it has fewer neighbors. The
toms therefore have to surmount an additional energy barrierDW.
This is called the Erlich-Schw!bel effect and leads to a differenc
between the kinetic coefficientsn1.n2 .
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Ehrlich-Schw!bel7 effect!. This effect leads to several im
portant features and will be included here. Moreover, st
interact with each other~even at equilibrium! through the
elastic field. This may lead to meander restrictions. This
fect can show up in particular in a regime where steps fo
bunches~step bunching is not discussed here! or when the
misorientation angle is large. On the other hand elastic in
actions should often play a decisive role in the choice
surface morphologies and their effects must be estima
Finally, on the one hand, adatoms have ample time to diff
to highly coordinated lattice sites between two deposit
events and a smooth morphology is expected. However, b
shot noise and the~conserved! diffusive noise will always
reinstitute themselves to roughen the steps on some sc
Moreover, adatoms are attached more easily to existing
tuberances, thereby leading to morphological instabiliti
These instabilities may ultimately result in a complete
rough surface. Crystal morphologies are the result of a su
interplay between thermodynamic~e.g., elastic effects! and
kinetic ~e.g., deposition and diffusion! effects of both sto-
chastic and deterministic origins.

Let us now introduce the model equations. Letc denote
the areal~number of adatoms per unit surface! adatom con-
centration on the terraces. It obeys, in the general case
stochastic equation

]c

]t
5D¹2c2

c

t
1F1 f 2“•q. ~5!

While the quasisteady approximation~setting the left-hand
side equal to zero! is often legitimate~see later!, we shall
keep for the moment the full dynamical equation. Heret21

is the desorption rate,D is the diffusion constant of the ada
toms, andF is the adatom incoming flux. The other terms a
f , a shot noise related to the adsorption/desorption proc
andq, a conserved noise associated with fluctuations of
diffusion current. We shall specify below the amplitudes
these stochastic quantities. It must be mentioned at this s
that both the nonconserved and the conserved noise are
cial for the large scale dynamics, contrary to what is state
Ref. 12. Indeed, while the diffusion along the steps is irr
evant at large scales~as one can intuitively expect!, diffusion
in the orthogonal direction is relevant at all scales. The
thogonal part plays for the steps a very similar role to t
due to a deposition flux for growth on a surface.

On both sides of the steps, the incoming adatom flux
linearly related to the departure from equilibrium. In a pi
ture in the manner of Onsager,

7n•~2D“c1q!65n6~c2ceq1h6!, ~6!

whereh6 are attachment-detachment Langevin forces,n is
the unit normal vector at the step pointing from the upp
terrace into the lower one, andn6 are phenomenologica
kinetic coefficients having the dimension of a velocity.

In expression~6! ceq refers to the equilibrium concentra
tion at a step modified by interactions with the neighbori
steps as well as by curvature effects. Letceq

0 denote the equi-
librium concentration of an isolated straight step. At equil
rium, the chemical potentials of the adatoms on the terra
mg and atoms in the crystalms are equal:

ng

a-



id
tu
th
ll

ed
-

e

e
im

ep
is

c
ak
a
e
te

r a

on
en.
an

de-
ns.
deter-

the

he
ic

b-
to

der

d

ies
on-
f-
er.

2262 PRB 58O. PIERRE-LOUIS AND C. MISBAH
ms~ps!5mg~pg ,ceq!, ~7!

whereps andpg are the pressures at the step on the solid s
and in the gas atmosphere, respectively. For small depar
from equilibrium one expects that a linear expansion of
chemical potential15 difference is legitimate. For sma
deviations from the equilibrium reference pointc5ceq

0 and
p5pg , a linear expansion of Eq.~7! leads to

~ps2pg!S ]ms

]p
D

pg ,c
eq
0

5~ceq2ceq
0 !S ]mg

]c
D

pg ,c
eq
0

. ~8!

The derivatives can be expressed explicitly. Inde
]ms /]p5V is the atomic area~this is an exact thermody
namic quantity!. In the ideal gas approximation]mg /]c
5kBT/ceq

0 . The total mechanical equilibrium involves th
hydrostatic pressure together with other forces~e.g., the elas-
tic ones!. If E refers to the total energy modified by the lin
stiffness and elastic effects, then mechanical equilibrium
plies

ps2pg5
dE
dzm

, ~9!

whereE takes the form~we assume here that the step-st
interaction is inversely proportional to the square of the d
tance!

E5 (
m52`

1` E
0

L

dxH gF11S ]zm

]x
D 2G 1/2

1
Â
6

1

~ l 2zm1zm11!2J , ~10!

wherem labels a step,l is the mean interstep distance, andg
is the step line tension. We disregard here anisotropy effe
which can easily be incorporated in the model. For the s
of simplicity, we use a first-neighbor interaction approxim
tion. A generalization to further neighbors is readily mad
The order of magnitude of these energies is simply extrac
from a dimensional analysis.g and Â can be related to a
macroscopic quantity, namely, the Young modulusE;1010

Pa and an atomic lengtha;3310210 m ~for silicon!. From a
dimensional analysis, we haveg;Ea2;1029 J m21 and
Â;Ea4;10228 J m. Note that sincea, l , Â/ l 2,g because
Â/g l 2;(a/ l )2,1. With the help of Eq.~10!, Eq. ~9! can be
rewritten as

ps2pg5gkm1
Â
3
S 1

~ l 1zm112zm!3
2

1

~ l 1zm2zm21!3D ,

~11!

wherekm is the step curvature counted to be positive fo
convex profile. More precisely, it is given by

km52
]2zm /]x2

@~]zm /]x!211#3/2
. ~12!

Using Eq.~11!, we obtain from Eq.~8!
e
res
e

,

-

-

ts,
e

-
.
d

ceq5ceq
0 H 11

V

kBT
Fgkm1

Â
3
S 1

~ l 1zm112zm!3

2
1

~ l 1zm2zm21!3D G J . ~13!

The set of Eqs.~5! and ~6!, with ceq given by Eq. ~13!,
uniquely determine the concentration fields everywhere
the terraces if the step positions and geometry were giv
The present problem is a free boundary problem, where
additional constraint must be evoked to complete the
scription. This follows from mass conservation equatio
Indeed, mass conservation expressed at each step then
mines the normal step velocity

vn5VF S D
]c

]n
2n•qD

1

2S D
]c

]n
2n•qD

2
G . ~14!

The normal velocity can be expressed as a function of
step position as

vn5
V1]z/]t

@11~]z/]x!2#1/2
, ~15!

whereV is the drift velocity of a uniform train.
Finally, to complete our description, we must specify t

amplitudes of the Langevin forces. A local thermodynam
equilibrium approximation allows us to extend the equili
rium expression of the amplitudes of the Langevin forces
the out of equilibrium situation~see Appendix A!. Their cor-
relations take the forms

^qmi~r ,t !qm8 j~r 8,t8!&52Dc~r ,t !dd i j , ~16!

^ f m~r ,t ! f m8~r 8,t8!&52
c~r ,t !

t
d, ~17!

^hm6~x,t !hm86~x8,t8!&5
2c6~x,t !

n6

d, ~18!

where d is an abbreviation ford(r2r 8)d(t2t8)dm,m8 and
c6 is the adatom concentration close to the step.

Two relevant quantities that characterize the mean
zm(x,t) of the steps in a train are the step roughnessw and
the interstep correlationsG(p). The rms roughness is define
by

w25 lim
t0→`

1

t0
E

0

t0 1

N (
m50

N
1

LE0

L

dx@zm~x,t !#2 ~19!

in a train ofN steps of lengthL. The definition of the inter-
step correlationsG(p) is

G~p!5 lim
t0→`

1

t0
E

0

t0 1

N (
m50

N
1

LE0

L

dx@zm~x,t !2zm1p~x,t !#2.

~20!

One of the first goals will be to determine these quantit
and analyze their far reaching consequences. This will c
stitute a preliminary task before tackling the out-o
equilibrium regime, which is the main purpose of this pap
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B. Green’s functions formalism

Equations~5!, ~6!, and ~14! completely describe the dy
namics of the vicinal surface. We shall first convert the
into an integral formulation by means of Green’s functi
techniques. This will allow us to relate the concentrati
field to its normal derivative at the step. In what follows w
use a normalized fieldu5V(c2tF) instead of the concen
tration c. Equation~5! then becomes

]u

]t
5D¹2u2

u

t
1V~ f 2“•q!. ~21!

We obtain two integral equations forr5zm1ml and r
5zm111(m11)l ~any quantity to be evaluated atzm will be
indicated by the symbol6, which means on the right- an
left-hand sides, respectively!. Their derivation is detailed in
Appendix B. We find

E
2`

t

dt8F tE
2`

`

dx8~V1 ż8!u8G

1DtE dGs8S G
]u8

]n8
2u8

]G

]n8
D G

z85ml1z
m8

z85~m11!l 1zm118

1VtE
2`

t

dt8E
2`

`

dx8E
ml1zm

~m11!l 1zm11
dz8~ f 82“8•q8!G

5
1

2
u~r ,t !u6 , ~22!

whereG(r2r 8,t2t8) is the free propagator and is given b
~see Appendix B!

G~r2r 8,t2t8!5
Y~ t2t8!

~ t2t8!4pDt
expF2

t2t8

t

2
~x2x8!21@z2z81V~ t2t8!#2

4D~ t2t8!
G ,

~23!

whereY is the Heaviside function. The quantities indicat
by prime are understood to depend onr 8 and t8 ~note that
becauseG is a function of both variables, we do not speci
the variables!. We can express the normal derivative ofu as
a function ofu. Indeed, using Eq.~6! with ceq given by Eq.
~13!, we obtain

]u

]n U
6

5n•q
V

D
6

1

d6

~u61sVceq
0 1Vh6!

7
1

d6
FGk1

A

3 S 1

~ l 1zm112zm!3

2
1

~ l 1zm2zm21!3D G , ~24!

wheres5tF/ceq
0 21 is the supersaturation,d65D/n6 are

lengths that we shall refer to as the ES lengthsG

5V2ceq
0 g/kBT, andA5V2ceq

0 (Â/kBT). The lengthdt can
be thought of as the mean excursion length of an atom be
it sticks to a step. IfN is the number of steps, Eq.~22!
corresponds to 2N equations, while we have 3N unknowns
in total, um6 and zm . However, with the help of Eq.~24!,
Eq. ~14! provides the normal velocity of a step as a functi
of the concentration fieldsu. We then haveN other equa-
tions. The problem is well posed. These equations are hig
nonlinear and nonlocal in space and time. The nonlineari
originate from the boundary conditions~6! and~14!, as well
as from the free boundary character. The latter source
nonlinearity was hidden in the original equations. Use
Green’s functions techniques makes it transparent. In
context this type of technique was used earlier.13,14The non-
local effects are due to the self-interaction of a step~that is,
even an isolated step is governed by nonlocal dynamics! and
the mutual step-step interaction via the diffusion field a
elastic coupling. We shall concentrate here on a linear
gime ~small variations of the meander!, which is valid at
equilibrium and for a weakly out-of-equilibrium regime. A
nonlinear analysis is discussed in the following paper.

III. LINEAR ANALYSIS

We study regression of fluctuations in the linear regim
Since in the linear regime Fourier modes do not couple
suffices to consider one Fourier component. In an infin
train of steps, the Fourier transform ofz ~this definition holds
for any quantity! will be defined as

zvkF5 (
m52`

m51` E
2`

1`

dt8E
2`

1`

dxzm~x,t !e2 i ~vt1kx1mF!,

~25!

wherev, k, andF are the Fourier conjugate variables oft,
x, and m. For z we retain the linear terms only, while th
normalized concentration fieldu is developed in the follow-
ing way:

u5u01u11b. ~26!

Hereu0 is the zeroth-order field~listed in Appendix B 2!, u1
is a small deviation corresponding to the deterministic p
andb is a term standing for the stochastic part. When plu
ging Eq.~26! into the integral equation~22! and linearizing
in u1 andz we obtain a zeroth-order equation~fixing u0) and
a linear contribution relating theu1’s to zm’s and a relation
determining the fluctuating partb as a function of the already
introduced Langevin forces. Use of Fourier transforms
lows us to diagonalize these equations and we can elimi
u1vkF to the advantage ofzvkF . Finally, using Eq.~14!, we
obtain an inhomogeneous expression forzvkF , which takes
the form

zvkF5xvkFbvkF , ~27!

wherex is the linear susceptibility of the steps andb is a
noise resulting from the Langevin forces introduced abo
Their general expressions is given in Appendix B. We wou
like to mention that this result involves very lengthy algeb
which is avoided here. Note that in real space, Eq.~27! rep-
resents anonlocalLangevin equation with acolorednoise in
both space and time.
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We can now evaluate the expression of the roughnesw
of the step. From the very definition of the roughness@Eq.
~19!# we have

w25E dk

2pE dF

2p E dv

2p
^uzvkFu2&

~28!

5E dk

2pE dF

2p E dv

2p
^ubvkFu2&uxvkFu2.

The interstep correlation function takes the formG(p),

G~p!5^@zm~x,t !2zm1p~x,t !#2&
~29!

52E dk

2pE dF

2p E dv

2p
^ubvkFu2&

3uxvkFu2@12cos~pF!#.
tin

ta

ua
a
ep

fir
a

Before treating the out-of-equilibrium situation, we shall fir
study their equilibrium properties.

IV. EQUILIBRIUM THEORY REVISITED

A. Equilibrium static spectrum

In this section we discuss some immediate results c
cerning equilibrium. This task constitutes an interesti
check of the formalism. We shall limit ourselves in this di
cussion to the static features. An extensive analysis includ
dynamical evolution of fluctuations at equilibrium is pr
sented elsewhere.16 We shall exploit first the general linea
relation~27! at equilibrium and in the quasistatic approxim
tion ~see later! (v!Dk2). Using the expressions given i
Appendix B forb andx, we get
^zvkFz2v2k2F&5
^bvkFb2v2k2F&

xvkF
21 x2v2k2F

21
5

2V2ceq
0 Lk

D D$ f k12@12cos~F!#%

v21F S Gk212
Â
4

@12cos~F!# DLk

D D$ f k12@12cos~F!#%G2 , ~30!
o-

een

The
where we have defined

Lk5Ak21
1

xs
2
, ~31!

f k52@cosh~Lkl !21#1Lk~d11d2!sinh~Lkl !. ~32!

The static spectrum of the meander is found by integra
Eq. ~30! with respect tov. We find

^zkFz2k2F&5
kBT

gk212
Â
l 4 @12cos~F!#

. ~33!

We recall that in real space Eq.~27! is nonlocal and the noise
is colored in a complicated manner. Nevertheless, the s
spectrum takes the simple form given by Eq.~33! in all situ-
ations. This is a result of the fact that the dynamical eq
tions can be derived from a Lyapunov functional. We c
alternatively obtain this result from equipartition of the st
energy on the Fourier modes.

B. Isolated step

Before considering the case of a train of steps, let us
recall the well-known expression of the roughness for
isolated step. The associated energy isE
5(g/2)*0

Ldz(]z/]x)2. The roughness reads2

ws
25 (

k52p/L

`
kBT

Lgk2
5

kBT

12g
L, ~34!
g

tic

-
n

st
n

where L is the step length~Fig. 2!. This is a well-known
result. Note the analogy with one-dimensional Brownian m
tion, whereL represents time.

C. Entropic confining: A step between two walls

The case where a step fluctuates at equilibrium betw
two straight and motionless steps~the Gruber-Mullins case3!

FIG. 2. At equilibrium, the roughness of an isolated step~a! is
proportional to the square root of the lengthL of the stepw;L1/2.
~b! A step fluctuates between two straight and motionless steps.
steps interact via an elastic repulsion potentialU; l 22, wherel is
the interstep distance. Thenw; l .
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~Fig. 2! has been studied by Barteltet al.5 Their expression
of the roughness is recovered here. Our model is ea
modified to treat this case. For that purpose we setzm11
5zm2150. There is no more translational invariance w
respect to the directionz and no moref variable in Fourier
space. Following the same line as in Sec. IV A@in particular
in Eq.~33!, we set cos(F)50, which is equivalent to setting
zm115zm2150], the following static spectrum is obtained

^zkFz2k2F&5
kBT

gk212
Â
l 4

. ~35!

Using Eq.~28!, the roughness is then easily calculated

ws5 l S ~kBT!2

8gÂ D 1/4

, ~36!

in agreement with Barteltet al.5

D. Step roughness on a vicinal surface

If all the steps meander, the step roughness can be ca
lated from expression~33!. The divergence of the static spe
trum atF50 andk50 is interpreted as a Goldstone mo
related to the translational invariance of an infinite train
steps. This leads to a logarithmic divergence of the mean
with the size of the train. This is easily seen by analyzing
behavior of the static spectrum~33! in the long-wavelength
limit ( k,F→0), where the divergence occurs. A finite num
ber of stepsN or a finite length of the stepsL introduces a
cutoff F052p/N or k052p/L. The behavior of the rough
ness is controlled by the largest term of the denominato
Eq. ~33! when F5F0 and k5k0 . There are two possible
cases.~i! The line tension term dominates. This entails th

gk0
2.
Â
l 4

F0
2 . ~37!

Taking Â/g;a2, we find the condition

L,
l 2

a
N. ~38!

Even in a small bunch ofN510 steps, with an interste
distancel 5102 atomic lengths, this condition is fulfilled fo
L,105 atomic lengths. We therefore expect condition~38!
to be safely fulfilled in real systems. The roughness takes
following form in this case:

ws.
l

A2p
S ~kBT!2

gÂ D 1/4

@ ln~Lã/ l 2!#1/2, ~39!

where ã[(1/p)(Â/g)1/2, which has the dimension of
length and is of the order of an atomic length. The roughn
is not linear in l . This is to be contrasted with Eq.~36!,
where the neighboring steps are frozen. While an experim
tal study to detect the logarithmic divergence is challengi
this is an interesting result in itself on the conceptual lev
~ii ! The second case corresponds to a situation where
elastic effect becomes important. This occurs when reduc
ily

u-

f
er
e

f

e

ss

n-
,

l.
he
g

the interstep distance. For example, for a small interstep
tance, a small number of steps, and a large enough la
step extent~for example,N510, l 510, andL5105) condi-
tion ~38! is not verified. Then the step roughness reads

ws.
l

A2p
S ~kBT!2

gÂ D 1/4S lnF2N

p G D 1/2

. ~40!

In this casew is linear in l and the cutoff follows here from
a finite number of steps.

E. Interstep correlations and terrace width fluctuations

At equilibrium, the step correlations are predicted to
verge logarithmically with the distance between the steps2,17

above the roughening temperature. The calculation of
correlations is straightforward from Eq.~29!. We find

GS~p!5^~zm2zm1p!2&5
1

2

kBTl2

AgÂ
ap , ~41!

where

ap5A2E dF

2p

~12cos@pF#!

~12cos@F#!1/2
. ~42!

The logarithmic divergence ofap is shown in Appendix C.
Experimentally, these correlations have been studied
Heyraudet al.18 as a function ofp. The comparison of our
expression~41! to their experimental values allows us to d
duce the productgÂ. If we take their experimental value
obtained forg @from the study of fluctuations of an isolate
step, using expression~34!#, g51.1310210 J m21 at
T51173 K,19 we find Â.1310228 J m.

In another paper Alfonsoet al.19 have investigated the
statistics of the terrace width fluctuations. This quantity
given here by Eq.~41! with p51:

GS~1!5
2

p

kBTl2

AgÂ
. ~43!

Using the experimental results of Alfonsoet al.,19 we find
Â.1310228 J m. This estimate is quite consistent with th
one given above by analyzing the functionG(p). However
the absolute value provided by Alfonsoet al.19 is Â.3
310229 J m ~actually, they used another definition ofÂ than
what we use here; their definition is six times smaller th
ours!. This is about three times smaller than what we ga
above. This discrepancy comes from the fact that they u
Eq. ~36! as an approximation of the terrace wid
fluctuations5 and not Eq.~43! as it should be. Inspection o
Eqs.~36! and~43! reveals that the value ofÂ extracted from
Eq. ~43! is bigger than that obtained from Eq.~36! by a
factor 32/p2;3. This explains the discrepancy.

V. OUT OF EQUILIBRIUM

A. General features

During growth, we expect two qualitatively different phe
nomena induced by the Ehrlich-Schw!bel effect. First, the
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train of steps is stabilized against step bunching and/or
crossing. Figure 3 summarizes this effect. Second, a stra
step is morphologically unstable when the supersatura
s5tF/ceq

0 21 exceeds a threshold value denoted below
sBZ . This was shown by Bales and Zangwill8 for a train of
synchronized steps (F50 in our model!. This is easily un-
derstood for an isolated step in the presence of desorp
~see Fig. 4!. Far from the step, the concentration is const
and equal toc`5tF. A fluctuation of the position of the ste
leads to an increase of the concentration gradient in fron
it ~very much like in electrostatics when high curvatures o
conductor cause an increase of the electric field! and there-
fore to an increase of the incoming adatom flux on the low
terrace. If there is no attachment from the upper terrace o
the jump over the ES barrier is not instantaneous, the pe
bation grows and the step is unstable. Moreover, fluctuat
associated with shot noise, conserved noise, and attachm
detachment noise at the steps roughen the steps. The
meander thus stems from a cooperative effect between
chastic and deterministic effects.

If the diffusion process is fast enough, the time derivat
in Eq. ~5! can be neglected. This is the quasistatic appro
mation. This means that the diffusion field adapts itself
stantaneously to the step motion. In other words, the di
sion time for an adatom to find a coordination site on the s
is typically of the ordert1; l 2/D. This time is to be com-
pared with the advance time of the step by an amount of
order of an atomic distance. This is approximately given
t2;V1/2/VFl . The quasistatic approximation is valid as lon
as t1@t2. For example, for Si~111! at T51000 K, D/V
;108 s21, VF;1 s21, l;102 atomic lengths, and therefor
t151024 s!t251022. This means that for not too large te
race widths, sufficiently large diffusion constants, and r
sonably small fluxes, this approximation is valid. These c
ditions coincide with the ones needed to prevent isla
nucleation on the terraces, a phenomenon that is not con
ered here.

We shall first consider the case where desorption is
negligible on length and time scales of interest. We will
turn later to the opposite situation.

B. Growth with adatom desorption

In this section we shall first consider the situation of we
enough fluxes in order to prevent the Bales-Zangwill ins
bility. It will appear that the elastic repulsion is immediate
overcome by the diffusive repulsion. The meander of a s
at equilibrium is caused by statistical fluctuations and limi
by elastic interactions@see Eq. 36!#. Here the meander wil
be fixed by the diffusive repulsion.

The calculation can be made in the general case, bu
shall limit ourselves to the case where desorption is sm
~but nonzero!. We expect this limit to represent many situ
tions in MBE growth. Moreover, we shall distinguish b
tween a small and a large ES effect. On the other hand,
evolution equation is nonlocal in space. We shall disc
below the limit of long wavelengths, that is, we consider t
situation wherekl0!1, with l05max(xs,l). In this limit
dynamics become local.
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Small ES effect and weak desorption.
By a weak ES effect we meand1 ,d2! l and a weak

desorptionxs@ l . The adatoms coming from the lower te
race stick more easily to the step. We shall set belowd1

50 ~attachment is instantaneous! for the sake of simplicity.
Using the expression of the response functionx given in
Appendix B, we find to leading order ink a polynomial of
order 2. Realizing that cos(F) ~entering the expansion ofx)
produceszm211zm11, we can immediately write the evolu
tion equation in real space as

]zm

]t
52F A

l 3 S 1

t
1

D

l 2
QmD 1

Vceq
0

t
sS d2

l
D 2GQmzm

1
ld2

2t
S 2G

d2

2Vceq
0 s D ]2zm

]x2
1FD

l S G1
A

l 2D
2

Vceq
0

t
s

d2
2

6
GQm

]2zm

]x2
1

Vceq
0

2t
sF zm112zm21

1
l 2

6
S ]2zm11

]x2
2

]2zm21

]x2 D G1bm , ~44!

where we have defined the operatorQ that acts on a function
gn asQngn52gn2gn112gn21. The amplitude of the result
ing Langevin force is found in this limit to obey@using the
definition ~27! and the expression ofb given in Appendix B
expanded according to the regime we are interested in#

^bm~r ,t !bm8~r 8,t8!&52V2ceq
0 D

l S l 2

xs
2

1Qm8D
3dm,m8d~r2r 8!d~ t2t8!. ~45!

Using Eq. ~27! in this limit, the roughness is easily calcu
lated:

w5V1/2S xs
2l

2~G/Vceq
0 !sd2

2 D 1/4

. ~46!

FIG. 3. The Schw!bel effect leads to a repulsion between ste
during growth. For the sake of simplicity, we consider a one-sid
model ~strong ES effect!: The adatom coming from the upper te
race cannot attach to a step (n250). If desorption is small, the
velocity of a stepV is approximately proportional to the number o
adatoms that land on the lower terrace. This number is proportio
to the terrace widthl . HenceV is proportional to the width of the
lower terrace. We consider a train of steps initially separated bl .
Now let the mth step fluctuate from its original position in th
2z direction. Its velocity will increase and that of the (m21)th
step will decrease. The train of steps is stable.
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Making use of the definition ofs;tF/ceq
0 ~when desorption

is negligible!, xs
25Dt, andG5V2ceq

0 g/kBT, we recover Eq.
~4!. We see here the effect of the diffusive repulsion: the s
must smoothen as the incoming flux increases,w;s21/4.
We have seen in Eq.~36! that the elastic interaction~which is
taken as 1/l 2) produces a meander; l . In order to produce a
meander; l 1/4, in an energetic picture, the effective ener
of the diffusive repulsion must behave as

E; l ln@ l #. ~47!

This dynamical smoothening leads to a reduction of the
race width fluctuations. This is measured by the ratio

R5
GD~1!

GS~1!
5

p

A2

xs

d2l 3/2S A/Vceq
0

s
D 1/2

. ~48!

For Si~111!, at a high enough temperature, we expectd1

;0, d2;102, A/Vceq
0 ;1, andxs;104, where lengths are

measured in atomic units. Forl;103 ands;1022, we find
R;1021.

Studying the terrace width fluctuations for straight ste
in theF/D→0 andt→0 limit, in a Monte Carlo simulation
Krug and Schimschak20 found that the terrace with fluctua
tions should behave likel 1/2, compared tol 1/4 in our model.
We give in the next section an argument for their finding

C. No desorption and a strong ES effect

If desorption is completely negligible, that is to say, if th
diffusion lengthxs is much bigger than all scales of interes
( l , d6 , and the wave vectork), the straight step is in prin
ciple unstable however small the incoming flux is. It
shown below that, though this situation is more unstable t
that corresponding to the case with desorption, a finite flu
required to induce the instability. This is due to the fact th
the system always exhibits finite size effects.

FIG. 4. An adatom diffusing on the lower terrace~1! has a
higher probability to stick on a protuberance of the step. The
coming adatom flux is therefore higher on the protuberance.
dashed lines are isoconcentration lines. If the ES effect is impor
~2!, the protuberence increases. Diffusion destabilizes the s
during growth. This effect overcomes the smoothening due to
step stiffness when the supersaturations exceeds a threshold valu
sBZ .
p
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s

n
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Let us first discuss the situation of a translationally inva
ant train. We concentrate on the situation where the ES ef
is very large, so that the probability for an adatom to desc
a step is very small. This is expected to be the case for sm
enough temperatures. Formally, this amounts to lettingd2

→`. This is the so-called one-sided model, where step
namics are due to the adatoms coming from one s
namely, the lower one.

If desorption is negligible and the ES effect is large, w
expect that the step dynamics can be described by that
conserved quantity. Indeed, this limit prohibits the terra
from exchanging mass with either the atmosphere or a
cent terraces. Following the same strategy as in Sec.
~that is, expandingx to leading order ink, here the expan-
sion is valid forkl!1), we obtain in real space

]zm

]t
5VF~zm112zm!

1
]2

]x2 H 2VF
l 2

2
~2zm2zm11!

2VF
l 4

8
S 4

3

]2zm

]x2
2

1

3

]2zm11

]x2 D
1Dl F2G

]2zm

]x2
1

A

l 4 S 12
l 2

3

]2

]x2D QmzmG1J
1Hm , ~49!

where the resulting noiseHm satisfies the correlation law

^Hm~r ,t !Hm8~r 8,t8!&52V2Dceq
0 l

]2d

]x2
. ~50!

The first term tells us that the drift velocity of a step in
uniform train is proportional to the forward terrace widt
The other term corresponds to dynamics of a conser
quantity ]z/]t52]J/]x. At equilibrium, that is, forF50,
Eq. ~49! is of fourth order in space. This is symptomatic
an effective diffusion along the steps: Adatoms make la
excursions on the terrace~without escaping it, because de
sorption is absent at the scale of the terrace and the ES e
is strong so that no mass exchange between terrace oc!
before they stick to the upper step. This is a pure o
dimensional diffusion with an effective diffusivity;Dl .

As is seen from Eq.~49!, the absence of desorption im
mediately lead to an instability signaled by the negative s
of the first term in curly brackets (2Fl 2zm). Except when
finite size effects are important~see Sec. V D!, a determin-
istic instability is present and a special treatment of
roughness is necessary~see later!. It is however instructive to
see why Krug and Schimschak’s20 study based on Monte
Carlo simulations has led to a terrace width fluctuation t
increases asl 1/2. This result follows directly from the fac
that if meandering is forbidden together with desorption a
in the presence of a strong ES effect~as is assumed in thei
work!, then the step dynamics is governed by Eq.~49! where
all derivatives with respect tox are absent,
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]zm

]t
5VF~zm112zm!1 f ~ t !, ~51!

where we have added a different source of noise relate
the fully nonequilibrium shot noise~not present in our origi-
nal formulation assuming a local equilibrium!. This shot
noise is well known to have a variance^ f (t) f (t8)&;Fld(t
2t8) ~the factorl comes simply from the fact the velocity o
the step is related to that of the surface by the tilt ang
which is proportional to 1/l ). Then a simple calculation~after
Fourier transforming inF and v and integrating over the
two variables! leads tow; l 1/2, which is the result of Krug
and Schimschak. Introducing such a formulation of noise
our full study is of course feasible, but will constitute th
subject of future work.

D. Higher fluxes: A deterministic instability

At higher fluxes, the supersaturation reaches the morp
logical instability threshold. Starting from the general disp
sion relation given in Appendix B, we can show that t
bifurcation occurs fork50 andF50, that is to say, this is
the most dangerous mode~which is due to the existence of
Goldstone mode!. Then it is sufficient to expand the dispe
sion relation for smallk to determine the threshold value
The leading term behaves ask2 and setting the prefactor t
zero provides us with the general expression for the thre
old condition. The calculation is straightforward and the
sult can be written as

sBZ5
2G

Vceq
0

D0

~d22d1!sinh~ l /xs!
, ~52!

whereD0 is defined in Appendix B andG5V2ceq
0 g/kBT. In

the case of instantaneous kinetics from the lower terr
(d150), this condition reduces to

sBZ52G/Vceq
0 @1/d211/xscoth~ l /xs!#.

2G/Vceq
0

min~d2 ,l ,xs!
.

~53!

We assume in writing the second form that one length
significantly smaller than the others. This expression is in
esting since it shows that only the smallest length is relev
for the instability. The physical reason is the following. F
example, if l !xs ,d2 , this means that all adatoms on th
terrace of widthl will potentially contribute to the instability.
The threshold value for the supersaturation is fixed byG/ l .
Conversely, ifxs! l ,d2 , then only those adatoms that rea
the step will cause the instability, while several of those t
were originally available on the terrace will regain the atm
sphere before attaining the step; desorption plays the rol
a short circuit against the instability. Finally, ifd2 is the
smallest length, the adatoms will at most attempt an exc
sion of orderd2 before they attach to a step.

One of the most important features during MBE is that
steps are morphologically unstable above a critical value
deposition flux. This is a deterministic instability and by
very definition any fluctuation at the threshold will blow u
rapidly in the course of time. This is signaled by the dive
gence of the response functionx. We expect, therefore, th
to
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meander to exhibit a divergence as well. The general disc
sion for a train is presented in Appendix C. It is interesti
first to recall the results for an isolated step. The static sp
trum of an isolated step is of the form@see Eq.~C1! in
Appendix C, where we setl 5`#

^zkz2k&;
1

ek2
, ~54!

wheree512s/sBZ . The roughness then reads21

w;S E
2p/L

1` dk

2p

1

ek2D 1/2

;
L1/2

e1/2
. ~55!

The meander of an isolated step diverges like 1/e1/2, in
agreement with Refs. 10 and 21. The exponent is differen
the case of a train. Indeed, in that case the phaseF inter-
venes in the static spectrum. The part of this static spect
that leads to the divergence of the roughness has the f
~see Appendix C!

^zk,Fz2k,2F&;
1

ek21@12cos~F!#a~k!
, ~56!

wherea(k) is a complicated expression resulting from inte
actions between steps~for details see Appendix C!. This
leads to a different exponent. Indeed, the roughness is g
by

w;S E
2p/L

1` dk

2pE0

2p dF

2p

1

ek21@12cos~F!#a~k!
D 1/2

.

~57!

Since a(k)Þ0 for k→0 ~this simply means that there ar
interactions between straight steps!,

w;S E
2p/L

1` dk

2p

1

~ek2!1/2a~k!1/2D 1/2

;
@ ln~L !#1/2

e1/4
. ~58!

The change between Eqs.~55! and ~58! is the result of the
repulsive interaction of each step with its neighbors. In
train of steps the roughness divergence with the size of
system is logarithmic instead of being algebraic. Furth
more, the divergence caused by the morphological instab
is also weakened (w;e21/4 instead ofw;e21/2). The quali-
tative behavior ofw as a function of the incoming flux is
displayed in Fig. 5.

In the case of weak evaporationl !xs and far from this
threshold (s!sBZ), the terrace width fluctuationsGD(1)
are simply related to the step roughness byGD(1).2w2

~see Appendix C!. Actually, we always have the inequalit
GD(1),2w2 at equilibrium. Nevertheless,GD(1) does not
diverge when the supersaturation increases and reachessBZ .

For p not too large@p,xs
2/( l 21 ld11 ld2)#, GD(p) ex-

hibits a linear dependence onp,

GD~p!.GD~1!F11p
l ~ l 1d11d2!

2xs
2 S 12

1

2

12s/sBZ

11s/s0
D G ,

~59!
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where s0 is defined in Appendix C. Ifp@xs
2/( l 21 ld1

1 ld2), GD(p); ln(p). At large enough scales and wheth
or not we are at equilibrium, the correlations together w
the roughness diverge logarithmically with the size of t
system,2 whereas the interstep correlation functionGD(p)
remains finite at the morphological instability thresholds
5sBZ for a given value ofp.

In principle, in the absence of desorption and as shown
the term;F in Eq. ~49!, the steps are always unstable. W
show now that finite size effects introduce always a rest
tion on a minimal value. For that purpose we consider
dispersion relation~written in Appendix B! in the limit of no
desorptionand in the case of a finite train of steps. A fini
number of stepsN introduces a phase cutoffF052p/N.
Taking thek50 limit, we obtain that the diffusive repulsio
overcomes the elastic repulsion ifVF@VFelas

52F0
2D(A/ l 4)( l 1d21d1)/(d2

2 2d1
2 ). We now consider

meandering steps (kÞ0). The main contribution to the me
ander comes from the most dangerous modes, i.e., the m
with the smallest value ofF. For these modesF;F0!1.
We write the real part of the dispersion relation resulti
from Eq. ~B11! to leading order ink andF,

Re@ iv~k,F!#52
F2

2
VF

d2
2 2d1

2

~ l 1d11d2!2
1S 2DF2G

1VF
l 2

2
~d12d1!D k2

~ l 1d11d2!
. ~60!

This is stable against meandering if the prefactor ofk2 is
negative. Note that because we are interested in a situa
where the leading term ink is stabilizing, there is no need t

FIG. 5. Step roughness as a function of the supersaturatios
5tF/ceq21 in the case of a weak Ehrlich-Schw!bel effect. When
the supersaturation increases, the roughness goes through dif
regimes. First, whens,selas the supersaturation is constant.
selas,s,sBZ(12ec), the diffusive repulsion overcomes the ela
tic repulsion and the roughness decreaseswD;( l /s)1/4. When
sBZ(12ec),s,sBZ , the roughness divergeswD;(s2sBZ)21/4.
The terrace width fluctuationGD(1) remains finite in this region
Whens.sBZ , the steps are morphologically unstable and a n
linear analysis is necessary.
y

-
e

es

on

go beyond that order. Since the most unstable mode is
modeF5F0 , stability is achieved under the condition

VF!VFBZ52F0
2DG/~d12d2!l 2. ~61!

The step roughness is then well defined. Now we use E
~28! and ~B13! in the no-desorption limit (t→`) to calcu-
late the roughness

w5S VDceqkBT~ l 1d11d2!

2gF~d2
2 2d1

2 !
D 1/4

, ~62!

which leads to an expression similar to Eq.~46!, in the case
of a weak ES effect (d1 ,d2! l ). In a train ofN5100 steps
on a Si~111! surface, with d150, d25102, l 5102,
G/Vceq

0 51, and Dceq
0 5108, we find VFBZ51 s21 and

VFelas51024 s21. SinceF0 is inversely proportional toN,
the condition~61! is violated for large enough trains, so th
the instability manifests itself without a threshold.

If there is in fact a weak desorption, the cutoffF0
52p/N can be interpreted as a consequence of a finite
fusion lengthxs . This simply means that steps separated
N steps or more cannot be coupled via adatom diffusion.
us estimate this cutoffN. The adatom motion can be seen
the result of hopping between steps with the mean velo
v' . This velocity is the result of diffusion and attachme
kinetics. Thus we havev'

21. l /D1n1
211n2

21 . After each
hop the adatom ‘‘choose’’ arbitrarily to go to one of its tw
neighbors. Therefore, the resulting adatom motion is Brow
ian. A well-known result for Brownian motion is that th
departure from the initial position of the particle is propo
tional to the square root of the number of hops. The num
of hops needed to go from one position to another,N steps
further, is thereforeN2. The distance covered by an adato
before desorption isv't5N2l and the cutoffN is given by
N5xs /Al ( l 1d11d2). We insert this relation into the ex
pression ofVFBZ @Eq. 61!# as a function of the cutoff. We
find

VtFBZ.~2p!2
2G~ l 1d11d2!

~d12d2!l
. ~63!

This expression is in agreement with Eq.~52! in the larget
limit, which gives the same result, without the (2p)2 pref-
actor. Many other phenomena can lead to this kind of cut
such as a vacancy or defect nucleation. This study is gen
and shall be the framework of future developments that t
into account phenomena leading to nonconserved dynam
at large scales.

VI. SUMMARY

A general conclusion together with an outlook is pr
sented in the following paper. Here we simply sum up t
main results. This paper has dealt with the general formu
tion of dynamics on a vicinal surface during MBE growt
The model uses that of Burton, Cabrera, and Frank11 supple-
mented with elasticity, noninstantaneous and asymme
~the Ehrlich-Schw!bel effect! adatoms kinetics at the step
and an appropriate Langevin formalism. The noise sour
that are involved are the shot noise, diffusion noise, a

rent

-
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noise associated with attachment/detachment at the s
The full formalism has been tested at equilibrium. This wa
necessary check for the self-coherence of the model. Sev
features at equilibrium were recovered and some other
pects discovered. A more extensive discussion in that reg
is presented in Ref. 16. Out of equilibrium we have identifi
a diffusive repulsion that prevails in most realistic cases o
the elastic repulsion. This has led to the derivation of a s
ing law for step wandering. The diffusive repulsion partia
orders the train fluctuation; terrace width fluctuations
gether with step wandering are significantly reduced by n
equilibrium effects. This discovery is not devoid of expe
mental testability. When the system is driven further aw
from equilibrium by increasing the incoming flux, the ste
suffer a morphological instability. We have given a transp
ent picture of what fixes the critical flux. At the instabilit
threshold, fluctuations diverge. We have shown how the
vergence occurs as a function of the system size and
distance from the threshold. At the instability threshold, no
linear effects can no longer be disregarded. This part is
subject of the following paper.
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APPENDIX A: AMPLITUDE OF THE LANGEVIN FORCES

At equilibrium the flux isFeq5ceq
0 /t and the concentra

tion c fluctuates around the mean valueceq
0 . According to

Eq. ~5!, these fluctuations obey

]

]t
~c2ceq

0 !5D¹2~c2ceq
0 !2

c2ceq
0

t
1 f 2“•q. ~A1!

This leads to the static spectrum of the equilibrium fluctu
tions

^~c2ceq
0 !k~c2ceq

0 !2k&5
1

2

k2Bc1Bn

Dk211/t
, ~A2!

where the correlations of the Langevin forces are written

^qmi~r ,t !qm8 j~r 8,t8!&5Bcdd i j , ~A3!

^ f m~r ,t ! f m8 ~r 8,t8!&5Bnd, ~A4!

where d is an abbreviation ford(r2r 8)d(t2t8)dm,m8 and
i , j stand forx or z. Moreover, we know22 that

^~c2ceq
0 !~r ,t !~c2ceq

0 !~r 8,t8!&5ceq
0 d~r2r 8!d~ t2t8!.

~A5!

Confronting Eq.~A2! with Eq. ~A5!, we obtain

Bc52Dceq
0 , ~A6!
ps.
a
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-
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-
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Bn52
ceq

0

t
. ~A7!

The correlation laws of the attachment/detachment noish
are calculated in a similar way. A linearization of Eq.~14!
provides us with the evolution equation of the meander
equilibrium

]zm

]t
5

D

d1
FVh12Gk2

A

l 4
~2zm2zm112zm21!G

1
D

d2
FVh22Gk2

A

l 4
~2zm2zm112zm21!G .

~A8!

We then calculate the static spectrum of the meanderz in
Fourier space

^zkFz2k2F&5
D

d1d2

d1
2 Bh1

1d2
2 Bh2

2~d11d2!S Gk212
A

l 4 (12cos(F) D ,

~A9!

where the amplitudeBh1
andBh2

are defined by

^hm6~r ,t !hm86~r 8,t8!&5Bh6
d. ~A10!

At equilibrium we must recover Eq.~33!, where the phasef
designates the Fourier conjugate variable of the discrete l
of the stepsm. Comparing this static spectrum to the on
obtained by Eq.~A8! fixes the amplitudes of the attachme
noises

Bh6
5

2ceq
0

n6

. ~A11!

The amplitude of the Langevin forces have been cal
lated at equilibrium. We use a local thermodynamic equil
rium approximation, which allows one to extend the abo
noise forces to the out-of-equilibrium case.23 The Langevin
forces are thus obtained by substituting in the above relat
ceq

0 by c:

^qmi~r ,t !qm8 j~r 8,t8!&52Dc~r ,t !dd i j , ~A12!

^ f m~r ,t ! f m8~r 8,t8!&52
c~r ,t !

t
d, ~A13!

^hm6~x,t !hm86~x8,t8!&

5
2c6~x,t !

n6

d~x2x8!d~ t2t8!dmm8 , ~A14!

wherec6 is the concentration on both sides of the step. T
implies that we consider features on spatial and temp
scales that are large in comparison to the mean free paths
collision frequencies~the traditional hydrodynamical limit!.
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APPENDIX B: GREEN’S FUNCTION FORMALISM

1. Green’s function

Equations~5!, ~6!, and ~14! completely describe the dy
namics of the vicinal surface. It is possible to convert th
into an integral form by means of Green’s function tec
niques. For convenience we use the normalized concen
tion u5V(c2tF) instead of the concentrationc. Equation
~5! then becomes

]u

]t
5V

]u

]z
1D¹2u2

u

t
1V~ f 2“•q!, ~B1!

where we have written it in a frame moving with the veloc
V corresponding to the uniform train. The free propaga
associated with Eq.~5! satisfies the equation

S tD¹2211t
]

]t8
2tV

]

]z8
D G~r2r 8,t2t8!

52d~r2r 8!d~ t2t8!. ~B2!

To determineG we take the Fourier transform of Eq.~B2!,
which is defined by

Ĝ~k,v!5E
2`

`

dt8E E d2r 8G~r2r ,t2t8!

3eiv~ t2t8!1 ik•~r2r8!. ~B3!

Ĝ obeys the equation

~2tDk21 i tVkz2 ivt21!Ĝ~k,v!521. ~B4!

The Green’s function then reads

G~r2r 8,t2t8!

5E
2`

1` dv

2pE E d2k

~2p!2

e2 iv~ t2t8!2 ik•~r2r !

11tDk21 i ~vt2tVkz!
,

~B5!

which is easily integrated to yield Eq.~23!. We multiply Eq.
~B2! by u and Eq.~B1! by G and we take the difference
Then we integrate this expression in space over a ter
~Fig. 6! and in time from2` to t2e. The resulting equation
is written as

05E
2`

t2e

dt8E E d2r 8@tD~G¹2u82u8¹2G!#

1E
2`

t2e

dt8E E d2r 8F tV
]

]z8
~Gu8!2t

]

]t8
~Gu8!G

1VtE
2`

t2e

dt8E E d2r 8~ f 2“q!G. ~B6!

SinceG depends on both ther2r 8 andt2t8 we shall omit it
to specify the arguments. For the other quantities a pr
-
ra-

r

ce

e

indicates that the arguments aret8, x8, andz8. Using simple
manipulations together with use of properties of the Gree
function G,

lim
e→0

G~r2r 8,e!5
1

t
d~r2r 8!, ~B7!

lim
t8→`

G~r2r 8,t2t8!50, ~B8!

we obtain

u~r ,t !5E
2`

t

dt8F tE
2`

`

dx8~V1 ż8!u8G

1DtE dGs8S G
]u8

]n8
2u8

]G

]n8
D G

z85ml1z
m8

z85~m11!l 1zm118

1VtE
2`

t

dt8E
2`

`

dx8

3E
ml1zm

~m11!l 1zm11
dz8~ f 82“8•q8!G. ~B9!

dGs8 is the step arclength element. In the above equation,
concentration on a terrace is calculated as a function of
concentration at the adjacent steps and their normal der
tives. The quantityr can be any point on a terrace. Whe
taking the limitr5r step care should be taken since due to t
discontinuity of]G/]n8, which gives an extra contribution
*]G/]n8h8dGs8u terrace51/2hustep1*]G/]n8h8dGs8ustep. In-
deed, an analysis of this integral close to the step show
d-function contribution on one side of the step, which pr
duces the term 1/2hustep. This is usually known as the
double layer theorem.24 Evaluating the integral equation a
the step, we obtain two equations forz5zm1ml and z
5zm111(m11)l . They take the form of Eq.~22!.

FIG. 6. The steps are labeled with the indexm. The normalized
concentrations on both sides of the steps areum,1 andum,2 . In the
Green’s formalism expressions, the integration is made along
contourC ~dashed line!.
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2. Linear analysis

The zeroth-order fieldu on both sides of the steps and the mean velocity of the train are obtained to leading order. T
given by

u0152sVceq
0 d11d2cosh~ l /xs!1xssinh~ l /xs!

~d11d2!cosh~ l /xs!1~xs1d1d2 /xs!sinh~ l /xs!
,

u0252sVceq
0 d21d1cosh~ l /xs!1xssinh~ l /xs!

~d11d2!cosh~ l /xs!1~xs1d1d2 /xs!sinh~ l /xs!
, ~B10!

V5sVceq
0 S D

t D 1/2 2xs@cosh~ l /xs!21#1~d11d2!sinh~ l /xs!

~d11d2!cosh~ l /xs!1~xs1d1d2 /xs!sinh~ l /xs!
.

The expression of the susceptibility and of the resulting noise involved in Eq.~27! are provided. In Fourier space, th
inverse of the susceptibility is

xvkF
21 5 iv1

DLvk

D S Gk212
A

l 4
@12cos~F!# D $2@cosh~Lvkl !21#1Lvk~d11d2!sinh~Lvkl !12@12cos~F!#%

1
Vceq

0 s

tDD0

Xd12d2

xs
H Lvk~d11d2!FxsLvksinhS l

xs
D sinh~Lvkl !2coshS l

xs
D cosh~Lvkl !1cos~F!G1FcoshS l

xs
D 21G

3@~xsLvk!
221#sinh~Lvkl !J 2 i sin~F!

Lvk

xs
Fd1

2 1d2
2 22xs

212~d1d21xs
2!coshS l

xs
D 12xs~d11d2!sinhS l

xs
D GC,
~B11!

where we have used the notations

s5tF/ceq
0 21,

Lvk5Aiv/D1k211/xs
2,

D05
d11d2

xs

coshS l

xs
D 1S d1d2

xs
2

11D sinhS l

xs
D , ~B12!

D5~d11d2!Lvkcosh~Lvkl !1~d1d2Lvk
2 11!sinh~Lvkl !.

The resulting noise that enters Eq.~27! is written in Fourier space as a function of the Langevin forces introduced befo

bvkF5
VDLvk

D
$@cosh~Lvkl !1Lvkd2sinh~Lvkl !2e2 iF#h1,vkF1@cosh~Lvkl !1Lvkd1sinh~Lvkl !2eiF#h2,vkF%

1
V

DE0

l

dz8„sinh@Lvk~ l 2z8!#1Lvkd2cosh@Lvk~ l 2z8!#1e2 iF@sinh~Lvkz8!1Lvkd1cosh~Lvkz8!#@ f vkF~z8!

2 ikqx,vkF~z8!#2$cosh@Lvk~ l 2z8!#1Lvkd2sinh@Lvk~ l 2z8!#2e2 iF@cosh~Lvkz8!

1Lvkd1sinh~Lvkz8!#%Lvkqz,vkF~z8!…. ~B13!

APPENDIX C: OUT-OF-EQUILIBRIUM STEP ROUGHNESS AND INTERSTEP CORRELATIONS

We have calculated the step roughness and the interstep correlations in the quasistatic approximation. The step
is given by Eq.~28!, where use is made of Eqs.~B11! and ~B13! in a long-wavelength limit. For small enough fluxes, t
equilibrium part of the noise amplitude dominates. When the diffusive repulsion is stronger than the elastic one and if
stiffness overcomes the diffusive instability,
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w2

V2ceq
0

5E
2`

1` dk

2pE0

2p dF

2p

f 012@12cos~F!#

G~12 s/sBZ!k2f 01@12cos~F!#F2GS 11
s

s0
D k21

Vceq
0 sd2

D0xs
3 G , ~C1!

where we have defined

d5Ad2
2 2d1

2 ,

s05
4G

Vceq
0

D 0

d2
xs , ~C2!

f 05
d11d2

xs

sinh~ l /xs!12@cosh~ l /xs!21#.

The roughness is

w2

V
5

xs
3/2D 0

1/2

dA2s~G/Vceq
0 ! H 1

S 11
s

s0
D 1/2

2

p
arcsinF S 11

12
s

sBZ

11
s

s0

f 0

4 D 21/2G1
1

S 12
s

sBZ
D 1/2S f 0

4
D 1/2

2

p

3arcsinhF L

2p

d

xs
3/2D 0

1/2

@2s/~G/Vceq
0 !#1/2

AS 12
s

sBZ
D f 0

4
1S 11

s

s0
D G J . ~C3!

The dependence one512s/sBZ implies that close to the instability threshold~small e) the squared roughness behaves lik
w2;e21/2 and thus

w;e21/4. ~C4!

In the limit where desorption is small, expression~C3! reduces to

w2

V
5S Vceq

0 xs
2~ l 1d11d2!

2Gsd2 D 1/2H S 11
s

s0
D 21/2

1e21/2
@ l ~ l 1d11d2!#1/2

2xs

2

p

3arcsinhF L

2p S 2d2s

Gxs
2~ l 1d11d2!S 11

s

s0
D D

1/2G J , ~C5!

with s054G( l 1d11d2)/Vceq
0 d2 in this limit.

In a similar manner, the interstep correlations defined by Eq.~41! are calculated under the same conditions as those t
have led to Eq.~C1!,

G~p!

V
5S Vceq

0 xs
3D 0

d2sGS 11
s

s0
D 1/2D I ~p!. ~C6!

We have defined

I ~p!5E
0

2p dF

2p

$ f 012@12cos~F!#%@12cos~pF!#

$g012@12cos~F!#%1/2@12cos~F!#1/2
, ~C7!
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where

g05 f 0

12
s

sBZ

11
s

s0

. ~C8!

Note that unlike the roughness, the correlations do not
verge with the length of the steps, but there is still a dive
gence for largep, whereG(p); ln@p#. To show the logarith-
mic divergence ofI (p), we shall first note that

I ~p11!2I ~p!

5A2goE
0

p dF

p S 11
4

g0

sin2~F!D 1/2

sin@~2p11!F#

1A 2

g0

~ f 02g0!E
0

p dF

p

sin@~2p11!F#

S 11
4

g0
sin2~F! D 1/2 ~C9!

and I (0)50, so that we have integrals of the form

J~p!5E
0

p

dFh@q2sin2~F!#sin@~2p11!F#, ~C10!

where h is a regular function ofq2sin2(F) and q254/g0 .
Using a Taylor expansion ofh,

J~p! 5E
0

p

dF (
n50

`

@q2sin2~F!#nhnsin@~2p11!F#

5 (
n50

`

hnq2nUnp

5
1

2p11 (
n50

` S q

2p11D 2n

hn8

;
p→`

1
2p11

h08 , ~C11!
n

,

i-
-

where we have definedUnp5*0
p (dF/p)sin2n(F)sin@(2p

11)F#, which is easily integratedUnp5(2/p) (2n)!/(2p
11)2n11. hn and hn8 are functions ofn. Thus I (p11)
2I (p);1/(2p11) for largep and thenI (p); ln(p).

SinceI (0)50, we can calculate the terrace width fluctua
tions GD(1) with the help of Eq.~C9! for p51:

GD~1!

V
5

xs
3/2D 0

1/2

dA2s~G/Vceq
0 !

1

S 11
s

s0
D 1/2

2

p

3$Ag01~21 f 02g0/2!arcsin@~11g0/4!21/2#%.

In the case of small desorption

GD~1!

V
52S ~d11d21 l !xs

2

2s~d2
2 2d1

2 !~G/Vceq
0 !S 11

s

s0
D D

1/2

~C12!

so that, sincêzm(r ,t)zm11(r ,t)&5w22G(1)/2,

^zm~r ,t !zm11~r ,t !&

5
l

pxsS 1

12
s

sBZ

D 1/2

3arcsinhF L

2p S 2d2s

Gxs
2~ l 1d11d2!S 11

s

s0
D D

1/2G .

Far from the morphological instability (s!sBZ), 2w2

.GD(1) ~becausel !xs), the terrace width fluctuation is
equal to the sum of the fluctuations of its neighboring step
The steps seem to be uncorrelated. When the supersatura
increases and reaches the instability threshold,w2 diverges
but GD(1) does not. This means that the terraces are s
well defined when the morphological instability occurs. Th
is not contradictory since the first unstable mode is the i
phase mode.
.
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