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T. Hjelt
Department of Physics, Box 1843, Brown University, Providence, Rhode Island 02912

and Helsinki Institute of Physics, P.O. Box 9 (Siltavuorenpenger 20 C), FIN-00014, University of Helsinki, Finland

T. Ala-Nissila
Department of Physics, Box 1843, Brown University, Providence, Rhode Island 02912;

Helsinki Institute of Physics, P.O. Box 9 (Siltavuorenpenger 20 C), FIN-00014, University of Helsinki, Finland;
and Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 6 March 1998!

We present a memory expansion for macroscopic transport coefficients such as the collective and tracer
diffusion coefficientsDC andDT , respectively. The successive terms in this expansion forDC describe rapidly
decaying memory effects of the center-of-mass motion, leading to fast convergence when evaluated numeri-
cally. For DT , one obtains an expansion of similar form that contains terms describing memory effects in
single-particle motion. As an example we evaluateDC andDT for three strongly interacting surface systems
through Monte Carlo simulations, and for a simple model diffusion system via molecular dynamics calcula-
tions. We show that the numerical method provides a speedup of about two orders of magnitude in computa-
tional time as compared with the standard methods, when collective diffusion is concerned. For tracer diffu-
sion, the speedup is not quite as significant. Our studies using the memory expansion provide information of
the nature of memory effects in diffusion and suggest a nontrivial power-law behavior of memory terms at
intermediate times. We also discuss the application of the present approach to studies of other transport
coefficients.@S0163-1829~98!04828-0#
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I. INTRODUCTION

Transport phenomena such as diffusion, thermal cond
tion, and viscous flow are of both fundamental and pract
interest. In the macroscopic hydrodynamic regime they
characterized by transport coefficients such as the diffus
coefficient or the thermal conductivity. Using the Gree
Kubo approach,1–3 these coefficients can be expressed
terms of equilibrium time-dependent correlation function
which have been the basis of many analytical and numer
simulation studies. However, the transport coefficients
defined in the hydrodynamical limit of long times and lar
length scales. In the numerical calculation of multipartic
quantities such as the collective diffusion for adsorbates
surfaces4 and the shear viscosity for fluids,5 this becomes a
major problem due to the lack of self-averaging.6 Therefore,
for many interesting systems characterized by large tim
scale separations and strong interactions, accurate studi
transport properties using the standard methods4,7 are ex-
tremely tedious.
PRB 580163-1829/98/58~4!/2170~9!/$15.00
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The purpose of this article is to present a memory exp
sion for transport coefficients that overcomes these diffic
ties. We illustrate the method by considering the collect
and tracer surface diffusion coefficientsDC andDT , respec-
tively. The collective diffusion coefficient describes the ma
roscopic density fluctuations on a surface and has releva
in, e.g., annealing processes after surface sputtering
spreading of molecular layers on surfaces.8 The tracer diffu-
sion coefficient in turn characterizes single-particle mot
as is evident in surface growth under MBE conditions,
example. In the formalism for collective diffusion, th
center-of-mass of the system~c.m.! is viewed as performing
diffusive motion. The leading contribution to this expansi
corresponds to a random motion of the c.m. with no corre
tions between the displacements in successive time interv
The same idea holds true for the successive displacemen
a single particle, when tracer diffusion is concerned. T
memory effects inDC and DT are then included systemat
cally through a summation of suitable correlation functio
over different time intervals.
2170 © 1998 The American Physical Society
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This formulation is particularly suited for numerica
Monte Carlo~MC! and molecular dynamics~MD! simulation
studies. We have applied the expansion to evaluateDC and
DT for a variety of strongly interacting systems using bo
MC and MD simulation techniques. In all the cases studi
this method speeds up the computation ofDC over conven-
tional methods4 by about two orders of magnitude, while fo
DT the speedup is not quite as significant. We find that in
cases studied here, the temporal behavior of memory te
in the diffusion coefficients can be described rather well b
power law with some effective exponent at intermedi
times. At long times, the memory effects decay expon
tially. Finally, as discussed below, we would like to stre
that the present method can be applied to studies of o
transport coefficients such as shear and longitudinal visc
ties, or thermal conductivity.9

II. MEMORY EXPANSION

Our starting point is the Green-Kubo response funct
formalism9 in which a transport coefficientTmn can be ex-
pressed in terms of time correlations of the spatialm,n com-
ponents of a ‘‘current flux’’JW (t):

Tmn5AE
0

`

dt^Jm~ t !Jn~0!&. ~1!

In Eq. ~1!, A is a thermodynamic factor and̂ & denotes an
ensemble average. For isotropic systems,T can be character
ized by the scalar quantitŷJW (t)•JW (0)&. The explicit form of
JW (t) depends on the specific transport coefficient under c
sideration, such as viscosity, electric conductivity, or diff
sion coefficient. In this work, we focus on surface diffusi
of adparticles at finite densities. We then need to distingu
between two different diffusion coefficients. The tracer d
fusion coefficientDT is related to the motion of a singl
tagged particle, while the collective diffusion coefficientDC
describes macroscopic density fluctuations. Although the
pansion proposed here is very similar for both diffusion c
efficients, we wish to clarify the discussion by presenting
two cases separately.

A. Collective diffusion

The first situation to be discussed concerns macrosc
density fluctuations. In this case,Tmn in Eq. ~1! is the col-
lective diffusion coefficientDC,mn , and the fluxJW (t) is then
the total particle fluxJW (t)5( i 51

N vW i(t), where vW i(t) is the
velocity of a particlei 51, . . . ,N at time t. The current flux
correlation function in Eq.~1! can also be expressed in term
of the components of the center-of-mass coordinates of
adsorbate layer,4 defined as RW (t)5( i 51

N @rW i(t)2rW i(0)#,

whererW i(t) is the position vector of particlei at time t. For
the isotropic two-dimensional~2D! case then,4

DC5jDc.m.[j lim
t→`

1

4Nt
^uRW ~ t !u2&. ~2!

In Eq. ~2!, which is sometimes called the Kubo-Green e
pression for collective diffusion,DC is decomposed into two
,
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factors. The first factorj5^N&/^(dN)2& is determined by the
number fluctuations of the overlayer in a grand canoni
ensemble and is inversely proportional to the compress
ity. The remaining partDc.m. describes the center-of-mas
motion of the whole system, and is in fact the diffusion c
efficient for a fictitious particle located at the c.m. positio
RW (t) normalized by the total particle numberN. Dc.m. con-
tains all the dynamical information for the collective diffu
sion coefficientDC , and constitutes a numerical challenge
simulation studies of collective diffusion. Namely, to eval
ateDC accurately according to Eq.~1! or Eq. ~2!, one needs
to go to the hydrodynamic long-time limit. Moreove

^uRW (t)u2& or ^JW (t)•JW (0)& are not self-averaging quantities i
the sense that the computational effort always increases
larger system sizes.6,10

We now propose an alternate scheme, which is able
reduce this numerical problem to a great extent. In this
proach for collective diffusion, one focuses on the motion
the c.m. at short time scales, instead of directly evaluat
Dc.m. from the long-time limit of Eq.~2!. We divide the time
t into M time intervals of equal lengtht0, and discretize the
c.m. coordinateRW correspondingly at timestm5mt0 with
m50,1, . . . ,M . ThenRW (t)[RW (Mt0)5(m51

M dRW (tm), where

dRW (tm)5RW (tm)2RW (tm21) is the change in the position o
the c.m. between two consecutiveobservationsat timestm
and tm21. In the isotropic case, this leads to the expressi

Dc.m.5 lim
M→`

1

4NMt0
FM ^dRW ~ tm!•dRW ~ tm!&12 (

k51

M21

~M2k!

3^dRW ~ tm!•dRW ~ tm1k!&G , ~3!

where the averages on the right-hand side~RHS! are with
respect totm . The time-dependent correlation functions
Eq. ~3! depend only on the time differences. The extension
the spatially anisotropic cases is obvious. By denoting

CC~ t ![^dRW ~0!•dRW ~ t !&, ~4!

we obtain the expansion

Dc.m.5
1

4Nt0
FCC~0!12(

k51

`

CC~kt0!G . ~5!

The first termCC(0)5^uRW (t0)2RW (0)u2& gives the average
mean-square displacement ofRW for a time interval of length
t0. The following terms in the expansion measure t
memory of additional displacements with respect to the
tial displacement. If the c.m. motion follows Markovia
random-walk statistics, then the leading termCC(0) is the
only contribution toDc.m.. For interacting cases, howeve
this is not generally true, which leads to a finite value for t
correlation functionsCC(kt0) for kÞ0. In general, the ana
lytic evaluation of these functions is prohibitively difficul
However, the main point here is that since these functi
are expected to decay rapidly over microscopic time sca
the expansion of Eq.~5! converges rapidly when evaluate
numerically. In fact, it is expected from Eq.~5! that the hy-
drodynamic regime in which the c.m. mean-square displa
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ment varies linearly with time is only reached after the c
relation expansion has converged. We have verified
through extensive numerical studies as detailed below.
tails of the convergence will be discussed in the contex
results in Sec. III.

B. Tracer diffusion

We next outline the corresponding memory expansion
the tracer diffusion coefficientDT . Within the Kubo-Green
formalism, DT comes from Eq.~1! with the single-particle
flux JW (t)5vW i(t) and constantA. An alternate way to expres
tracer diffusion is to use the well-known Einstein relatio
which in the isotropic 2D case definesDT as4

DT5 lim
t→`

1

4t
^urW i~ t !2rW i~0!u2&. ~6!

The tracer diffusion coefficient is therefore proportional
the slope of the mean-square displacement of a tagged
ticle i in the hydrodynamic limit, and describes its motion
the presence of other particlesj Þ i . For this single-particle
quantity, a description similar to Eq.~5! with N51 can be
written. The thermodynamic factorj no longer plays a role
and one considers correlation terms

CT~ t ![^dRW i~0!•dRW i~ t !&, ~7!

wheredRW i(tm) is the change in the position of a single pa
ticle i between two consecutive observations at timestm and
tm21. Then we obtain the expression11

DT5
1

4t0
FCT~0!12(

k51

`

CT~kt0!G . ~8!

Similarity between Eqs.~5! and~8! is evident. Thus the main
ideas of the correlation termsCC(kt0) discussed in Sec. II A
are valid also for the present termsCT(kt0) in a tracer dif-
fusion process.

C. Choice of time scales

The parametert0 in numerical calculations of Eqs.~5!
and~8! is arbitrary and its practical choice is dictated by t
optimization of the computational speed. An overly sm
choice oft0 leads to an excessively large number of comp
tational steps with redundant information, while a large va
beyond the characteristic decay times ofCC(t) and CT(t)
also leads to waste of computational efforts. Further, i
important to note that each displacement stepdRW (tm) of the
c.m. in general results from the motion of different adp
ticles, so that the memory effects of collective diffusion a
often weaker than those of tracer diffusion where strong c
relations exist between the successive displacement ste
the tagged particledRW i(tm).11,12 As we demonstrate below
the expansion method is an extremely powerful tool for
numerical evaluation ofDC in strongly interacting systems
This is because unlike the conventional methods,4 using Eq.
~5!, there is no need to go deep into the hydrodynamic
gime to extract the diffusion coefficient. Instead, the lon
time correlation functions provide only weak corrections
the memory expansion. Indeed, our studies indicate that
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present method reduces the computational cost of calcula
the collective diffusion coefficient by about two orders
magnitude. For tracer diffusion, however, such a lar
speedup is not achieved in practice. This is because at fi
coverages, the calculation ofDT through the average mean
square displacement is relatively easy, unless one has
long-range correlation effects. Another advantage is the g
erality of the present approach and its applicability to bo
discrete lattice-gas models and particles with continuous
teraction potentials. In the former case, the motion is
scribed in terms of stochastic jumps between neighbor
sites and often studied via MC simulations, while the co
tinuous systems obey Newtonian dynamics with no read
identifiable ‘‘jump’’ steps.

D. Connection to the dynamical mean-field theory

When the memory effects are disregarded by neglec
termsCC(kt0) for kÞ0 and using a very small time stept0,
the present scheme can be compared with previous analy
results.12,13 To this end we consider a lattice-gas model w
Monte Carlo dynamics such that during one Monte Ca
step~MCS! each particle attempts to jump to a neighbori
site. Then with the choice oft05t/N, wheret corresponds
to one MCS, the leading random walk termCC(0) in Eq.~5!
takes on the valueG(u)Nt0a2, whereG(u) is the single-
particle jump rate defined as the average number of jump
a particle observed in the periodt. The quantityu is the
coverage anda is the jump length between neighboring site
Keeping only the leading term, Eq.~5! then leads to the
expression

DC5jG~u!a2/4 ~9!

for the collective diffusion coefficient. This is precisely th
same form as the phenomenological result proposed by R
and Ehrlich.14 This result has been derived recently as a d
namical mean-field approximation~DMF! in the Mori
formalism.12,13 In this sense, the leading term
CC(0)5^uRW (t0)2RW (0)u2& in Eq. ~5! can be viewed as a
generalized DMF theory.

For tracer diffusion, one finds in a similar way thatCT(0)
takes on the value ofG(u)t0a2, thus leading to an expres
sion

DT5G~u!a2/4 ~10!

for the tracer diffusion coefficient. This result is identical
the DMF prediction forDT ,12 when memory effects are ne
glected altogether.

Note that here the separation of the contributions toDc.m.
and DT from a ‘‘random walk’’ or ‘‘mean field’’ term and
memory effect corrections@that are not present in Eqs.~9!
and ~10!# depend implicitly on the choice of the basic tim
scalet0. It is only for special cases such as in the lattice-g
model that one has a natural time scale in terms of the
verse of the single-particle attempt frequency. For conti
ous systems studied by MD simulations, there is no obvi
choice oft0.
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III. RESULTS

We have applied the present formalism to evaluateDC
and DT in various strongly interacting model systems: t
O/W~110! adsorption system, chainlike molecules adsorb
on smooth substrates, and a model of interacting atoms
sorbed on a substrate with regularly spaced steps and
races. In addition to Monte Carlo studies of these th
model systems, we have considered a simple model of
fusion of interacting particles in a periodic potential throu
molecular dynamics simulations.

A. Model system O/W„110…

We first study diffusion in a lattice-gas model of oxyge
atoms on a W~110! surface with Monte Carlo dynamics. Th
oxygen-oxygen interaction Hamiltonian contains pair int
actions and also a contribution from three-body interacti
that are important at large coverages. Details of the mo
system and parameters can be found in Ref. 15. We con
trate on the behavior of the diffusion coefficients at a fix
coverage ofu50.45, when crossing over from a high
temperature disordered phase down to a low-tempera
p(231) phase in the model. In the numerical calculation
the expansion in Eqs.~5! and ~8!, t0 was set equal to 1–4
Monte Carlo time steps~MCS!, which was sufficiently large
for our purposes.

In our studies for this model system, we find that t
correlation functionsCC(t) for collective diffusion fortÞ0
are predominantly negative, i.e., the leading positive te
CC(0) gives an upper bound for the collective diffusion c
efficient. This is illustrated in Fig. 1. The inset of Fig. 1
turn illustrates the convergence of the memory expansio
Eq. ~5! for the jump mobilityDc.m.. We note that the precis
value of where the expansion has converged to the hydro
namic long-time limit is somewhat difficult to assess. Ne
ertheless, we can observe from Fig. 1 that the expan
coincides with the value obtained by the Kubo-Gre
method at long times, and furthermore that the expans
converges to an accuracy of 1% in about 50–100 terms.

FIG. 1. The correlation functionCC(t) in a lattice-gas model of
the O/W~110! system atu50.45 andT50.833Tc . The time inter-
val t051 MCS. The vertical scale has been expanded to show
decay. The convergence of Dc.m. via SC(t)5CC(0)
12(k51

kmaxCC(kt0) with t5kmaxt0 is shown in the inset. The
asymptotic value ofSC(t), as determined by the Kubo-Gree
method at long times@Eq. ~2!#, is denoted by a dashed line.
d
d-
er-
e
if-

-
s
el
n-

re
f

-

in

y-
-
n

n
he

corresponding time scale of about 100 MCS is in agreem
with the onset of the hydrodynamic regime for collecti
diffusion, as determined by the Kubo-Green method for
mean-square displacement of the c.m.

The rapid decay of the memory expansion is characteri
for collective diffusion, where memory effects have be
shown to be rather weak.12,15,16The situation is very differ-
ent in tracer diffusion, where successive displacements
single particle are strongly correlated.12,15,16 This phenom-
enon is most pronounced in ordered phases such as thep(2
31) phase in the present study. Illustrative results are gi
in Fig. 2. We first note that the correlation functionsCT(t)
are again predominantly negative fortÞ0. Unlike the case
of collective diffusion, however, the correlation functions d
not decay very rapidly but require relatively long time sca
to die out. In this regard, the decay ofCT(t) in Fig. 2 is
slightly misleading since one might conclude that t
memory effects are negligible after about 75t0. A more de-
tailed consideration based on the inset of Fig. 2 reveals, h
ever, that a true convergence of the tracer diffusion coe
cient DT via Eq. ~8! requires a time scale of about 1500t0
~with t054 MCS!, the accuracy of 1% being achieved
about 600 terms. Thus, although the correlation functio
CT(t) at intermediate times are already very small, they
not negligible and they do contribute to the expansion up
the onset of the hydrodynamic limit. In this case, the on
has a value as large as about 1500t0,17 implying the impor-
tance of dynamical correlation effects in a tracer diffusi
process in ordered phases.

Based on the data for the correlation functions at v
short times, we found them not to be smooth but to cont
certain fluctuations. This is demonstrated at short times
Fig. 1 for DC . This scatter is not due to statistical fluctu
tions since the number of independent samples is about8,
and in studies with even better statistics the situation did
change. Instead, thisfine structureis expected to arise from
the coarse-grained description for adatom motion in
lattice-gas approach, thus suggesting that the related mem
effects are very complex. Nevertheless, after some in
crossover period, the correlation functionCC(t) shows an

e

FIG. 2. The correlation functionCT(t) in the O/W~110! model
system atu50.45 andT50.833Tc , whereTc is the critical tem-
perature of the order-disorder transition at this coverage~Ref. 15!.
The time intervalt054 MCS. The convergence ofDT via ST(t)
5CT(0)12(k51

kmaxCT(kt0) with t5kmaxt0 is shown in the inset. The
asymptotic value ofST(t), as determined by Eq.~6! at long times, is
denoted by a dashed line.
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approximate power-law decayCC(t);t2x in intermediate
time regimes, while at large times it levels off exponential
For Dc.m. at u50.45 in the ordered phase, we find an es
mate ofx51.560.1. ForCT(t) in tracer diffusion, we ob-
serve a similar power-law decay withx51.5360.05 as illus-
trated in Fig. 3.

We conclude this section by discussing the importance
memory effects. In Fig. 4, we show the results forDc.m. as an
Arrhenius plot. The agreement between the present me
and the direct MC data using the Kubo-Green method@Eq.
~2!# is remarkably good. Also shown are the results for
DMF using Eq. ~9!, which includes all interaction effect
throughj but neglects dynamical correlation effects due
multiple jumps. It turns out that, although the DMF wor
rather well in the whole temperature region, it deviates fr
the expected behavior at very low temperatures. This dif

FIG. 3. The correlation functionCT(t) of tracer diffusion
~circles! in the O/W~110! model system atu50.45 and T
50.833Tc , up to the point whereCT(t) starts to fluctuate near th
zero level. Heret054 MCS. The power-law decay withx51.53
60.05 in the intermediate time regime is shown with a solid lin

FIG. 4. Results forDc.m. as a typical Arrhenius plot in the O
W~110! model system atu50.45. The results of conventional MC
simulations@via Eq. ~2!# along the two principal directions (x,y)
are shown by squares while the corresponding results of the pre
expansion method are presented by a full line. The DMF results
indicated by a dashed line. The critical temperature of the or
disorder phase transition is denoted byTc . The error bars of the
direct MC results are roughly of the size of the symbol, while t
error bars of the other two quantities are much smaller.
.
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ence is a measure of the memory effects inDC . For tracer
diffusion, the difference is even more pronounced.12,16

B. Model polymer system

Next we discuss the results for a model of flexible, cha
like molecules on smooth surfaces,8 in which the memory
effects turn out to be most pronounced of the model syste
considered in this work. The chains are modeled by the tw
dimensional fluctuating-bond model with mc dynamics,18,19

in which each segment excludes four nearest and n
nearest neighbor sites on a square lattice. The exclusion
duces a strong entropic repulsion between the molec
even if there are no direct interactions present. The repuls
strongly influences diffusion in this system, and has be
studied in detail in Ref. 8. In this work, we concentrate
the case where there is a direct Lennard-Jones type of at
tion between segments of different chains. Details on
model and parameters can be found in Ref. 8.

In the numerical calculation of the expansion in Eq.~5!,
we variedt0 between 1 and 100 MCS. Here, one MCS
defined as an attempt to move each monomer of every ch
The results for the different choices were found to be c
sistent with each other. We discuss here only the results
t0550 MCS for the collective diffusion coefficientDC . In
our studies, we again find that the correlation functio
CC(t) for tÞ0 are predominantly negative and that th
show a power-law decayCC(t);t2x with x51.660.1 in
intermediate time regimes~see the inset of Fig. 5!, while at
large times the memory terms level off exponentially. Co
cerning the decay ofCC(t), we note that even in this cas
with the strongest memory effects we have studied, it i
tially decays very rapidly such thatuCC(t0)/CC(0)u'0.10.
The remaining termsCC(kt0) with k>1 also decay rapidly,
as illustrated in Fig. 5. For a convergence of the correlat
expansion in Eq.~5! to an accuracy of 1% for the jump
mobility Dc.m., about 40 terms were needed in this case.

In Fig. 6, we show a comparison ofDc.m. as extracted
from Eq. ~2! through direct MC simulations with the dat

ent
re
r-

FIG. 5. Results for the center-of-mass displacement correla
functions CC(t) for t5kt0 with k>1 and t0550 MCS in the
model polymer system, when there is an attractive interactioJ
521 between the chains, the number of segments in a cha
NFB56, and the coverage isu50.85.~For details of the model and
the parameters, see Ref. 8.! The power-law behaviorCC(t);t2x

with x51.660.1 ~shown with a full line! is demonstrated in the
inset.
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obtained from the present method. For the latter, the num
of successive terms included in the expansion of Eq.~5!
varied fromk55 at low coverages to aboutk550 at high
coverages~with t0550 MCS!. Dashed lines in Fig. 6 indi-
cate the DMF results from Eq.~9!.12 The poor accuracy o
the DMF description at high coverages illustrates the imp
tance of memory effects in this complex system.

C. Lattice gas on a stepped substrate

As another demonstration of the usefulness of
memory expansion method, we consider collective diffus
of adatoms on an inert stepped substrate with submonol
coverages. This case differs from the other model syst
considered previously in that the average jump rateG is not
the same for all lattice sites, but for each site it depends
the distance from the step edges.

The model for the adsorbate-substrate interaction inclu
an extra binding energy at step edges, an extra Schwo¨ebel
barrier for climbing over step edges, and enhanced diffus
along step edges, as described in Ref. 20. In previous w
on stepped substrates, we have demonstrated that fo
model with on-site exclusion only20 and for a model with
repulsive adsorbate-adsorbate interactions,12 the DMF ap-
proximation works very well for collective diffusion. In th
present study, we consider the computationally most c
lenging case, where the interactions between the adsorb
are attractive. In this case, for increasing total coverage
adsorption layer grows starting from a step edge and, co
quently, mass transport across the step edge region w
high adsorbate concentration is very slow.

In Fig. 7 we compare the approach to the hydrodynam
limit of the mean-square displacement of the center-of-m
motion @via Eq. ~2!# and the convergence of the memo
expansion forDC,xx @via Eq. ~5!#. Here x direction is the
direction perpendicular to andy the direction parallel to the
steps. In both cases, the number of Monte Carlo steps ne
to confirm the convergence is much smaller than that for
conventional mean-square displacement analysis. From

FIG. 6. Results forDc.m.(u) as a function of coverageu for the
model polymer system with the number of segments in a ch
NFB56. The direct MC results are given by circles~with error
bars!, while the corresponding data for the expansion method ba
on Eq.~5! are shown by full lines~error bars about the thickness o
the line!. The DMF results are shown by dashed lines. The upper
of results is for a system with excluded volume interaction o
(J50), while the lower set is for attractive chains (J521) ~Ref.
8!.
er

r-

e
n
er
s

n

es

n
ks
the

l-
tes
e
e-
a

ic
ss

ed
e
th

the figure and its inset we observe that the onset of the
drodynamic limit is around 5000 MCS. The temperature d
pendence ofDC as extracted by the various methods sho
in Fig. 8 demonstrates the accuracy of the expansion.
comparison, the DMF result is indicated by a dashed line21

Our data for the correlation functionsCC(t) are consistent
with a power-law decay withx'1.5. However, the transien
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ed

et

FIG. 7. The approach to the hydrodynamic limit of the mea
square displacement of the center of mass of the adlayer for d
sion perpendicular to the steps on a stepped substrate. The
shows the convergence of the memory expansion for collective
fusion viaSC(t)5CC(0)12(k51

kmaxCC(kt0), wheret5kmaxt0. In the
inset, the asymptotic value ofSC(t) as determined by the mean
square displacement analysis is denoted by a dashed line. Het0

51 MCS anda is the lattice constant. The adsorbate-substrate
adsorbate-adsorbate interaction parameters are related byEB /kT
5ES /kT5(E02E2)/kT52ENN /kT53, whereE0 is the activation
barrier in the terrace region,EB is the extra binding at step edge,ES

is the Schwoebel barrier,E2 is barrier for diffusion along step edge
andENN is the nearest-neighbor attraction; see Ref. 20. The ter
width is four lattice sites and the coverage is 1/2.

FIG. 8. The temperature dependence of collective diffusion o
stepped substrate. The relative magnitudes of the various en
parameters are the same as in the caption of Fig. 7, andD0 is the
diffusion coefficient in the zero-coverage limit.
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period prior to the power-law behavior is rather long, and
is difficult to obtain enough statistics to actually extract
reliable exponent from the data.

Concerning the evaluation of the tracer diffusion ten
DT using the expansion of Eq.~8!, the main conclusions o
the previous sections hold. In particular,DT is relatively easy
to evaluate by the conventional mean-square displacem
analysis so that it is the evaluation ofDC where the memory
expansion is most useful.

D. Diffusion in a periodic potential using molecular dynamics

To demonstrate that the present method works also in
case of a continuum model, we present results of a molec
dynamics simulation of the Langevin equation7 describing
the Brownian motion of an adatom in a two-dimension
adsorption potentialU(x,y). For U(x,y), we have chosen
the following 2D separable form:

U~x,y!5V0FcosS 2px

a D1cosS 2py

a D G , ~11!

wherea is the lattice constant. The single-particle diffusio
barrierD for this potential equals 2V0 and the frequency o
the translational mode isv05(2p/a)AV0 /m,22 wherem is
the mass of the adatom. The adatom’s coupling to the s
strate exitations is characterized by a constant friction co
ficient h in the Langevin equation. We have made calcu
tions in the case of rather high frictionh/v0'9,22 which
means that diffusion takes place as a motion from one
face potential minimum to the adjacent one, without sign
cant recrossing events or longer jumps.22 In the high friction
limit, an exact analytic solution for the single-particle diffu
sion coefficient can be found for a separable potential of
type in Eq.~11!.23 Here we focus on studies at a finite de
sity of adatoms and thus define the surface coverageu in this
model as the number of adatoms divided by the numbe
surface potential minima. The interaction potential betwe
adatoms was of the usual Lennard-Jones type, where the
tance of the potential minimum was chosen to be the lat
constanta and the strength of the potential was chosen to
e/kBT51.25. Here we show results from calculations whe
the temperature and the coverage were fixed at value
D/kBT53 and u50.3. With these parameters we usedt0
5100 integration time steps, which is one-third of the tim
that adatoms on the average spend in each potential w
This ensures that we measure correlation of diffusive beh
ior and not just the correlation of vibrational motion in th
surface potential well.

In Fig. 9 we show the convergence of the tracer diffus
expansion@Eq. ~8!# to the hydrodynamic long-time limit de
termined by Eq.~6! ~see the inset!. The convergence ofDT is
quite rapid in this case, the onset of the hydrodynam
regime being around 300t0. As far as the intermediate tim
behavior is concerned, in Fig. 10 we show that even in
continuous system there is a power-law decayCT;t2x after
a short initial time regime. In this case, the decay is char
terized by an exponentx51.660.2.

The MD results allow us to comment on two interesti
points. First, there is an initial time regime up to about 3t0
where the particles on average have not yet performe
diffusion jump to their nearest-neighbor sites. This regi
t

r

nt

e
lar

l

b-
f-
-

r-
-

e

of
n
is-
e
e
e
of

ll.
v-

n

l

is

c-

a
e

arises from correlations due to vibrational motion in the p
tential well, and is obviously not present in the MC simul
tion data. This is followed by a crossover to an intermedi
regime starting after a few jumps where power-law behav
is evident. This power-law decay characterizes memory
fects in diffusive motion. Second, the decay exponenx
51.660.2 we find here is comparable with those found
our MC studies. However, we have not carried out syste
atic MD work over wide ranges ofT and u to see if the
decay exponent depends on the thermodynamic conditi
Thus the question of universality in the power-law dec
remains to be addressed.

IV. SUMMARY AND DISCUSSION

To summarize, we have in this work presented a mem
function expansion for the evaluation of transport coe
cients of strongly interacting systems. We have applied
formalism to study diffusion in a variety of systems wi
vastly different dynamics. The first three systems are ba

FIG. 9. The convergence of the memory expansion for tra
diffusion via ST(t)5CT(0)12(k51

kmaxCT(kt0) with t5kmaxt0 in the
model system via MD simulations. The dashed line indicates
corresponding long-time limit as determined by the mean-squ
displacement of an adatom, which in turn is shown in the ins
Here the coverageu50.3 and the temperature is chosen asD/kBT
53. The time scalet0 corresponds to 100 integration time steps

FIG. 10. Results for the decay ofCT(t) at intermediate times in
the model system studied through MD simulations. The parame
are the same as in the caption of Fig. 9. The straight line descr
power-law behavior withx51.660.2, the fit being made betwee
20t0270t0.
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on the lattice-gas approximation with stochastic dynam
and studied with Monte Carlo simulation methods. The l
model system consists of particles interacting with
Lennard-Jones potential moving in the presence of a peri
continuum potential and coupled to a heat bath. This sys
is described by Langevin dynamics and studied by appro
ate extension of standard molecular dynamics simulations
deterministic systems.

In all the cases studied, the memory function expansi
in Eqs.~5! and~8! converge at a point that corresponds to t
onset of the hydrodynamic regime. Thus we expect
memory expansion to be applicable in studies of mass tr
port where a diffusive regime exists; i.e., in cases where
mean-square displacement is linear in time at long times
contrast to the conventional method of evaluating the tra
port coefficient, which focuses on the long-time limit as
lustrated in Eq.~2!, the memory expansion formalism pre
sented here builds up the transport coefficient as a sum o
different time contributions to an appropriately defined tim
dependent correlation function. For this sum, the predo
nant contributions actually come from the short-time regim
while the long-time regime close to the onset of the hyd
dynamic limit only provides a weak correction. The evalu
tion of the short-time contributions allows the extra bene
of self-averaging not possible in the long-time limit. Th
numerically, the present approach is far superior to the c
ventional methods. In all the cases studied here, the ex
sion method gives results that are not only in full agreem
with the conventional methods but have also smaller e
bars. Yet the computational cost for the present method
just about 10% of that used in evaluating Eq.~2! for collec-
tive diffusion through the long-time limit. We estimate tha
as far as collective diffusion is concerned, the total saving
computing time to reach a comparable accuracy is roug
two orders of magnitude. For the single-particle tracer dif
sion, the speedup is not as significant.

Besides the numerical efficiency, the various terms in
memory expansion have actual simple physical interpr
tions. The leading term corresponds to a generalized m
field result. For a special choice of the time scale, this can
simply related to the average single-particle jump rate
shown in Eqs.~9! and~10!. These simple results in terms o
single-particle jump rates have been widely applied to in
pret experimental data for collective and tracer diffusion
efficients. Our results here show that the memory effects
very strong for complex systems with strong short-range
der such as the long chain polymers or simple molecu
systems with attractive interactions at low temperatures s
as the O/W~110! system. For quantitative and sometim
even for qualitative purposes, the further terms in
memory expansion have to be included. These terms also
be directly compared with experimental measurements.
date, most of the microscopic studies of surface diffus
through STM measurements, for example, have only focu
on the average jump rate. Further experimental studies o
memory effects in the expansion would not only provi
s,
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more accurate values for the diffusion coefficient but a
increase our understanding of the collective dynamics of
teracting systems. Finally, the general approach prese
here also allows a precise theoretical analysis for system
relatively elevated temperatures where the paths of diffus
motion are extremely complicated and not just dictated
nearest-neighbor jumps over the saddle-point barrier.

For the decay of memory effects, we find an approxim
power-law decay for the correlation functionC(t);t2x for
all the systems studied at intermediate times when each
dividual particle has a chance to execute a few jumps on
average. Eventually, the correlation functionC(t) decays ex-
ponentially in the long-time limit. The origin of the power
law behavior is currently unclear. The MC studies for t
three lattice-gas systems yield an estimate of decay expo
x51.560.2 for both tracer and collective diffusion. The M
studies for the continuum system yield a value ofx'1.6,
comparable to the value found in the lattice-gas systems w
stochastic dynamics. This rather universal behavior obser
in all systems shows that this intermediate regime power-
behavior is most likely not the result of any specific dyna
ics, but holds for any system at low temperatures where
diffusive motion occurs via thermally activated jumps. Fu
ther studies of the origin of the power-law behavior and
related exponents are in progress.

Our final comment concerns applying the present
proach to other transport coefficients such as shear and
gitudinal viscosities and conductivity.9 In view of Eq. ~5!, it
is clear that the memory expansion can be written for a
transport coefficient that can be expressed in terms of
mean-square displacement of some measurable dynam
variable. In the case of collective diffusion, this dynamic
variable is simply the position of the center-of-mass. F
shear viscosity, on the other hand, the appropriate dynam
variable can be expressed in terms of positions and veloc
of flowing particles, and for thermal conductivity, this var
able depends on the positions and total energies of
particles.9 The hydrodynamic transport coefficient in que
tion can then be expanded as formulated here in a serie
terms, which describe the dynamical correlations~memory
effects! characteristic for the given transport coefficien
Simulation studies to test these ideas are currently
progress.
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