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We present a memory expansion for macroscopic transport coefficients such as the collective and tracer
diffusion coefficientD andD+, respectively. The successive terms in this expansiob fodescribe rapidly
decaying memory effects of the center-of-mass motion, leading to fast convergence when evaluated numeri-
cally. For D1, one obtains an expansion of similar form that contains terms describing memory effects in
single-particle motion. As an example we evaluBte and D for three strongly interacting surface systems
through Monte Carlo simulations, and for a simple model diffusion system via molecular dynamics calcula-
tions. We show that the numerical method provides a speedup of about two orders of magnitude in computa-
tional time as compared with the standard methods, when collective diffusion is concerned. For tracer diffu-
sion, the speedup is not quite as significant. Our studies using the memory expansion provide information of
the nature of memory effects in diffusion and suggest a nontrivial power-law behavior of memory terms at
intermediate times. We also discuss the application of the present approach to studies of other transport
coefficients[S0163-18208)04828-(

I. INTRODUCTION The purpose of this article is to present a memory expan-
sion for transport coefficients that overcomes these difficul-
Transport phenomena such as diffusion, thermal condudies. We illustrate the method by considering the collective
tion, and viscous flow are of both fundamental and practicalnd tracer surface diffusion coefficierids: andD+, respec-
interest. In the macroscopic hydrodynamic regime they aréively. The collective diffusion coefficient describes the mac-
characterized by transport coefficients such as the diffusionoscopic density fluctuations on a surface and has relevance
coefficient or the thermal conductivity. Using the Green-in, e.g., annealing processes after surface sputtering and
Kubo approach; 2 these coefficients can be expressed inspreading of molecular layers on surfaéé&he tracer diffu-
terms of equilibrium time-dependent correlation functions,sion coefficient in turn characterizes single-particle motion
which have been the basis of many analytical and numericals is evident in surface growth under MBE conditions, for
simulation studies. However, the transport coefficients arexample. In the formalism for collective diffusion, the
defined in the hydrodynamical limit of long times and large center-of-mass of the systefo.m,) is viewed as performing
length scales. In the numerical calculation of multiparticlediffusive motion. The leading contribution to this expansion
guantities such as the collective diffusion for adsorbates ogorresponds to a random motion of the c.m. with no correla-
surface$ and the shear viscosity for fluidshis becomes a tions between the displacements in successive time intervals.
major problem due to the lack of self-averagfiherefore, The same idea holds true for the successive displacements of
for many interesting systems characterized by large timea single particle, when tracer diffusion is concerned. The
scale separations and strong interactions, accurate studiesraemory effects irD. and D+ are then included systemati-
transport properties using the standard methbdse ex- cally through a summation of suitable correlation functions
tremely tedious. over different time intervals.
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This formulation is particularly suited for numerical factors. The first factog=(N)/{(5N)?) is determined by the
Monte Carlo(MC) and molecular dynamig®D) simulation  number fluctuations of the overlayer in a grand canonical
studies. We have applied the expansion to evallggeand  ensemble and is inversely proportional to the compressibil-
D+ for a variety of strongly interacting systems using bothity. The remaining parD.,, describes the center-of-mass
MC and MD simulation techniques. In all the cases studiedmotion of the whole system, and is in fact the diffusion co-
this method speeds up the computatiorDef over conven-  efficient for a fictitious particle located at the c.m. position
tional method$by about two orders of magnitude, while for ﬁ(t) normalized by the total particle numbBk. D, con-

D+ the speedup is not quite as significant. We find that in alkains all the dynamical information for the collective diffu-
cases studied here, the temporal behavior of memory termson coefficienD, and constitutes a numerical challenge in
in the diffusion coefficients can be described rather well by asimulation studies of collective diffusion. Namely, to evalu-
power law with some effective exponent at intermediateate D accurately according to E€l) or Eq.(2), one needs

times. At long times, the memory effects decay exponentg go to the hydrodynamic long-time limit. Moreover,

tially. Finally, as discussed below, we would Iikg to stress%ﬁ(t)|2> or (J(t)- J(0)) are not self-averaging quantities in
that the present method can be applied to s_tud_les OT oth e sense that the computational effort always increases with
transport coefficients such as shear and longitudinal V'Scos|érger system sizefst
ties, or thermal conductivity. We now propose an alternate scheme, which is able to
reduce this numerical problem to a great extent. In this ap-
Il. MEMORY EXPANSION proach for collective diffusion, one focuses on the motion of

the c.m. at short time scales, instead of directly evaluating

Our starting point is the Green-Kubo response functio . S . .
formalisn? in which a transport coefficienf ,, can be ex- nDP-m- from the_long-tlme limit of Eq(2). We d|V|_de th_e time
- t into M time intervals of equal length,, and discretize the

pressed in terms of time correlations of the spatiad com- ) = . i i
ponents of a “current qux”j(t): c.m. coordinateR corEesporldlngly at t':/lmesnl—mro with
m=0,1, ... M. ThenR(t)=R(M 7p) ==, 6R(t,), where
N SR(tm) =R(tm) — R(ty_1) is the change in the position of
TW_AJO dKJ,(1J,(0))- (D the c.m. between two consecutisbservationsat timest,
andt,,_;. In the isotropic case, this leads to the expression
In Eq. (1), A is a thermodynamic factor and ) denotes an
ensemble average. For isotropic systemsan be character- b i
em=lim

ized by the scalar quantid(t) - J(0)). The explicit form of me

3(t) depends on the specific transport coefficient under con-
sideration, such as viscosity, electric conductivity, or diffu-
sion coefficient. In this work, we focus on surface diffusion
of adparticles at finite densities. We then need to distinguish
between two different diffusion coefficients. The tracer dif- Where the averages on the right-hand siB¢S) are with
fusion coefficientD+ is related to the motion of a single respect tot,,. The time-dependent correlation functions in
tagged particle, while the collective diffusion coefficiéd¢  Ed.(3) depend only on the time differences. The extension to
describes macroscopic density fluctuations. Although the exthe spatially anisotropic cases is obvious. By denoting
pansion proposed here is very similar for both diffusion co- . .

efficients, we wish to clarify the discussion by presenting the Cc(t)=(3R(0)- 3R(1)), 4

two cases separately.

M-1
M(SR(tp) - SR(ty))+2 kzl (M—K)

ANM 1,

— 00

X(OR(tm) - SR(tm 1)) |, 3

we obtain the expansion

A. Collective diffusion

1 o0
. . . . . Depm=——— +2 k .
The first situation to be discussed concerns macroscopic ¢M AN, Ce(0) gl Celkro) ®

density fluctuations. In this casg&,,, in Eqg. (1) is the col- . . Lo
lective diffusion coefficienDc ,,, and the fluxJ(t) is then The first termC_C(O):“R(TOZ_R(O)! ) gives the average
the total particle ﬂUXj(t):Ei'\l:ll;i(t), where Ji(t) is the Mean-square d!splacementll'@;ffor atime mf[erval of length
velocity of a particlei=1, ... N at timet. The current flux 70 The follow!qg terms In the éxpansion measure t,h?
correlation function in Eq(1) can also be expressed in terms Memory of additional displacements with respect to the ini-
of the components of the center-of-mass coordinates of thrBaarI1ddolrs;lpl/a\};?kmsetgii.stlifcsth?hgﬁrqhemlzg%?néolgéves( o'\)/l?ékfhvéan

. Sy —sN 7 y - )
adsorb:’:tte .Iaye”r, def_lhed as R(t)_Ei_:l_[r‘(t)__r‘(o)]’ only contribution toD.,. For interacting cases, however,
wherer;(t) is the position vector of particleat timet. For  thjs is not generally true, which leads to a finite value for the
the isotropic two-dimensiondPD) case thet, correlation functionsC (k) for k#0. In general, the ana-
Iytic evaluation of these functions is prohibitively difficult.
However, the main point here is that since these functions
are expected to decay rapidly over microscopic time scales,
the expansion of Eq5) converges rapidly when evaluated
In Eqg. (2), which is sometimes called the Kubo-Green ex-numerically In fact, it is expected from Ed5) that the hy-
pression for collective diffusiorD ¢ is decomposed into two drodynamic regime in which the c.m. mean-square displace-

1

D= &D¢ = £lim——(|R(1)[?). 2
c=éDem: étmmt(I (0[%) )



2172 S. C. YINGet al. PRB 58

ment varies linearly with time is only reached after the cor-present method reduces the computational cost of calculating
relation expansion has converged. We have verified thishe collective diffusion coefficient by about two orders of
through extensive numerical studies as detailed below. Demagnitude. For tracer diffusion, however, such a large
tails of the convergence will be discussed in the context ospeedup is not achieved in practice. This is because at finite
results in Sec. Ill. coverages, the calculation &f; through the average mean-
square displacement is relatively easy, unless one has true
B. Tracer diffusion long-range correlation effects. Another advantage is the gen-

We next outline the corresponding memory expansion forerality of the present approach and its applicability to both
the tracer diffusion coefficier,. Within the Kubo-Green discrete lattice-gas models and particles with continuous in-

f i D f Eq(1) with the sinal ticl teraction potentials. In the former case, the motion is de-
ormalism, Dy comes from Eq(1) wi € Single-parlicle  oiriped in terms of stochastic jumps between neighboring

flux J(t)=v;(t) and constanf. An alternate way to express sjtes and often studied via MC simulations, while the con-

tracer diffusion is to use the well-known Einstein relation,tinuous Systems Obey Newtonian dynamics with no read”y
which in the isotropic 2D case defings; ag identifiable “jump” steps.

. 1 > g 2
D= lim 2 (IFi (1) = Fi(0)[2). (®)

t—oo

D. Connection to the dynamical mean-field theory

When the memory effects are disregarded by neglecting
termsCc(k7y) for k#0 and using a very small time step,
3he present scheme can be compared with previous analytical

The tracer diffusion coefficient is therefore proportional to
the slope of the mean-square displacement of a tagged p
1

ticle i in the hydrodynamic limit, and describes its motion in results!>13To this end we consider a lattice-gas model with

the ptr.tesencde of Qt?er pgrt?r:l@a?&i.EFgr thlt?] sl\iln_glle-partit():le Monte Carlo dynamics such that during one Monte Carlo

quanti y’_l_ﬁ ehscnp 'gn simi a][ o Eq )IWI _I can ? step(MCS) each particle attempts to jump to a neighboring

eréten. N t_srmo ynalmtl_c atct(fr no longer plays a role - gjte Then with the choice ofy= 7/N, wherer corresponds

and one considers correlation terms to one MCS, the leading random walk tef®g(0) in Eq.(5)
B = takes on the valud' (#)Nra2, whereI'(6) is the single-

Cr(t)=(aRi(0)- Ry(D)), @) particle jump rate defined as the average number of jumps of
where 5R(t,;) is the change in the position of a single par- @ particle observed in the period The quantity¢ is the
ticle i between two consecutive observations at tijeand ~ COverage and is the jump length between neighboring sites.

t,,_1. Then we obtain the expressidn Keeping only the leading term, E@5) then leads to the
expression

o]

1
Dr=-—C+(0)+2 2, Cy(k7p)]|. 8
=77 CT(0)+22, Cr(ko) ® D= £T'(6)%/4 ©
Similarity between Eqg5) and(8) is evident. Thus the main _ o o o _
ideas of the correlation tern@c(k,) discussed in Sec. Il A for the collective diffusion coefficient. This is precisely the

are valid also for the present terrs (k7o) in a tracer dif- Same form as the phenomenological result proposed by Reed
fusion process. and Ehrlicht® This result has been derived recently as a dy-
namical mean-field approximatiodDMF) in the Mori

formalism!?'® In this sense, the leading term

_ _ _ Cc(0)=(|R(7o)—R(0)[?) in Eq. (5) can be viewed as a
The parameter in numerical calculations of Eq¥5) generalized DMF theory.
and(8) is arbitrary and its practical choice is dictated by the™ ko tracer diffusion. one finds in a similar way th@(0)

optimization of the computational speed. An overly Sma"takes on the value df (6)7ya?, thus leading to an expres-
choice ofr, leads to an excessively large number of compu-gjgp,

tational steps with redundant information, while a large value
beyond the characteristic decay times@f(t) and C+(t)
also leads to waste of computational efforts. Further, it is D=T'(0)a%4 (10

important to note that each displacement sﬂéﬁtm) of the

c.m. in general results from the motion of different adpar-for the tracer diffusion coefficient. This result is identical to
ticles, so that the memory effects of collective diffusion arethe DMF prediction forD+,12 when memory effects are ne-
often weaker than those of tracer diffusion where strong corglected altogether.

relations exist between the successive displacement steps of Note that here the separation of the contributionBq,

the tagged particléR, (t,,).*%*? As we demonstrate below, andD; from a “random walk” or “mean field” term and
the expansion method is an extremely powerful tool for thememory effect correctionfthat are not present in Eqé9)
numerical evaluation oD in strongly interacting systems. and(10)] depend implicitly on the choice of the basic time
This is because unlike the conventional methbdsing Eq.  scaler. It is only for special cases such as in the lattice-gas
(5), there is no need to go deep into the hydrodynamic remodel that one has a natural time scale in terms of the in-
gime to extract the diffusion coefficient. Instead, the long-verse of the single-particle attempt frequency. For continu-
time correlation functions provide only weak corrections toous systems studied by MD simulations, there is no obvious
the memory expansion. Indeed, our studies indicate that thehoice of 7.

C. Choice of time scales
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FIG. 2. The correlation functio€+(t) in the O/W110) model
system atd=0.45 andT=0.833T., whereT, is the critical tem-
erature of the order-disorder transition at this coverd@gf. 195.
he time intervalry=4 MCS. The convergence @ via Sy(t)
=C+(0)+ ZEE"leCT(kTO) with t= K70 IS shown in the inset. The
asymptotic value 08;(t), as determined by E@6) at long times, is
denoted by a dashed line.

FIG. 1. The correlation functio@(t) in a lattice-gas model of
the O/W(110 system atd=0.45 andT=0.833T.. The time inter-
val 7o=1 MCS. The vertical scale has been expanded to show th$
decay. The convergence ofD., Vvia Sc(t)=Cc(0)
+22:§":‘31XCC(k7-0) with t=K,.70 is shown in the inset. The
asymptotic value ofSq(t), as determined by the Kubo-Green
method at long timefEq. (2)], is denoted by a dashed line.

corresponding time scale of about 100 MCS is in agreement
with the onset of the hydrodynamic regime for collective
We have applied the present formalism to evaluate diffusion, as determined by the Kubo-Green method for the
and D in various strongly interacting model systems: themean-square displacement of the c.m.
O/W(110) adsorption system, chainlike molecules adsorbed The rapid decay of the memory expansion is characteristic
on smooth substrates, and a model of interacting atoms ador collective diffusion, where memory effects have been
sorbed on a substrate with regularly spaced steps and teshown to be rather wedk:*>**The situation is very differ-
races. In addition to Monte Carlo studies of these threeent in tracer diffusion, where successive displacements of a
model systems, we have considered a simple model of difsingle particle are strongly correlat&d:>*® This phenom-

fusion of interacting particles in a periodic potential through€non is most pronounced in ordered phases such gs(the
molecular dynamics simulations. X 1) phase in the present study. lllustrative results are given

in Fig. 2. We first note that the correlation functio@s(t)
are again predominantly negative fo# 0. Unlike the case
A. Model system O/M(110) of collective diffusion, however, the correlation functions do
We first study diffusion in a lattice-gas model of oxygen not decay very rapidly but require relatively long time scales
atoms on a W10 surface with Monte Carlo dynamics. The to die out. In this regard, the decay Gk(t) in Fig. 2 is
oxygen-oxygen interaction Hamiltonian contains pair inter-slightly misleading since one might conclude that the
actions and also a contribution from three-body interactionsnemory effects are negligible after aboutrg5A more de-
that are important at large coverages. Details of the modehiled consideration based on the inset of Fig. 2 reveals, how-
system and parameters can be found in Ref. 15. We concerver, that a true convergence of the tracer diffusion coeffi-
trate on the behavior of the diffusion coefficients at a fixedcient Dy via Eqg. (8) requires a time scale of about 150
coverage of §=0.45, when crossing over from a high- (with 7=4 MCS), the accuracy of 1% being achieved in
temperature disordered phase down to a low-temperatur@bout 600 terms. Thus, although the correlation functions
p(2x1) phase in the model. In the numerical calculation of C1(t) at intermediate times are already very small, they are
the expansion in Eqg5) and (8), 7, was set equal to 1-4 not negligible and they do contribute to the expansion up to
Monte Carlo time step@MCS), which was sufficiently large the onset of the hydrodynamic limit. In this case, the onset
for our purposes. has a value as large as about 15QY implying the impor-
In our studies for this model system, we find that thetance of dynamical correlation effects in a tracer diffusion
correlation function€C(t) for collective diffusion fort#0  process in ordered phases.
are predominantly negative, i.e., the leading positive term Based on the data for the correlation functions at very
Cc(0) gives an upper bound for the collective diffusion co-short times, we found them not to be smooth but to contain
efficient. This is illustrated in Fig. 1. The inset of Fig. 1 in certain fluctuations. This is demonstrated at short times in
turn illustrates the convergence of the memory expansion ifrig. 1 for D . This scatter is not due to statistical fluctua-
Eq. (5) for the jump mobilityD . ,, . We note that the precise tions since the number of independent samples is abdyt 10
value of where the expansion has converged to the hydrodyand in studies with even better statistics the situation did not
namic long-time limit is somewhat difficult to assess. Nev-change. Instead, thiéne structureis expected to arise from
ertheless, we can observe from Fig. 1 that the expansiothe coarse-grained description for adatom motion in the
coincides with the value obtained by the Kubo-Greenlattice-gas approach, thus suggesting that the related memory
method at long times, and furthermore that the expansioeffects are very complex. Nevertheless, after some initial
converges to an accuracy of 1% in about 50—100 terms. Therossover period, the correlation functi@g(t) shows an

lll. RESULTS
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FIG. 5. Results for the center-of-mass displacement correlation
FIG. 3. The correlation functiorC(t) of tracer diffusion functions Cc(t) for t=kr, with k=1 and 7=50 MCS in the
(circles in the OM(110 model system atd=0.45 and T model polymer system, when there is an attractive interaclion

=0.8337., up to the point wher€+(t) starts to fluctuate near the = —1 Petween the chains, the number of segments in a chain is
zero level. Herer,=4 MCS. The power-law decay witk=1.53 Ngg=6, and the coverage = 0.85.(For details of the model and

+0.05 in the intermediate time regime is shown with a solid line. the parameters, see Ref) &he power-law behavioCc(t) ~t*
with x=1.6=0.1 (shown with a full line is demonstrated in the

inset.

approximate power-law deca@q(t)~t™* in intermediate
time regimes, while at large times it levels off exponentially. o ,ce is a measure of the memory effectig. For tracer
For D¢ at 6=0.45 in the ordered phase, we find an esti-gjffysjon, the difference is even more pronounéedf
mate ofx=1.5+0.1. ForC+(t) in tracer diffusion, we ob-
serve a similar power-law decay wit+ 1.53+ 0.05 as illus-
trated in Fig. 3. B. Model polymer system

We conclude this section by discussing the importance of Next we discuss the results for a model of flexible, chain-
memory effects. In Fig. 4, we show the resultsBy, asan  |ike molecules on smooth surfacéén which the memory
Arrhenius plot. The agreement between the present methastfects turn out to be most pronounced of the model systems
and the direct MC data using the Kubo-Green metfi8d.  considered in this work. The chains are modeled by the two-
(2)] is remarkably good. Also shown are the results for thegimensional fluctuating-bond model with mc¢ dynamies?
DMF using Eq.(9), which includes all interaction effects jn which each segment excludes four nearest and next-
through ¢ but neglects dynamical correlation effects due tonearest neighbor sites on a square lattice. The exclusion in-
multiple jumps. It turns out that, although the DMF works duces a strong entropic repulsion between the molecules
rather well in the whole temperature region, it deviates fromeven if there are no direct interactions present. The repulsion
the expected behavior at very low temperatures. This differstrongly influences diffusion in this system, and has been

studied in detail in Ref. 8. In this work, we concentrate on

-1 . . the case where there is a direct Lennard-Jones type of attrac-
o _gf;;ﬁgdma tion between segments of different chains. Details on the
--- DMF model and parameters can be found in Ref. 8.
: In the numerical calculation of the expansion in ES),
we varied 7y between 1 and 100 MCS. Here, one MCS is
E defined as an attempt to move each monomer of every chain.
The results for the different choices were found to be con-
sistent with each other. We discuss here only the results for
7o=50 MCS for the collective diffusion coefficiem¢. In
our studies, we again find that the correlation functions
Cc(t) for t#0 are predominantly negative and that they
show a power-law decaq(t)~t™* with x=1.6+0.1 in
intermediate time regimesee the inset of Fig.)5while at
T./T large times the memory terms level off exponentially. Con-
cerning the decay o€.(t), we note that even in this case

W(110 model system at=0.45. The results of conventional MC V.V'th the strongest mgmory effects we have studied, it ini-
simulations[via Eq. (2)] along the two principal directionsx(y) tially deca}y_s very rapidly such thélCC(TO)/CC(ON%O':_LO'

are shown by squares while the corresponding results of the presehf'€ remaining termgc(kro) with k=1 also decay rapidly,
expansion method are presented by a full line. The DMF results ar@S illustrated in Fig. 5. For a convergence of the correlation
indicated by a dashed line. The critical temperature of the order€Xpansion in Eq(5) to an accuracy of 1% for the jump
disorder phase transition is denoted By. The error bars of the mobility D¢, , about 40 terms were needed in this case.
direct MC results are roughly of the size of the symbol, while the In Fig. 6, we show a comparison @.,, as extracted
error bars of the other two quantities are much smaller. from Eq. (2) through direct MC simulations with the data

D CM, o

06 08 1.0 12 14

FIG. 4. Results foD., as a typical Arrhenius plot in the O/
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FIG. 6. Results foD. ,,(6) as a function of coverage for the
model polymer system with the number of segments in a chain
Ngg=6. The direct MC results are given by circléwsith error 00 S
barg, while the corresponding data for the expansion method based r Tl
on Eq.(5) are shown by full linegerror bars about the thickness of : '
the ling. The DMF results are shown by dashed lines. The upper set
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of results is for a system with excluded volume interaction only t 7l
(J=0), while the lower set is for attractive chaind<{ —1) (Ref. o
8). FIG. 7. The approach to the hydrodynamic limit of the mean-

square displacement of the center of mass of the adlayer for diffu-

obtained from the present method. For the latter, the numbetO" Perpendicular to the steps on a stepped substrate. The inset
of successive terms included in the expansion of €. shqws the conv_ergence of tlzizamemory expansm_)n for collective dif-
varied fromk=5 at low coverages to abokt=50 at high  fusion viaSc(t)=Cc(0)+ 2%, ™ Cc(k7o), wheret=Kparo. In the
coveragegwith 7,=50 MCS. Dashed lines in Fig. 6 indi- inset, the asymptotic value &¢(t) as determined by the mean-
cate the DMF results from Ed9) 12 The poor accuracy of square displacement analysis is denoted by a dashed line.7lere

the DMF description at high coverages illustrates the impor—zl MCS anda is the lattice constant. The adsorbate-substrate and

; . adsorbate-adsorbate interaction parameters are relateeg HyT
tance of memory effects in this complex system. —Eq/KT=(Eo— E,)/KT=2Ey /KT=3, whereE, is the activation
barrier in the terrace regioky is the extra binding at step eddes
C. Lattice gas on a stepped substrate is the Schwoebel barrieE, is barrier for diffusion along step edge,

As another demonstration of the usefulness of the2"dEnn is the nearest-neighbor attraction; see Ref. 20. The terrace
memory expansion method, we consider collective diffusionVidth is four lattice sites and the coverage is 1/2.
of adatoms on an inert stepped substrate with submonolayer o
coverages. This case differs from the other model system@&e figure and its inset we observe that the onset of the hy-
considered previously in that the average jump fats not drodynamic limit is around 5000 MCS. _The temperature de-
the same for all lattice sites, but for each site it depends oRendence oD as extracted by the various methods shown
the distance from the step edges. in Fig. 8 demonstrates the accuracy of the expansion. For
The model for the adsorbate-substrate interaction includegomparison, the DMF result is indicated by a dashed 3ne.
an extra binding energy at step edges, an extra Sehelo Qur data for the correlatlc_)n functiorS(t) are consistent
barrier for climbing over step edges, and enhanced diffusiodVith & power-law decay with~1.5. However, the transient
along step edges, as described in Ref. 20. In previous works
on stepped substrates, we have demonstrated that for the 10
model with on-site exclusion oMY and for a model with
repulsive adsorbate-adsorbate interactidnthje DMF ap- 1
proximation works very well for collective diffusion. In the 10°F
present study, we consider the computationally most chal- QQ
lenging case, where the interactions between the adsorbates < 102k
Q

0

are attractive. In this case, for increasing total coverage the
adsorption layer grows starting from a step edge and, conse-

-3

guently, mass transport across the step edge region with a 107 o DirctMc:D,,,
high adsorbate concentration is very slow. D Do e

In Fig. 7 we compare the approach to the hydrodynamic 4L DMF )
limit of the mean-square displacement of the center-of-mass 10 20 25 3.0
motion [via Eq. (2)] and the convergence of the memory Eg/ kT

expansion forD¢ 44 [via EQ. (5)]. Here x direction is the

direction perpendicular to anylthe direction parallel to the FIG. 8. The temperature dependence of collective diffusion on a
steps. In both cases, the number of Monte Carlo steps needegpped substrate. The relative magnitudes of the various energy
to confirm the convergence is much smaller than that for th@arameters are the same as in the caption of Fig. 7 Danis the
conventional mean-square displacement analysis. From botfiffusion coefficient in the zero-coverage limit.
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period prior to the power-law behavior is rather long, and it 0.7 P~
is difficult to obtain enough statistics to actually extract a —_
reliable exponent from the data. 0.65 | ‘=4
Concerning the evaluation of the tracer diffusion tensor § A o
D+ using the expansion of E¢8), the main conclusions of ~ 06} 2
the previous sections hold. In particul@xy is relatively easy < Yot
to evaluate by the conventional mean-square displacement = 055} 0 o 200 700300 3001
analysis so that it is the evaluation B¢ where the memory 9y t (7]
expansion is most useful. 0.5 L
D. Diffusion in a periodic potential using molecular dynamics 0.45

_ 0 100 200 300 400 500
To demonstrate that the present method works also in the ¢ [7o]
case of a continuum model, we present results of a molecular 0

dynamics simulation of the Langevin equaﬁode;cribir!g FIG. 9. The convergence of the memory expansion for tracer
the Brownian motion of an adatom in a tWO'dlmenS|0naIdiﬁusion viaST(t)=CT(0)+22ETa{CT(kTO) with t= Ko7 in the

adsorption potentiall(x,y). For U(x,y), we have chosen el system via MD simulations. The dashed line indicates the
the following 2D separable form: corresponding long-time limit as determined by the mean-square
displacement of an adatom, which in turn is shown in the inset.
{ZWX S(Zﬂ'y)
co§ — | +cog —
a a

(12) Here the coverag@=0.3 and the temperature is chosenAd&gT
wherea is the lattice constant. The single-particle diffusion

=3. The time scale, corresponds to 100 integration time steps.
barrier A for this potential equals\2, and the frequency of
the translational mode i®o=(27/a) V,/m,?? wherem is
the mass of the adatom. The adatom’s coupling to the su

U(le) :VO

arises from correlations due to vibrational motion in the po-
tential well, and is obviously not present in the MC simula-
tion data. This is followed by a crossover to an intermediate

e . ) i egime starting after a few jumps where power-law behavior
strate exitations is characterized by a constant friction coef-_< . - X
e . . . is evident. This power-law decay characterizes memory ef-
ficient z» in the Langevin equation. We have made calcula-

tions in the case of rather high friction/we~9.22 which fects in diffusive motion. Second, the decay exponent

e ) =1.6+0.2 we find here is comparable with those found in
means that diffusion takes place as a motion from one sur-

face potential minimum to the adjacent one, without :signifi-Our MC studies. However, we have not carried out system-

cant recrossing events or longer junfpsn the high friction gg(c::aszWnge:tvgg V:ggsrigg;z ct)Ie?r:l(cj)g ;c;ri?ceclz)r:rc]iﬁions
limit, an exact analytic solution for the single-particle diffu- y exp b y :

sion coefficient can be found for a separable potential of thél’hus the question of universality in the power-law decay

type in Eq.(11).2 Here we focus on studies at a finite den- femains to be addressed.

sity of adatoms and thus define the surface covesagethis

model as the number of adatoms divided by the number of IV. SUMMARY AND DISCUSSION

surface potential minima. The interaction potential between . o
. To summarize, we have in this work presented a memory

adatoms was of the usual Lennard-Jones type, where the d'isu'

tance of the potential minimum was chosen to be the Iattic% igg,gogf i)t(r%?n?oi?uzgégf iviltue Eﬁcs)nV\(l)tfe ';]r:\?sr;ort Ii(;(()jemi-s
constania and the strength of the potential was chosen to b gy 9 sy ) PP

. Sormalism to study diffusion in a variety of systems with
e/kgT=1.25. Here we show results from ca_lculatlons Wherevfastly different dynamics. The first three systems are based
the temperature and the coverage were fixed at values o

A/kgT=3 and §=0.3. With these parameters we useg
=100 integration time steps, which is one-third of the time
that adatoms on the average spend in each potential well.
This ensures that we measure correlation of diffusive behav-
ior and not just the correlation of vibrational motion in the
surface potential well.

In Fig. 9 we show the convergence of the tracer diffusion
expansior Eqg. (8)] to the hydrodynamic long-time limit de-
termined by Eq(6) (see the ins¢t The convergence @+ is
quite rapid in this case, the onset of the hydrodynamical
regime being around 36§. As far as the intermediate time
behavior is concerned, in Fig. 10 we show that even in this
continuous system there is a power-law de€gy-t~* after t [7o]
a short initial time regime. In this case, the decay is charac- 0

terized by an exponent=1.6+0.2. FIG. 10. Results for the decay 6%(t) at intermediate times in

The MD results allow us to comment on two interestingthe model system studied through MD simulations. The parameters
points. First, there is an initial time regime up to about 3 are the same as in the caption of Fig. 9. The straight line describes
where the particles on average have not yet performed gower-law behavior withk=1.6+0.2, the fit being made between
diffusion jump to their nearest-neighbor sites. This regime20r,— 707,.
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on the lattice-gas approximation with stochastic dynamicsmore accurate values for the diffusion coefficient but also
and studied with Monte Carlo simulation methods. The lasincrease our understanding of the collective dynamics of in-
model system consists of particles interacting with ateracting systems. Finally, the general approach presented
Lennard-Jones potential moving in the presence of a periodibere also allows a precise theoretical analysis for systems at
continuum potential and coupled to a heat bath. This systemelatively elevated temperatures where the paths of diffusive
is described by Langevin dynamics and studied by approprimotion are extremely complicated and not just dictated by
ate extension of standard molecular dynamics simulations fanearest-neighbor jumps over the saddle-point barrier.
deterministic systems. For the decay of memory effects, we find an approximate
In all the cases studied, the memory function expansionpower-law decay for the correlation functi€@(t)~t * for
in Egs.(5) and(8) converge at a point that corresponds to theall the systems studied at intermediate times when each in-
onset of the hydrodynamic regime. Thus we expect thelividual particle has a chance to execute a few jumps on the
memory expansion to be applicable in studies of mass transverage. Eventually, the correlation functio(t) decays ex-
port where a diffusive regime exists; i.e., in cases where th@onentially in the long-time limit. The origin of the power-
mean-square displacement is linear in time at long times. Itaw behavior is currently unclear. The MC studies for the
contrast to the conventional method of evaluating the transthree lattice-gas systems yield an estimate of decay exponent
port coefficient, which focuses on the long-time limit as il- x=1.5+0.2 for both tracer and collective diffusion. The MD
lustrated in Eq.(2), the memory expansion formalism pre- studies for the continuum system yield a valuexsf 1.6,
sented here builds up the transport coefficient as a sum of theobmparable to the value found in the lattice-gas systems with
different time contributions to an appropriately defined time-stochastic dynamics. This rather universal behavior observed
dependent correlation function. For this sum, the predomiin all systems shows that this intermediate regime power-law
nant contributions actually come from the short-time regimepehavior is most likely not the result of any specific dynam-
while the long-time regime close to the onset of the hydro-cs, but holds for any system at low temperatures where the
dynamic limit only provides a weak correction. The evalua-diffusive motion occurs via thermally activated jumps. Fur-
tion of the short-time contributions allows the extra benefitther studies of the origin of the power-law behavior and the
of self-averaging not possible in the long-time limit. Thus related exponents are in progress.
numerically, the present approach is far superior to the con- Our final comment concerns applying the present ap-
ventional methods. In all the cases studied here, the expaproach to other transport coefficients such as shear and lon-
sion method gives results that are not only in full agreemengitudinal viscosities and conductivifyin view of Eq. (5), it
with the conventional methods but have also smaller errois clear that the memory expansion can be written for any
bars. Yet the computational cost for the present method wasansport coefficient that can be expressed in terms of the
just about 10% of that used in evaluating E2). for collec-  mean-square displacement of some measurable dynamical
tive diffusion through the long-time limit. We estimate that, variable. In the case of collective diffusion, this dynamical
as far as collective diffusion is concerned, the total saving irvariable is simply the position of the center-of-mass. For
computing time to reach a comparable accuracy is roughlghear viscosity, on the other hand, the appropriate dynamical
two orders of magnitude. For the single-particle tracer diffu-variable can be expressed in terms of positions and velocities
sion, the speedup is not as significant. of flowing particles, and for thermal conductivity, this vari-
Besides the numerical efficiency, the various terms in theable depends on the positions and total energies of the
memory expansion have actual simple physical interpretaparticles’ The hydrodynamic transport coefficient in ques-
tions. The leading term corresponds to a generalized meaibn can then be expanded as formulated here in a series of
field result. For a special choice of the time scale, this can béeerms, which describe the dynamical correlatigneemory
simply related to the average single-particle jump rate agffecty characteristic for the given transport coefficient.
shown in Eqs(9) and(10). These simple results in terms of Simulation studies to test these ideas are currently in
single-particle jump rates have been widely applied to interprogress.
pret experimental data for collective and tracer diffusion co-
efficients. Our results here show that the memory effects are
very strong for complex systems with strong short-range or- ACKNOWLEDGMENTS
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