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Diffusion and creep of a particle in a random potential

D. A. Gorokhov and G. Blatter
Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

~Received 1 December 1997!

We investigate the diffusive motion of an overdamped classical particle in a one-dimensional random
potential using the mean first-passage time formalism and demonstrate the efficiency of this method in the
investigation of the large-time dynamics of the particle. We determine the log-time diffusion^^x2(t)& th&dis

5Alnb(t/tr) and relate the prefactorA, the relaxation timet r , and the exponentb to the details of the
~generally non-Gaussian! long-range correlated potential. Calculating the moments^^tn& th&dis of the first-
passage time distributionP(t), we reconstruct the large-time distribution function itself and draw attention to
the phenomenon of intermittency. The results can be easily interpreted in terms of the decay of metastable
trapped states. In addition, we present a simple derivation of the mean velocity of a particle moving in a
random potential in the presence of a constant external force.@S0163-1829~98!06221-3#
an
et
li

r-

gi
ld

a
n

-
su

d

te
a

t

in

r-

ce
f

with

-

ion

n.
ar-

stic

n
at

ur
sage
een

e

The motion of an overdamped classical particle in a r
dom potential provides an effective description for a vari
of phenomena, such as the dynamics of dislocations in so
and of domain walls in random-field magnets~see Ref. 1,
and references therein!, the relaxation in glasses~see Ref. 2,
and references therein!, and the electrical transport in diso
dered solids~see Ref. 3, and references therein!. Recently,
this problem has been considered as a phenomenolo
model in the context of glassy dynamics of elastic manifo
in a quenched random medium.4–6 In this paper we draw
attention to the mean first-passage time formalism that
pears to be very effective for the calculation of differe
characteristics of the random motion.

We start with the problem of particle diffusion in a long
range correlated random potential and generalize the re
for the mean squared diffusion amplitude^x2(t)&5Alnb(t/t r)
obtained in Refs. 7–9 to the case of non-Gaussian disor
including the calculation of the exponentb and estimates for
the prefactorA and the relaxation timet r . Second, we in-
vestigate the motion of a particle subject to a random po
tial and driven by a constant external force. First, we sh
briefly describe the mean first-passage time formalism.

Consider an overdamped particle ind dimensions subjec
to the potentialV(x) and a Gaussian random forceh(t) with
the correlator ^ha(t)hb(t8)&52Tdabd(t2t8), T denotes
the temperature. The boundary conditions involve reflect
and absorbing wallsSr andSa , respectively. The probability
function P(x,t) is obtained as the solution of the Fokke
Planck equation

]P

]t
5D

]2P

]x2
1

]

]xS ]V

]x
PD , ~1!

with the boundary conditionsP(xPSa)50 and (n•¹)P(x
PSr)50, with n the unit vector perpendicular to the surfa
Sr . The diffusion constantD is related to the amplitude o
the random force in the usual way,D5T ~we set the particle
mobility equal to unity!. Given the initial conditionP(x,
t50)5d(x2y), thenth momenttn(y)5^tn(y)& th of the ab-
sorption timet(y) satisfies the Pontryagin equation10–12
PRB 580163-1829/98/58~1!/213~5!/$15.00
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52ntn21~y!. ~2!

The above equation has to be solved in a closed region
the boundary conditionstnuSa

50 and (n•¹)tnuSr
50, see

Refs. 10–12. Equation~2! is equivalent to a chain of equa
tions; taking into account thatt051 we can determinet1 and
proceeding by iteration we find all the moments oft(y) and,
consequently, can reconstruct the probability distribut
function for t(y). Let us apply this formalism to the problem
of the one-dimensional~1D! motion of a particle in a random
environment.

First-passage time moments and distribution functio
The equation of motion of a 1D overdamped classical p
ticle moving in a random potentialU(x) takes the form

ẋ52
dU

dx
1h~ t !. ~3!

The Fokker-Planck equation associated with the stocha
equation~3! is identical to Eq.~1!, with D5T, xPR1, and
V(x)5U(x). Let us consider the case whereU(x) is a
Gaussian random potential with correlator̂@U(x)
2U(y)#2&dis5K(x2y), K(u)→Cuuua, u→`. The expo-
nent a is assumed to be positive~if a,0, the disorder
merely leads to a renormalization of the diffusio
coefficient12!. Assume that initially the particle is situated
the pointx5y of the interval@0, L#, with the boundaries 0
andL reflecting and absorbing the particle, respectively. O
aim is to calculate the disorder-averaged mean first-pas
time. The discrete version of the above problem has b
studied in a number of papers13–17 for the case of a random
force with a51.

For the cased51, Eq.~2! can be solved exactly, yielding
~we remind the reader thaty denotes the starting point of th
particle’s diffusion trajectory!

tn~y!5
n

TEy

L

dy1eU~y1!/TE
0

y1
e2U~x0!/Ttn21~x0! dx0 . ~4!
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Expressing the solution fortn21(y) in terms oftn22(y), sub-
stituting into Eq.~4!, and proceeding iteratively, we obta
the result

tn~y!5
n!

TnEy

L

dynE
0

yn
dxn21 . . . E

x1

L

dy1E
0

y1
dx0

3expH 1

TS (
i 51

n

U~yi !2 (
i 50

n21

U~xi !D J . ~5!

After averaging over the Gaussian disorder we arrive at
expression for the moment^tn(0)&dis

^tn~0!&dis

5
n!

TnE0

L

dynE
0

yn
dxn21 . . . E

x1

L

dy1E
0

y1
dx0

3expH (
i , j

@K~xi2yj !2K~xi2xj !2K~yi2yj !#

2T2
J ,

~6!

where Eq.~6! imposes the 2n restrictions

0<xi 21<yi , i 51, . . . ,n, ~7!

xi<yi<L, i 51, . . . ,n. ~8!

In general, the integral in Eq.~6! cannot be calculated ex
actly. However, in the large distanceL limit we can deter-
mine the integral by the method of steepest descents,
describing the large-t diffusion. It can be easily seen that th
integrand reaches its maximum at the point (xi ,yi)5(0,L)
~note that the restrictions~7! and ~8! are satisfied!. As
K(0)50 we obtain

^tn~0!&dis;expS n2K~L !

2T2 D . ~9!

The prefactor is determined by the functional depende
close to the saddle point. Expanding the expression in
exponent of Eq.~6! and taking into account thatK8(0)50
we arrive at the final result for thenth moment18 of t

^tn~0!&dis5
n!

TnS 2T2

K8~L !n
D 2n

expS n2K~L !

2T2 D . ~10!

The fact that the maximum of the integral in Eq.~6! is real-
ized at the boundary manifests itself through the appeara
of the first rather than second derivative ofK(x) in Eq. ~10!.

Using Eq.~10! we can reconstruct the tails of the pro
ability distribution function for the first-passage timet
[t(0). We look for a function of the form P(t)
;exp@2Alng(t/ t̃0)#. Calculating the moments ofP(t) by
steepest descents19 and comparing with Eq.~10! we find

P~ t !;expS 2
T2

2K~L !
ln2~ t/ t̃ 0! D , ~11!
e

us

e
e

ce

where t̃ 0(T,L) is a microscopic time scale@while t̃ 0 ac-
counts for the~dimensional! prefactor in Eq.~10!, its full
dependence onL and T cannot be reconstructed from th
large-t asymptotics alone#. The asymptotic expression~11! is
applicable fort* t̃ 0 and produces the strong intermittenc
observed in the moments^tn&dis @see Eq.~10!#. Note that the
conjecturê tn(0)&dis;(^t1(0)&dis)

n made in Ref. 15 is incon-
sistent with our findings.

Large-time diffusion.Using the result~11! we can extract
a lot of information concerning the large-t behavior of the
particle. Suppose that att50 the particle is at the pointx
50. Let us estimate its squared average displacement af
time t. The characteristic value ofx(t) can be found from the
implicit equation@T2/K(x)# ln2(t/ t̃0);1 @see Eq.~11!# defin-
ing the characteristic value ofx where the probability distri-
bution function P(t) becomes negligible. WithK(x)
;Cuxua, we easily find that

^x2~ t !&;S T2

C D 2/a

ln4/a~ t/t r !, ~12!

where t r is a macroscopic diffusion or relaxation time. A
estimate fort r is obtained by comparing the characteris
barrierUL;ACLa on scaleL with the temperatureT. This
defines the microscopic diffusion scale

LT;~T2/C!1/a ~13!

and its associated diffusion time

t r;LT
2/D;~1/T!~T2/C!2/a. ~14!

Strictly speaking, the problem of the diffusion on a sem
axis that we consider here~the boundaryx50 is reflecting!
differs from that of the diffusion on the whole axis. How
ever, the boundary condition atx50 affects the answer@see
Eq. ~12!# only by a factor of order unity.

Equation~11! can be interpreted in terms of the decay
metastable trapped states. Suppose that a particle leav
metastable state via thermal activation over a barrier of r
dom height. Let the barrier distribution function b
Gaussian,20 P(U)5(1/A2pD)exp(2U2/2D2). Then the
probability distribution of lifetimest̃ 0exp(U/T) is given by
the expression~we assume thatt. t̃ 0 , see also Ref. 20!

P~ t !5E
0

1` dU

A2pD
expS 2

U2

2D2D d~ t2 t̃ 0eU/T!

5
T

A2pDt
expH 2

T2

2D2
ln2~ t/ t̃ 0!J . ~15!

Equation~15! exhibits the same large-t dependence as Eq
~11!, implying that the diffusion on the scaleL is dominated
by one deep potential well of characteristic depthK1/2(L).
This interesting feature of 1D diffusion allows us to gene
alize Eq.~12! for the case of non-Gaussian disorder.

Assume that the probability for the potential differen
U(x1L)2U(x) to be equal toE is given by the function
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P~E!5
d

2111/dK1/d~L !G~1/d!
expH 2

uEud

2K~L !J , ~16!

with K(L)→CLa,L→`. CalculatingP(t) in the same way
as in Eq.~15! above, we arrive at the result~see also Ref. 20!

P~ t !;expH 2
Tdu ln~ t/ t̃ 0!ud

2K~L !
J , ~17!

implying a logt diffusion of the form

^x2~ t !&;S Td

C D 2/a

ln2d/a~ t/t r !, ~18!

where t r;(1/T)(Td/C)2/a is the relaxation time for non
Gaussian disorder. One can easily verify that Eq.~17! im-
plies that ln̂tn&dis;nd/(d21). For d→`, the barriers in the
system vanish and the phenomenon of intermittency dis
pears.

Equation ~18! is consistent with the exactly solvab
Gaussian random force problem, for which the amplitu

before the logarithmA5( 61
45 )T4/C2 is known exactly and the

relaxation timet r;T3/C2, see Refs. 1, 7, and 8. For the ca
of Gaussian disorder (d52) the exponent 4/a of the loga-
rithm in Eq. ~18! has been obtained using renormalizati
group techniques.9 The mean first-passage time method
lows us to estimate the amplitudes and characteristic re
ation times and to generalize the results to the case of n
Gaussian disorder. Furthermore, Eq.~17! generalizes the
results of previous investigations of the Gaussian rand
force model17 to the case of arbitrary disorder.

Creep under the action of an external force.Let us apply
the mean first-passage time formalism to the problem
creep in 1D. In a recent paper,4 Le Doussal and Vinokur
reported results on the mobility of an overdamped class
particle moving in a 1D random potentialU(x) in the pres-
ence of a constant external forcef ~see also Ref. 5!. The
mean velocityV has been calculated as a function off and
the correlatorK(x) of the random potential. The abov
model has been considered as a phenomenological mod
glassy dynamics: It turns out that long-range correlations
the random potential lead to the glassy responseV
;exp(21/T fm) as f→0, with T the temperature andm.0 a
constant, whereas in the case of short-range correlationV
; f as f→0.

The problem has been solved4 using a generalization o
the method introduced by Derrida21 for discrete models, as
suming that the random potential is a periodic function of
coordinatex, U(x)5U(x1L). Next, the stationary solution
P̃(x) of the Fokker-Planck equation has been found fo
fixed current J̃. Using the conditionsP̃(0)5 P̃(L), U(0)
5U(L), V5 J̃L, the normalization condition onP̃(x), and
taking the limit L→`, the authors of Ref. 4 arrive at th
result ~see also Ref. 5!

1

V
5

1

TE0

`

dse2 f s/T^e[U~x1s!2U~x!]/T&x , ~19!

where
p-

e

-
x-
n-

m

f

al

l of
f

e

a

^A&x5~1/L ! lim
L→`

E
0

L

dxA~x!. ~20!

For the case of a Gaussian random potential with^@U(x)
2U(y)#2&dis5K(x2y), the averaging procedure can be ea
ily performed, yielding the final result

1

V
5

1

TE0

`

dx expS 2
f x

T
1

K~x!

2T2 D . ~21!

Let us show how Eqs.~19! and ~21! can be obtained in a
simple and elegant way using the first-passage time met
This technique has several advantages:~i! it does not rely on
the periodic continuation of the random potential and, co
sequently, one does not have to worry about the comm
tion of the two limitst→` andL→`; ~ii ! instead of solving
the stationary Fokker-Planck equation with a fixed curr
one can use the well-known solutions of the 1D Pontrya
equation10–12 and simply average them over the disord
~iii ! using the first-passage time technique one can inve
gate the finite-size effects, the moments of the average
locity distribution function etc., i.e., the information obtaine
is much richer.

Returning to the 1D problem of an overdamped parti
subject to the potentialV(x)5U(x)2 f x we can solve Eq.
~2! for the first moment exactly,10–12

t1~y!5
1

TEy

L

dz eV~z!/TE
a

z

dx e2V~x!/T. ~22!

Here we assume that the pointL is absorbing, the pointa is
reflecting,22 anda,y,L. In the limit a→2`, the particle
does not feel the left boundary as the external forcef is
chosen to be positive. Averaging Eq.~1! over the disorder
we obtain

^t1~y!&dis5
1

TEy

L

dz e2 f z/TE
2`

z

dx ef x/T^e[U~z!2U~x!]/T&x .

~23!

If the random potential distribution is spacially homog
neous, the averagêe[U(z)2U(x)]/T&dis is a function ofuz2xu
and is the same as the translation average^e[U(x1s)2U(x)]/T&x
@see Eq.~19!#, where we have introduced the new variab
s5x2z. Equation~23! then takes the form

^t1~y!&dis5
L2y

T E
0

`

ds e2 f s/T^e[U~x1s!2U~x!]/T&dis.

~24!

If the integral in Eq.~24! converges, the mean first-passa
time averaged over disorder is an extensive quantity. In
limit L2y→` we can apply the central limit theorem, im
plying that 1/̂ t1(y)&dis5^1/t1(y)&dis. The mean velocityV
is simply ^(L2y)/t1(y)&dis and we can easily see that E
~24! becomes equivalent to Eq.~19!. For a Gaussian random
potential,

^t1~y!&dis5
L2y

T E
0

`

ds expS 2
f s

T
1

K~s!

2T2 D , ~25!

which is equivalent to Eq.~21!.
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Relation to discrete models.Let us compare the mea
first-passage time averaged over disorder obtained using
~22! with that found for a discrete 1D random walk in
random force field. Consider a 1D disordered lattice. Let
denote bypn the probability of hopping forward,n→n11,
and byqn512pn that of hopping back,n→n21. The index
n enumerates the sites of the lattice. For the random-fo
problem,1

pn5

expFdFn11

2T G
expF2

dFn

2T G1expFdFn11

2T G , ~26!

with d the lattice spacing~note that in this modelboth time
and space are discrete!. The forceF is a Gaussian random
variable satisfying the conditionŝFnFm&5mdnm /d and
^Fn&50. Note that^ ln(pn /qn)&50, see Refs. 1 and 7. Th
point n50 is supposed to be reflecting andN5L/d is ab-
sorbing. In Ref. 15 the estimatêt1(0)&dis;exp@bL#, where
b5 ln^qn /pn&5m/4T2 andL→`, has been obtained.

The continuous version of this problem is described
Eq. ~3! with a correlator for the random potential given b
K(x2y)5mux2yu. Averaging Eq.~22! over disorder we
obtain

^t1~y!&dis5
4T3

m2 FexpS mL

2T2D 2expS my

2T2D G2
2T

m
~L2y!.

~27!

For y close to the reflecting boundary 0 and for largeL the
result takes the simple form

^t ~1!~y!&dis→
4T3

m2
expS mL

2T2D . ~28!

We find that for both~discrete in space and time and co
tinuous! cases ln̂t1(0)&dis;L. The coefficient of proportion-
ality, however, is different,b5m/2T2 for the continuous
model versusb5m/4T2 for the discrete case.

We thus have arrived at a different asymptotic behav
for the average first-passage time. The origin of this diff
ence is found in the inequivalence of the discrete in sp
and time and the discrete in space–continuous time mod
n

ac

n

q.

s

e

y

r
-
e
ls:

For the latter, consider the lattice master equation describ
the probabilityPn(t) for the particle to be on the siten:

dPn

dt
5Wn,n11Pn111Wn,n21Pn212~Wn11,n1Wn21,n!Pn ,

~29!

where the hopping probabilitiesWn,n61 andWn61,n are de-
termined by the potential1 ~as the lattice spacing tends t
zero, one easily recovers the continuous Fokker-Pla
equation~1! and thus this model is equivalent to the contin
ous in space and time model!. The termsWn,n11Pn11 and
Wn,n21Pn21 in Eq. ~29! describe the hoppingn11→n and
n21→n, respectively. The contribution (Wn11,n
1Wn21,n)Pn describes the probability to stay at the sam
siten. In a next step let us also discretize the time variablet.
Suppose that at timet, Pn5dnm . In the limit of a finite but
small time stepDt, the probabilities for the processesm
→m61 behave asa1Dt and a2Dt (a1 and a2 are two
constants!, hence the probability for a particle to stay at th
site m after t→t1Dt is 12(a11a2)Dt, i.e., the particle
most likely stays at the same site. On the other hand, for
discrete lattice walks considered in Refs. 13 and 15–17,
probability of staying at the same site vanishes by definiti
The particle may only jump to the neighboring sites. Th
the continuous random walk cannot be obtained as a limi
case of a discrete random walk whenboth the time and the
lattice are discrete.

Briefly summarizing, we have investigated the motion
an overdamped classical particle in a random potential.
moments of the first-passage time averaged over Gaus
disorder have been found and are given by Eq.~10!. The
asymptotic form of the first-passage time distribution fun
tion has been reconstructed, see Eq.~11!, allowing us to find
the large-t dependence of̂x2(t)&, see Eq.~12!. The results
obtained can be easily interpreted in terms of the decay
metastable states. The latter feature has allowed us to ge
alize the results for̂x2(t)& to the case of non-Gaussian di
order, see Eq.~18!. In addition, we have presented a simp
derivation of the mean velocity of a particle driven by
constant external force across a disordered medium and
discussed the relation to the discrete time random walk o
lattice.

We thank Stefan Scheidl and Valerii Vinokur for discu
sions.
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