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Diffusion and creep of a particle in a random potential
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We investigate the diffusive motion of an overdamped classical particle in a one-dimensional random
potential using the mean first-passage time formalism and demonstrate the efficiency of this method in the
investigation of the large-time dynamics of the particle. We determine the log-time diff¢&iS(t) ) ) gis
=Alnf(t/t) and relate the prefactod, the relaxation timet,, and the exponeng to the details of the
(generally non-Gaussiariong-range correlated potential. Calculating the moméKit8))qs of the first-
passage time distributioR(t), we reconstruct the large-time distribution function itself and draw attention to
the phenomenon of intermittency. The results can be easily interpreted in terms of the decay of metastable
trapped states. In addition, we present a simple derivation of the mean velocity of a particle moving in a
random potential in the presence of a constant external fp8€4.63-182808)06221-3

The motion of an overdamped classical particle in a ran- 2t gV ot
dom potential provides an effective description for a variety = _nt,_ (y). (2
- . . . . 29y dy n-1
of phenomena, such as the dynamics of dislocations in solids ay

and of domain walls in random-field magnétee Ref. 1, ) ) _ )
and references thersirthe relaxation in glassdsee Ref. 2, The above equation has to be solved in a closed region with
and references therdirand the electrical transport in disor- the boundary conditions,|s =0 and @-V)t,[s =0, see
dered solids(see Ref. 3, and references thejeiRecently, Refs. 10-12. EquatiofR) is equivalent to a chain of equa-
this problem has been considered as a phenomenologicabns; taking into account thag=1 we can determing and
model in the context of glassy dynamics of elastic manifoldsproceeding by iteration we find all the momentstof) and,

in a quenched random mediut In this paper we draw consequently, can reconstruct the probability distribution
attention to the mean first-passage time formalism that apfunction fort(y). Let us apply this formalism to the problem
pears to be very effective for the calculation of different of the one-dimensiondlLD) motion of a particle in a random
characteristics of the random motion. environment.

We start with the problem of particle diffusion in a long-  First-passage time moments and distribution function.
range correlated random potential and generalize the resulfthe equation of motion of a 1D overdamped classical par-
for the mean squared diffusion amplituge(t))=AlnA(t/t,) ticle moving in a random potenti&) (x) takes the form
obtained in Refs. 7-9 to the case of non-Gaussian disorder,
including the calculation of the exponefitand estimates for _ du
the prefactorA and the relaxation time, . Second, we in- x=—gx T 7. 3
vestigate the motion of a particle subject to a random poten-
tial and driven by a constant external force. First, we shallrys £oxyer-Planck equation associated with the stochastic
briefly dgscrlbe the mean flrst-pa.ssage.tlme fprmahsm, equation(3) is identical to Eq.(1), with D=T, xe R?, and

Consider an overdamped partlcledrdlmensmns sut_)ject V(x)=U(x). Let us consider the case wheté(x) is a
to the potentiaV(x) and a/Gaussmn randor:n forggt) with Gaussian random potential with correlatof[ U(x)
the correlator(7,(t) 74(t )>=2T5aﬁ5.('.[—t ) T denotes' —U(y)Da=K(x—Y), K(U)—C|u|®, u—w=. The expo-
the tempergture. The boundary cond_mons involve reflle-ctlnq1ent « is assumed to be positivéf <0, the disorder
and absorbing wall§; andS,, respectively. The probability ool leads to a renormalization of the diffusion

function P(x,t) is obtained as the solution of the Fokker- . oficient?). Assume that initially the particle is situated at
Planck equation the pointx=y of the interval[0, L], with the boundaries 0
andL reflecting and absorbing the particle, respectively. Our
aP PP oV aim is to calculate the disorder-averaged mean first-passage
e ij 5(5 ) (1) time. The discrete version of the above problem has been
studied in a number of papérs!’for the case of a random
force witha=1.
For the casel=1, Eq.(2) can be solved exactly, yielding
(we remind the reader thgtdenotes the starting point of the
particle’s diffusion trajectory

with the boundary condition®(xe S,)=0 and f-V)P(x

e S;) =0, with n the unit vector perpendicular to the surface
S, . The diffusion constanb is related to the amplitude of
the random force in the usual way=T (we set the particle
mobility equal to unity. Given the inizia:}l cc;nditionP(x, - v
t=0)=8(x—y), thenth momentt,(y) =(t"(y) )y, of the ab- - _f U(yl)/Tf —U(x)/T

sorption timet(y) satisfies the Pontryagin equattdn'? W)= 3 y dy.e o © tn-1(0) d%o. (4
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Expressing the solution fdf,_,(y) in terms oft,,_,(y), sub-
stituting into Eq.(4), and proceeding iteratively, we obtain

the result
n! (L Yn L Y1
R A [P A
™y 0 X1 0
n—1

1/ 2 _
xexp{?(_z uyn-2 um)J. (5)
i=1 i=0
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wheret,(T,L) is a microscopic time scalfwhile t, ac-
counts for the(dimensional prefactor in Eq.(10), its full
dependence oh and T cannot be reconstructed from the
larget asymptotics alone The asymptotic expressidfl) is

applicable fort=t, and produces the strong intermittency
observed in the moments,) s [see Eq(10)]. Note that the
conjecturg(t,(0))gis~ ({t1(0))4i9 " made in Ref. 15 is incon-
sistent with our findings.

Large-time diffusionUsing the result11) we can extract
a lot of information concerning the lardgebehavior of the

After averaging over the Gaussian disorder we arrive at th@article. Suppose that at=0 the particle is at the point

expression for the momefit,(0))qis

<tn(0)>dis

n! (L Yn L V1
=—nf dynf dxn,l...f dylf dXg
T"Jo 0 X1 0

EJ [K(X—y;) = K(xi—x)—K(yi—y)]

X ex ,
P 27?2
(6)
where Eq.(6) imposes the & restrictions
o=x;_1=<y;, i=1,...n, (7)
xi<y;<L, i=1,...n. (8)

In general, the integral in Eq6) cannot be calculated ex-
actly. However, in the large distantelimit we can deter-

mine the integral by the method of steepest descents, thus

describing the largé-diffusion. It can be easily seen that the
integrand reaches its maximum at the poirt,{;)=(0.L)
(note that the restriction7) and (8) are satisfied As
K(0)=0 we obtain

nK (L)
272

9

<tn(o)>dis~ exp(

=0. Let us estimate its squared average displacement after a
timet. The characteristic value aft) can be found from the
implicit equation] T%/K (x)]In%(t/ty)~1 [see Eq.(11)] defin-

ing the characteristic value af where the probability distri-
bution function P(t) becomes negligible. WithK(x)
~C|x|%, we easily find that

2

2la
_ Ao
c ) In“a(t/t,), (12)

<x2(t)>~(
wheret, is a macroscopic diffusion or relaxation time. An
estimate fort, is obtained by comparing the characteristic

barrierU ~+/CL® on scaleL with the temperatur&. This
defines the microscopic diffusion scale

LTN(TZ/C)lla (13)
and its associated diffusion time
t,~L2/D~(LT)(T?/C)%, (14)

Strictly speaking, the problem of the diffusion on a semi-
axis that we consider hei¢he boundarnx=0 is reflecting
differs from that of the diffusion on the whole axis. How-
ever, the boundary condition at=0 affects the answdsee
Eqg. (12)] only by a factor of order unity.

Equation(11) can be interpreted in terms of the decay of
metastable trapped states. Suppose that a particle leaves a
metastable state via thermal activation over a barrier of ran-

The prefactor is determined by the functional dependencgom height. Let the barrier distribution function be
close to the saddle point. Expanding the expression in thesa,ssiaf® P(U)=(1/\V27A)exp(—U%2A2). Then the

exponent of Eq(6) and taking into account tha’(0)=0
we arrive at the final result for theth moment?® of t

o

The fact that the maximum of the integral in E§) is real-

272
K'(L)n

nK (L)
272

n!

<tn(0)>dis:F

(10

ized at the boundary manifests itself through the appearance

of the first rather than second derivativekofx) in Eq. (10).
Using Eq.(10) we can reconstruct the tails of the prob-
ability distribution function for the first-passage tinte
=t(0). We look for a function of the form P(t)
~exf —AlIn*(t/ty)]. Calculating the moments oP(t) by
steepest descentsand comparing with Eq(10) we find

L
P(t)~ex;{—mln (t/'ty) |, (11

probability distribution of lifetimest ,expU/T) is given by
the expressioliwe assume that>1,, see also Ref. 20

Py [ av p( v S(t—toe"'T)
= exp —— —tq€
o 27A 2A2 0
T T In%(t/t,) (15)
= expy ———In .
J27At 2A2 0

Equation(15) exhibits the same largedependence as Eq.
(11), implying that the diffusion on the scaleis dominated
by one deep potential well of characteristic deptH%(L).
This interesting feature of 1D diffusion allows us to gener-
alize Eq.(12) for the case of non-Gaussian disorder.
Assume that the probability for the potential difference
U(x+L)—U(x) to be equal tcE is given by the function
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5 |E|5 ] . L

P(E)= exp — . (16 (A)y=(1L) lim | dxA(x). (20
(B i T (w/s) p( k) 10 " L

For the case of a Gaussian random potential WjtH (x)

—U(y) 1% 4is=K(x—Yy), the averaging procedure can be eas-

ily performed, yielding the final result

with K(L)— CL®% L—o. CalculatingP(t) in the same way
as in Eq.(15) above, we arrive at the resuftee also Ref. 20

T5||n(t/To)|5] 11 ;
P(t)~exp) — —%—1, 1 _ (" x KX
(V) p{ 2K(L) 17) V_?fo dxexp(—7+ 7 | (21
implying a log diffusion of the form Let us show how Eqs(19) and (21) can be obtained in a
5\ 2 simple and elegant way using the first-passage time method.
(xz(t)>~(T— In20a(t/t ) (18) This technique has several advantagBst does not rely on
C T the periodic continuation of the random potential and, con-

sequently, one does not have to worry about the commuta-
where t,~ (L/T)(T?/C)?* is the relaxation time for non- tion of the two limitst— o andL—: (ii) instead of solving
Gaussian disorder. One can easily verify that Bf) im-  the stationary Fokker-Planck equation with a fixed current
plies that Ift,)gs~n"(°~ Y. For §—, the barriers in the one can use the well-known solutions of the 1D Pontryagin
system vanish and the phenomenon of intermittency disapequatiot®=*? and simply average them over the disorder;
pears. (iii ) using the first-passage time technique one can investi-

Equation (18) is consistent with the exactly solvable gate the finite-size effects, the moments of the average ve-
Gaussian random force problem, for which the amplitudgocity distribution function etc., i.e., the information obtained
before the logarithri\= (52) T4/C? is known exactly and the is much richer.
relaxation timet,~T3/C?, see Refs. 1, 7, and 8. For the case Returning to the 1D problem of an overdamped particle
of Gaussian disorders=2) the exponent 4/ of the loga-  subject to the potentia¥/(x) =U(x) —fx we can solve Eqg.
rithm in Eq. (18) has been obtained using renormalization(2) for the first moment exactiy,~**
group technique$.The mean first-passage time method al-
lows us to estimate the amplitudes and characteristic relax- ty(y)= EJL vumfz ~V()IT

o ; 1(Y) dz e dx € ) (22
ation times and to generalize the results to the case of non- Tly a
Gaussian disorder. Furthermore, Ed.7) generalizes the
results of previous investigations of the Gaussian rando
force model’ to the case of arbitrary disorder.

Creep under the action of an external fordest us apply
the mean first-passage time formalism to the problem o
creep in 1D. In a recent papéd,e Doussal and Vinokur
reported results on the mobility of an overdamped classical 1 (L ,
particle moving in a 1D random potentibl(x) in the pres- <t1(y)>dis:_f dz e*fz/Tf dx eX/T(elV@-V0oNTy
ence of a constant external forée(see also Ref. 5 The Ty -
mean velocityV has been calculated as a functionfofind (23
the correlatorK(x) of the random potential. The above |f the random potential distribution is spacially homoge-
model has been considered as a phenomenological model géous, the averag@!V@~VMIT) . is a function of|z— x|
glassy dynamics: It turns out that long-range correlations ofnq is the same as the translation averagdt s ~UrTy
the random potential lead to the glassy response [see Eq.(19)], where we have introduced the new variable

~exp(—1/Tf*) asf—0, with T the temperature and>0 a g—y_ 5. Equation(23) then takes the form
constant, whereas in the case of short-range correlafons

phlere we assume that the polntis absorbing, the poird is
reflecting?? anda<y<L. In the limita— —, the particle
does not feel the left boundary as the external fofcis
ghosen to be positive. Averaging E() over the disorder
we obtain

~f asf—0. _ o . LY (P e tsmeluxrs—uoonTy
The problem has been soledsing a generalization of (t(Y)as=— ,ds € (e ) dis-
the method introduced by Derritfafor discrete models, as- (24)

suming that the random potential is a periodic function of the _ _ '
coordinatex, U(x)=U(x+L). Next, the stationary solution If the integral in Eq.(24) converges, the mean first-passage

P(x) of the Fokker-Planck equation has been found for aitime averaged over disorder is an extensive quantity. In the

) ~ . L~ imit L—y—o we can apply the central limit theorem, im-
flxed curre_nEJ. Using the (.:on(.jmonsP((.)?—P(l_), u(0) plying that 1(t,(y))qis={1%1(Y¥))qs- The mean velocity/
—Q(L), vV=IJL, the normalization condition oﬁ’(_x), and g simply ((L—Y)/t1(y))qis and we can easily see that Eq.
taking the limitL—oo, the authors of Ref. 4 arrive at the (24) pecomes equivalent to E6L9). For a Gaussian random
result(see also Ref. )5 potential,

1 1(= _ L—y (> fs K(s)
- fsIT/ A[U(X+8)—U(X)]/ T _ y
v Tfo dse <e >x: (19 <t1(y)>dis—?J'0 ds GX% — ?4’ F , (25)

where which is equivalent to Eq21).
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:Wn,n+1pn+1+wn,nflpn71_ (Wn+l,n+anl,n) Pn,

473
(to(¥))ais=—
)2

473 ul
(1) ) - R

first-passage time averaged over disorder obtained using Ethe probabilityP,(t) for the particle to be on the site
and byqg,=1— p, that of hopping backp—n—1. The index (29
equation(1) and thus this model is equivalent to the continu-
T dR) . TdFan
ex;{— 2T}+ex;{ 2T +W,_,,)P, describes the probability to stay at the same
(F,)=0. Note that(In(p,/q,))=0, see Refs. 1 and 7. The _M=1 behave asr;At and oAt (@, and a, are wo
discrete lattice walks considered in Refs. 13 and 15-17, the
obtain case of a discrete random walk whbath the time and the
(27 moments of the first-passage time averaged over Gaussian
the larget dependence ofx?(t)), see Eq(12). The results
We find that for both(discrete in space and time and con- order, see Eq(18). In addition, we have presented a simple
We thus have arrived at a different asymptotic behavior,

Relation to discrete modeld.et us compare the mean For the latter, consider the lattice master equation describing
(22) with that found for a discrete 1D random walk in a dp
random force field. Consider a 1D disordered lattice. Let us__"
denote byp, the probability of hopping forwardq—n+1, dt
n enumerates the sites of the lattice. For the random-forceshere the hopping probabilitied/, ,.; andW, ., are de-
problem? termined by the potential(as the lattice spacing tends to
dF zero, one easily recovers the continuous Fokker-Planck
n+1
exp{ 2T ous in space and time modelrhe termsW, ;. 1P,., and
: (26) W, ,_1P,_1 in Eq. (29) describe the hopping+1—n and
n—1—n, respectively. The contribution W, ,,
with d the lattice spacingnote that in this moddboth time siten. In a next step let us also discretize the time varidble
and space are discréteThe forceF is a Gaussian random SUPPOSe that at ime P,= &y In the limit of a finite but
variable satisfying the conditionéF,F)=ud,m/d and small time stepAt, the probabilities for the processes
point n=0 is supposed to be reflecting aht=L/d is ab constants hence the probability for a particle to stay at the
S . " sitem aftert—t+At is 1— (a;+ ay)At, i.e., the particle
Zortl)r']rzg' /IF? >Ref./ 4%_52 g‘: di“”g“ﬁgg%@:;gggﬁ]ﬂa where most likely stays at the same site. On the other hand, for the
= n/Pn) = M %, .

The continuous version of this problem is described byprobabilit_y of staying at the same site vanishes by definition:
Ea. (3 V‘ﬁth a correlator for the random potential given by The particle may only jump to the neighboring sites. Thus
K(x—y)=u|x—yl|. Averaging Eq.(22) over disorder we the continuous random walk cannot be obtained as a limiting

lattice are discrete.
ex & _ex MY E(L—y) Briefly summarizing, we have investigated the motion of
272 272 M ' an overdamped classical particle in a random potential. The
. disorder have been found and are given by Ed). The
For 3I/tctzlokse t}:)hthe. ref:ecftlng boundary 0 and for laigéne asymptotic form of the first-passage time distribution func-
result takes the simple form tion has been reconstructed, see @d), allowing us to find
obtained can be easily interpreted in terms of the decay o
) (28) btained b ily i di f the d f
metastable states. The latter feature has allowed us to gener-
alize the results fo¢x?(t)) to the case of non-Gaussian dis-
tinuoug cases Ift;(0))4~L. The coefficient of proportion- S . i -
ality, however ?é(d)i?grentﬁzﬂlzﬂ for the (E)onﬁnuous derivation of the mean velocity of a particle driven by a
mod’el versusﬁ’: /4T for the discrete case constant external force across a disordered medium and have
® : discussed the relation to the discrete time random walk on a
for the average first-passage time. The origin of this differ—lattlce'
ence is found in the inequivalence of the discrete in space We thank Stefan Scheidl and Valerii Vinokur for discus-
and time and the discrete in space—continuous time modelsions.
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