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Relaxed and effective-mass excited states of a quantum-dot polaron
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The polaronic corrections to the first excited-state energies of an electron in a parabolic quantum dot are
obtained variationally for the entire range of the electron-phonon coupling constant and for arbitrary confine-
ment length using a canonical transformation method based on the Lee-Low-Pines-Gross formalism. Simple
analytical results are obtained in some interesting limiting cases and for arbitrary values of the parameters the
nature of the excited state is studied numerically. The theory is applied to two- and three-dimensional GaAs
guantum dots to obtain information about the existence of both the effective mass and the relaxed excited states
of a polaron in these systen{§0163-18208)08028-X]

l. INTRODUCTION make anN-dimensional ND) formulation for the sake of

Interest in the subject of quantum dots has continued ungenerality and obtain results for both the two- and three-

abated for more than a decade or so primarily for two regdimensional dots as special cases. In our model a quantum

sons. Firstly, it has an intrinsic appeal because the naturgott_embefdg]eddlnta Ehret:e-dlmer}_sml((;’b’tp) m”a:ﬁ”atlhw'th thet_ |
length scales involved in it are of the order of a few nanom-:j??e'c(iir:)ﬁs wiﬁ bg c?il?ec dr(z)an3CDOTanaentulr?1 ?jot \?vhiléet% :tpgﬁ
eters where the qyantum effects Sh.OW up in their full glorybedded in a purely 2I]Jzero—thicknes)ssystem’with the elec-

and therefore the issues of interest in the quantum dot pro*{?on's motion confined in the two available directions will be

Ibem§ arhe qf fundalgn e]:cntlalf naturg froSm the dIDOInt dOf V'ﬁw Ofreferred to as a 2D quantum dot. For the sake of mathemati-
asic physicgsee Ref. 1 for revieyv Secondly and perhaps cal simplicity we shall neglect the size quantization of

more importantly, the quantum dot systems have very manyponons and treat the relevant phonon modes within the
new physical propertiésand also have a lot of design flex- framework of the Frblich model. This model is certainly not
ibility which make them technologically very promising par- yery rigorous for very small confinement lengths but still
t|CU|ar|y from the pOInt Of view Of m|Croe|eCtr0n|C deV|Ce may serve as a good enough approximation to Capture some

applications. of the most important electron-phonon interaction effects in
One of the recent interests in the area of quantum dots hasolar quantum dots.

been to explore the electron-phonon interactieffects on

their electronic properties. A number of autfonsve inves-

tigated in this connection the ground-stdteS) polaronic Il. FORMULATION

properties of several semiconductor quantum dots. However, . . .

to the knowledge of the present authors, only a very few | Nne Hamiltonian for theD (symmetrig parabolic quan-

calculations are available for the polaronic excited states ofiM dot polaron problem can be written as

guantum dots. The excited-state calculations are important to

understand the optical absorption properties of these sys- .

tems. Zhu and Glhave obtained the second-order Rayleigh- H= — V24 102r2+ ), b'sbs+ > (&7 9"bT+H.c),

Schralinger perturbative corrections to the first excited-state q q o)

(ES energy of an electron moving in a two-dimensional

(2D) parabolic quantum dot. We have recently shbwrat

the second-order perturbative result for the first excited staterhere all vectors aréN dimensional and units have been

polaronic correction can be obtained in a simple analyticathosen such that=m=w, o=1 (Feynman units m being

form involving only I functions. This result is, however, the Bloch effective mass of the electron, asng, the LO-

valid for small values of the electron-phonon coupling con-phonon frequency, which is assumed to be dispersionless. In

stanta and for frequencies of the confining potential that aregq. (1), r(x;,x,,...xy) refers to the position vector of the

far away from the one at which the first excited state isglectron,w=wy,/w o, w, being the frequency of the con-

unstable with respect to the emission of a longitudinal opticafining parabolic potentialb*a(ba) is the creation(annihila-

(LO) phpnon. We have also presen_ted recently a var|at|onq|on) operator for a LO-phonon of wave vectqrand &qis
calculation for the ground- and excited-state polaronic ener-

gies for a quantum dot electrdnThe aim of the present given by
paper is to perform an improved variational calculation for

the first excited-state polaronic energy in a symmetric quan- N—1

tum dot with parabolic confinement. We are able to extract F<T> 2N=32(N=1)/2

from our calculation information about both the effective |& 2= @, )
mass excited states and the relaxed excited states. We shall d Vgt
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whereV,, is the volume of theN-dimensional dot andris ~ method admits a trivial generalization td dimensions In

the electron-phonon coupling constant. this method one first employs the transformation
We seek a variational solution of EQ.) for which we use . R . -
a modification of the Lee, Low, and PinésLP) canonical U(r)=exr{2q {fa(f)bT&—fa(r)ba} . )

transformation method first introduced by Grossd later

used by Takeguhara and Kastf#or the 3D bound polaron Wherefq(F) is a function of bothq andr and has to be
problem. This metho@which we shall refer to as the LLP-G obtained variationally. The transformed Hamiltonian reads

H=U"'HU

1A ~ A N A A R ~ A ~ S A
=5 | P+ 2 bTap- [P (D]~ 2, bgp-[P.f5(11+ 2 bYP.fo(N]-P~ 2 belp.f(1)]-P

.

+2 0130 IR f5(N1- [, (N]= 2 blabg [P fg(N1-[B.F5(1)] =2 byl B.f(1]-[P.fe(r)]
qq qq qaq

+ 2 baba[P.f2(1)]-[p.f%(r)] +%w2r2+% [bTa+f§(F)][b5+fd(F)]+Zq {£ 9T [bT+f2(N)]+H.cl,
aq’

(4)
|
A~ s . ND —ig-r| 4ND
wherep=—iV; and we have used the condition F) ()= =S <¢jr |, r|¢j >|¢ND>
a(r ¢; = (gND_gND+1) i
s - I - i’ J
2 [FE(NV(N) —fg(NVFE(1)]=0, (5) (10
g
S . which, when substituted in E@8) leads to
which implies that the current due the displacement of the
phonon field is zero in the bound state. The LLP-G varia- END:<¢ND|(—1V2+ 1w2r2)|¢ND>
; ; i i i 2¥r T2 i
tional energy is now written as o
Ko} léqe™"9 "))
ND_ ND( 7\ AND( & _ I’ 9 J 11
ENP=(0[(¢"°(r)[F1| 6"°(7))]0), ®) 22 TEremy @

where|0) is the unperturbed zero-phonon state aﬁNP(F) IS For the GS {=0) the LLP-Gross energyll) is identical

a real function of the electronic coordinates. Variation of Eq.ith the Feynman-Haken path-integral expression and if the

(6) with respect tdg(r) now leads to the following equation trial potential V(r) is chosen as w®r? then Eq.(11) will

for fd(F): give the second-order Rayleigh-Sctireger perturbative re-
sult. The LLP-Gross method has, however, a few advantages

25 over the path-integral method. First, in addition to the GS it
[ p_,f&( £ |+ fq(F)] HNO(F) = — gqe—id-F¢ND( r). (7)  @alsogives the excited states and, secondly, in this approach it
2 is easy to improve on the result obtained from EQL) by

including the off-diagonal terms of the reduced Hamiltonian
H either by perturbation theory or by employing the higher-

order Tamm-Dancoff approximation ¢, which will incor-
porate the correlation between successively emitted virtual
phonons.

Eq. (6) then assumes the following form:
EVP= — (NP1 V2 ¢0) + § 0 ¢0] 7| o)

+33 {£(ANOT (N gN0)+H.c).  (8)
¢ I1l. RESULTS AND DISCUSSION
To proceed further we have to make a choice for the function

- . . . . To evaluate Eq.11) we choose the trial potential a
#NP(r). Choosing¢P to be the eigenfunction of a trial val (1) w > 'al p &l as

HamiltonianH, , i.e.. V(r)=3u’2 Then\'°(r) and€N® are given by
. [p? ) i 2= uN 172
Hpo(N=| 5+ V(1) | ¢ (1) =€]P¢]°(r),  (9) j N2 TN 1] ]

_ .o-H. ~(n?12)r?
we can solve Eq(7) to obtain XHj (ux) - Hj (uxy)e™#90, (12)
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END— [ j 4ot +] N2 (13) F(—N_l)
T\l TINT S M
: 2 END.EMES_ _ am 2
. 2 N
where H; (ux;) is the Hermite polynomial. Equatiofil) F(E)
finally reads, for the first excited statg=<1),
N—1 1/2
N—1 N+2\ 1 a\/; F(T)
w [N+2 N+2\ 1 a F( 2 ) 2 12 4N N ’
EYo=|—— |+ 7| 2 gqr 5
4 41* ) u?2 4N F(N)
2 (18
= L, [(2N=1)e# which is the effective mass excited staEMES) result!? As
X[ dte @ — —— 1 : : ;
o € (1_ew2t)1/2 we have already pointed out, the first excited-state energy

(14) has a singularity at.=1. Therefore the minima corre-
N—-1 sponding to the effective mass excited-state would occur on
a r P the left side of the singularity. The situation described by Eq.

7 N 21 (14 (18) is that of an undisturbed weak-coupling polafahleast
NF(—) (n"=1) to first ordey sitting at the first excited level of the confining
parabolic potential of the quantum dot.
b. Localized state limif{u—). In this limit one can
wherel is the dimensionless confinement length givenl by show that
=l,/ro=1w, where I|,=(i/mwy)*?> and r,

= (h/mw o)Y2 Equation(14) has to be minimized with re- 1
spect tou to obtain the first excited-state polaron energy. r —2+1) 1+ —In 2)
This has to be done, in general, numerically and for specific K ~ L (19
values ofN. We shall be interested iN=2 andN=3. It T i+£ \/;
R 2
may be noted that the energy expresgib#) has a singular- ue 2
ity at w=1, which corresponds to the instability of the ex- _ _ o
cited state with respect to the emission of a phonon. Befordhus in the localized-state limit E14) becomes
discussing the numerical results, we shall present some in-
teresting limiting cases for arbitrafy. wo [N+4) , (N+2) 1
a. Extended-state solutiorgt—0). In this limit, | - Ei = > |M# + K ;2
and «—0, and we can use the asymptotic relation
N-1
M —— 2
I'(z+a) (a—b)(a+b—1) a ( 2 ) ( 1 ) (21In 2+ w?)
b-a — - — - 2
2 Tt 7% 17 22 » (19 2 (N AN . (20
M2
so that Eq.(14) can be approximately written as
where u has to be obtained from
N+2 N+2) 1
ND_ 2 il
1 I AN TE: 2 . N—1
N-1 N+2) , (N+2) 1 @ 2
rl2= 2 |© 2 J1* 2 N
aym | 2 L 16 I
T2 N I L
M2 1)
X 1—m)(,u, —2u In2)=0. (21

Minimizing Eg. (16) with respect tou yields o )
In the limit of strong electron-phonon coupling and weak

. confinement, Eq(21) can be approximately solved to yield

,LL2: N—1 172 (17) N—1
|2 kﬂM __“ 1 1) ( 2 ) 22
4N N o (N+2) |7 aN N 22

"2 (3]

and therefore Eq(16) reduces to so that Eq.(20) reads
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FIG. 1. Polaronic correctiond E, (in Feynman unitsto the ES

energy of an glectron in 2D a_nd 3D quantum dotsder2 and| —2.50 T AL AN AL LRSS Ay SRARRS JAPFSRARRN o
=3 as a function of the variational parameger 1/1” (Feynman units)

N—1 2 FIG. 2. EMES and RES energiém Feynman unitsof a po-
5 ) r(_) laron as a function of 17 (in Feynman unitsfor «=1.5 in 2D and
ENDRES_ _ a 1— i 2 3D quantum dots. The GS polaron energies are also shown for the
!  4(N+2) 4N ( N) sake of comparison.
2 - :
limit of weak confinement and strong electron-phonon cou-
(N+2)3 1 I'(N/2) ) ? pling where one might probably expect effective mass type
4a2|4 1 2 N—1 States.
( — m) (T) c. Numerical results. The first excited-state polaronic
correction to the quantum dot electron energy can be defined
—(N+2)In 2, (23 @as
which is the first relaxed-excited-statRES energy in the AE,=ENP— (N+22) | 26
limit of large « and weak confinement. Even without the last 2l

term Eg. (23) is lower than the corresponding result that
could be obtained by using the Landau-Pekar méthaith
the Gaussian function as the trial function. It may be recalle
that in the case of GS, the LLP-®r the Feynman-Haken
path-integral expressionwithout the log term is the same
as the Landau-Pekar result.

In the limit of strong confinementl{-0) and small
electron-phonon couplinget—0), Eq.(21) can be approxi-
mately solved by dropping the third term to give

which as a function oft would have in general two minima,
ne corresponding to the EMES that can occurder1 and
he other corresponding to the RES that can occurdor
>1. As we have already mentioned, the first effective mass
excited state describes a situation in which we have an un-
disturbed polaron in the first excited state of the confining
potential of the quantum dot. The relaxed excited states oc-
cur when the localization potential for the electron arises
from the combined effect of the lattice polarization and the
parabolic potential. It should, however, be pointed out that
, 1 for the excited-state polaronic level to exidtE; should be
=2 (24 negative. We have studied the variationAdt,; as a function

and thus in this limit the first relaxed-excited-state energy is

given by 0.00 3 "
r N-1 E 1.00
c —1.004
(N+2) « 1 2 | (1 500
ND,RES_ _ T = A 1
Es 27 2|17 aN Ny (T2 in2), s ]
T > € —2.00]
= ]
29 @

(

BRI . ~5.00
which is the second-order perturbative result for strong con- LT 1

finement. Since the first relaxed-excited-state energy expres- 1
sions(23) and (25) are obtained for large values @f, the 2007
minima corresponding to these energies will be on the right 0-00
side of the singularity. It may be mentioned that the LLP-G
method cannot produce an excited state of the effective mass FIG. 3. EMES and RES energi¢® Feynman unitsof a po-

type in the localized-state limit, even for the ground-statelaron as a function of for |=2 in both 2D and 3D quantum dots.
energy. Thus our results may not be very accurate in th&@he GS energies are also shown for the sake of comparison.
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FIG. 4. The curve giving the critical values of and 1I? (in . . .
Feynman units below \g/]vhicg EMES would exist in 2D ané 3D FIG. 5. Polgronlc corrections; AE, (in meV) to the ES energy
of an electron in 2D and 3D GaAs quantum dots as a function of the
quantum dots. confinement length, (in A). The GS energies are also shown for
the sake of comparison.
of u for both 2D and 3D dots for various sets of valuesof
andl. The typical behavior is shown in Fig. 1 where we have e can easily apply our theory to realistic quantum dots.
takena=2 andl =3. Itis clear that, in two dimensionAE;  As an example we show in Fig. 5. the behavior-oAE, for
has only one minimum corresponding to the RES while, in2D and 3D GaAs quantum dots. The GS polaronic correc-
three dimensionsAE; has two minima, one corresponding tions to the electron energy are also shown for comparison.
to the EMES and the other to the RES, the EMES being, a¥he material parameters used in the calculation have been
expected, lower in energy. Far=2 andl=1 we find that in  taken from Ref. 14. One can notice that for large values of
both two and three dimension&E,; shows only one mini- the confinement length the first excited state of a polaron in
mum that occurs for>1, implying that the first excited @ GaAs quantum dot is of the effective mass type. However,
states in these cases are of the RES type.d=e and| if the dot size is small, the first excited state of the polaron
=7 we find that, in two dimensionsAE, shows two &0 be described by a relaxed excited state. It is also evident

minima, one giving the EMES energy correction and theffom the figure that both the GS and the ES energy correc-

other giving the first RES energy correction. In three dimen{'o?ﬁ’ to tTe en_erg){ of a? electrog In a_tGaIAs qu_?murg dtot_due
sions also we find that there are two minima in th&, 0 the polaronic interaction can be quite farge 1t the dot Sizes

. curve. but the minimum fow>1 gives a positive po- are sufficiently small. Furthermore, the difference between

K- ' . fop=>1 9 P P the GS and ES polaronic self-energy corrections can also be
laronic energy correction and is therefore not acceptable. Focfuite significant for small dots, particularly in two dimen-
a=0.5 andl =5.0 we find that the the first excited state is of sions. '

the EMES type in both 2D and 3D dots. We would like to
add here that when the minimum of theE,— u curve is

very close to the singularity, the energies obtained are not V. CONCLUSION
very accurate. Therefore in such cases even if we may obtain

;;;nstl:”%%ss'gﬁy\/:l?; forE,, the relaxed excited states tional calculation to obtain the first excited-state energy of a
. i . _polaron in a symmetric parabolic quantum dot in both two
XMES oEtEaln both thg EMES and the RES energlesgnd three dimensions. We have obtained results for all values
(ET“'=°,EF™) as a function of 17 for a=1.5 in both tWo  4f the electron-phonon coupling constant and for arbitrary
and three dimensions. The results are shown in Fig. 2, whergonfinement length. We have shown that in some interesting
we have also shown the behavior of the GS polaron energlmiting cases simple analytical results can be obtained. Our
(Eo) for the sake of comparison. In Fig. 3 we pl&,,  calculation provides information about both the effective
ESMES and ERFS, as a function ofa for =2 for both two-  mass and the relaxed excited states. We have shown that for
and three-dimensional dots. It is evident from all these fig-a given value ofe the nature of the first excited state of a
ures that the difference between the GS energy and the firpblaron in a quantum dot depends crucially on the confine-
RES energy is always greater than an LO-phonon energy. hent length. We have observed that the difference between
can also be noticed that for a particular valuexdhe EMES  the GS and the first RES energies is always greater than an
ceases to exist below a certain value of the confinemertO-phonon energy for all the cases we have investigated.
length. Again, for a given value d¢fthe EMES exists only if We have finally applied our results to two- and three-
a does not exceed a particular value. We show this behaviatimensional GaAs quantum dots for which we find that the
more elaborately in Fig. 4, for both 2D and 3D dots. Thefirst excited state is of the effective mass type if the dot size
regions, lying below the 2D and the 3D curves, give in theis large while for a small dot the first excited state is de-
respective dimensions the parts of the parameter space wheseribed by a relaxed excited state. We have shown that, as in
effective mass excited states would exist. the case of the GS, the polaronic corrections to the excited-

In conclusion, we have performed an improved varia-
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state energy of a quantum dot electron can also be quite largg polar semiconductor quantum dots. These investigations
if the dot sizes are reduced to a few nanometers. We furthegre in progress and will be reported in due course.

more observe that the difference between the GS and the ES
polaronic self-energy corrections can be quite significant for
small dots, particularly in two dimensions. This might have  One of the authoréS.M.) wishes to thank the UCC, India,
some important effects on the optical absorption propertiefor financial support.
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