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Relaxed and effective-mass excited states of a quantum-dot polaron
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The polaronic corrections to the first excited-state energies of an electron in a parabolic quantum dot are
obtained variationally for the entire range of the electron-phonon coupling constant and for arbitrary confine-
ment length using a canonical transformation method based on the Lee-Low-Pines-Gross formalism. Simple
analytical results are obtained in some interesting limiting cases and for arbitrary values of the parameters the
nature of the excited state is studied numerically. The theory is applied to two- and three-dimensional GaAs
quantum dots to obtain information about the existence of both the effective mass and the relaxed excited states
of a polaron in these systems.@S0163-1829~98!08028-X#
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I. INTRODUCTION

Interest in the subject of quantum dots has continued
abated for more than a decade or so primarily for two r
sons. Firstly, it has an intrinsic appeal because the nat
length scales involved in it are of the order of a few nano
eters where the quantum effects show up in their full glo
and therefore the issues of interest in the quantum dot p
lems are of fundamental nature from the point of view
basic physics~see Ref. 1 for review!. Secondly and perhap
more importantly, the quantum dot systems have very m
new physical properties2 and also have a lot of design flex
ibility which make them technologically very promising pa
ticularly from the point of view of microelectronic devic
applications.

One of the recent interests in the area of quantum dots
been to explore the electron-phonon interaction3 effects on
their electronic properties. A number of authors4 have inves-
tigated in this connection the ground-state~GS! polaronic
properties of several semiconductor quantum dots. Howe
to the knowledge of the present authors, only a very f
calculations are available for the polaronic excited states
quantum dots. The excited-state calculations are importan
understand the optical absorption properties of these
tems. Zhu and Gu5 have obtained the second-order Rayleig
Schrödinger perturbative corrections to the first excited-st
~ES! energy of an electron moving in a two-dimension
~2D! parabolic quantum dot. We have recently shown6 that
the second-order perturbative result for the first excited s
polaronic correction can be obtained in a simple analyt
form involving only G functions. This result is, however
valid for small values of the electron-phonon coupling co
stanta and for frequencies of the confining potential that a
far away from the one at which the first excited state
unstable with respect to the emission of a longitudinal opt
~LO! phonon. We have also presented recently a variatio
calculation for the ground- and excited-state polaronic en
gies for a quantum dot electron.7 The aim of the presen
paper is to perform an improved variational calculation
the first excited-state polaronic energy in a symmetric qu
tum dot with parabolic confinement. We are able to extr
from our calculation information about both the effecti
mass excited states and the relaxed excited states. We
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make anN-dimensional (ND) formulation for the sake of
generality and obtain results for both the two- and thr
dimensional dots as special cases. In our model a quan
dot embedded in a three-dimensional~3D! material with the
motion of the dot electron confined in all the three spa
directions will be called a 3D quantum dot, while that em
bedded in a purely 2D~zero-thickness! system with the elec-
tron’s motion confined in the two available directions will b
referred to as a 2D quantum dot. For the sake of mathem
cal simplicity we shall neglect the size quantization
phonons and treat the relevant phonon modes within
framework of the Fro¨hlich model. This model is certainly no
very rigorous for very small confinement lengths but s
may serve as a good enough approximation to capture s
of the most important electron-phonon interaction effects
polar quantum dots.

II. FORMULATION

The Hamiltonian for theND ~symmetric! parabolic quan-
tum dot polaron problem can be written as

H52 1
2 ¹ r

21 1
2 v2r 21(

qW
b†

qWbqW1(
qW

~jqe2qW .rWb†
qW1H.c.!,

~1!

where all vectors areN dimensional and units have bee
chosen such that\5m5vLO51 ~Feynman units!, m being
the Bloch effective mass of the electron, andvLO the LO-
phonon frequency, which is assumed to be dispersionles
Eq. ~1!, rW(x1 ,x2 ,...,xN) refers to the position vector of th
electron,v5vh /vLO , vh being the frequency of the con
fining parabolic potential,b†

qW(bqW) is the creation~annihila-
tion! operator for a LO-phonon of wave vectorqW and jq is
given by8

ujqu25S GS N21

2 D2N23/2p~N21!/2

VNqN21
D a, ~2!
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whereVN is the volume of theN-dimensional dot anda is
the electron-phonon coupling constant.

We seek a variational solution of Eq.~1! for which we use
a modification of the Lee, Low, and Pines~LLP! canonical
transformation method first introduced by Gross9 and later
used by Takeguhara and Kasuya10 for the 3D bound polaron
problem. This method~which we shall refer to as the LLP-G
th
ia

q
n

tio
l

method! admits a trivial generalization toN dimensions.11 In
this method one first employs the transformation

U~rW !5expF(
qW

$ f qW~rW !b†
qW2 f qW

* ~rW !bqW%G , ~3!

where f q(rW) is a function of bothqW and rW and has to be
obtained variationally. The transformed Hamiltonian read
H̃5U21HU

5
1

2 FpŴ 21(
qW

b†
qW pŴ •@pŴ , f q~rW !#2(

qW
bqW pŴ •@pŴ , f q* ~rW !#1(

qW
b†

qW@pŴ , f q~rW !#•pŴ 2(
qW

bqW@pŴ , f q* ~rW !#•pŴ

1(
qW qW 8

b†
qWb

†
qW 8@pŴ , f qW~rW !#•@pŴ , f q8~rW !#2(

qW qW 8
b†

qWbqW 8@pŴ , f qW~rW !#•@pŴ , f qW 8
* ~rW !#2(

qW qW 8
bqW 8b

†
qW@pŴ , f qW

* ~rW !#•@pŴ , f qW~rW !#

1(
qW qW 8

bqWbqW 8@pŴ , f qW
* ~rW !#•@pŴ , f qW 8

* ~rW !#G1 1
2 v2r 21(

qW
@b†

qW1 f qW
* ~rW !#@bqW1 f qW~rW !#1(

qW
$jqe2 iqW •rW@b†

qW1 f qW
* ~rW !#1H.c.%,

~4!
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wherepŴ 52 i¹W rW and we have used the condition

(
qW

@ f qW
* ~rW !¹W f qW~rW !2 f qW~rW !¹W f qW

* ~rW !#50, ~5!

which implies that the current due the displacement of
phonon field is zero in the bound state. The LLP-G var
tional energy is now written as

END5^0u^fND~rW !uH̃ufND~rW !&u0&, ~6!

whereu0& is the unperturbed zero-phonon state andfND(rW) is
a real function of the electronic coordinates. Variation of E
~6! with respect tof qW

* (rW) now leads to the following equatio

for f qW(rW):

H FpŴ 2

2
, f qW~rW !G1 f q~rW !J fND~rW !52jqe2 iqW •rWfND~rW !. ~7!

Eq. ~6! then assumes the following form:

END52^fNDu 1
2 ¹2ufND&1 1

2 v2^fNDur 2ufND&

1 1
2 (

qW
$jq* ^fNDueiqW •rW f qW~rW !ufND&1H.c.%. ~8!

To proceed further we have to make a choice for the func
fND(rW). ChoosingfND to be the eigenfunction of a tria
HamiltonianHt , i.e.,

Htf j
ND~rW ![FpW 2

2
1V~r !Gf j

ND~rW !5E j
NDf j

ND~rW !, ~9!

we can solve Eq.~7! to obtain
e
-

.

n

f qW~rW !f j
ND~rW !52(

j 8

^f j 8
NDujqe2 iqW •rWuf j

ND&

~E j 8
ND

2E j
ND11!

uf j 8
ND&,

~10!

which, when substituted in Eq.~8! leads to

Ej
ND5^f j

NDu~2 1
2 ¹ rW

2
1 1

2 v2r 2!uf j
ND&

2(
qW

(
j 8

z^f j 8
NDujqe2 iqW •rWuf j

ND& z2

~E j 8
ND

2E j
ND11!

. ~11!

For the GS (j 50) the LLP-Gross energy~11! is identical
with the Feynman-Haken path-integral expression and if
trial potential V(r ) is chosen as1

2 v2r 2 then Eq.~11! will
give the second-order Rayleigh-Schro¨dinger perturbative re-
sult. The LLP-Gross method has, however, a few advanta
over the path-integral method. First, in addition to the GS
also gives the excited states and, secondly, in this approa
is easy to improve on the result obtained from Eq.~11! by
including the off-diagonal terms of the reduced Hamiltoni
H̃ either by perturbation theory or by employing the highe
order Tamm-Dancoff approximation onH̃, which will incor-
porate the correlation between successively emitted vir
phonons.

III. RESULTS AND DISCUSSION

To evaluate Eq.~11! we choose the trial potential a
V(r )5 1

2 m4r 2. Thenf j
ND(rW) andE j

ND are given by

f j
ND~rW !5S mN

pN/22 j 11 j 21¯1 j Nj 1! j 2!¯ j N! D
1/2

3H j 1
~mx1!¯H j N

~mxN!e2~m2/2!r 2
, ~12!
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E j
ND5S j 11 j 21¯1 j N1

N

2 Dm2, ~13!

where H j i
(mxi) is the Hermite polynomial. Equation~11!

finally reads, for the first excited state (j 51),

E1
ND5S N12

4 Dm21S N12

4l 4 D 1

m2 2
a

4N
m

GS N21

2 D
GS N

2 D
3E

0

`

dt e2~12m2!tH ~2N21!e2m2t

~12e2m2t!1/2
21J

1
a

4

GS N21

2 D
NGS N

2 D
m

~m221!
, ~14!

where l is the dimensionless confinement length given bl
5 l o /r o51/Av, where l o5(\/mvh)1/2 and r o
5(\/mvLO)1/2. Equation~14! has to be minimized with re
spect tom to obtain the first excited-state polaron energ
This has to be done, in general, numerically and for spec
values ofN. We shall be interested inN52 and N53. It
may be noted that the energy expression~14! has a singular-
ity at m51, which corresponds to the instability of the e
cited state with respect to the emission of a phonon. Be
discussing the numerical results, we shall present some
teresting limiting cases for arbitraryN.

a. Extended-state solutions(m→0). In this limit, l→`
anda→0, and we can use the asymptotic relation

zb2a
G~z1a!

G~z1b!
z →̃ ` 11

~a2b!~a1b21!

2z
, ~15!

so that Eq.~14! can be approximately written as

E1
ND5S N12

4 Dm21S N12

4l 4 D 1

m2

2
aAp

2

GS N21

2 D
GS N

2 D F11S N12

8N Dm2G . ~16!

Minimizing Eq. ~16! with respect tom yields

m25
1

l 2F 12
aAp

4N

GS N21

2 D
GS N

2 D G 1/2, ~17!

and therefore Eq.~16! reduces to
.
c

re
in-

E1
ND,EMES52

aAp

2

GS N21

2 D
GS N

2 D

1S N12

2 D 1

l 2 F 12
aAp

4N

GS N21

2 D
GS N

2 D G 1/2

,

~18!

which is the effective mass excited state~EMES! result.12 As
we have already pointed out, the first excited-state ene
~14! has a singularity atm51. Therefore the minima corre
sponding to the effective mass excited-state would occur
the left side of the singularity. The situation described by E
~18! is that of an undisturbed weak-coupling polaron~at least
to first order! sitting at the first excited level of the confinin
parabolic potential of the quantum dot.

b. Localized state limit(m→`). In this limit one can
show that

GS 1

m2 11D
GS 1

m2 1
1

2D .
S 11

2

m2 ln 2D
Ap

. ~19!

Thus in the localized-state limit Eq.~14! becomes

E1
ND5S N14

2 Dm21S N12

4l 4 D 1

m2

2
a

2

GS N21

2 D
GS N

2 D S 12
1

4ND ~2 ln 21m2!

m
, ~20!

wherem has to be obtained from

S N12

2 Dm42S N12

2 D 1

l 4 2
a

2

GS N21

2 D
GS N

2 D
3S 12

1

4ND ~m322m ln 2!50. ~21!

In the limit of strong electron-phonon coupling and we
confinement, Eq.~21! can be approximately solved to yield

m5
a

~N12! S 12
1

4ND GS N21

2 D
GS N

2 D , ~22!

so that Eq.~20! reads
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E1
ND,RES52

a2

4~N12! S 12
1

4ND 2S GS N21

2 D
GS N

2 D D 2

1
~N12!3

4a2l 4

1

S 12
1

4ND 2 H G~N/2!

GS N21

2 D J 2

2~N12!ln 2, ~23!

which is the first relaxed-excited-state~RES! energy in the
limit of large a and weak confinement. Even without the la
term Eq. ~23! is lower than the corresponding result th
could be obtained by using the Landau-Pekar method13 with
the Gaussian function as the trial function. It may be reca
that in the case of GS, the LLP-G~or the Feynman-Haken
path-integral! expression~without the log term! is the same
as the Landau-Pekar result.

In the limit of strong confinement (l→0) and small
electron-phonon coupling (a→0), Eq. ~21! can be approxi-
mately solved by dropping the third term to give

m25
1

l 2 , ~24!

and thus in this limit the first relaxed-excited-state energy
given by

E1
ND,RES5

~N12!

2l 2 2
a

2 S 12
1

4ND GS N21

2 D
GS N

2 D S 1

l
12l ln 2D ,

~25!

which is the second-order perturbative result for strong c
finement. Since the first relaxed-excited-state energy exp
sions ~23! and ~25! are obtained for large values ofm, the
minima corresponding to these energies will be on the ri
side of the singularity. It may be mentioned that the LLP
method cannot produce an excited state of the effective m
type in the localized-state limit, even for the ground-st
energy. Thus our results may not be very accurate in

FIG. 1. Polaronic corrections,DE1 ~in Feynman units! to the ES
energy of an electron in 2D and 3D quantum dots fora52 and l
53 as a function of the variational parameterm.
t
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-
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limit of weak confinement and strong electron-phonon co
pling where one might probably expect effective mass ty
states.

c. Numerical results. The first excited-state polaroni
correction to the quantum dot electron energy can be defi
as

DE15E1
ND2

~N12!

2l 2 , ~26!

which as a function ofm would have in general two minima
one corresponding to the EMES that can occur form,1 and
the other corresponding to the RES that can occur form
.1. As we have already mentioned, the first effective m
excited state describes a situation in which we have an
disturbed polaron in the first excited state of the confin
potential of the quantum dot. The relaxed excited states
cur when the localization potential for the electron aris
from the combined effect of the lattice polarization and t
parabolic potential. It should, however, be pointed out t
for the excited-state polaronic level to exist,DE1 should be
negative. We have studied the variation ofDE1 as a function

FIG. 2. EMES and RES energies~in Feynman units! of a po-
laron as a function of 1/l 2 ~in Feynman units! for a51.5 in 2D and
3D quantum dots. The GS polaron energies are also shown fo
sake of comparison.

FIG. 3. EMES and RES energies~in Feynman units! of a po-
laron as a function ofa for l 52 in both 2D and 3D quantum dots
The GS energies are also shown for the sake of comparison.
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of m for both 2D and 3D dots for various sets of values ofa
andl. The typical behavior is shown in Fig. 1 where we ha
takena52 andl 53. It is clear that, in two dimensions,DE1

has only one minimum corresponding to the RES while,
three dimensions,DE1 has two minima, one correspondin
to the EMES and the other to the RES, the EMES being
expected, lower in energy. Fora52 andl 51 we find that in
both two and three dimensions,DE1 shows only one mini-
mum that occurs form.1, implying that the first excited
states in these cases are of the RES type. Fora52 and l
57 we find that, in two dimensions,DE1 shows two
minima, one giving the EMES energy correction and t
other giving the first RES energy correction. In three dime
sions also we find that there are two minima in theDE1

2m curve, but the minimum form.1 gives a positive po-
laronic energy correction and is therefore not acceptable.
a50.5 andl 55.0 we find that the the first excited state is
the EMES type in both 2D and 3D dots. We would like
add here that when the minimum of theDE12m curve is
very close to the singularity, the energies obtained are
very accurate. Therefore in such cases even if we may ob
a small positive value forDE1 , the relaxed excited state
may still possibly exist.

We obtain both the EMES and the RES energ
(E1

EMES,E1
RES) as a function of 1/l 2 for a51.5 in both two

and three dimensions. The results are shown in Fig. 2, wh
we have also shown the behavior of the GS polaron ene
(E0) for the sake of comparison. In Fig. 3 we plotEo ,

E1
EMES andE1

RES, as a function ofa for l 52 for both two-
and three-dimensional dots. It is evident from all these
ures that the difference between the GS energy and the
RES energy is always greater than an LO-phonon energ
can also be noticed that for a particular value ofa the EMES
ceases to exist below a certain value of the confinem
length. Again, for a given value ofl the EMES exists only if
a does not exceed a particular value. We show this beha
more elaborately in Fig. 4, for both 2D and 3D dots. T
regions, lying below the 2D and the 3D curves, give in t
respective dimensions the parts of the parameter space w
effective mass excited states would exist.

FIG. 4. The curve giving the critical values ofa and 1/l 2 ~in
Feynman units! below which EMES would exist in 2D and 3D
quantum dots.
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We can easily apply our theory to realistic quantum do
As an example we show in Fig. 5. the behavior of2DE1 for
2D and 3D GaAs quantum dots. The GS polaronic corr
tions to the electron energy are also shown for comparis
The material parameters used in the calculation have b
taken from Ref. 14. One can notice that for large values
the confinement length the first excited state of a polaron
a GaAs quantum dot is of the effective mass type. Howev
if the dot size is small, the first excited state of the polar
can be described by a relaxed excited state. It is also evi
from the figure that both the GS and the ES energy corr
tions to the energy of an electron in a GaAs quantum dot
to the polaronic interaction can be quite large if the dot si
are sufficiently small. Furthermore, the difference betwe
the GS and ES polaronic self-energy corrections can also
quite significant for small dots, particularly in two dimen
sions.

IV. CONCLUSION

In conclusion, we have performed an improved var
tional calculation to obtain the first excited-state energy o
polaron in a symmetric parabolic quantum dot in both tw
and three dimensions. We have obtained results for all va
of the electron-phonon coupling constant and for arbitr
confinement length. We have shown that in some interes
limiting cases simple analytical results can be obtained. O
calculation provides information about both the effecti
mass and the relaxed excited states. We have shown tha
a given value ofa the nature of the first excited state of
polaron in a quantum dot depends crucially on the confi
ment length. We have observed that the difference betw
the GS and the first RES energies is always greater tha
LO-phonon energy for all the cases we have investiga
We have finally applied our results to two- and thre
dimensional GaAs quantum dots for which we find that t
first excited state is of the effective mass type if the dot s
is large while for a small dot the first excited state is d
scribed by a relaxed excited state. We have shown that, a
the case of the GS, the polaronic corrections to the exci

FIG. 5. Polaronic corrections,2DE1 ~in meV! to the ES energy
of an electron in 2D and 3D GaAs quantum dots as a function of
confinement lengthl o ~in Å!. The GS energies are also shown f
the sake of comparison.
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state energy of a quantum dot electron can also be quite l
if the dot sizes are reduced to a few nanometers. We furt
more observe that the difference between the GS and th
polaronic self-energy corrections can be quite significant
small dots, particularly in two dimensions. This might ha
some important effects on the optical absorption proper
ev
,

,
tt

e

B
s,
,

r-
ge
r-

ES
r

s

of polar semiconductor quantum dots. These investigati
are in progress and will be reported in due course.
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