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Microscopic theory for the influence of Coulomb correlations in the light-emission properties
of semiconductor quantum wells

M. F. Pereira, Jr. and K. Henneberger
Fachbereich Physik, Universita¨t Rostock, D-18051 Rostock, Germany

~Received 20 February 1998!

A nonequilibrium Green’s-functionT-matrix approach is presented for the consistent computation of semi-
conductor quantum-well optical spectra including strong Coulomb correlations in the coupled photon and
carrier system. Numerical solutions of the Bethe-Salpeter-type equations yield good agreement with recent
absorption and/or gain and emission experiments.@S0163-1829~98!02428-X#
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I. INTRODUCTION

The electronic properties of semiconductors are well
derstood in terms of many-body effects.1 However, there is
as yet no first-principles theory capable of realistically p
dicting the influence of Coulomb correlations in the evo
tion of light emission spectra of semiconductors with
creasing carrier density consistently including, e.g., qu
two-dimensional confinement and coupled band-struc
effects, specially under incoherent excitation or cases
which the polarization is destroyed by fast dephasing p
cesses within the detection time. To our knowledge, the
attempt to compute both multiple-quantum-well~MQW! ab-
sorption and luminescence spectra in a wide density ra
including the light and carrier field operators on the sa
fully quantum-mechanical footing, has been given in Ref
The general theory is formally sound and merits consid
ation for the interesting limiting cases it provides. Howev
the numerical applications presented are restricted to id
ized conditions that give rise to serious shortcomings. T
valence bands are parabolic and the Coulomb poten
strictly two-dimensional. Dephasing effects that broaden
spectral lines are not included. The line shapes are not r
istic, and the predicted emitted output reduces with incre
ing carrier density, in contrast to vast experimental eviden
The last limitation has been recently overcome by mean
a broader spectral representation.3 However, the idealized
model with a bare Coulomb potential and parabolic band
meaningful for quantum wires, as demonstrated by a g
agreement with experimental data, but not for MQW’s4,5

Altogether, the approximations cannot realistically descr
MQW absorption and/or gain and emission spectra.4,5 Fi-
nally, in both Refs. 2 and 3 and previous work in the lite
ture, the equations do not present a consistent way to inc
higher order Coulomb correlations in all relevant se
energies, and thus do not provide the means to check
importance by means of optical experiments. In this pap
MQW absorption and/or gain and light emission are con
tently modeled and the numerical results are in good ag
ment with steady-state experiments. The technique is ab
describe the evolution from purely excitonic systems at v
low density to the highly excited, inverted medium regim
where a plasma of interacting electron holes dominates
spectra. Low and/or high energy side artifacts in the g
and/or luminescence are eliminated in our approach by
suring that the polarization function satisfies the Kub
Martin-Schwinger~KMS! condition.1,6 The paper is orga-
PRB 580163-1829/98/58~4!/2064~13!/$15.00
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nized as follows. In Sec. II we summarize the main steps
the derivation of the Green’s-function equations. We st
with the Hamiltonian and necessary definitions and prese
step by step derivation of the Bethe-Salpeter-type equat
using functional derivative techniques. Equations for coup
multisubband quantum-well systems are derived in Sec.
Numerical results and discussions are presented in Sec
which is followed by a brief summary. Complementary r
sults, which we refer to in the main text, are summarized
the Appendixes, including a derivation of theT-matrix equa-
tion in the electron-hole case and its relation to the corre
tion self-energy.

II. NONEQUILIBRIUM GREEN’S-FUNCTION
EXPRESSIONS

In this section, we summarize the main steps in the d
vation of the Green’s-function expressions, which are va
under nonequilibrium conditions and give rise to a quant
statistical description of light-emission and absorption p
cesses in semiconductors including higher-order Coulo
correlations. A few of the equations, such as the start
point Hamiltonian, have been presented in a previo
publication,7 but are repeated here under a different notati
with band indices explicitly written. This alternative prese
tation is necessary to clarify some of the functional deriv
tive steps, notably those involving the polarization functi
and theT-matrix equations given in the Appendix.

A. Hamiltonian and Dyson equations

The laser-excited semiconductor is described by mean
a many-particle Hamiltonian, which can be separated in e
tronic ~el!, electron-light-field interaction (I ), free-field (F)
terms,8

H5Hel1HI1HF , ~1a!

Hel5(
a
E Ca

†~RW !H0Ca~RW !dRW

1
e2

2 (
a,b

E Ca
†~RW !Cb

†~RW 8!V~RW 2RW 8!

3C~RW 8!bCa~RW !dRW dRW 8, ~1b!
2064 © 1998 The American Physical Society
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HI52
e

cm0
(
a,b

E Ca
†~RW !pW •AW ~RW !Cb~RW !dRW

52
1

c(a,b
E JWab~RW !•AW ~RW !dRW , ~1c!

HF5(
l,qW

\vq~dl,qW
†

dl,qW11/2!, ~1d!

where the labelsa,b,c, . . . denote generically the sever
conduction and valence subbands,C(RW ) denotes the electron
field operator, andV(RW 2RW 8)5e2/e0uRW 2RW 8u is the instanta-
neous bare Coulomb interaction. The current density op
tor reads

JWab~RW !5
2 ie\

2m0
$Ca

†~RW !¹Cb~RW !2@¹Ca
†~RW !#Cb~RW !%.

~2!

The vector potential operatorAW is expanded in terms of cre
ation (dlqW

† ) and annihilation operators (dl,qW) of photons in
the Coulomb gauge. In order to derive a hierarchy of eq
tions valid for both equilibrium and nonequilibrium cond
tions, we consider the action of external chargesrext and
currentsJWext, and we describe the effect through the additi
of an external term to the total Hamiltonian,

HT5H1Hext, ~3a!

Hext5E @rext~RW ,t !F~RW !21/cJWext~RW ,t !•AW ~RW !#dRW .

~3b!

The scalar potentialF(RW ) is the solution of Poisson’s
equation,8,7

F~RW !5E r tot~RW 8!V~ uRW 2RW 8u!dRW 8, ~4!

where we have introduced the total charged particle den
r tot5r1rext, and

r~RW !5(
a

ra~RW !5e(
a

Ca
†~RW !Ca~RW !. ~5!

The excited semiconductor is described by nonequilibri
Green’s functions for the interacting quasiparticles: carri
(G), photons (D), and plasmons (W), by

i\Gab~1 2!5^Ca~1!Cb
†~2!&, ~6a!

DJ ~1 2!52
c

4p
dAW eff~1!

dJWext~2!
,

W~1 2!5
dFeff~1!

drext~2!
, ~6b!

where we have used functional derivatives with respec
the external perturbations. The quantum-mechanical a
ages are calculated along the double-time Keldysh cont
C.9 Time arguments running alongC are underlined, andTC
a-

-

y,

s

o
r-
r,

denotes the time-ordering operator alongC. In other words,
the notation15RW 1 ,t1 means that time runs under the co
tour from 2` to 1` on a positive branch,t15t1 and back
on a negative branch from1` to 2`, and thust15t2 , e.g.,

AW eff~1!5^AW ~RW 1,t1!&5
tr$r0TC@AW ~RW 1,t1!SC#%

tr$r0SC%
, ~7a!

SC5TC expS 2 i E
C
Hext~ t !dt D . ~7b!

The Keldysh Green’s-function time evolution is described
Dyson equations~sum over repeated arguments is assum!

@G0,ac
21 ~1 3!2Sac~1 3!#Gcb~3 2!5dab~1 2!, ~8a!

@DJ 0
21~1 3!2PJ ~1 3!#DJ ~3 2!5dJ~1 2!, ~8b!

@W0
21~1 3!2p~1 3!#W~3 2!5d~1 2!, ~8c!

or equivalently,

DJ ~1 2!5DJ 0~1 2!1DJ 0~1 4!PJ ~4 3!DJ ~3 2!, ~9a!

Gab~1 2!5G0,ab~1 2!1Go,ac~1 4!Scd~4 3!Gdb~3 2!,

~9b!

W~1 2!5V~1 2!1V~1 4!p~43!W~3 2!, ~9c!

wheredJ is the transverse delta function. The bare Coulo
potential is diagonal in the time indices,V(1 2)51/uRW 1

2RW 2ud(t12t2). The inverse free propagatorsG0
21, DJ 0

21,
W0

21, are given by

G0,ab
21 ~1 2!5F i\

]

]t1
2heff~1!Gd~1 2!, ~10a!

W0
21~1 2!52

e0

4pe2
n1d~1 2!, ~10b!

D0
21~1 2!5@n121/c2]2/]t1

2#d~1 2!. ~10c!

Here,e0 is the static dielectric function. The effective on
particle Hamiltonian in the equation for the free carri
propagator reads,

heff~1!5@H0~1!1Feff~1!#dab1
ei\

cm0
AW eff~1!•¹~1!.

~11!

The self-energiesS, PJ , and p denoting, respectively, the
carrier self-energy, the transverse, and the longitudinal po
ization functions are given by

Sab~1 2!52 i\eGac~1 3!W~4 1!gcb~3 2 4!

2 i\PW ~1 18!Gac~1 3!DJ ~4 18!GW cb~3 2 4!u1518 ,

~12a!
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p~1 2!5

dr ind~1!

dFeff~2!
, ~12b!

PJ ~1 2!52
4p

c

dJW ind~1!

dAW eff~2!
, ~12c!

where we have introduced the longitudinalg and transverse
G vertex functions,

gba~1 2 3!5

dGba
21~1 2!

dFeff~3!
,

GW ba~1 2 3!52
4p

c

dGba
21~1 2!

dAW eff~3!
, ~13!

which are obtained upon substitution into the Dyson eq
tions,

gba~1 2 3!52edbad~1 3!d~1 2!1

dSba~1 2!

dGcd~4 5!
Gcg~4 6!

3gg f~6 7 3!Gf d~7 5!, ~14a!

GW ba~1 2 3!52
4pe

c2
PW ~1 18!dbad~1 3!d~1 2!u1518

1

dSba~1 2!

dGcd~4 5!
Gcg~4 6!GW g f~6 7 3!Gf d~7 5!.

~14b!

The induced particle and current densities are expresse
terms of the carrier Green’s functions by

r ind,a~1!52 i\eGaa~1 16!, ~15a!

JW ind,ab~1!52 ie\PW ~1 16!Gab~1 16!. ~15b!

Detailed band-structure and quantum-confinement effects
included in the theory through the termheff in the free-carrier
propagatorG0

21, and also in the optical transition selectio
rules described by the matrix elements of the velocity ope
tor, PW (1 2)5@PW (1)1PW * (2)#/25\@¹(1)2¹(2)#/2im0.
The carrier self-energyS leads to band-gap renormalizatio
includes dynamic effects such as corrections beyond Hart
Fock scattering rates in the carrier’s kinetics, and enables
description of bound states~excitons! in the spectral density
of carriers, defining the degree of ionization. The longitu
nal polarization functionp is responsible for~plasmon!
screening of the Coulomb interaction. Furthermore, it
scribes dynamical screening, screening by excitons, plas
kinetics and the buildup of screening, although these top
will not be addressed in this paper. The transverse polar
tion function PJ yields the excitation-dependent absorpti
coefficient and refractive index, and defines scattering ra
~generation and/or recombination, and absorption an
-
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-
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he

-

-
on
s

a-

es
or

emission! in the photon kinetics. It is responsible for th
inclusion of bound states~excitons! in the photons spectra
density.

B. Bethe-Salpeter equation

The Bethe-Salpeter equation for the transverse polar
tion function presented below allows the inclusion of ex
tonic corrections in the spectral density of photons. We g
a general derivation, valid for both nonequilibrium and eq
librium conditions, and present solutions for the steady-s
limit that are numerically solved and compared with expe
ments in Sec. IV. We start by rewriting the two-point tens
in Eq. ~12c! in terms of a three-point vector,

PJ ~1 2!5
4pe2

c2
PW ~1 16!LW ab~1 16 2!, ~16a!

LW ab~1 18 2!5
i\c

e

dGab~1 18!

dAW eff~2!
. ~16b!

Making use of the chain rule for functional derivatives, w
obtain

LW ab~1 18 2!52Gac~1 3!
dGcd

21~3 4!

dAW eff~2!
Gdb~4 18!.

~17!

Combining Eqs.~8a!, ~10a!, ~11!, and further application of
the chain rule, yields

LW ab~1 18 2!5LW 0,ab~1 18 2!

1Gac~1 3!Gdb~4 18!
dScd~3 4!

dGf g~5 6!
LW f g~5 6 2!,

~18!

where we have introduced the random phase approxima
~RPA! transverse polarization vector function,

LW 0,ab~1 18 2!52 i\PW ~2!Gac~1 2!Gdb~2 18!. ~19!

Note that we sum overc,d in Eq. ~19!, and use the same sum
convention in the other RPA quantities defined below. Eq
tion ~18! can be more easily analyzed if expressed in ter
of scalar quantities. That is possible by rewriting the tra
verse polarization vector function as

LW ab~1 18 2!5PW ~2!Pab~1 18 2!, ~20!

which satisfies the~scalar! Bethe-Salpeter equation,

Pab~1 18 2!5P0,ab~1 18 2!12 i\Gac~1 3!Gdb~4 18!

3

dScd~3 4!

dGf g~5 6!
Pf g~5 6 2!, ~21!

andP0,ab(1 18 2)52 i\Gac(1 2)Gdb(2 18). The equation
above is exact, expressed in terms of a generalized pote
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i\ Kcd f g(3 4 5 6)5dScd(3 4)/dGf g(5 6). Systematic ap-
proximations can be obtained by successive iteration on
self-energy. For computational purposes, it will be helpful
use a four-point function. We start by expressing Eq.~21!
under operator notation,

Pab~1 18 2!5O ab f g
21 ~1 18 5 58!P0,f g~5 58 2!. ~22!

The operatorO and it’s inverseO21 are given by

Oab f g~1 18 5 58!5d~1 5!d~18 58!da fdbg

1 i\Gac~1 3!Gdb~4 18!

3Kcd f g~1 18 5 58!, ~23a!

O abcd
21 ~1 18 5 58!O cd f g

1 ~5 58 2 28!

5O abcd
1 ~1 18 5 58!O cd f g

21 ~5 58 2 28!

5d~1 2!d~18 28!da fdbg . ~23b!

At this point, we define the four-point quantities,

P0,ab~1 18 2 28!52 i\Gac~1 2!Gdb~28 18!, ~24a!

Pab~1 18 2 28!5O ab f g
21 ~1 18 5 58!P0,f g~5 58 2,28!.

~24b!
Direct application of the operatorO on Eq.~24b! gives rise
to the Bethe-Salpeter equation for the four-point polari
tion,

Pab~1 18 2 28!5P0,ab~1 18 2 28!2Gac~1 3!Gdb~4 18!

3Kcd f g~3 4 5 6!Pf g~5 6 2 28!. ~25!

Note that, by construction, Pab(1 2)5Pab(1 1 2)
5Pab(1 1 2 2). If the RPA is used forS, by taking only the
first term on the right-hand side of Eqs.~14a! and~14b!, the
effective potential reads

Kcd f g~3 4 5 6!

5 i\Fe2W~4 3!2
e2

c
PW ~3 38!•DJ ~3 5!•PW ~4!G

3dc fddgd~325!d~426!. ~26!

In what follows, we keep only the longitudinal contributio
Kcd f g(3 4 5 6)' i\e2W(4 3) dc fddg d(325)d(426),
which gives rise to the more tractable equation,

Pab~1 18 2 28!5P0,ab~1 18 2 28!1 i\e2Gac~1 3!

3Gdb~4 18!W~3 4!Pcd~3 4 2 28!.

~27!

At this point, we specify the equations for the incohere
electric field case. The interband components of the car
Green’s function are then left out, since they are driven
the average field, which in this case is zero.7,10 Furthermore,
nondiagonal intraband terms are also not considered, co
tently with the approximations used in the computation
Coulomb matrix elements~see the Appendix!.11 In summary,
he

-

t
er
y

is-
f

Gab(1 18)'dabGaa(1 18). We further switch form the
conduction-valence band to the electron-hole picture, the
tation of which is also discussed in the Appendix. Furth
defining Weh(1 2)52\e2W(1 2), Eq. ~27! simplifies to
~no sum over band indices!

Peh~1 18 2 28!5P0,eh~1 18 2 28!1 iGee~1 3!Ghh~18 4!

3Weh~3 4!Peh~3 4 2 28!, ~28a!

Peh~1 18 2 28!5P0,eh~1 18 2 28!2\Gee~1 3!Ghh~18 4!

3Teh~3 4 5 6!Gee~5 2!Ghh~6 28!,

~28b!

where we have introduced the electron-hole quantity,

P0,eh~1 18 2 28!52 i\Gee~1 2!Ghh~18 28!, ~29!

and have defined~under the integration sign! the T matrix

Weh~3 4!Peh~3 4 2 28!5 i\Teh~3 4 5 6!

3Gee~5 2!Ghh~6 28!.

~30!

Substitution of Eq.~30! into Eq. ~27! yields theT-matrix
equation,

Teh~1 2 18 28!5Weh~1 2!d~1 18!d~2 28!

1 iWeh~1 2!Gee~1 3!

3Ghh~18 4!Tab~3 4 18 28!. ~31!

The screened ladder approximation allows us to write
carrier self-energy as the sum of an RPA term and a co
lation contribution, which can also be expressed by mean
the T matrix defined by Eq.~31! ~see the Appendix!,

See~1 18!5See
HF~1 18!1See

c ~1 18!. ~32!

The notation 15rW1 ,t1 means that time runs under
~Keldysh! contour from2` to 1` on a positive branch,
t15t1 and back on a negative contour from1` to 2`, and
thus t15t2 .9 The nonequilibrium approach can descri
time-dependent phenomena on an ultrafast scale. In this
per, however, we concentrate on steady-state results, w
means that all quantities depend only on the relative timt
5t12t2. The optical spectra and recombination rates in
frequency domain are thus obtained after a Fourier transf
with respect to the relative time, taken in the physical lim
t15t2 . The photons are in a nonequilibrium state while t
carriers are in quasiequilibrium among the various s
bands.

The polarization function has been computed se
consistently, first only with the RPA bubble, then wi
T-matrix corrections and RPA self-energy, and finally wi
the full self-energy, for bulk 3D,13 and MQW’s in the limit
of decoupled superlattices. The full details of the numeri
procedure will be given elsewhere.12 At room temperatures
and down to 77 K, the inclusion ofT-matrix corrections in
the self-energy does not change the spectra. In other wo



et
lt

pe

d

,

e
ng
d
d.
ia
rri

n
o

t
li

led
r
pl
tu
n
n
i

ic
d

s
b

e

il-

th

ate.
-

olic

ive
is-
lly
be
id-
tra

o-
use
ier-

e-

olic

2068 PRB 58M. F. PEREIRA, JR. AND K. HENNEBERGER
the excitonic effects are well described by the Bethe-Salp
equation with RPA propagators, and all numerical resu
presented here are on that level of approximation. We ex
deviations only at very low temperatures, and progress
this direction is under way.

Equations~8b! and ~9a! make it clear that the require
quantity in our computations is actuallyPeh(1 2),
which we will treat in the limit of a two-point in
time, four-point in space function, namely
Peh(R1R18R2R28 ,t1 ,t2)uR185R1 ,R285R2

.

The Bethe-Salpeter orT-matrix equation reduces to th
Wannier exciton equation in the limiting case of vanishi
carrier populations. For a bulk system with parabolic ban
in either 2d or 3d, the excitonic spectrum is recovere
However, with a finite carrier density, the Coulomb potent
is screened, the band gap is modified, and carrier-ca
scattering takes place. The Bethe-Salpeter orT-matrix equa-
tions no longer correspond to a simple excitonic picture a
now describe a many-particle system that in this sense g
beyond the exciton picture.

III. COUPLED BAND QUANTUM WELLS

The expressions presented above are general, do no
pend on the dimensionality of the system, and can be app
to bulk, isolated multiple quantum wells, coherently coup
superlattices, quantum wires, and dots. In order to refe
specific experimental data found in the literature, we ap
them to the quantum-well case at steady state. The quan
confinement and valence-band coupling require the diago
ization of the corresponding Luttinger Hamiltonian. We co
sider only constituent materials in which the band gap
sufficiently large to decouple the conduction bands, wh
are then parabolic. Each conduction subband is then
scribed by themJ561/2 projection of the electron spins,
and a quantization indexj 5c1c2 . . . , aswell as the in-plane
quasimomentumkW . We keep the notation as simple as po
sible and condense the quantum numbers in a single la
n5$s j %. The coupled valence bands each have a heavymJ
563/2 and a light-hole componentmJ561/2. In other
words, in this casen5$p j%, j 5v1v2 . . . . The band labels
a,b,c . . . of the preceding sections will from now on b
replaced by the more specificn1 ,n2 ,n3 . . . . The block di-
agonalization labelp reduces to a spin labels in the absence
er
s
ct

in

s,

l
er

d
es

de-
ed

to
y
m

al-
-
s
h
e-

-
el,

of band coupling.11 The eigenstates of the free-carrier Ham
tonian,H0, can be written as

fnkW5fs jkW~RW !5
1

S1/2
eikW•rWgj~z! ws j , ~33a!

fnkW5fp jkW~RW !5
1

S1/2
eikW•rW@jHp jkW~z!wHp1jLp jkW~z!wLp#.

~33b!

Here, S is the sample area, and the in-plane and grow
direction components of the position vectorRW are given by
(rW,z). The subscriptsH and L denote, respectively, the
heavy- and light-hole components of the coupled band st
wHp , wLp , and ws j are fast-varying lattice-periodic func
tions. The envelope functionsjLp jkW(z), jHp jkW(z), andgj (z)
are obtained from the diagonalization ofH0. The unrenor-
malized dispersion relations for conduction and nonparab
valence bands are given, respectively, by\ek j

e 5\e j
e

1\2k2/2me* and \ek j
v . Note that, away fromk50, the top

valence band has a light-hole component, which can g
rise to structures in the TM absorption and/or gain and em
sion spectra, in the spectral vicinity of the transition usua
assigned as the ‘‘electron–heavy hole,’’ which would not
present if band-coupling effects were not taken into cons
eration. In that simplified case, features in the TM spec
appear only at the pure electron–light-hole transitions.

Following the prescription presented in Ref. 7 for a h
mogeneous approximation for the excited medium, we
the QW Hamiltonian basis of eigenstates to expand Four
transformed Keldysh components~see the Appendix!, with-
out the by now unnecessary tensor and vector notation,

Pl~v!5 (
kW ,n1 ,n2

Pn1 ,n2
~k!L n1 ,n2

l ~k,v!,

L n1 ,n2

l ~k,v!5 (
kW8,n3 ,n4

Pn3 ,n4
~k8!P lS n1n2n3n4

kkk8k8
D ~v!,

~34!

where l5,r ,a denotes, respectively, the backward, r
tarded, and advanced Keldysh components,ni includes all
quantum numbers describing the solutions of the parab
conduction and coupled valence bands, and
ectrum,

ation
P lS n1n2n3n4

kkk8k8
D ~v!5E dRW 3dRW 4fn1kW

* ~RW 3!fn2kW~RW 38!P l~RW 3RW 38RW 4RW 48!~v!fn3kW8~RW 3!fn4kW8
* ~RW 4!uRW 35RW

38

RW 45RW
48
. ~35!

The backward (l5,) Keldysh component is related to the carrier recombination rates and thus to the luminescence sp
while the retarded (l5r ) component contains spectral information. We can show~see the Appendix! that L r satisfies an
equation with the same structure of the semiconductor Bloch equation for the interband polarization,4,14

L n1 ,n2

r ~k,v!5L 0,n1 ,n2

r ~k,v!2
1

Pn1 ,n2
~k!(kW8

L 0,n1 ,n2

r ~k,v!WS n1n2n1n2

kW2kW8
DL n1 ,n2

r ~k8,v!. ~36!

The driving termL 0,n1 ,n2

r (k,v) has real and imaginary parts. The imaginary part is directly computed from the rel

2i Im$L 0,n1 ,n2

r (k,v)%5L 0,n1 ,n2

. (k,v)2L 0,n1 ,n2

, (k,v), where
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L0,n1n2

" ~k,v!5 i\Pn1n2
E dv8

2p
Gn1n1

" ~k,v8!Gn2n2

" ~k,v2v8!

5 i\Pn1n2
E dv8

2p
Ĝn1n1

~k,v8!Ĝn2n2
~k,v2v8!S f e~v8! f h~v2v8!

@12 f e~v8!#@12 f h~v2v8!#
D . ~37!
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The spectral functionĜ is given by

Ĝnn~k,v!5
2\Gn

~\v2\en!21\2Gn
2

, ~38!

where

\en5\en2Re$Snn
r ~k,v!%

and

\Gn52Im$Snn
r ~k,v!%

denote, respectively, the renormalized energies and
dephasing rate. We have considered the resonant cas
which n1 andn2 denote, respectively, electron and hole su
bands. Ford-function-like spectral functions, we then hav
v'en1

1en2
. A Kramers-Kronig transformation yield

Re$L 0,n1 ,n2

r (k,v)%. Here, f a(v)51/(expb@\v2ma#11) is

the Fermi distribution for a quasiparticle of typea, charac-
terized by the quasichemical potentialma , which is deter-
mined self-consistently~see the Appendix for a discussion!.
Combining Eqs.~34!–~38!, and using the KMS relation,1,6 as
discussed in the Appendix, we obtainP: once Im$Pr%, has
been computed,

P,~v!5
22i Im$Pr~v!%

12exp„b~\v2m!…
, ~39!

wherem5me1mh is the total chemical potential. The resu
ing expressions can then be combined with the solution
the photon Green’s-function propagatorD,, which are di-
rectly related to the quantum-mechanical Poynting vec
and thus lead to light-emission spectra.10,7 Note that in both
TE Di j

,(k,v)5D,(k,v)d i ,yd j ,y ~propagation alongx̂) and

TM Di j
,(k,v)5D,(k,v)d i ,zd j ,z ~propagation along ŷ)

modes, the three-dimensional optical cavity can be redu
to an effective one-dimensional resonator, with the out
spectrum given by

I ~v!5
\v2

4p2c
tan2u iP,~v!LFL~v!, ~40!

where the resonator mode structure is given by

FL~v!5
1

u12r 2u2

1

un~v!u2

1

un~v!11u2
e2~v/c!n2~v!LJL~q!.

~41!

Here, JL(q) is a slowly varying function of the cavity
length, andn2(v) is the imaginary part of the complex re
fractive indexn(v). It is computed by means of the relatio
n2;2c2/@2v2Ae(`)#Im Pr , and the background dielectri
he
in

-

of

r,

ed
t

constante(`) can be found in material parameter tables.10,7

If we assume the samples to be antireflection coated, res
tor effects play no role and the emitted light field intens
per unit length can be simplified,I (v);\v2/4p2ciP,(v).
The absorption readsa(v);c/@2vAe(`)#Im Pr(v).

IV. NUMERICAL RESULTS AND DISCUSSION

Figure 1 shows absorption spectra,a(v)
5c/@2vAe(`)#Im Pr(v), of a 50 Å GaAs/AlxGa12xAs
QW at 300 K and corresponding luminescence spectra
contrast to Refs. 2 and 3, our theory provides spectra
different polarizations of the electromagnetic field includi
all relevant band-structure effects. Notably, to the best of
knowledge for the first time, we predict a structure at t
spectral position corresponding to a heavy hole in the T
spectra. It appears in our low-density GaAs data in Fig. 1~b!.
The inset shows the effect more clearly. We have chose
slightly strain-relieved, 60 Å In0.2Ga0.8As/GaAs quantum
well. Strain relief may occur, due to sample imperfections,
when a relatively large number of wells in the multipl
quantum-well sample gives rise to a thick active layer. F
ther lattice accommodation occurs, and the in-plane com
nent of the strain tensor is no longer well described by
simple expressione5(db2dw)/db , where dw and db de-
note, respectively, the well and barrier widths. It is beyo
the scope of this paper to make a first-principles model
the strain relief. Instead, we follow Ref. 15, and introduce
strain-relaxation parameterg, such that e5(12g)(db
2dw)/db , and use this value in the numerical algorithm th
solves the Luttinger Hamiltonian. The confining potential
then deeper and it is possible to have light holes bound in
quantum well, thus leading to strong band coupling.16 We
have multiplied the TM spectrum by a factor 20 for a bet
comparison. The example corresponds to the data obtaine
Ref. 17, where a predominantly TE spectral peak has b
measured at 1.279 eV and a predominantly TM peak
1.32–1.33 eV. It is due to the fact that the top valence ba
~heavy hole atk50) acquires a light-hole component due
band coupling, which is further enhanced by the Coulo
interaction. It also manifests as a bump in the low-ene
side of the TM absorption as seen in Fig. 1~a!. Without the
combined Coulomb and band-coupling effects, these st
tures would not be present. Also, in agreement with exp
mental data,18 the photoluminescence output increases w
increasing carrier density. The amplified spontaneous em
sion that evolves into lasing is consistently described by
approach. Another important feature of our calculations
the gain line shape. It has been recently demonstrated
the spurious absorption below the gain region, which appe
if the Pauli-blocking factor is written under the quasipartic
approximation, i.e., with the Fermi functions evaluated at
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dispersion relations,f e„ee(k)…, f h„eh(k)…, can be eliminated
by considering nondiagonal dephasing terms in the~coher-
ent! polarization.19 Another consequence of the quasipartic
approximation, so far not discussed in the literature, is
development of negative luminescence on the high-ene
side of the spectra. None of these artifacts appear in
alternative approach presented here, since by making
that the polarization function satisfies the KMS conditio
high k value contributions that ultimately give rise to th
artifacts are eliminated. Furthermore, since our theory a
matically guarantees that the switch from absorption to g
occurs exactly at the chemical potential, the technique p
posed in Ref. 20 to extract the gain spectra from spontane
emission data can be used safely without a discrepancy
tween ‘‘experimental’’ and ‘‘computed’’ total chemical po
tential differences. Note that, for the comparison with th
specific experiment, the full chemical potential, which d
scribes the exciton gas at low carrier densities, should
used, and it can be self-consistently computed through
~E2b!. However, for the purposes of this paper, we can
the self-consistent solution of Eq.~E3! without ambiguities,
since, as previously discussed, in the temperature range
siderer here, the introduction ofT-matrix corrections in the
spectral density of carriers does not alter the optical spec

FIG. 1. ~a! TE ~dashed! and TM ~solid! absorption, with corre-
sponding photoluminescence~PL! spectra, ~b! for a 50 Å
GaAs-Al0.23Ga0.77As QW as a function of detuning with respect
the free-carrier band gap at 300 K. From top to bottom the car
densities for absorption and PL areN50,0.1,0.5,1.0,2.0,2.5,3.0 an
2.5,2.0,1.0,0.5,0.131018 carriers/cm3. The inset compares the TE
and TM luminescence spectra of a strain-relieved, 60
In0.2Ga0.8As/GaAs quantum well at 300 K. The carrier density us
is N55.031017 carriers/cm3. The x axis is in eV ~TM spectrum
X20!.
e
y
e
re

,

o-
in
o-
us
e-

t
-
e
q.
e
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Figure 2 depicts two-beam photoluminescence excita
spectroscopy~TBPLE! and the corresponding absorptio
spectra, with the same normalization, in good qualitat
agreement with experiments.21 The numerical method fol-
lows directly the experimental technique. The linear abso
tion is computed and from that, assuming that all the ligh
converted into carriers, the pump-generated density at ste
state can be calculated, using a lifetimet5100 ps. The pump
energy is fixed atvpu and the luminescence, due to the pum
only, is computed at the fixed energyvdet. Additional carri-
ers are generated by the probe beam, which is absorbed
cording to the nonlinear absorption created by the pump.
luminescence due to both beams is detected atvdet, and the
constant pump contribution is subtracted. The figures de
onstrate that TBPLE and nonlinear absorption are qua
tively related, and the higher density curves illustrate
coexistence of gain and structures due to Coulomb corr
tions, which correspond to a ‘‘bleached exciton,’’ or bette
to a strongly interacting electron-hole plasma. Note, ho
ever, that concentration and well-width fluctuations give r
to inhomogeneous broadening, usually larger for thin
quantum wells. Figure 2 also shows that, as the inhomo
neous broadening increases, the observed nonlinear sp

r

FIG. 2. ~a! Two-beam photoluminescence excitation spectr
copy spectra~solid! for a 30 Å ZnCdSe/ZnSSe QW at at plasm
temperatureTpl577 K. From top to bottom the pump-generate
carrier densities areN50.42,0.63,0.84,1.04,1.25,1.67,2.5131018

carriers/cm3. Dashed: corresponding absorption spectra, with
same normalization. In~b!, the high-density absorption and/or ga
spectra are shown, and from the dashed to the dot-dashed curv
inhomogeneous broadening due to alloy concentration fluctuatio
increased. The inset shows a comparison of our theory~solid! with
the TBPLE experiments~symbols! from Ref. 21 for a 100 Å
sample.
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loses the sharp ‘‘excitonic features.’’ In other words, und
the presence of strong inhomogeneities, pump and probe
periments alone are not capable of identifying as ‘‘ex
tonic’’ or not the mechanism that yields gain, carrier, reco
bination, and thus lasing. In Ref. 22 we complement the b
discussion given here, by analyzing another sample, obt
ing the same qualitative conclusion. We further presen
systematic comparison between additional numerical res
and experiments under wide temperature and excitation
sity conditions, further illustrating the relevance of the the
retical approach.

V. SUMMARY

In summary, the first-principles theory for light emissio
and absorption in semiconductors presented here provid
technique to study Coulomb effects beyond RPA in semic
ductors. It explains optical absorption, gain, and emiss
spectra consistently, and eliminates unphysical features
satisfying important sum rules. It further demonstrates
difficulty in analyzing optical experiments under the pre
ence of strong inhomogeneities and demonstrates
TBPLE and nonlinear absorption are related, the first te
nique being advantageous if, e.g., a laser is to be stu
under operation conditions, without the need to pierce a h
through the sample, and consequently destroy the devic
required for absorption measurements. We hope that this
per will stimulate detailed optical measurements in hig
quality samples with pure homogeneous broadening in o
to understand physical processes that are of general int
for solid-state physics by themselves and at the same
relevant for technological applications. The approach p
sented can also be used as the starting point for the rea
simulation of light-emitting and processing devices.
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APPENDIX A: THE BETHE-SALPETER EQUATION
FOR THE RETARDED POLARIZATION

There is a linear dependence between the differ
Keldysh components of the Green’s functions. LetO repre-
sent the two-point Green’s functions (DJ ,G,W) or their self-
energies (PJ ,S,p). Then the retarded (r ), advanced (a), for-
r
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ward (.), and backward (,) quantities are connected b
the relations

Or~12!5O11~12!2O12~12![O11~12!2O,~12!

5O21~12!2O22~12![O.~12!2O22~12!,

~A1a!

Oa~12!5O11~12!2O21~12![O11~12!2O.~12!

5O12~12!2O22~12![O,~12!2O22~12!.

~A1b!

The time integration follows the convention

T~11 31!5E d~2!O~11 2!M~2 31!

5E d~2!@O~11 21!M~21 31!

2O~11 22!M~22 31!#, ~A2a!

T~11 32!5E d~2!O~11 2!M~2 32!

5E d~2!@O~11 21!M~21 32!

2O~11 22!M~22 32!#, ~A2b!

T~12 32!5E d~2!O~12 2!M~2 32!

5E d~2!@O~12 21!M~21 32!

2O~12 22!M~22 32!#, ~A2c!

T~12 31!5E d~2!O~12 2!M~2 31!

5E d~2!@O~12 21!M~21 31!

2O~12 22!M~22 31!#. ~A2d!

We eliminate the by now unnecessary subband indices
clarity. $a,b% now denote branch indices along the Keldy

contour.9 Starting from Eq.~27!, and using static screening
which is diagonal in the branch indices, we can see that
different Keldysh components of the four-point in spac
two-point in time transverse polarization function satisfy t
equation
P ab~R1R18R2R28 ,t1t2!5P 0
ab~R1R18R2R28 ,t1t2!

2(
l
E dt3dR3R4P 0

al~R1R18R3R3 ,t1t3!W~R3R4!P lb~R3 R4 R2 R28 ,t3t2!, ~A3!

which we write, schematically, as

P ab5P 0
ab2WP 0

alP lb, ~A4!
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and consequently,

P r5P112P,

5P 0
112P 0

,2WP 0
11P111WP 0

11P,1WP 0
,P.2WP 0

.P,

5P 0
r 2WP 0

11~P112P,!1WP 0
,~P.2P22!

5P 0
r 2WP 0

11P r1WP 0
,P r

5P 0
r 2W~P 0

112P 0
,!P r5P 0

r 2WP 0
rP r . ~A5!

At steady state, we thus obtain

P ab~R1R18R2R28 ,v!5P 0
ab~R1R18R2R28 ,v!2E dR3R4P 0

al~R1R18R3R3 ,v!W~R3R4!P lb~R3R4R2R28 ,v!. ~A6!

At this point, we select a given linear polarization, and, as discussed in the main text, the tensor and vector notatio
dropped, and we may express the Keldysh components of the transverse polarization in the homogeneous approxim7

Pab~R1R2 ,v!5
d~R12R2!

V
Pab~v!,

Pab~v!5
4p ie\

cV E dR1dR2PW ~R1R18!L
ab~R1R18R2 ,v!uR15R18

5
4p ie\

cV E dR1dR2P~R1R18!P~R2!P ab~R1R18R2R2 ,v!uR15R18
. ~A7!

If we now expand the polarization function in eigenstates of the free carrier Hamiltonian, defined in Eqs.~33a! and~33b!, we
obtain ~the vector notation for position and momenta will not be used unless necessary!

Pab~v!5
4pe2\

c2V
(

n1n2n3n4
k1k2k3k4

P abS n1n2n3n4

k1k2k3k4
D

3~v!E dR1dR2@P~R1R18!P~R2!fn1
~k1R1!fn2

* ~k2R18!fn3
~k3R2!fn4

* ~k4R2!#uR15R18

5
4pe2\

c2V
(

n1n2n3n4

kk8

Pn1n2
~k!Pn3n4

* ~k!P abS n1n2n3n4

kkk8k8
D ~v!. ~A8!

The notation used for the matrix elements of a given operator,O, means

OS n1n2n3n4

k1k2k3k4
D 5E dRW 3dRW 4fn1kW1

* ~RW 3!fn2kW2
~RW 38!O~RW 3RW 38RW 4RW 48!fn3kW3

~RW 3!fn4kW4
* ~RW 4!u

RW 45RW 48

RW 35RW 38 .
~A9!

Equation~A6! for the retarded component thus reduces to

P r S n1n2n3n4

kkk8k8
D ~v!5P 0

r S n1n2n3n4

kkk8k8
D ~v!2 (

m1m2m3m4
q1q3q4

P 0
r S n1n2m1m2

kkq1q1
D ~v!P r S m3m4n3n4

q3q4k8k8
D ~v!WS m1m2m3m4

q1q1q12q3
D ,

~A10!

where we have used the relation~see Appendix B!

WS m1m2m3m4

q1q1q3q4
D 5dq12q3

dq12q4
WS m1m2m3m4

q1q1q12q3
D . ~A11!

As in Ref. 7, we keep only diagonal terms in the one-particle Green’s functions, i.e.,Gn1n2
(k,v);dn1 ,n2

Gn1n1
(k,v). Fur-

thermore, we consider only the combination of indices that maximizes the screened potential matrix elements, nam



d
n then be
n,
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WS m1m2m3m4

q1q1q32q4
D;dm1 ,m2

dm1 ,m2
dq1 ,q4

WS m1m2m1m2

q12q3
D , ~A12!

and make an analogous approximation forP r andP:, which leads to the equation~we can now use a simpler notation!

P n1 ,n2

r ~k,v!5P 0,n1 ,n2

r ~k,v!2(
kW8

P 0,n1 ,n2

r ~k,v!WS n1n2n1n2

kW2kW8
DP n1 ,n2

r ~k8,v!, ~A13!

which gives rise directly to Eq.~36!. A similar derivation yields

P n1 ,n2

, ~k,v!5P 0,n1 ,n2

, ~k,v!2(
kW8

WS n1n2n1n2

kW2kW8
D @P 0,n1 ,n2

r ~k,v!P n1 ,n2

, ~k8,v!1P 0,n1 ,n2

, ~k,v!P n1 ,n2

a ~k8,v!#. ~A14!

APPENDIX B: THE MATRIX ELEMENTS OF THE SCREENED POTENTIAL

The eigenfunctions of the free-carrier HamiltonianH0 given by Eqs.~33a! and ~33b! have slowly varying envelope an
fast-varying atomiclike components. The latter are orthonormal and need not be considered here. The integrals ca
reduced to the envelope terms~envelope function approximation!, and, for simplicity, we denote a given envelope functio
fn(kW ,RW ) [ 1/AS exp(ikW•RW )Fn(kW ,z), whereS is the sample area. A general matrix element then has the form

WS n1n2n3n4

qW 1qW 2qW 3qW 4
D 5E dRW 3dRW 4fn1qW 1

* ~RW 3!fn2qW 2
~RW 3!W~RW 3RW 4!fn3q3

W ~RW 3!fn4qW 4
* ~RW 4!

5
1

S2E drW3drW4e2 iqW 1•RW 3eiqW 2•RW 4eiqW 3•RW 3e2 iqW 4•RW 4E dz3dz4Fn1
* ~qW 1,z3!Fn2

~qW 2,z4!Fn3
~qW 3,z3!

3Fn4
* ~qW 4,z4!W~rW32rW4 ;z32z4!

5dqW 12qW 3,qW 22qW 4
E dz3dz4Fn1

* ~qW 1,z3!Fn2
~qW 2,z4!Fn3

~qW 11kW ,z3!Fn4
* ~qW 41kW ,z4!E drW e2 irW •kW W~rW ,z3 ,z4!

5dqW 12qW 3,qW 22qW 4
WS n1n2n3n4

qW 1qW 2kW
D , ~B1!
e
e

po-

for

-

where kW 5qW 12qW 35qW 22qW 4. A concrete expression for th
screened potential is necessary to go further. The gen
structure of the bare potential,

V~rW ,z,z8!5
e2

e0
Ar31~z2z8!2, ~B2!

is readily obtained by using the expansion

1

R
5

2p

S (
jW

1

j
ei jW•rWe2juz2z8u, ~B3!

and can be expressed as

VS n1n2n3n4

qW 1qW 2qW 3qW 4
D 5dqW 12qW 3,qW 22qW 4

VS n1n2n3n4

qW 1qW 2kW
D

5
2pe2

e0kS
FS n1n2n3n4

qW 1qW 2kW
D , ~B4!

where the envelope-function form factor reads
ralFS n1n2n3n4

qW 1qW 2kW
D 5E dz3dz4Fn1

* ~qW 1,z3!Fn2
~qW 2,z4!

3Fn3
~qW 11kW ,z3!Fn4

* ~qW 41kW ,z4!e2kuz32z4u.

~B5!

We then use the same general structure for the screened
tential, leading to Eq.~A11!.

APPENDIX C: THE SCREENED LADDER
APPROXIMATION FOR THE CARRIER SELF-ENERGY

We start the derivation by substituting the expression
the longitudinal vertex, Eq.~14a! into Eq. ~12a! ~transverse
contributions are not considered!. Next, we replace the re
maining vertex by its first iteration, namely,gg f(6 7 4)
'2dg, fd(6 7)d(6 4), and obtain
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Saa~1 2!5 ie2\Gaa~1 2!W~2 1!

1e2\Gaa~1 3!W~6 1!tad~3 7 2 8!

3Gdd~8 6!Gdd~6 7!, ~C1!

where we have introduced the quantity

tab~1 2 18 28!5 i
dSaa~1 18!

dGbb~28 2!
. ~C2!

Taking functional derivatives on both sides of Eq.~C2!, we
obtain a recurrence relation fortab . Bound-state contribu-
tions are obtained whenaÞb, with a spanning the conduc
tion andb the valence bands~or vice versa!. We outline here
the derivation for $a,b%5$conduction,valence%, since the
other case is analogous. We keep only the terms that yie
ladder approximation. In the other terms, we can replacetab
by its first order iteration. The resulting are higher ord
contributions that do not give rise to bound-state contri
tions and are thus neglected,22

tab~1 5 2 4!5 i\2e4W~2 5!W~4 1!Gaa~1 2!Gbb~5 4!

1 i\e2W~4 5!Gaa~1 3!

3tab~3 5 2 8!Gbb~8 4!. ~C3!

Switching to the electron-hole picture,$a,b%5$e,h%, which
leaves the conduction-band operators unaltered, but cha
the valence-band operators~since the creation of a hole co
responds to the annihilation of a valence-band electron!, and
usingWeh(1 2)52\e2W(1 2), yields

teh~1 4 2 5!5 iWeh~2 5!Weh~4 1!Gee~1 2!Ghh~4 5!

1 iWeh~4 1!Gee~1 3!

3teh~3 8 2 5!Ghh~4 8!. ~C4!

If we now define theT matrix

teh~1 2 18 28!52d~1 18!d~2 28!W~1 2!

1Teh~1 2 18 28! ~C5!

and substitute Eq.~C5! into Eq.~C4!, we obtain theT-matrix
equation,
a

r
-

es

Teh~1 2 18 28!5d~1 18!d~2 28!Weh~1 2!

1 iWeh~1 2!Gee~1 3!

3Ghh~2 4!Teh~3 4 18 28!. ~C6!

The self-energy can then be written as a sum of a Hart
Fock and a screened-ladder correlation contribution,

See~1 18!5See
HF~1 18!1See

c ~1 18!, ~C7a!

See
HF~1 18!52 i\e2G~1 2!W~2 1!, ~C7b!

See
c ~1 18!52 iTeh9 ~1 4 18 5!G~5 4!, ~C7c!

where we have used Eq.~C6!, and introduced the projectedT
matrix, i.e., without the first two iterations,

Teh9 ~1 2 18 28!5Teh~1 2 18 28!

2d~1 18!d~2 28!Weh~1 2!

2 iWeh~1 2!Weh~18 28!

3G~1 18!G~2 28!. ~C8!

Note thatTeh as defined by Eq.~C6! is the sameT matrix of
Eq. ~31! in terms of which the polarization function is writ
ten, which allows for a self-consistent computation of t
self-energy and polarization functions in the same orde
the Coulomb correlations.

APPENDIX D: THE KMS RELATION
FOR THE TRANSVERSE POLARIZATION FUNCTION

In order to prove that the transverse polarization funct
satisfies the Kubo-Martin-Schwinger~KMS! relation we start
from an inspection of Eqs.~16a!, ~20!, and ~34!. It is then
clear that ifP n1 ,n2

l (k,v) satisfies the KMS, then, automat

cally, L n1 ,n2

l (k,v) andPn1 ,n2

l (k,v) also satisfy it.

Using the relation 2i Im$P 0,n1 ,n2

r (k,v)%5P 0,n1 ,n2

. (k,v)

2P 0,n1 ,n2

, (k,v) and Eq.~37!, we obtain
2 Im$P 0,n1 ,n2

r ~k,v!%5\E dv8

2p
Ĝn1n1

~k,v8!Ĝn2n2
~k,v2v8!@12 f e~v8!2 f h~v2v8!#

5\@eb~\v2m!21#E dv8

2p
Ĝn1n1

~k,v8!Ĝn2n2
~k,v2v8! f e~v8! f h~v2v8!

~D1a!

5 i @12eb~\v2m!#P 0,n1 ,n2

, ~k,v!, ~D1b!
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which is the KMS relation betweenP 0,n1 ,n2

, and

Im P 0,n1 ,n2

r . The next step is to inspect Eq.~A14! and use

the fact thatP 0,n1 ,n2

, (k,v) and P n1 ,n2

, (k,v) are purely

imaginary quantities, andP n1 ,n2

r (k,v)5P n1 ,n2

a (k,v)* .

Consequently,

Im$P n1 ,n2

, ~k,v!%Im$P 0,n1 ,n2

r ~k,v!%

2Im$P 0,n1 ,n2

, ~k,v!%Im$P n1 ,n2

r ~k,v!%50. ~D2!

Use of Eq.~D1b! gives rise to the KMS relation betwee
Im$P n1 ,n2

, (k,v)% andP n1 ,n2

, (k,v),

2 Im$P n1 ,n2

r ~k,v!%5 i @12eb~\v2m!#P n1 ,n2

, ~k,v!.

~D3!

APPENDIX E: SELF-CONSISTENT CALCULATION
OF THE QUASICHEMICAL POTENTIALS

The average number of particles in a system of partic
of type a ~electrons or holes! reads

Na5E ^Ca
†~R!Ca~R!&dR, ~E1!

which can be expanded in the quantum-well basis defined
Eqs.~33a! and ~33b!,

Na5 (
n1n2

kWkW8

E fn1kW
* ~R!fn2kW8~R!^Cn1kW

†
~R!Cn2kW8~R!&dR

52 i\(
n1kW

E dv

2p
Gn1n1

, ~k,v! f a~v!

52 i\(
n1kW

E dv

2p
Ĝn1n1

~k,v! f a~v! ~E2a!

5(
nkW

E d~\v!

2p

2\Gn

\v2\en~k!21\2Gn
2

f a~v!,

~E2b!

where we have the fact that the$fn% make an orthonorma
basis. Equation~E2b! allows for the self-consistent compu
tation of the chemical potentials including Coulomb corre
i-

H

tt

s

s

y

-

tions through the real and imaginary parts of the self-ene
Saa included in en(k) and Gn(k). In the quasiparticle ap-
proximation,\Gn(k)→0, we obtain the usual~spin summa-
tion is included in the subscriptn)

Na5(
nkW

f a„en~k!…. ~E3!

APPENDIX F: EFFICIENT NUMERICAL
APPROXIMATION FOR THE RPA TRANSVERSE

POLARIZATION FUNCTION

We have shown that, onceP 0,n1 ,n2

r (k,v) satisfies the

KMS relation, so doesP n1 ,n2

r (k,v). Here we present an ap

proximation that allows for a fast computation of the RP
input, without the need for a numerical frequency integrat
of the spectral functions. We start from the exact Eq.~D1a!,
and note that the frequency-dependent inversion density
be expressed as

12 f e~v8!2 f h~v2v8!5$@12 f e~v8!#@12 f h~v2v8!#

1 f e~v8! f h~v2v8!%

3tanh@~bv2m!/2#. ~F1!

The envelope term between curly brackets is then repla
by one, thus generalizing, for the full frequency-depend
case, an approximation for the inversion factor, actually
cluded by hand in Ref. 24. By this procedure we demonst
why the ansatz used in the past is accurate and give a ste
step derivation for it. We further evaluate the dephasing f
tors at the peak of the corresponding spectral functions,
the frequency integration can be easily performed anal
cally,

Im P 0,n1 ,n2

r 5tanh@~bv2m!/2#
2Gn1 ,n2

Gn1 ,n2

2 1~v2en1
2en2

!2
,

~F2!

whereGn1 ,n2
5Gn1

(en1
)1Gn2

(en2
), and ReP 0,n1 ,n2

r is com-

puted by means of a Kramers-Kronig transformation. T
KMS condition is fully satisfied by the expressions abov
which can be used as a consistent and efficient input in
solution of the Bethe-Salpeter equation for the full polariz
tion function.
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