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Microscopic theory for the influence of Coulomb correlations in the light-emission properties
of semiconductor quantum wells
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A nonequilibrium Green’s-functioif -matrix approach is presented for the consistent computation of semi-
conductor quantum-well optical spectra including strong Coulomb correlations in the coupled photon and
carrier system. Numerical solutions of the Bethe-Salpeter-type equations yield good agreement with recent
absorption and/or gain and emission experimei88163-182008)02428-X]

I. INTRODUCTION nized as follows. In Sec. Il we summarize the main steps in
the derivation of the Green’s-function equations. We start
The electronic properties of semiconductors are well unwith the Hamiltonian and necessary definitions and present a
derstood in terms of many-body effedtsiowever, there is step by step derivation of the Bethe-Salpeter-type equations
as yet no first-principles theory capable of realistically pre-using functional derivative techniques. Equations for coupled
dicting the influence of Coulomb correlations in the evolu-multisubband quantum-well systems are derived in Sec. Ill.
tion of light emission spectra of semiconductors with in- Numerical results and discussions are presented in Sec. IV,
creasing carrier density consistently including, e.g., quasiwhich is followed by a brief summary. Complementary re-
two-dimensional confinement and coupled band-structursults, which we refer to in the main text, are summarized in
effects, specially under incoherent excitation or cases ithe Appendixes, including a derivation of tliematrix equa-
which the polarization is destroyed by fast dephasing protion in the electron-hole case and its relation to the correla-
cesses within the detection time. To our knowledge, the firstion self-energy.
attempt to compute both multiple-quantum-w@iQW) ab-
sorption and luminescence spectra in a wide density range,
including the light and carrier field operators on the same Il. NONEQUILIBRIUM GREEN'S-FUNCTION
fully quantum-mechanical footing, has been given in Ref. 2. EXPRESSIONS

The general theory is formally sound and merits consider- |, yig section, we summarize the main steps in the deri-
ation for the interesting limiting cases it provides. However,vatiOn of the Green's-function expressions, which are valid

fche numerj_cal applicat_ions_presentet_j are restricteq to ideafsyjer nonequilibrium conditions and give rise to a quantum
ized conditions that give rise to serious shortcomings. Th%tatistical description of light-emission and absorption pro-

valence bands are parabolic and the Coulomb potentiglogges in semiconductors including higher-order Coulomb
orrelations. A few of the equations, such as the starting

strictly two-dimensional. Dephasing effects that broaden th
spectral lines are not included. The line shapes are not reali,:\+ Hamiltonian. have been presented in a previous

istic, and the predicted emitted output reduces with increass pjication? but are repeated here under a different notation,
ing carrier density, in contrast to vast experimental evidenc€it hand indices explicitly written. This alternative presen-

The last limitation ras been rec]sntly overcorﬂe by mlc_eans %tion is necessary to clarify some of the functional deriva-
a broader spectral representattorlowever, the idealized 6 steps, notably those involving the polarization function

model with a bare Coulomb potential and parabolic bands 'gxnd theT-matrix equations given in the Appendix
meaningful for quantum wires, as demonstrated by a goo '

agreement with experimental data, but not for MQWPs.
Altogether, the approximations cannot realistically describe A. Hamiltonian and Dyson equations

MQW absorption and/or gain and emission spetfrai- i : , ,
nally, in both Refs. 2 and 3 and previous work in the litera- The laser-excited semiconductor is described by means of

¢ th i d ; : stent o incl cfl many-particle Hamiltonian, which can be separated in elec-
ure, the equations do not present a consistent way 1o INCUgg, ;- (el), electron-light-field interactionl{, free-field F)
higher order Coulomb correlations in all relevant self-

. . terms®
energies, and thus do not provide the means to check their

importance by means of optical experiments. In this paper,
MQW absorption and/or gain and light emission are consis- H=Hg+H,+Hg, (1a
tently modeled and the numerical results are in good agree-
ment with steady-state experiments. The technique is able to
describe the evolution from purely excitonic systems at very _ f T B ==
. - . . . . Ho= VY (RH ¥V, (R)dR
low density to the highly excited, inverted medium regime, el Ea: a(RHoWa(R)d
where a plasma of interacting electron holes dominates the )
spectra. Low and/or high energy side artifacts in the gain e f T Byt S 3 B
and/or luminescence are eliminated in our approach by en- * Zaz,b Va(RPp(ROVR=R')
suring that the polarization function satisfies the Kubo- . o
Martin-Schwinger(KMS) condition® The paper is orga- XW(R"),¥4(R)dRAR, (1b)
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denotes the time-ordering operator alddglin other words,
Hi=- cman f q’a(R) (R)\Pb(R)dR the notationl=|§1,tl means that time runs under the con-
tour from — to +% on a positive branch, =t and back

1 N T on a negative branch fromo to —«, and thug,=t_, e.g.,
-3 [GuwR-ARR (19 ? R
| N . tr{poTc[ ARy, ty) Scl}
: Aeri(1)=(A(Ry,t1))= o Sc}_ , (73
He=2 hog(d, dyg+1/2), (1d) - - Po
Aq
where the labels,b,c, ... denote generically the several Sc=Tc¢ exp( —if Hext(E)d'E)- (7b)
conduction and valence subban@#R) denotes the electron c

field operator, and/(R—R')=e? eg|R—R’| is the instanta-  The Keldysh Green’s-function time evolution is described by
neous bare Coulomb interaction. The current density operddyson equationgsum over repeated arguments is assumed
tor reads

[Goac(l 3)=Tac(1 3)1Gen(3 2)=dan(1 2), (83

- - —ieh - - - R
Jan(R) = 5 VAR VI H(R) ~[VILRTTH(R)}-
2
The vector potential operatdt is expanded in terms of cre- [Wo (1 13)=p(13)]W(3 2)=45(1 2), (80)
ation (dJr ) and annihilation operatorsl( ;) of photons in equivalently

the Coulomb gauge. In order to derive a hierarchy of equa-

tions valid for both equilibrium and nonequilibrium condi- 5’(1 2):50(1 2)+50(1 4)B(43)D(3 2) (93
tions, we consider the action of external charggg and —

currentsle,, and we describe the effect through the addition G, (1 2) GOab(l 2)+Go ac(l 4)2cd(4 3)Gdb(3 2),
of an external term to the total Hamiltonian, -

[DoY(13)-P(13)]D(32)=5(1 2), (8b)

~(9b)
Hr=H+Hex, (39 W(1 2)=V(1 2)+V(1 4)p(43)W(3 2), (90
Hext:f [pext(ﬁ,t)q’(ﬁ)—1/Cjext(|§,t)'5~( R)JdR. where § is the transverse delta function. The bare Coulomb

(3b) potential is diagonal in the time indice¥/(1 2)=1/|I5l
—Ry|8(t;—t,). The inverse free propagato,?, Dy,

The scalar potentiaP(R) is the solution of Poisson’s Wc?l: are given by

equatiort’’
J
— - - - - -1 = i _—
(R~ [ polRVIR-R )R, @ Goar(L 2) {'%tl heff@}‘ﬂi 2. (109
where we have introduced the total charged particle density,
Prot= P+ Pext, and W, 1(12)= (10b)
. S 2 -

The excited semiconductor is described by nonequilibriunHere, €, is the static dielectric function. The effective one-
Green’s functions for the interacting quasiparticles: carriergarticle Hamiltonian in the equation for the free carrier
(G), photons D), and plasmonsW), by propagator reads,

ihGap(1 2)=(Vo(1)W}(2)), (68 eifi .
- - - he(1) =[Ho( 1)+ Per( 1)1 85+ - Aer(1)- V(D).

- ¢ SAer(1) (11)

Pl2= 77 53ei<2>’

The self-energieg., P, and p denoting, respectively, the
carrier self-energy, the transverse, and the longitudinal polar-
W(1 2)= = (6b) ization functions are given by

n Sap(12)= —IﬁeGac(l 3)W(4 1)'ch(3 24)
where we have used functional derivatives with respect to  —— -

the external perturbations. The quantum-mechanical aver- —|hl'[(1 1 )Gac(l 3)D(4 1 Wen(32 4|11,
ages are calculated along the double-time Keldysh contour, ——— - =
C.° Time arguments running alor@ are underlined, antc (129
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8ping(1) emission in the photon kinetics. It is responsible for the
p(l2)=——, (12  inclusion of bound stategexcitons in the photons spectral
—_ 6D(2) density.
A 5jind(1) B. Bethe-Salpeter equation
P(12)=- o E o (129 The Bethe-Salpeter equation for the transverse polariza-
- OAcr(2) tion function presented below allows the inclusion of exci-

tonic corrections in the spectral density of photons. We give
a general derivation, valid for both nonequilibrium and equi-
librium conditions, and present solutions for the steady-state

where we have introduced the longitudinabnd transverse
I' vertex functions,

SGr M1 2) limit that are numerically solved and compared with experi-
(123)= bat” = ments in Sec. IV. We start by rewriting the two-point tensor
Tz 2 SPer(3) in Eqg. (120 in terms of a three-point vector,
- - 47re? R
i 4 5Gpa(1 2) B(12)= " 1i(11%) 011" 2), (169
[pa(123)=—— ———, (13 N -—— -
- € OAer(3)
, : BT ifc 0Gan(11")
which are obtained upon substitution into the Dyson equa- A oy .
ti Lap(11' 2)=— ———. (16b)
ions, —— = & A2
62pa(1 2) Making use of the chain rule for functional derivatives, we
Ypa(1 2 3)=—€8p,0(1 3)8(1 2)+ ————=-G4(4 6) obtain
- — 7 8Ggy(45) —_
o SG X3 4)
X v4t(6 7 3)Gyg(7 5), (143 . cd
PRIt Lap(11' 2)= =Gl 1 3)———=Gp(4 1').
_ — = _ — Aef‘f 2 -
R 47e | — (17)
INpa(123)=— —2H(1 1')8pa0(1 3)8(1 2)|1=1-
- c - - - = - - Combining Egs(8a), (103, (11), and further application of
53 4a(1 2) ) the chain rule, yields
56 5 Ceatd OB T3GW(TD): £ (11 2)= L1 1" 2)
(14b) 6%cq(3 4)
The induced particle and current densities are expressed in T Gac(1 3)Gap(4 1_)—5Gfg(5 G)Efg(gfz)v

terms of the carrier Green'’s functions by
(18)

where we have introduced the random phase approximation
(RPA) transverse polarization vector function,

Pind,a(l):_iﬁeGaa(l lt)r (159

Jingan(1)=—ieAll(1 15)G,p(1 17). (15b)

Detailed band-structure and quantum-confinement effects are ﬁoxab(l E, E): _'ﬁH(E)Gac(E E)Gdb@ E,)' (19
included in the theory through the teimg in the free-carrier  Note that we sum over,d in Eq.(19), and use the same sum
propagatorG, *, and also in the optical transition selection conyention in the other RPA guantities defined below. Equa-
rules dfascribed l:ly the rrlatrix elements of the velocity operagjgn (18) can be more easily analyzed if expressed in terms
tor, II(12)=[II(1)+II*(2)]/2=h[V(1)—V(2)]/2img.  of scalar quantities. That is possible by rewriting the trans-
The carrier self-energ}. leads to band-gap renormalization, verse polarization vector function as

includes dynamic effects such as corrections beyond Hartree- ) R

Fock scattering rates in the carrier’s kinetics, and enables the Lap(1 1" 2)=TI(2)Pap(1 1" 2), (20
description of bound statéexcitong in the spectral density ) o - - -0 = )

of carriers, defining the degree of ionization. The longitudi-Which satisfies théscalay Bethe-Salpeter equation,

nal polarization functionp is responsible for(plasmon Voo ) : ,
screening of the Coulomb interaction. Furthermore, it de- Pap(1 1 E)_Po'ab(l ! 2)+_IﬁGa°(E E)Gdb(f 1_)

scribes dynamical screening, screening by excitons, plasmon 53.4(3 4)
kinetics and the buildup of screening, although these topics % cdi> ™ P56 2) 21)
will not be addressed in this paper. The transverse polariza- 8G4(5 6) fgl= = <h

tion function P yields the excitation-dependent absorption _ _
coefficient and refractive index, and defines scattering rate@nd Poap(1l 1 2)=—i:G,(1 2)Gyp(2 1'). The equation
(generation and/or recombination, and absorption and/oabove is éxact, expressed in ferms of a generalized potential
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i Kegig(3 45 6)=02.4(3 4)/5G¢4(5 6). Systematic ap-
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Gan(1 1')~6,pGaa(1 1"). We further switch form the

proximations can be obtained by successive iteration on theonduction-valence band to the electron-hole picture, the no-
self-energy. For computational purposes, it will be helpful totation of which is also discussed in the Appendix. Further

use a four-point function. We start by expressing E2{)
under operator notation,

Pan(1 1" 2)=0pig(1 1" 5 5")Pog(5 5" 2). (22
The operato© and it's inverse® ~* are given by
Oapiglt 15 57)=3(1 5)3(L" 5) dardng
+i1G,a(1 3)Gyp(4 1)

XKearg(1 1’ 55'), (233
Oaped 11/ 55) 0445 5" 2 2")
=03ped1 1 55)0 (55 22")
=8(12)8(1' 2')8,18pg- (23b
At this point, We_d_efin; th_e four-point quantities,
Poan(1 1" 22")=—1hG,(1 2)Gyp(2" 17), (24a

Pap(1 1" 2 2’)=(’);blfg(1 1" 55")Pyse(5 5" 2,2").

(24b
Direct application of the operatd@® on Eq.(24b) gives rise

to the Bethe-Salpeter equation for the four-point polariza-

tion,
Pan(1 1" 2 2)=Poan(1 1" 2 2") = Cae(1 3)Gap(4 1)
><chfg(3 45 G)Pfg(5 62 2').

(29

Note that, by construction, P,p(1 2)=Pau(1 1 2)

=Pap(1 1 2 2). If the RPAis used fok, by taking only the

first term on the right-hand side of Eqd.4a and(14b), the
effective potential reads

chfg(§ f E E)
e’ . - -
=ih| e®W(4 3)—€H(3 3')-D(3 5)-11(4)

X 84184gd(3—5) 5(4—6). (26)

In what follows, we keep only the longitudinal contribution,

Kearg(3 45 6)~ihe*W(4 3)  8cidyg 6(3—5)8(4-6),
which gives rise to the more tractable equation, -
Pap(1 1 22")=Pyap(1 1" 2 2")+ie?Gy(1 3)

X Gap(4 1 )W(3 4)Pey(3 4 2 2").
(27)

defining Wep(1 2)= —ﬁeZW(l 2), Eq. (27) simplifies to
(no sum over band indicgs

Per(11" 22" )=Poen(1 1" 22')+iGed1 3)Gpp(1' 4)
(289

XWer(3 4)Pen(34 227,

Pen(1 1" 22")=Ppen(1 1" 22")—hGee(1l 3)Gpp(1’ 4)

XTen(3 45 6)Gee(5 2)Gpp(6 27),
(28
where we have introduced the electron-hole quantity,

Poen(1 1" 22")=—ihGed1 2)Gpy(1" 27), (29

and have defineunder the integration sigrthe T matrix

Wen(3 4)Pern(34 2 2")=ihTe(3 45 6)

X Ged(5 2)Gpn(6 2').
(30

Substitution of Eq.(30) into Eq. (27) yields the T-matrix
equation,

Ten(121' 2/ )=Wer(12)8(11')8(2 2)
+iWeh(1 Z)Gee(l 3)
XGpy(1l" 4)Tan(34 1" 2"). (3D

The screened ladder approximation allows us to write the
carrier self-energy as the sum of an RPA term and a corre-
lation contribution, which can also be expressed by means of
the T matrix defined by Eq(31) (see the Appendix
Sed11)=3g5(1 1) +35(1 1), (32)

The notation 1=r;,t; means that time runs under a
(Keldysh contour from—« to + on a positive branch,
t,=t, and back on a negative contour frofivo to — 0, and
thus t;=t_.° The nonequilibrium approach can describe
time-dependent phenomena on an ultrafast scale. In this pa-
per, however, we concentrate on steady-state results, which
means that all quantities depend only on the relative time
=t,—t,. The optical spectra and recombination rates in the
frequency domain are thus obtained after a Fourier transform
with respect to the relative time, taken in the physical limit
7, =7_. The photons are in a nonequilibrium state while the
carriers are in quasiequilibrium among the various sub-
bands.

The polarization function has been computed self-

At this point, we specify the equations for the incoherentconsistently, first only with the RPA bubble, then with
electric field case. The interband components of the carrieF-matrix corrections and RPA self-energy, and finally with
Green’s function are then left out, since they are driven bythe full self-energy, for bulk 30? and MQW's in the limit

the average field, which in this case is z&f8 Furthermore,

of decoupled superlattices. The full details of the numerical

nondiagonal intraband terms are also not considered, consiprocedure will be given elsewhetAt room temperatures,
tently with the approximations used in the computation ofand down to 77 K, the inclusion df-matrix corrections in

Coulomb matrix elementsee the Appendix'! In summary,

the self-energy does not change the spectra. In other words,
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the excitonic effects are well described by the Bethe-Salpetesf band coupling! The eigenstates of the free-carrier Hamil-

equation with RPA propagators, and all numerical resultdonian,Hy, can be written as

presented here are on that level of approximation. We expect

deviations only at very low temperatures, and progress in = gk,

this direction is under way. boic=boie(R) = 1/2 9i(2) Woj (339
Equations(8b) and (9a) make it clear that the required

guantity in our computations is actuallyP.y(1 2),

which we will treat in the limit of a two-point in b= bpik(R) = el r[pr,k(Z)WHp+ ELpik(2IW ]

time, four-point in  space  function, namely, (33b)

Pen(RiR1/RoRy1 111, 1o) R, =R, R, =R, _ :
The Bethe-Salpeter oF-matrix equation reduces to the Here, S is the sample area, and the in- plane and growth

Wannier exciton equation in the limiting case of vanlshlngd'reCtlon components of the position vecRrare given by
carrier populations. For a bulk system with parabolic bands(r,z). The subscriptsH and L denote, respectively, the

in either 2 or 3d, the excitonic spectrum is recovered. heavy- and light-hole components of the coupled band state.
However, with a finite carrier density, the Coulomb potentialwy,, w,,, andw,; are fast-varying lattice-periodic func-

is screened, the band gap is modified, and carrier-carrigfons. The envelope functiong ,;i(z), énpjk(2), andg;(2)
scattering takes place. The Bethe-Salpetef-onatrix equa- are obtained from the diagonalization df,. The unrenor-
tions no longer correspond to a simple excitonic picture andnalized dispersion relations for conduction and nonparabolic
now describe a many-particle system that in this sense goaglence bands are given, respectively, lﬁysﬁfﬁef

beyond the exciton picture. +#2k?/2m} andfie};. Note that, away fronk=0, the top
valence band has a light-hole component, which can give
Ill. COUPLED BAND QUANTUM WELLS rise to structures in the TM absorption and/or gain and emis-

ion spectra, in the spectral vicinity of the transition usuall
The expressions presented above are general, do not d% P b Y y

pend on the dimensionality of the system, and can be applie ssigned as the "electron—heavy hole,” which would not be

to bulk. isolated multiol 0 I h " led resent if band-coupling effects were not taken into consid-
0 bulk, 1sofated multipie quantum Wetls, conerently Coupiedy 446 |n that simplified case, features in the TM spectra

supe_rl_attices, quantum wires, and_ dots. _In order to refer t%ppear only at the pure electron—light-hole transitions.
specific experimental data found in the literature, we apply Following the prescription presented in Ref. 7 for a ho-

therp to thetque:jnturrn-wellbcass at stﬁady state. tThhedquam:fHogeneous approximation for the excited medium, we use
cor: merr;?ﬂ anava enc((ja a'z tf[:OUp 'nl_? reqlture ewlagon he QW Hamiltonian basis of eigenstates to expand Fourier-
Ization ot the corresponding LUtlinger Hamiitonian. Ye con- transformed Keldysh componenisee the Appendijx with-

sider only constituent materials in which the band gap i Sout the by now unnecessary tensor and vector notation,
sufficiently large to decouple the conduction bands, WhICh

are then parabolic. Each conduction subband is then de-

scribed by them;= +1/2 projection of the electron spidm, PN w)= Z Hnl,nz(k)ﬁzl,nz(k'w)'

and a quantization indejx=c,c; . . ., aswell as the in-plane ki

quasimomentunk. We keep the notation as simple as pos- 1NoN3Nny,

sible and condense the quantum numbers in a single label, n nz(k w)= 2 H”s ”4(k )PA( kkk'k’ ) ;
n={aj}. The coupled valence bands each have a heayy K'\ng.ng

==*3/2 and a light-hole component;==*=1/2. In other (34)
words, in this case={pj}, j=viv,... . The band labels where \=<r,a denotes, respectively, the backward, re-
a,b,c... of the preceding sections will from now on be tarded, and advanced Keldysh componenisincludes all
replaced by the more specifig ,n,,n3 ... . The block di- quantum numbers describing the solutions of the parabolic

agonalization labgb reduces to a spin label in the absence conduction and coupled valence bands, and

[ N1N2n3ng L. - RN .
P e | (@)= | dRaARAB] ((Ra) gl RPN RARGRARY) () i (Re) o (Rl 5,

3, (35)
R,=R;

The backward X = <) Keldysh component is related to the carrier recombination rates and thus to the luminescence spectrum,
while the retarded X=r) component contains spectral information. We can sligee the Appendjxthat £ satisfies an
equation with the same structure of the semiconductor Bloch equation for the interband polafiZation,

nlnznlnz)

> Lo, n,(K, w)W( .

ﬁﬁl,nz(k,w)= (r),nl,nz(k'w) E_ i

1 r /
n1 nz(k) E“l “2(k ). (36)

The driving termﬁglnlynz(k,w) has real and imaginary parts. The imaginary part is directly computed from the relation
2i Im{ﬁgynl’nz(k,w)}=Eanl’nz(k,w)—Eénl'nz(k,w), where
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!

= . dw = ’ = ’
Lg,nlnz(k*w):'ﬁnnlnzf EG’?l“l(k'w )Gn>2n2(k,w—w )

—iAll f 2o (k) B (ke fel@ o) 3
=1 n.n, E nlnl( y 0 ) n2n2( w— W ) [1_fe(w/)][l_fh(w_w/)] ' ( 7)
|
The spectral functios is given by constante() can be found in material parameter tabl®5.
If we assume the samples to be antireflection coated, resona-
- 24T, tor effects play no role and the emitted light field intensity
Gnn(k,w)= PRSPPI L (38  per unit length can be simplifiedti( ) ~% w?/47%ciP=(w).
(ho=he,) n The absorption reads()~ c/[ 2w ye(=)]Im P'(w).
where
te,=te,— RS (ko)) IV. NUMERICAL RESULTS AND DISCUSSION
and Figure 1 shows absorption spectra, o(w)
=c/[2w\e(*)]Im P'(w), of a 50 A GaAs/AlGa _,As
Al=—Im{Z(K,w)} QW at 300 K and corresponding luminescence spectra. In

denote, respectively, the renormalized energies and th ’ t polarizati f the elect tic field includi
dephasing rate. We have considered the resonant case erlen pot?nzg lons o eﬁe ec romagbr;e Ic 'ﬁ t:ncu flng
which n; andn, denote, respectively, electron and hole sub-il relevant band-structure effects. NOt"?‘ y, to the best of our
bands. Foré-function-like spectral functions, we then have nowledge fpr the first tlme,_ we predict a structgre at the
p ,
w~e, +e,. A Kramers-Kronig transformation yields spectral position cqrrespondlng to_a heavy hole_ in the T™M
fli T2 i spectra. It appears in our low-density GaAs data in Fjg).1
Re{Lop, n,(ki®)}. Here, fo(w)=1/(expBlfiwo—pa]+1) i The inset shows the effect more clearly. We have chosen a
the Fermi distribution for a quasiparticle of type charac-  slightly strain-relieved, 60 A I§,Ga,sAs/GaAs quantum
terized by the quasichemical potentjal, which is deter- well. Strain relief may occur, due to sample imperfections, or
mined self-consistentlysee the Appendix for a discussjon when a relatively large number of wells in the multiple-
Combining Eqs(34)—(38), and using the KMS relatioh®as  quantum-well sample gives rise to a thick active layer. Fur-
discussed in the Appendix, we obta®T once In{P'}, has ther lattice accommodation occurs, and the in-plane compo-

%ontrast to Refs. 2 and 3, our theory provides spectra for

been computed, nent of the strain tensor is no longer well described by the
) . simple expressiore=(d,—d,,)/d,, whered, andd, de-
P ()= —2i Im{P'(w)} (39 ot respectively, the well and barrier widths. It is beyond

the scope of this paper to make a first-principles model for
the strain relief. Instead, we follow Ref. 15, and introduce a
0?train-relaxation parametery, such that e=(1-y)(d,

1-expB(hw—p))’

whereu= u.+ uy, is the total chemical potential. The result-
ing expressions can then be combined with the solutions d.V/d ; : : .

. . . , and use this value in the numerical algorithm that
the photon Green's-function propagator~, which are di- w)/ o g

rectly related to the quantum-mechanical Poynting Vectorsolves the Luttinger Hamiltonian. The confining potential is
) T . then deeper and it is possible to have light holes bound in the
and thus lead to light-emission spect?d.Note that in both P P 9

b _ . . quantum well, thus leading to strong band couplfifiyve
TE Djj(k,w)=D~(k,0) 6,4}y (propagation along) and  have multiplied the TM spectrum by a factor 20 for a better
™ Dif(k,w) =D~(k,w)6; ,8; , (propagation alongy) comparison. The example corresponds to the data obtained in
modes, the three-dimensional optical cavity can be reduceRBef. 17, where a predominantly TE spectral peak has been
to an effective one-dimensional resonator, with the outputneasured at 1.279 eV and a predominantly TM peak at
spectrum given by 1.32-1.33 eV. It is due to the fact that the top valence band
(heavy hole ak=0) acquires a light-hole component due to
hw? o band coupling, which is further enhanced by the Coulomb
47Tzcta”29'P (0)LF (@), (40 interaction. It also manifests as a bump in the low-energy
side of the TM absorption as seen in Figa)l Without the
where the resonator mode structure is given by combined Coulomb and band-coupling effects, these struc-
tures would not be present. Also, in agreement with experi-
B 1 1 (IOl mental dat&® the photoluminescence output increases with
Filw)= |1—r2|2 |n(w)|2 |n(w)+1lze J(Q). increasing carrier_density. The amplified spontaneous emis-
(41) sion that evolves into lasing is consistently described by our
approach. Another important feature of our calculations is
Here, J.(q) is a slowly varying function of the cavity the gain line shape. It has been recently demonstrated that
length, andn,(w) is the imaginary part of the complex re- the spurious absorption below the gain region, which appears
fractive indexn(w). It is computed by means of the relation if the Pauli-blocking factor is written under the quasiparticle
n,~ —c?/[2w?\e(*)]Im P', and the background dielectric approximation, i.e., with the Fermi functions evaluated at the

l(w)=
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FIG. 1. () TE (dashedl and TM (solid) absorption, with corre- FIG. 2. (a) Two-beam photoluminescence excitation spectros-

copy spectrasolid) for a 30 A ZnCdSe/ZnSSe QW at at plasma

GaAs-Al, ,Ga, -As QW as a function of detuning with respect to temperatureT ;=77 K. From top to bottom the pump-generated

- P - a
the free-carrier band gap at 300 K. From top to bottom the carriefarTier densities ard\l—0.42,0.63,0.84,1.04,}.25,1.67,22510.1
densities for absorption and PL axe=0,0.1,0.5,1.0,2.0,2.5,3.0 and carriers/cm. Dashed: corresponding absorption spectra, with the

2.5,2.0,1.0,0.5,0: 10'® carriers/cri. The inset compares the TE Same normalization. Ifb), the high-density absorption and/or gain
and TM luminescence spectra of a strain-relieved, 60 Aspectra are shown, and from the dashed to the dot-dashed curve, the

Iny .Gay gAs/GaAs quantum well at 300 K. The carrier density usedinhomogeneous broadening due to alloy concentration fluctuation is
is N=5.0x 101" carriers/cr. The x axis is in eV (TM spectrum increased. The inset shows a comparison of our thésmljd) with
X20). the TBPLE experimentgsymbol$ from Ref. 21 for a 100 A

sample.

sponding photoluminescencéPL) spectra, (b) for a 50 A

dispersion relationsf.(e.(k)), fr(en(k)), can be eliminated

by considering nondiagonal dephasing terms in (t@her- Figure 2 depicts two-beam photoluminescence excitation
end polarization?gAnother consequence of the quasiparticlespectroscopy(TBPLE) and the corresponding absorption
approximation, so far not discussed in the literature, is thepectra, with the same normalization, in good qualitative
development of negative luminescence on the high-energggreement with experiments.The numerical method fol-
side of the spectra. None of these artifacts appear in thews directly the experimental technique. The linear absorp-
alternative approach presented here, since by making sut®n is computed and from that, assuming that all the light is
that the polarization function satisfies the KMS condition,converted into carriers, the pump-generated density at steady
high k value contributions that ultimately give rise to the state can be calculated, using a lifetirrre 100 ps. The pump
artifacts are eliminated. Furthermore, since our theory autoenergy is fixed atv,, and the luminescence, due to the pump
matically guarantees that the switch from absorption to gaironly, is computed at the fixed energye;. Additional carri-
occurs exactly at the chemical potential, the technique proers are generated by the probe beam, which is absorbed ac-
posed in Ref. 20 to extract the gain spectra from spontaneow®rding to the nonlinear absorption created by the pump. The
emission data can be used safely without a discrepancy bé&iminescence due to both beams is detected gt and the
tween “experimental” and “computed” total chemical po- constant pump contribution is subtracted. The figures dem-
tential differences. Note that, for the comparison with thatonstrate that TBPLE and nonlinear absorption are qualita-
specific experiment, the full chemical potential, which de-tively related, and the higher density curves illustrate the
scribes the exciton gas at low carrier densities, should beoexistence of gain and structures due to Coulomb correla-
used, and it can be self-consistently computed through Edions, which correspond to a “bleached exciton,” or better,
(E2b). However, for the purposes of this paper, we can usé¢o a strongly interacting electron-hole plasma. Note, how-
the self-consistent solution of E¢E3) without ambiguities, ever, that concentration and well-width fluctuations give rise
since, as previously discussed, in the temperature range cot® inhomogeneous broadening, usually larger for thinner
siderer here, the introduction @-matrix corrections in the quantum wells. Figure 2 also shows that, as the inhomoge-
spectral density of carriers does not alter the optical spectraneous broadening increases, the observed nonlinear spectra
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loses the sharp “excitonic features.” In other words, underward (>), and backward €) quantities are connected by
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the presence of strong inhomogeneities, pump and probe effe relations

periments alone are not capable of identifying as “exci-
tonic” or not the mechanism that yields gain, carrier, recom-
bination, and thus lasing. In Ref. 22 we complement the brief
discussion given here, by analyzing another sample, obtain-
ing the same qualitative conclusion. We further present a

0'(12)=0"*(12- 0" (12=0"*(12—0<(12

=0 *(12-0""(12=07(12-0 ~(12),
(Ala)

systematic comparison between additional numerical results 0%12)=0"*(12— 0 *(12=0" (12— 0>(12)

and experiments under wide temperature and excitation den-
sity conditions, further illustrating the relevance of the theo-
retical approach.

V. SUMMARY

In summary, the first-principles theory for light emission
and absorption in semiconductors presented here provides a
technique to study Coulomb effects beyond RPA in semicon-
ductors. It explains optical absorption, gain, and emission
spectra consistently, and eliminates unphysical features by
satisfying important sum rules. It further demonstrates the
difficulty in analyzing optical experiments under the pres-
ence of strong inhomogeneities and demonstrates that
TBPLE and nonlinear absorption are related, the first tech-
nigue being advantageous if, e.g., a laser is to be studied
under operation conditions, without the need to pierce a hole
through the sample, and consequently destroy the device, as
required for absorption measurements. We hope that this pa-
per will stimulate detailed optical measurements in high-
quality samples with pure homogeneous broadening in order
to understand physical processes that are of general interest
for solid-state physics by themselves and at the same time
relevant for technological applications. The approach pre-
sented can also be used as the starting point for the realistic
simulation of light-emitting and processing devices.
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APPENDIX A: THE BETHE-SALPETER EQUATION
FOR THE RETARDED POLARIZATION

There is a linear dependence between the differe
Keldysh components of the Green'’s functions. Cetepre-

sent the two-point Green’s functionﬁ(G,M or their self-
energies P,3,p). Then the retarded |, advanced ), for-

PA(R1Ry RoRyr ,t1to) = PE(RiRy RoRyy b to)

—0"7(12-0 " (12=0<(12—- 0~ ~(12).
(Alb)

The time integration follows the convention

it 3+)=f d(2)0(1" 2)M(23")
=f d(2)[O(L* 2 )M(2* 3)
—0(1* 27 )M(27 3Y)], (A2a)
T 3—)=f d(2)0(1" 2)M(23")
=f d(2)[O(L* 2 )M(2% 3")
—0(1* 27 )M(27 37)], (A2b)
- 3_)=f d(2)0(1" 2)M(2 3")
:f d(2)[O(1™ 2 )M(2" 37)
—0(1” 27 )M(27 37)], (A2c)
- 3+)=f d(2)0(1” 2)M(237)
=f d(2)[O(1™ 2 )M(2* 3)

—O(1” 27 )M(2” 3%)]. (A2d)

We eliminate the by now unnecessary subband indices for
clarity. {a,b} now denote branch indices along the Keldysh

ontour? Starting from Eq.(27), and using static screening,

hich is diagonal in the branch indices, we can see that the
different Keldysh components of the four-point in space,
two-point in time transverse polarization function satisfy the
equation

-> f dtzdRsR, PN (R1Ry R3Rs, t1t3) W(R3R,) P P(R3 Ry Ry Ry taty), (A3)
Y

which we write, schematically, as

P=P—WPFPL, (Ad)
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and consequently,
pPl=ptt—p=
=P =Ps—WPy P T+WPJ TP+WPs P~ —WP; P~
=Po—WPg (P =P+ WP (P~ P ")
=Po—WPg "P +WPs P
=PHi—W(Py " —Pg5)P =Pi—WP{P". (A5)

At steady state, we thus obtain

P3(R;R1 RRyr ) =PE(R1R1/RyRy/ ,w)_f dRsR,P§M(R1R1/R3Rs, ) W(R3R,) PMP(R3R4RyR, ). (AB)

At this point, we select a given linear polarization, and, as discussed in the main text, the tensor and vector notation can be
dropped, and we may express the Keldysh components of the transverse polarization in the homogeneous approximation by

3(R1—Rp)

ab
o P,

P(R;R,,w)=

ab Amieh - ab
P (w):Wf dedRZH(Rler)L: (RlRl’RZYw)|Rl:Rl/

dmieh ab
cQ f dedRzn(Rler)H(Rz)P (RlRl’RZRZYw)lR]_:er' (A7)

If we now expand the polarization function in eigenstates of the free carrier Hamiltonian, defined ii3&yand (33b), we
obtain (the vector notation for position and momenta will not be used unless necessary

P(w)=

4e’h 5 o[ MN2N3Ng
Ky Kokaky

c2Q) nynonan,
KyKoksKy

X(w) f dRydR,[TI(R1R1)IL(Ry) i, (KiR1) &7, (KaR11) i (K3R2) b7 (KaR2) 1| R, =R,

Ame?h NiNaNgny
— * ab
20, s, Moy (OTT7 (k)P ( KK (A8)
Kk’
The notation used for the matrix elements of a given oper&pmeans
NiNoNgNg| o . - o, IR ST
Kokokaka | dR3dR4¢n1|zl(R3)¢n2k2(R3)O(R3R3R4R4) ¢n3k3(R3)¢n4|24(R4)|r}3:r:eé_ (A9)
R4:RA"
Equation(A6) for the retarded component thus reduces to
nq{N,N3n, NyN,N3N, n{N,m;m, M3M,N3N, m;myMgm,
T O i T i TR L
kkk'k °\ kkk'k mympmamy o\ kkoyay 030K’k 019191~ 03
019304
(A10)
where we have used the relatitGsee Appendix B
m;m,Msmy, m;m,M;my
= 99,-93%;-q . (A11)
01010304 1T 1010101~ A3

As in Ref. 7, we keep only diagonal terms in the one-particle Green’s functionsGLg.j(k,w)~6n1,n2Gnln1(k,w). Fur-
thermore, we consider only the combination of indices that maximizes the screened potential matrix elements, namely
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m;M,Msm,
019193~ da
and make an analogous approximation ®&rand?=, which leads to the equatidave can now use a simpler notatjon

(A12)

m;m;m;m;
~ Om, ,m25m1,m25q1,q4W( q1—03 )

r r r nlnznlnz r
Pnl'nz(k,w):Poynllnz(k,w)—%‘, Ponm(K@W| P (K@), (A13)

!

which gives rise directly to E(36). A similar derivation yields

NiNNgN;

P .
K-k’

nl,n2

(K@) =Pgn n(Ko)=2 W

> [Pon, (K@) Pr o (K@) + PG o (Ko)P3 o (K'w)]. (Al4)

APPENDIX B: THE MATRIX ELEMENTS OF THE SCREENED POTENTIAL

The eigenfunctions of the free-carrier Hamiltonidlg given by Egs.(338 and (33b) have slowly varying envelope and
fast-varying atomiclike components. The latter are orthonormal and need not be considered here. The integrals can then be
reduced to the envelope terrfenvelope function approximatignand, for simplicity, we denote a given envelope function,

#.(K,R) = 1/\/S exp(ik - R)F,(k,z), whereS is the sample area. A general matrix element then has the form

N1N2N3Na) L., o . 2k e
W 165500 —f dRedRs¢ 5 (Ra) #n g, (Re)W(R3R4) ¢ (Ra) by ; (Ra)

1 O - T T S - - -
-3 J dradrje 1 Raglt2 Raglfa Rag ™14 Ra J d25d24F}, (1,25)Fn,(62,24)Fn (03, 25)
XFh (04,24)W(T 3= 4325~ 24)

= 04, Gy f dz5dZ,F} (A1,28)Fny(02,24) F (G + K,25) P (st K,24) f dpe™'""*W(p,z3,24)

Nq.NyN3N,

:(sa~éw< ) (D)
R PP

where k=q;—03=0,— 4. A concrete expression for the [ ninynsn, e )
screened potential is necessary to go further. The generdf Ew Zf dzzdzsFy (91.23)Fn,(02.24)

structure of the bare potential, 102K
) o2 XFnS((.:i1+ E,zg)F§4(d4+ K,z2,)e lzs= 2l
V(p,2,2' )= — +(z—272")%, B2
(p,z,2") GOVPE ( )2 (B2) 85

is readily obtained by using the expansion

1 We then use the same general structure for the screened po-

. 2_772 leiéﬁe—ﬂz—f\ (B3) tential, leading to Eq(A11).
R S z 13 ’

and can be expressed as
APPENDIX C: THE SCREENED LADDER
( n1n2n3n4> ( n1n2n3n4> APPROXIMATION FOR THE CARRIER SELF-ENERGY
= 06, 5.4,

> > > >

41020304

> > >

Ga92x¢ We start the derivation by substituting the expression for
zweZF( n1n2n3n4) the longitudinal vertex, Eq(14a into Eq. (123 (transverse

.o (B4) contributions are not considenedNext, we replace the re-
Q292% maining vertex by its first iteration, namelyy,(6 7 4)
where the envelope-function form factor reads ~—84,16(6 7)5(6 4), and obtain T

€0KS
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Saa(1 2)=i1e21G 4(1 2)W(2 1) Ten(12 1" 2')=8(11")8(2 2" )Woi(1 2)
+e?1G,a(1 3)W(6 1)t,q(3 7 2 8) +iWep(1 2)Ged1 3)
X Gyq(8 6)Gyy(6 7), (C1) XGpy(2 HTen(34 1 2'). (CH)

where we have introduced the quantity )
The self-energy can then be written as a sum of a Hartree-

6244(11") Fock and a screened-ladder correlation contribution,

tab(igf E) I(Sbe(Z’ 2) €23
- - Sed11)=3F11)+35(1 1), (C79

Taking functional derivatives on both sides of EG2), we - - -
obtain a recurrence relation fag,. Bound-state contribu-
tions are obtained whea+ b, with a spanning the conduc- 2:5(1 1')=—ihe?G(1 2)W(2 1), (C7b
tion andb the valence band®r vice versa We outline here - - T
the derivation for{a,b}={conduction,valende since the
other case is analogous. We keep only the terms that yield a Sed11)=—iT(14 1 5)G(5 4), (C70
ladder approximation. In the other terms, we can reptgge T - 0 T
by its first order iteration. The resulting are higher orderwhere we have used E(C6), and introduced the projectdd
contributions that do not give rise to bound-state Conmb“'matrix ie. without the firs:[ two iterations
tions and are thus neglecté&d, B ’

tas(1 5 2 4)=14°€'W(2 5)W(4 1)Gaa(1 2)Guy(5 4) To 121 2)=Tey(121' 2)
TiAEW(4 5)Gaq(1 3) A1 1982 2 Wey(12)
Xtap(3 5 2 8)Gpi(8 4). (3 CiWo(1 2)Wey(1 2)
xXG(1 ET)_G(E E'_) ) (C9

Switching to the electron-hole picturéa,b}={e,h}, which
leaves the conduction-band operators unaltered, but changes
the valence-band operatdisince the creation of a hole cor- Note thatT., as defined by EqC6) is the sam& matrix of
responds to the annihilation of a valence-band elegtramd ~ EQ. (31) in terms of which the polarization function is writ-

usingWe(1 2)= —Ae?W(1 2), yields ten, which allows for a self-consistent computation of the
- - self-energy and polarization functions in the same order in
ten(1 4 2 5)=iWgn(2 5)Wen(4 1)Ged(1 2)Gpp(4 5) the Coulomb correlations.

+iWeh(4 1)Gee(1 3)
- - APPENDIX D: THE KMS RELATION
Xlen(3 8 25)Gpp(4 8). (C4 FOR THE TRANSVERSE POLARIZATION FUNCTION

. . In order to prove that the transverse polarization function
If we now define theT matrix satisfies the Kubo-Martin-Schwingé¢MS) relation we start
Voo , , from an inspection of Eqg.163, (20), and(34). It is then
te*‘(l EE E )= 5@3 )6(33 )W(E E) clear that ifPQl'nz(k,w) satisfies the KMS, then, automati-

+Ten(121'2") (C5  cally, £§11n2(k,w) and P,ﬁl'nz(k,w) also satisfy it.
and substitute EqC5) into Eq.(C4), we obtain theT-matrix Using the relation £ Im{P(rlnl,nz(k'w)}:Pfinlyﬂz(k’“’)
equation, —Pon, n (k@) and Eq.(37), we obtain

do’
T

2 Im{PE},nl,nz(kxw)}:ﬁf Z_Gnlnl(krw/)énznz(krw_ o' )[1-fo(w)—frlo—w')]

do' . -
=h[eﬁ(ﬁ"’_“)—l]f EGnlnl(k,w’)G (kyw—o") (o) (w—w')

nany

(D1a)

:i[l_eﬁ(ﬁw*#)]@énl,nz(k,w), (le)
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which is the KMS relation betweenP(f’nrnz and tions through the real and imaginary parts of the self-energy
Im P, . . The next step is to inspect EGA14) and use 3 aa included ine,(k) andT',(k). In the quasiparticle ap-
the fa’clt’ tzhat73< (k) and P< (k) are purel proximation,zI",,(k)—0, we obtain the usudbkpin summa-
ong np K @ ng n\ @ PUrElY  tion is included in the subscript)
imaginary quantities, andPLl'nz(k,w)=Pﬁ1’n2(k,w)*.
Consequently, Na:Z fo(e (k). (E3
nk

m{Py  (Kaim{Ph, . (k)
3 r - APPENDIX F: EFFICIENT NUMERICAL
—Im{Pgn, (K@) HIM{Py  (K,0)}=0. (D2) APPROXIMATION FOR THE RPA TRANSVERSE

Use of Eq.(D1b) gives rise to the KMS relation between POLARIZATION FUNCTION

Im{P7 o, (kw)} andPy o (ko), We have shown that, onc®p,, (ko) satisfies the
KMS relation, so does?glynz(k,w). Here we present an ap-

2Im{P;, , (kw)}=i[1—efle P~ (K o).
(P, n (K@)} =10 1P, n, (ki) proximation that allows for a fast computation of the RPA

(D3) input, without the need for a numerical frequency integration
of the spectral functions. We start from the exact ffla),
APPENDIX E: SELF-CONSISTENT CALCULATION and note that the frequency-dependent inversion density can

The average number of particles in a system of particles | _¢ () —f(w—w)={[1-f)[1-frw—o")]
of type a (electrons or holésreads € €
() fh(w—w’)}

Na= f (FIR)W,(R)R, (ED X tant (Bw— u)/2]. (F1)

which can be expanded in the quantum-well basis defined pyhe envelope term between curly brackets is then replaced
Egs. (333 and(33D), %;y one, thus generalizing, for the full frequency-dependent

case, an approximation for the inversion factor, actually in-
. T cluded by hand in Ref. 24. By this procedure we demonstrate
Na:z ¢n1|2( R)¢n2£’(R)<\Pn1IZ( R)\I’nzli’(R»dR why the ansatz used in the past is accurate and give a step by
o step derivation for it. We further evaluate the dephasing fac-
tors at the peak of the corresponding spectral functions, and

. dw the frequency integration can be easily performed analyti-
=—if E’ —ZWGﬁlnl(k,w)fa(a)) cally,
n{k
a3 [ 298 ko) fa(w) E29  Im P! tani (Bw— u)/2] Lo,
=— , @ w = w—u ] s
nik 27 MM 2 0ny.n F§1,n2+(w—enl_en2)2

(F2
whereT', =Ty (€n)+T (e,,), and RePg, . is com-
(E2b) puted by means of a Kramers-Kronig transformation. The

KMS condition is fully satisfied by the expressions above,
where we have the fact that tHe,} make an orthonormal which can be used as a consistent and efficient input in the

basis. EquatiorfE2b) allows for the self-consistent compu- solution of the Bethe-Salpeter equation for the full polariza-
tation of the chemical potentials including Coulomb correla-tion function.

d(h o) 24T
:Z 27T nz 2 Zfa(w),
" fw—fhe,(K)2+h2T2
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