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Quasiharmonic lattice-dynamics and molecular-dynamics calculations
for the Lennard-Jones solids

Raffaele Guido Della Valle and Elisabetta Venuti
Dipartimento di Chimica Fisica e Inorganica, Universita` di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy

~Received 16 October 1997!

We present molecular-dynamics~MD!, quasiharmonic lattice-dynamics~QHLD!, and energy-minimization
calculations for the crystal structure of Ne, Ar, Kr, and Xe as a function of pressure and temperature. Lennard-
Jones parameters are obtained for Ne, Kr, and Xe to reproduce the experimental pressure dependence of the
density. We employ a simple method that combines results of QHLD and MD calculations to achieve densities
in good agreement with experiment from 0 K to melting. Melting is discussed in connection with intrinsic
instability of the solid as given by the QHLD approximation.@S0163-1829~98!02825-2#
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I. INTRODUCTION

Lattice dynamics~LD! is based on the expansion of th
potential energy of the crystal in powers of the displaceme
of the atoms from a reference structure.1,2 The harmonic ap-
proximation, in which the expansion is truncated at the s
ond order, reduces the many-body problem to many exa
soluble one-body problems and allows a direct computa
of all thermodynamic functions. Harmonic1 and
quasiharmonic3–5 lattice dynamics~HLD and QHLD! are al-
ternative LD strategies, which differ in the choice of th
reference structure. For HLD this is the minimum potent
energy ~mechanical equilibrium! structure, whereas fo
QHLD it is the minimum free energy~thermodynamic equi-
librium! average structure at a given temperatureT and pres-
surep. This difference is crucial, because the accuracy of
harmonic approximation is controlled by the amplitude
the displacements from the reference structure. There
QHLD might remain accurate in regimes where the aver
structure deviates significantly from that of the potent
minimum, provided that the amplitude of the vibratio
around the average does not grow too large. Conventio
HLD is definitely unusable in these situations.

A straightforward way to assess the accuracy of
QHLD approximation is to choose a model system and
compare the QHLD calculations with the essentially ‘‘e
act’’ classical mechanics results of molecular-dynam
~MD! or Monte Carlo~MC! simulations.6 If the same model
system and interaction potential are employed for b
QHLD and the classical simulations, all differences betwe
the two sets of results must be due to the approximati
implicit in the two methods.

Lacks and Rutledge7 have chosen a monoatomic fcc la
tice with Lennard-Jones~LJ! interactions as a model to stud
the behavior of the QHLD and MC free energies as a fu
tion of T. They find that the QHLD free energy is reasonab
accurate up toTm/2, and rapidly deteriorates above that; he
Tm is the melting temperature. These results clearly indic
that QHLD as such is not reliable close toTm . However,
since not all observables behave in the same way,7 a general
statement is not yet possible. In fact it is conceivable, tho
unlikely, that specific quantities might deteriorate so slow
PRB 580163-1829/98/58~1!/206~7!/$15.00
ts

c-
ly
n

l

e
f
re
e
l

al

e
o

s

h
n
s

-

te

h

with increasingT as to remain usable up toTm . There area
posteriori hints that this behavior might hold for the crysta
lographic parameters. In fact, in recent QHLD calculatio
for naphthalene,8 benzene,9 and argon10 we obtained struc-
tural results in acceptable agreement with the experimen
the whole range of existence of the solids. Since close toTm

the amplitude of the atomic vibrations are large and the h
monic approximation is not expected to be accurate, th
results require further investigation. To check whether
good results for the crystallographic structure nearTm were a
genuine consequence of the method, we have perfor
QHLD and MD calculations for the structures of the Ne, A
Kr, and Xe crystals as a function ofp andT.

Following Lacks and Rutledge,7 we started this project10

by using Verlet’s11 LJ parameters for argon. These para
eters are known to give good agreement with the experim
tal properties of solid, liquid, and gaseous argon if man
body interactions are neglected.11,12 With this effective two-
body potential we obtained10 excellent QHLD results for the
densityr, at least for very lowT.

Given the excellent results for Ar, we expected simila
good behavior for the heavier rare gases, Kr and Xe.
tried more than 20 different LJ models from standa
compilations6,13–17 and, much to our amazement, none
them gave sensible results. All QHLD calculations wi
these models gave large discrepancies with the experime
densities at lowT: these are precisely the conditions whe
QHLD was supposed to be accurate. Even more puzz
was the fact that theexperimentaldensity did not follow any
regular trend with the atomic number once reduced with
literature LJ parameters. Since the experimental data for
Ar, Kr, and Xe do follow a regular trend when reduced wi
respect to the critical point data (rc , Tm , pc),

13 we have
concluded that the origin of the discrepancies is the usag
inappropriate LJ parameters.

Perhaps one could have forecast these kinds of diffic
ties, since most of the literature parameters6,13–17are fitted to
data on the gas, rather than the solid. The gas data yield
principle, the true interaction potential between two isola
atoms, whereas for the solid and liquid phases one ne
effective two-body models. Such LJ models incorporate
average of the many-body interactions and, therefore,
206 © 1998 The American Physical Society
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PRB 58 207QUASIHARMONIC LATTICE-DYNAMICS AND . . .
only be valid in a limited density range. We wish to stre
that we do not believe that the true interaction potentia
the rare gases follow a LJ curve, nor that the literature
rameters are ‘‘wrong.’’ We aim to map the experimen
behavior of the rare-gas solids onto properly chosen LJ m
els. Since there are two adjustable potential parameters,
always possible to obtain exact agreement between ex
ments and calculations for at least twop,T points, and ap-
proximate agreement for a limited range ofp,T values. For
our purposes we require agreement at lowp andT ~the re-
gime where QHLD is accurate!, and we have therefore de
cided to adjust the LJ models to lowp,T data. Different
choices may be appropriate for other purposes.

II. METHODS

A. Molecular dynamics

MD ~Ref. 6! is a simulation method in which the classic
mechanical equations of motion of the system are integra
numerically. The method avoids any assumption of harm
nicity of the lattice vibrations, at the cost of neglecting
quantum effects. We use the MD results as calibration d
to investigate the convergence of the QHLD results towa
the classical limit, and to evaluate the effects of the vib
tional anharmonicity.

We performed a sequence of MD simulation runs fo
specified number of particlesN, pressurep, and temperature
T. The simulations employedN5256 particles, in a cube
with periodic boundary conditions, and, using Anderse
isothermal-isobaric method,18 described an fcc crystal in
contact with a heat bath and subject to a hydrostatic press
The equations of motion were integrated using the velo
Verlet algorithm.11,19 Since numerous MD studies of mono
atomic LJ systems have been reported,6,11,19 we omit other
details of the present simulation.

B. Quasiharmonic lattice dynamics

In the QHLD method3–5 the Gibbs free energy of th
crystal is computed as the free energy of an ensembl
phonons of frequencyn i :

G~p,T!5F01pV1(
i

hn i

2
1kBT(

i
lnF12expS 2

hn i

kBTD G .
~1!

Here F0 is the total potential energy of the crystal in i
average structure~the electronic ground-state energy!, pV is
the pressure-volume term,(hn i /2 is the zero-point energy
and the last term is the entropic contribution. The structure
a function ofp andT is determined by minimizingG with
respect to the unit-cell volume. Further details of the QHL
method appear in Refs. 8–10.

For comparison with the MD calculations, where quantu
effects are neglected, it is appropriate to consider the cla
cal limit ~i.e., h→0) of Eq. ~1!:4

Gclassic~p,T!5F01pV1kBT(
i

lnS hn i

kBTD . ~2!

It should be noticed that, although Eq.~2! still depends on
Planck’s constanth, its derivatives, and thus the equilibrium
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crystal structure, do not. The difference betweenGclassicand
G equals the zero point energy at 0 K, and, as appropriate
a classical limit, tends to disappear at very highT (kBT
@hn i).

If all vibrational effects are neglected~the static lattice
approximation!, bothG andGclassicreduce to the purely me
chanical part of the Gibbs free energy,Gmech(p)5F01pV,
which is the free energy in the limit of a large atomic ma
An energy minimization~EM! calculation forGmech avoids
the determination of the phonon frequencies and is there
less time consuming than the complete calculation.

III. CALCULATIONS

We have used MD and QHLD to compute, as a functi
of p and T, the structure of a monoatomic fcc lattice wit
pairwise additive LJ interactions,F(r )54e@(s/r )12

2(s/r )6#. To compare different atomic species we use no
dimensional reduced units, e.g., temperatureT* 5T/e, pres-
sure p* 5ps3/e, and densityr* 5rs3/m; here m is the
atomic mass. This is the standard approach in LJ calculat
for monoatomic systems.6,11,19 When expressed in reduce
units, the MD,Gclassic, andGmechresults turn out to be inde
pendent of the atomic species, because the classical mec
ics system has no energy, length and mass scales other
e, s, and m. On the other hand, the experiments and
QHLD results with the quantum free energyG @Eq. ~1!#
depend on Planck’s constanth, which in reduced units read
h* 5h/Ams2e, and are therefore dependent on the atom
number Z.20 Becauseh* tends to zero for largeZ ~as
m, s, ande all increase withZ), the reduced data shoul
monotonically converge towards a classical limit in the s
quence Ne,Ar,Xe,Kr.

IV. RESULTS

A. Argon density as a function of pressure

In the calculations for solid Ar we have used Verlet’s11 LJ
parameters~Table I!. We report in Fig. 1 the results for th
argon densityr as a function of pressurep. The measuredr
vs p at 4, 77, and 293 K~Refs. 21 and 22! are compared to
the corresponding MD and QHLD results. The main body
the figure contains the data for moderate pressuresp
<2 GPa, which we discuss first. At 4 K, where the anh
monicity is negligible, QHLD reproduces the lowp mea-
surements almost perfectly, while MD, which neglects t

TABLE I. Data for the rare gases. The table lists LJ poten
parameterse and s, mass m, reduced Planck constanth*
5h/Ams2e, and experimental15 and computed melting tempera
turesTm

exp andTm . LJ parameters for Ar are from Ref. 11; those f
Ne, Kr, and Xe are from our fits.

e s m h* Tm
exp Tm

~K! ~Å! ~amu! ~K! ~K!

Ne 38.5 2.786 20.183 0.563 24.553 22
Ar 119.8 3.405 39.948 0.186 83.806 78
Kr 159.9 3.639 83.8 0.104 115.763 105
Xe 220.9 3.962 131.3 0.065 161.391 145
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208 PRB 58RAFFAELE GUIDO DELLA VALLE AND ELISABETTA VENUTI
zero-point expansion on the lattice, overestimates the exp
mental density. At higherT, where anharmonicity is large
but quantum effects are less important, the opposite situa
holds and MD is found to be more accurate than QHLD. T
difference between MD and QHLD is only noticeable at ve
low p and tend to vanish for increasingp.

The good results of the LJ model forp<2 GPa do not
extend to higher pressures, as shown by the inset of Fi
for the results up to 30 GPa. Since in thisp range MD and
QHLD are barely distinguishable and both disagree with
experiments,22 the failure of the calculations must be due
deficiencies of the potential, rather than to the calculat
method. After analyzing their highp data, Grimsditch,
Loubeyre, and Polian22 have stated that for very dense so
argon there is no way to reproduce the experimental res
with a pair potential and that many-body potentials have
be incorporated. Even though it is not yet ruled out that
effective pair potential with a different functional form cou
work, it is clear that the Verlet’s LJ model11 is not usable
beyond 2 GPa.

B. Dependence of the density on the atomic species

As discussed in the Introduction, none of the literature
models for Ne, Kr, and Xe that we have tested6,13–17 was
found appropriate for our purposes. We have therefore
veloped new LJ models by fitting the QHLD calculations
the density measurements as a function ofp at the lowest
availableT and in a range of moderate pressures~0–2 GPa!.
This is the regime where the harmonic approximation
valid and, as shown by the results for Ar, effective two-bo
LJ models are usable. The optimal LJ parameters, which
reported in Table I, have values in the ranges of the typ
literature models. The Ne, Kr, and Xe data21,23used in the fit

FIG. 1. Argon densityr(g/cm3) vs pressurep ~GPa!. Symbols:
experiments~Refs. 21 and 22! at 4 K ~circles!, 77 K ~triangles!, and
293 K ~squares!. Curves: calculations with MD~broken lines! and
QHLD ~solid lines!. The data at 293 K are also reproduced in t
inset, for pressures up to 30 GPa~Ref. 22!. The MD and QHLD
curves are not distinguishable at the scale of the inset.
ri-

on
e

1

e

n

lts
o
n

J

e-

s

re
al

are compared in Fig. 2 with the QHLD results with the o
timal LJ models. The Ar measurements and calculations
K already shown in Fig. 1 are also reproduced in Fig.
together with the results of an EM calculation forGmech
~static lattice approximation!, which in reduced units is inde
pendent of the atomic species.

The good agreement between experiments and calc
tions in Fig. 2 has no particular significance, as it mer
indicates that the fits are good. Of greater importance is
fact that the experimental data, when reduced with this p
ticular set ofe andr values, follow a sensible trend with th
atomic massm. The reduced densityr* is lower for Ne,
which has the lighter atom and therefore the largest ze
point effects, and then increases withm. As the classical
limit is approached in the Ne,Ar,Kr,Xe sequence, the exp
mentalr* tends to a limiting curve, which appears to be ve
close to the static lattice calculations for infinitem. The
Gmechresults, which can be obtained very economically, c
be a useful approximation if one wants to estimate the effe
of pressure without all the complications of a comple
QHLD calculation.

To clarify the role of the quantum effects on the densi
we have computedr* (p,T) at zerop andT as a function of
m, considered as a continuously varying parameter. The
sultingr* is displayed as a function ofh* 5h/Ams2e in the
inset of Fig. 2, together with the experimental data at
lowest availableT and p. These data constitute, in effect,
vertical cross section of Fig. 2 along thep50 line. Since the
r* (0,0) vs h* curve does not depend on any physical
mension, all the experimental data atp'0,T'0, if properly
reduced, should lie close to the curve. This is what happ
with the LJ parameters of Table I, but not with the other

FIG. 2. Reduced densityr* 5rs3/m vs reduced pressurep*
5ps3/e for the rare gases at low temperatures (T'0). Experi-
ments at 4 K for Ne ~Ref. 23!, Ar, Kr, and Xe~Ref. 21!: symbols as
indicated in the figure. QHLD calculations withG andGmech: solid
and broken lines, respectively. The inset displaysr* vs h*
5h/Ams2e at p50: QHLD calculations atT50 ~solid line! and
experiments~Ref. 32! on Ne at 3 K, Ar, and Kr at 4 K, and Xe at 5
K ~symbols!.
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PRB 58 209QUASIHARMONIC LATTICE-DYNAMICS AND . . .
models that we have tried.6,13–17This discrepancy is one o
the problems with the literature parameters mentioned in
Introduction.

The r* versush* curve, which is found to deviate ver
little from a straight line, exhibits the expected trend towa
a limiting density with increasing atomic number. Theh*
50 limit ~infinite m) is r* 51.092, the correct minimum
energy density for an fcc lattice of LJ particles.17 For in-
creasingh* ~decreasingm), the zero-point effects becom
progressively more important and the lattice expands.

C. Temperature dependence of the density

We report in Fig. 3 the densities as a function ofT. The
reduced experimental data for Xe, Kr, Ar, and Ne at atm
spheric pressure are compared to the MD density~which in
reduced units does not depend on the atomic species! and to
the QHLD densities. With increasingT, quantum effects be
come less important and the experimental density differe
among the various species decreases. The density d
ences, however, are still large when the melting tempera
Tm

exp is reached. This observation indicates that, especially
neon, quantum effects are still significant even at melting

Since it ignores all quantum effects, MD cannot dist
guish between the different atomic species and overestim
the density atT50, though only slightly for the heavier at
oms. For very smallT, MD predicts a thermal expansio
linear in T, whereas experimentally the density is initial
independent ofT. This is a nonclassical zero-point effec
which is properly reproduced by the QHLD calculations. F
large T, where the anharmonicity is large but quantum
fects decrease, the MD results tend to agree with the exp
ments better than QHLD. As expected, the agreemen
much better for Ar, Kr, and Xe than for Ne, which remains
quantum particle even close to the melting point.

FIG. 3. Reduced densityr* vs reduced temperatureT* 5T/e
for the rare gases at atmospheric pressure. Experiments on
~Refs. 14 and 32!, Ar ~Refs. 32–34!, Kr ~Refs. 32 and 35!, and Xe
~Refs. 32,36 and 37!: symbols as indicated in the figure. QHLD an
MD results: solid and broken lines, respectively.
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QHLD agrees with the experimental densities near toT
50 ~for Ne, Kr, and Xe, by construction!. As T is raised,
QHLD predicts a thermal expansion larger than that exp
mentally observed, because of the neglect of the vibratio
anharmonicity.8 The discrepancy continues to increase, un
we encounter a limiting temperatureTm , different for each
atomic species, above which the QHLD calculations fa
because no minimum ofG can be found. The QHLD curve
in Fig. 3 are truncated atTm , which is found to be very close
to the experimental melting temperature. Further discuss
of this point is postponed to the next section.

The results shown in Fig. 3 confirm those of Fig. 1 a
indicate that QHLD and MD are essentially complementa
methods, since QHLD is accurate at lowT, while MD is
better at highT. We have found that QHLD calculations wit
Gclassic provide a useful connection between the two me
ods, as shown for Ar in Fig. 4, where we compare t
QHLD, MD, and Gclassic densities, rQHLD , rMD , and
rclassic. At 0 K the rclassic and rMD results coincide, since
both structures correspond to the absolute minimum of
potential energy. AsT is raised,rclassic progressively di-
verges fromrMD , because anharmonicity is increasing, a
converges towardsrQHLD , as the quantum effects tend t
decrease. The difference betweenrMD and rclassic is solely
due to anharmonicity, whereas the difference betweenrQHLD
andrclassicis only due to quantum effects. Therefore one c
estimate the anharmonic corrections asrMD2rclassic, and the
quantum corrections asrQHLD2rclassic. Since interactions
between anharmonic and quantum effects are ignored, t
are first-order estimates of the corrections.

By adding the anharmonic corrections torQHLD , or,
equivalently the quantum corrections torMD , one gets a
‘‘corrected’’ density, rcorr5rQHLD1rMD2rclassic ~also
shown in Fig. 4!. We find that the corrected densities agr
with the experiments better than eitherrQHLD or rMD , with
deviations around 0.7% on the average~2% in the worst

Ne
FIG. 4. Reduced densityr* vs reduced temperatureT* for Ar at

atmospheric pressure. Experiments~Refs. 32–34!: circles; MD cal-
culations, ‘‘corrected’’ density, QHLD results withG and with
Gclassic: lines as indicated in the figure.
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210 PRB 58RAFFAELE GUIDO DELLA VALLE AND ELISABETTA VENUTI
case! in the whole range of stability of solid Ne, Ar, Kr, an
Xe. The anharmonic corrections are usually small, 1.6%
average and 3.5% in the worst case, and do not change
much with the atomic species. The quantum corrections
largest for Ne at 0 K~11%! and, as expected, decrease in t
Ar, Kr, Xe sequence~3.4, 1.7, and 1.3 %, respectively!. By
comparison, the deviations between experimental and ca
lated densities for van der Waals~i.e., molecular! crystals are
usually found to be in the 1–5 % range.2,8,9 Our results con-
firm that this is indeed the typical accuracy of the MD a
QHLD calculations themselves.

D. Thermal expansion mechanism and melting

Since the curvature of the interatomic potentials decrea
with increasing distances, lattice expansion leads to sma
phonon frequencies and, consequently, to lower zero-p
and entropic contributions to the free energyG @Eq. ~1!#. The
thermal expansion of the lattice is driven by the competit
between the potential energy termF0, which favors struc-
tures close to mechanical equilibrium, and the entropic te
which favors expanded structures with smaller frequenc
and which becomes progressively more important asT in-
creases. Figure 5 shows the Gibbs free energyG(p,T), com-
puted as a function of the densityr, for argon atp50, and
for several values ofT. At T'0, where the only difference
betweenF0 andG is the zero-point energy, the equilibrium
density is slightly lower than that yielding the minimum
F0. The equilibrium density decreases even further with
creasingT, since the entropic effects increase. Eventuall
critical temperatureTm is reached above which the minimu
of G vanishes altogether: the QHLD model becomes
stable forT.Tm . To clarify this behavior we show in Fig. 5

FIG. 5. The solid curves represent the reduced QHLD Gi
free energyG* (p* 50,T* )5G/e of Ar, computed as a function o
the reduced densityr* , for several values ofT* ~namely, T*
50.1, 0.2, 0.3,. . . ,0.7, 0.8), as indicated near each curve. T
broken line represents the locus of the minima ofG* , as discussed
in the text, followed fromT* 50 to the disappearance of the min
mum atT* 50.651.
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the locus of the minima ofG, which, by definition, repre-
sentsG versusr along the curve of thermodynamic equilib
rium. We have computed this curve as a parametric func
of T, G(0,T) versusr(0,T), following T from 0 to the
disappearance of the minimum, which for Ar occurs atTm*
50.651 (Tm578 K).

The idea that melting is connected to an intrinsic instab
ity of the solid goes back to Herzfeld and Goeppert Maye24

and has been discussed many times.25–30 As convincingly
argued by Ross and Wolf,30 the various instability models
consider the solid phase only, and therefore cannot desc
genuine thermodynamic transitions between solid and liq
phases of equal Gibbs free energy. A correct prediction
the p,T melting curve requires an accurate calculation of
free energy in the two phases. However, the stabi
criteria25–27 are still useful: loss of stability, although no
necessarily exactly coincident with melting, cannot be t
distant from it.9

A formal characterization of the instabilityTm is
obtained24–26 by examining directly the conditions for th
existence and stability of a local minimum ofG:]G/]V50
and]2G/]V2.0. Here we are considering stability with re
spect to small volume fluctuations away from the volum
V(p,T) of thermodynamic equilibrium, i.e., we conside
p, T, andV as independently varying variables.31 By ex-
pressing G in terms of the Helmotz free energ
F, G(p,T)5pV1F(V,T), the equilibrium and stability
conditions reduce top52(]F/]V)T ~the state equations!
and (]2F/]V2)T5bT /V.0, wherebT52V(]p/]V)T is the
isothermal bulk modulus. It is the vanishing bulk modul
or, equivalently, the divergence of the isothermal compre
ibility kT51/bT52(]V/]p)T /V, which is the origin of the
instability atTm .24–26 This description is entirely consisten
with what was observed in our QHLD computations.

In these computations, whereG is numerically minimized
by varying the molar volumeV in a sequence of finite steps
we find that forT,Tm the volume converges to an equilib
rium value, whereas forT.Tm the calculation fails becaus
no minimum is found, as shown by Fig. 5. The QHLD inst
bility temperaturesTm are compared in Table I with the ex
perimental melting temperaturesTm

exp of the rare gases. In
Fig. 3 the experimental points end nearTm

exp, whereas the
QHLD curves are truncated atTm . Notwithstanding the
shortcomings due to the use of a solid-only melti
criterion,30 and to the neglect of the anharmonic contrib
tions to the free energy,7 the computedTm follow quite
closely the experimental data. As shown by Fig. 3, t
QHLD calculations account for the quantum effects on me
ing, since they reproduce the observed decrease of the
ducedTm

exp for the lighter atoms. This is a purely quantu
effect, as, according to the classical law of correspond
states, the reduced melting temperature of classical LJ
ticles should be independent of the atomic species.20

V. CONCLUSIONS

We have computed the density of solid Ne, Ar, Xe, a
Kr through QHLD, MD, and EM methods. In this way w
have controlled the classical~MD!, harmonic~QHLD!, and
static lattice~EM! approximations, i.e., estimated rather pr

s
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PRB 58 211QUASIHARMONIC LATTICE-DYNAMICS AND . . .
cisely their effects. Anharmonic effects are negligible at lo
temperatures and even close to the melting point they
count only for a few percent of the density. Quantum effe
are only important for very light atoms~Ne! and tend to
decrease with increasing temperatures. Motional effe
which are usually large, decrease for large atomic mas
low temperatures, and high pressures.

We find that QHLD can be used to compute the structu
parameters, with slowly degrading accuracy, for all tempe
tures up to that where the model becomes unstable.
breakdown temperature turns out to be a fair estimate of
melting point. The QHLD accuracy for the structural para
eters is much better than that for the free energy. This re
is not an artifact but a genuine property of the QHL
method, though we do not have yet a fully satisfactory
planation for it.

QHLD and MD are found to be complementary, rath
than competing, methods. QHLD, where quantum effects
accounted for, but vibrational anharmonicity is neglected
the better method at low temperatures. MD, which igno
all quantum effects but correctly handles large amplitude
brations, is appropriate for solids close to the melting po
and for fluids. The differences between MD and QHLD,
the range where both are valid, are small. Since QHLD
much more efficient than MD, we think that a QHLD com
putation should be one of the first steps in testing any p
posed potential model, even for problems where disorde
large amplitude motion will eventually require MD or MC
~Monte Carlo! techniques. If one wants to study the effec
of pressure, rather than temperature, even aGmech energy
minimization ~EM! can be a useful starting point. The EM
s
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method, which neglects both quantum and anharmonic
fects, is quite accurate for heavy molecules at low tempe
tures.

For a given problem it may be important to choose t
fastest method among those applicable, as the speed d
ences are very large. For Ar on a fast RS/6000 work sta
we needed 0.2 sec for a EM calculation, 20 sec for a QH
optimization, and 75 sec for a MD simulation with 256 a
oms and 1000 timesteps, the minimum for barely accepta
equilibration and statistics. Though these times obviously
pend on the specific problem, their ratios are expected to
quite typical.

It should be noticed that for Ne, Kr, and Xe we have fitt
the potential models solely to the experimental density a
function ofp at very lowT. Though noT dependent data ha
been used in the fits, the models reproduce well the den
as a function ofT, within the accuracy of the calculatio
methods. These results provide some justification for the p
cedure of neglecting thermal effects while fitting a potent
model. This approach, which is usually adopted because
very convenient, is found to lead to acceptable results.

Our work shows that one can efficiently and accurat
predict the structure of a solid phase, through the wh
range of its thermodynamic stability, by using a suitab
combination of EM, QHLD, and MD methods.
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