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We present molecular-dynami¢®ID), quasiharmonic lattice-dynami¢®HLD), and energy-minimization
calculations for the crystal structure of Ne, Ar, Kr, and Xe as a function of pressure and temperature. Lennard-
Jones parameters are obtained for Ne, Kr, and Xe to reproduce the experimental pressure dependence of the
density. We employ a simple method that combines results of QHLD and MD calculations to achieve densities
in good agreement with experiment o0 K to melting. Melting is discussed in connection with intrinsic
instability of the solid as given by the QHLD approximati$¢80163-182608)02825-2

I. INTRODUCTION with increasingT as to remain usable up M,,. There area
posteriori hints that this behavior might hold for the crystal-

Lattice dynamicsLD) is based on the expansion of the lographic parameters. In fact, in recent QHLD calculations
potential energy of the crystal in powers of the displacementfor naphthalen& benzené, and argoi’ we obtained struc-
of the atoms from a reference structdreThe harmonic ap- tural results in acceptable agreement with the experiments in
proximation, in which the expansion is truncated at the secthe whole range of existence of the solids. Since closg,jo
ond order, reduces the many-body problem to many exactlthe amplitude of the atomic vibrations are large and the har-
soluble one-body problems and allows a direct computatiomonic approximation is not expected to be accurate, these
of all thermodynamic functions. Harmonic and results require further investigation. To check whether the
quasiharmonit® lattice dynamicgHLD and QHLD) are al- good results for the crystallographic structure nEamwere a
ternative LD strategies, which differ in the choice of the genuine consequence of the method, we have performed
reference structure. For HLD this is the minimum potential QHLD and MD calculations for the structures of the Ne, Ar,
energy (mechanical equilibrium structure, whereas for Kr, and Xe crystals as a function gfandT.
QHLD it is the minimum free energgthermodynamic equi- Following Lacks and Rutledgewe started this projett
librium) average structure at a given temperafliend pres- by using Verlet'$! LJ parameters for argon. These param-
surep. This difference is crucial, because the accuracy of theeters are known to give good agreement with the experimen-
harmonic approximation is controlled by the amplitude oftal properties of solid, liquid, and gaseous argon if many-
the displacements from the reference structure. Thereforeody interactions are neglect&t!? With this effective two-
QHLD might remain accurate in regimes where the averagbody potential we obtainé8excellent QHLD results for the
structure deviates significantly from that of the potentialdensityp, at least for very lowT.
minimum, provided that the amplitude of the vibrations Given the excellent results for Ar, we expected similarly
around the average does not grow too large. Conventiongjood behavior for the heavier rare gases, Kr and Xe. We
HLD is definitely unusable in these situations. tried more than 20 different LJ models from standard

A straightforward way to assess the accuracy of thecompilation§**~'" and, much to our amazement, none of
QHLD approximation is to choose a model system and tachem gave sensible results. All QHLD calculations with
compare the QHLD calculations with the essentially “ex-these models gave large discrepancies with the experimental
act” classical mechanics results of molecular-dynamicsdensities at lowT: these are precisely the conditions where
(MD) or Monte Carlo(MC) simulations® If the same model QHLD was supposed to be accurate. Even more puzzling
system and interaction potential are employed for bothwas the fact that thexperimentatensity did not follow any
QHLD and the classical simulations, all differences betweenegular trend with the atomic number once reduced with the
the two sets of results must be due to the approximationkterature LJ parameters. Since the experimental data for Ne,
implicit in the two methods. Ar, Kr, and Xe do follow a regular trend when reduced with

Lacks and Rutleddehave chosen a monoatomic fcc lat- respect to the critical point datap, Tp,, pc).:> we have
tice with Lennard-Jone@.J) interactions as a model to study concluded that the origin of the discrepancies is the usage of
the behavior of the QHLD and MC free energies as a funcinappropriate LJ parameters.
tion of T. They find that the QHLD free energy is reasonably Perhaps one could have forecast these kinds of difficul-
accurate up td /2, and rapidly deteriorates above that; hereties, since most of the literature parametérs’are fitted to
T, is the melting temperature. These results clearly indicatelata on the gas, rather than the solid. The gas data yield, in
that QHLD as such is not reliable close 1q,. However, principle, the true interaction potential between two isolated
since not all observables behave in the same ageneral atoms, whereas for the solid and liquid phases one needs
statement is not yet possible. In fact it is conceivable, thougleffective two-body models. Such LJ models incorporate an
unlikely, that specific quantities might deteriorate so slowlyaverage of the many-body interactions and, therefore, can
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only be valid in a limited density range. We wish to stress TABLE I. Data for the rare gases. The table lists LJ potential
that we do not believe that the true interaction potential inparameterse and o, mass m, reduced Planck constarit*
the rare gases follow a LJ curve, nor that the literature pa=h/Jma?e, and experiment& and computed melting tempera-
rameters are “wrong.” We aim to map the experimentalturesTo®andT,,. LJ parameters for Ar are from Ref. 11; those for
behavior of the rare-gas solids onto properly chosen LJ modde, Kr, and Xe are from our fits.

els. Since there are two adjustable potential parameters, it is

always possible to obtain exact agreement between experi- € o m h L T
ments and calculations for at least twgT points, and ap- (K) &) (@mu (K) (K)
proximate agreement for a limited rangemfT values. For e 385 2786 20183 0563 24 553 29

our purposes we require agreement at jpvand T (the re- Ar 1198  3.405 39.948 0186 83.806 78
gime where QHLD is accurateand we have therefore de- 159'9 3.639 83.8 0'104 115.763 105
mded to adjust the LJ r_nodels to loy, T data. Different Xe 2209 3.962 1313 0065 161391 145
choices may be appropriate for other purposes.

ll. METHODS crystal structure, do not. The difference betwé&f,.i.and
A. Molecular dynamics G equals the zero point energy at 0 K, and, as appropriate for
a classical limit, tends to disappear at very high(kgT

MD (Ref. 6 is a simulation method in which the classical > h,)
).

mechanical equations of motion of the system are integrated If all vibrational effects are neglectedhe static lattice

numerically. The method avoids any assumption of harmo- L ' )
nicity of the lattice vibrations, at the cost of neglecting all approximatiof, both G andGeassicreduce to the purely me

A chanical part of the Gibbs free energyec{p)=Po+pV,
gquantum effects. We use the MD results as calibration dat@vhlch is the free energy in the limit of a large atomic mass.
to investigate the convergence of the QHLD results toward L ! .

. - X n energy minimizationEM) calculation forG,,e, avoids
the classical limit, and to evaluate the effects of the vibra- oo ) ;
. - the determination of the phonon frequencies and is therefore
tional anharmonicity.

We performed a sequence of MD simulation runs for aless time consuming than the complete calculation.

specified number of particléd, pressureg, and temperature

T. The simulations employetl=256 particles, in a cube ll. CALCULATIONS
with periodic boundary conditions, and, using Andersen’s
isothermal-isobaric method, described an fcc crystal in f dT. th f i foc lati ith
contact with a heat bath and subject to a hydrostatic pressurg. p andT, the structure of a monoatomic icc lattice wit

. . e . . _ 12
The equations of motion were integrated using the velocit)Pa'rW'S% additive  LJ . mteracﬂons,d)(r)—_4e[(cr/r)
Verlet algorithm'*'® Since numerous MD studies of mono- . (a/r)’]. To compare different atomic species we use non-

atomic LJ systems have been repoftéd®we omit other dimensional reduced units, e.g., temperaflife="T/ ¢, pres-

details of the present simulation. sure p*=po?/e, and densityp* =po/m; herem is the
atomic mass. This is the standard approach in LJ calculations

for monoatomic systenfst>1° When expressed in reduced
units, the MD,Gjassic @NdGechresults turn out to be inde-

In the QHLD method™ the Gibbs free energy of the pendent of the atomic species, because the classical mechan-
crystal is computed as the free energy of an ensemble d€s system has no energy, length and mass scales other than
phonons of frequency; : €, o, andm. On the other hand, the experiments and the

QHLD results with the quantum free ener@y [Eq. (1)]
1—exp( _ ﬂ) depend on Planck’s constamt which in reduced units reads
kgT h* =h/\ma?e, and are therefore dependent on the atomic
(1)  number Z.*° Becauseh* tends to zero for largeZ (as
. : . ... m, o, ande all increase withZ), the reduced data should
Here @, is the total pOte”t'?' energy of the crystal n its monotonically converge towards a classical limit in the se-
average structur@he electronic ground-state enejggV is
) . quence Ne,Ar,Xe,Kr.
the pressure-volume termxhv;/2 is the zero-point energy,
and the last term is the entropic contribution. The structure as
a function ofp and T is determined by minimizings with IV. RESULTS
respect to the ur_1it—ce|| volume. Further details of the QHLD A. Argon density as a function of pressure
method appear in Refs. 8—10.

effects are neglected, it is appropriate to consider the classparametergTable ). We report in Fig. 1 the results for the
cal limit (i.e.,h—0) of Eq.(1):* argon density as a function of pressuie. The measureg

vsp at 4, 77, and 293 KRefs. 21 and 2Rare compared to
hy, the corresponding MD and QHLD results. The main body of
Gelassid P. T) =P+ pV+kgT In(ﬁ>. (2)  the figure contains the data for moderate pressuges,
' B <2 GPa, which we discuss first. At 4 K, where the anhar-
It should be noticed that, although E@) still depends on monicity is negligible, QHLD reproduces the lopr mea-
Planck’s constan, its derivatives, and thus the equilibrium surements almost perfectly, while MD, which neglects the

We have used MD and QHLD to compute, as a function

B. Quasiharmonic lattice dynamics

hv;
G(p.T)= Do+ pV+ 3 — +kaT In
I 1
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FIG. 1. Argon density(g/cn?) vs pressure (GP3. Symbols: FIG. 2. Reduced density* =po®m vs reduced pressurg*
experimentgRefs. 21 and 2Rat 4 K (circles, 77 K (triangleg, and ~ =po/e for the rare gases at low temperaturds~0). Experi-

293 K (squares Curves: calculations with MObroken liney and ~ ments &4 K for Ne (Ref. 23, Ar, Kr, and Xe(Ref. 2)): symbols as

QHLD (solid lineg. The data at 293 K are also reproduced in theindicated in the figure. QHLD calculations wi® andGyec,: solid

inset, for pressures up to 30 GFRef. 22. The MD and QHLD  and broken lines, respectively. The inset displays vs h*

curves are not distinguishable at the scale of the inset. =h/\Jma?e at p=0: QHLD calculations aff =0 (solid line) and
experimentgRef. 32 on Ne at 3 K, Ar, and Kr at 4 K, and Xe at 5

zero-point expansion on the lattice, overestimates the exper (Symbols.

mental density. At highefr, where anharmonicity is large N . .

but quantum effects are less important, the opposite situatiof’® compared in Fig. 2 with the QHLD results with the op-

holds and MD is found to be more accurate than QHLD. Thet'mal LJ models. The Ar measurements and calculations at 4

difference between MD and QHLD is only noticeable at veryK already ;hown in Fig. 1 are also reproduped in Fig. 2,
low p and tend to vanish for increasiny together with the results of an EM calculation f@ech

The good results of the LJ model fer<2 GPa do not (static lattice approximationwhich in reduced units is inde-

extend to higher pressures, as shown by the inset of Fig. Rendent of the atomic species. .
for the results up to 30 GPa. Since in tiszange MD and The good agreement between experiments and calcula-

QHLD are barely distinguishable and both disagree with théions in Fig. 2 hag ho particular significanpe, as it mgrely
experimentg? the failure of the calculations must be due to Indicates that the fits are good. Of greater importance is the
deficiencies of the potential, rather than to the calculatior{f"‘Ct that the experimental data, when reduced with Fh's par-
method. After analyzing their highp data, Grimsditch, ticular set ofe andp values, follow a sensible trend with the

Loubeyre, and Poligh have stated that for very dense solid atomic massm. _The reduced density” is lower for Ne,
argon there is no way to reproduce the experimental result\é’h.ICh has the lighter at_om and therefore the Iarges.t Zero-
with a pair potential and that many-body potentials have t _0|_nt' effects, and t_hen increases with As the classical .
be incorporated. Even though it is not yet ruled out that a Imit Is afproached n th? Ne,Ar,Kr,Xe_ sequence, the experi-
effective pair potential with a different functional form could MeNtalp™ tends to a limiting curve, which appears to be very

work. it is clear that the Verlet's LJ modglis not usable Close to the static lattice calculations for infinite. The
beyond 2 GPa. Gechresults, which can be obtained very economically, can

be a useful approximation if one wants to estimate the effects

] _ _ of pressure without all the complications of a complete
B. Dependence of the density on the atomic species QHLD calculation.

As discussed in the Introduction, none of the literature LJ  To clarify the role of the quantum effects on the density,
models for Ne, Kr, and Xe that we have tedttti’’was  Wwe have computed* (p,T) at zerop andT as a function of
found appropriate for our purposes. We have therefore dem, considered as a continuously varying parameter. The re-
veloped new LJ models by fitting the QHLD calculations to sulting p* is displayed as a function &f* =h/\ma?e in the
the density measurements as a functionpodt the lowest inset of Fig. 2, together with the experimental data at the
availableT and in a range of moderate pressui@s2 GPa. lowest availableT andp. These data constitute, in effect, a
This is the regime where the harmonic approximation isvertical cross section of Fig. 2 along tpe=0 line. Since the
valid and, as shown by the results for Ar, effective two-bodyp* (0,0) vsh* curve does not depend on any physical di-
LJ models are usable. The optimal LJ parameters, which ammension, all the experimental datapat 0,T~0, if properly
reported in Table I, have values in the ranges of the typicateduced, should lie close to the curve. This is what happens
literature models. The Ne, Kr, and Xe ddt&>used in the fit  with the LJ parameters of Table I, but not with the other LJ



PRB 58 QUASIHARMONIC LATTICE-DYNAMICS AND ... 209

1.10 1.10
4 \ n Xe : . _— MD
1.05 1.05
Y Y
[ [
- -+
= =
g . g
[N [}
< 1.00 o 1
3 1 T 1.00 S
9] [9]
3 3 |
el o
(9} (]
~ _ e
0.95 |
] 0.95 -
0.90 — —
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Reduced temperature T* Reduced temperature T*
FIG. 3. Reduced density* vs reduced temperatufB* =T/e FIG. 4. Reduced densify* vs reduced temperatufié for Ar at

for the rare gases at atmospheric pressure. Experiments on Ngmospheric pressure. Experime(fRefs. 32—3% circles; MD cal-
(Refs. 14 and 3@ Ar (Refs. 32—34 Kr (Refs. 32 and 36 and Xe  culations, “corrected” density, QHLD results witke and with
(Refs. 32,36 and 37symbols as indicated in the figure. QHLD and Ggssic: lines as indicated in the figure.

MD results: solid and broken lines, respectively. . . .
P Y QHLD agrees with the experimental densities neaff to

models that we have trigtt3-17 This discrepancy is one of =0 (for Ne, Kr, and Xe, by constructionAs T is raised,

the problems with the literature parameters mentioned in th@HLD predicts a thermal expansion larger than that experi-
Introduction. mentally observed, because of the neglect of the vibrational

The p* versush* curve, which is found to deviate very anharmonicity’ The discrepancy continues to increase, until

little from a straight line, exhibits the expected trend towardgV€ €ncounter a limiting temperatutig,, different for each
a limiting density with increasing atomic number. Th& atomic species, above which the QHLD calculations fails
=0 limit (infinite m) is p* =1.092, the correct minimum- Pecause no minimum d can be found. The QHLD curves
energy density for an fcc lattice of LJ particllsFor in- I Fig. 3 are _truncated atr, which is found to be very cIose_
creasingh* (decreasingm), the zero-point effects become to the experimental melting temperature. Further discussion

progressively more important and the lattice expands. of this point is postponed to the next section. _
The results shown in Fig. 3 confirm those of Fig. 1 and

indicate that QHLD and MD are essentially complementary
methods, since QHLD is accurate at IoWw while MD is
We report in Fig. 3 the densities as a functionTofThe  better at hight. We have found that QHLD calculations with
reduced experimental data for Xe, Kr, Ar, and Ne at atmo-Gssic Provide a useful connection between the two meth-
spheric pressure are compared to the MD dersityich in ~ ods, as shown for Ar in Fig. 4, where we compare the
reduced units does not depend on the atomic speaiebto  QHLD, MD, and G densities, pouip, pmp. and
the QHLD densities. With increasing, quantum effects be- pgassic At 0 K the pgassic @nd pyp results coincide, since
come less important and the experimental density differencboth structures correspond to the absolute minimum of the
among the various species decreases. The density diffepotential energy. AsST is raised, pgassic progressively di-
ences, however, are still large when the melting temperatureerges fromp,,p, because anharmonicity is increasing, and
TaPis reached. This observation indicates that, especially foconverges towardponp, as the quantum effects tend to
neon, quantum effects are still significant even at melting. decrease. The difference betwegpy and passic IS solely
Since it ignores all quantum effects, MD cannot distin-due to anharmonicity, whereas the difference betwegnp
guish between the different atomic species and overestimatesid p,ssiciS Only due to quantum effects. Therefore one can
the density afl =0, though only slightly for the heavier at- estimate the anharmonic correctionas — pciassic and the
oms. For very smalll, MD predicts a thermal expansion quantum corrections aponip— Pclassic SINCe interactions
linear in T, whereas experimentally the density is initially between anharmonic and quantum effects are ignored, these
independent oflT. This is a nonclassical zero-point effect, are first-order estimates of the corrections.
which is properly reproduced by the QHLD calculations. For By adding the anharmonic corrections @y p, Of,
large T, where the anharmonicity is large but quantum ef-equivalently the quantum corrections pq,p, one gets a
fects decrease, the MD results tend to agree with the experfcorrected” density, pcor=pPonHiLpt PMD— Pelassic (@ISO
ments better than QHLD. As expected, the agreement ishown in Fig. 4. We find that the corrected densities agree
much better for Ar, Kr, and Xe than for Ne, which remains awith the experiments better than eith&$, p or pyp , With
quantum particle even close to the melting point. deviations around 0.7% on the avera@o in the worst

C. Temperature dependence of the density
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the locus of the minima o6, which, by definition, repre-
sentsG versusp along the curve of thermodynamic equilib-
rium. We have computed this curve as a parametric function
of T, G(0,T) versusp(0,T), following T from O to the
disappearance of the minimum, which for Ar occursTt
=0.651 (T,=78 K).

The idea that melting is connected to an intrinsic instabil-
ity of the solid goes back to Herzfeld and Goeppert M&Yer
and has been discussed many tirfieS’ As convincingly
argued by Ross and Wdlf, the various instability models
consider the solid phase only, and therefore cannot describe
genuine thermodynamic transitions between solid and liquid
phases of equal Gibbs free energy. A correct prediction of
thep, T melting curve requires an accurate calculation of the
free energy in the two phases. However, the stability
criterig® 2’ are still useful: loss of stability, although not
necessarily exactly coincident with melting, cannot be too
L distant from it?

68 09 10 11 12 13 A formal characterization of the instabilityT,, is
Reduced density p obtained*=2% by examining directly the conditions for the

FIG. 5. The solid curves represent the reduced QHLD Gibbsemsteznce agd stability of a local minimum ®°-'"7F3_/07V_:0
free energyG* (p* =0,T*)=G/e of Ar, computed as a function of andd“G/aV=>0. Here we are considering stability with re-
the reduced density*, for several values off* (namely, T* spect to small volume fluctuations away from the volume
=0.1,0.2,0.3,...,0.7,0.8), as indicated near each curve. TheV(p,T) of thermodynamic equilibrium, i.e., we consider
broken line represents the locus of the minimaGdf, as discussed P, T, andV as independently varying variabl&sBy ex-
in the text, followed fromT* =0 to the disappearance of the mini- pressing G in terms of the Helmotz free energy
mum atT* =0.651. F, G(p,T)=pV+F(V,T), the equilibrium and stability

conditions reduce t@p=—(JdF/dV) (the state equations
cas@ in the whole range of stability of solid Ne, Ar, Kr, and and ©°F1aV?)1=B+IV>0, whereBr= —V(dp/dV) is the
Xe. The anharmonic corrections are usually small, 1.6% orsothermal bulk modulus. It is the vanishing bulk modulus
average and 3.5% in the worst case, and do not change vegy, equivalently, the divergence of the isothermal compress-
much with the atomic species. The quantum corrections arility kr=1/8r=—(dV/dp)+/V, which is the origin of the
largest for Ne at 0 K11%) and, as expected, decrease in theinstability atT,,.2*=2° This description is entirely consistent
Ar, Kr, Xe sequencd3.4, 1.7, and 1.3%, respectivehBy with what was observed in our QHLD computations.
comparison, the deviations between experimental and calcu- In these computations, whe@is numerically minimized
lated densities for van der Wadlse., moleculay crystals are by varying the molar volum# in a sequence of finite steps,
usually found to be in the 1-5 % ran§&° Our results con-  we find that forT<T,, the volume converges to an equilib-
firm that this is indeed the typical accuracy of the MD andrium value, whereas fof > T, the calculation fails because
QHLD calculations themselves. no minimum is found, as shown by Fig. 5. The QHLD insta-
bility temperaturedl ,, are compared in Table | with the ex-
perimental melting temperaturég.® of the rare gases. In
Fig. 3 the experimental points end neBg”, whereas the

Since the curvature of the interatomic potentials decreaseéHLD curves are truncated &,,. Notwithstanding the
with increasing distances, lattice expansion leads to Sma"%rhortcomings due to the usemof a solid-only melting

phonon frequencies and, consequently, to lower zero-pointyiterion® and to the neglect of the anharmonic contribu-

and entropic contributions to the free ene@YEq. (1)]. The  tions to the free energy.the computedT,, follow quite
thermal expansion of the lattice is driven by the competition

X : closely the experimental data. As shown by Fig. 3, the
between the potential energy terdr, which favors struc- oy p calculations account for the quantum effects on melt-

tures close to mechanical equilibrium, and the entropic termi,ng| since they reproduce the observed decrease of the re-
which favors expanded structures with smaller frequenuesduced—rfnxp for the lighter atoms. This is a purely quantum

and which becomes progressively more importanTas-  ofact as, according to the classical law of corresponding

creases. Figure 5 shows the Gibbs free enéi(;y,'l’_), COM- " states, the reduced melting temperature of classical LJ par-
puted as a function of the densigy for argon ap=0, and  icje5 should be independent of the atomic speles.
for several values of . At T~0, where the only difference

betweend, andG is the zero-point energy, the equilibrium
density is slightly lower than that yielding the minimum of
®,. The equilibrium density decreases even further with in-
creasingT, since the entropic effects increase. Eventually a We have computed the density of solid Ne, Ar, Xe, and
critical temperaturd ,, is reached above which the minimum Kr through QHLD, MD, and EM methods. In this way we
of G vanishes altogether: the QHLD model becomes unhave controlled the classic8D), harmonic(QHLD), and
stable forT>T,,. To clarify this behavior we show in Fig. 5 static lattice(EM) approximations, i.e., estimated rather pre-

—0.05

*

—0.06

Reduced free energy G

—0.08

0.8

D. Thermal expansion mechanism and melting

V. CONCLUSIONS
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cisely their effects. Anharmonic effects are negligible at lowmethod, which neglects both quantum and anharmonic ef-
temperatures and even close to the melting point they adects, is quite accurate for heavy molecules at low tempera-
count only for a few percent of the density. Quantum effectgures.
are only important for very light atomé\e) and tend to For a given problem it may be important to choose the
decrease with increasing temperatures. Motional effectdastest method among those applicable, as the speed differ-
which are usually large, decrease for large atomic massesnces are very large. For Ar on a fast RS/6000 work station
low temperatures, and high pressures. we needed 0.2 sec for a EM calculation, 20 sec for a QHLD
We find that QHLD can be used to compute the structurabptimization, and 75 sec for a MD simulation with 256 at-
parameters, with slowly degrading accuracy, for all temperaems and 1000 timesteps, the minimum for barely acceptable
tures up to that where the model becomes unstable. Thisquilibration and statistics. Though these times obviously de-
breakdown temperature turns out to be a fair estimate of thpend on the specific problem, their ratios are expected to be
melting point. The QHLD accuracy for the structural param-quite typical.
eters is much better than that for the free energy. This result It should be noticed that for Ne, Kr, and Xe we have fitted
is not an artifact but a genuine property of the QHLD the potential models solely to the experimental density as a
method, though we do not have yet a fully satisfactory ex{function ofp at very lowT. Though nol dependent data has
planation for it. been used in the fits, the models reproduce well the density
QHLD and MD are found to be complementary, ratheras a function ofT, within the accuracy of the calculation
than competing, methods. QHLD, where quantum effects arenethods. These results provide some justification for the pro-
accounted for, but vibrational anharmonicity is neglected, isedure of neglecting thermal effects while fitting a potential
the better method at low temperatures. MD, which ignoresmodel. This approach, which is usually adopted because it is
all quantum effects but correctly handles large amplitude vivery convenient, is found to lead to acceptable results.
brations, is appropriate for solids close to the melting point Our work shows that one can efficiently and accurately
and for fluids. The differences between MD and QHLD, inpredict the structure of a solid phase, through the whole
the range where both are valid, are small. Since QHLD igange of its thermodynamic stability, by using a suitable
much more efficient than MD, we think that a QHLD com- combination of EM, QHLD, and MD methods.
putation should be one of the first steps in testing any pro-
posed potential model, even for problems where disorder or
large amplitude motion will eventually require MD or MC
(Monte Carlg techniques. If one wants to study the effects Work done with funds from the University of Bologna
of pressure, rather than temperature, eveBaq, energy  (“Finanziamento speciale alle strutturg”We also thank
minimization (EM) can be a useful starting point. The EM MURST and CNR for further financial support.
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