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Quantum-confined Stark effects of exciton states in V-shaped GaAs/Aba; _,As quantum wires
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Quantum-confined Stark effects are investigated theoretically in GaAG#Al ,As quantum wires formed
in V-grooved structures. The electronic structures of the V-shaped quantum wires are calculated within the
effective mass envelope function theory in the presence of electric field. The binding energies of excitons are
also studied by two-dimensional Fourier transformation and variational method. The blue Stark shifts are found
when the electric field is applied in the growth direction. A possible mechanism in which the blueshifts of
photoluminescence peaks are attributed to two factors, one factor comes from the asymmetric structure of
guantum wire along the electric field and another factor arises from the electric-field-induced change of the
Coulomb interaction. The numerical results are compared with the recent experiment measurement.
[S0163-182698)06727-1

I. INTRODUCTION approximate analytic expression and employed a coordinate
transformation such that the interface was pldfafhe

Recently, the low-dimensional semiconductor structuresfinite-element method was applied to obtain the confinement
such as quantum wirdgjuasi-one-dimensiondlQ1D) sys-  energies. Goldongt al'® and Rossi and Molina devel-
tem] and quantum dot$QOD systeny have aroused much oped a numerical method in which the envelope function was
attention for potential application to high performance de-expanded in terms of the plane-wave basis and calculated the
vices since they are theoretically predicted to offer superioelectronic structures of realistic V-shaped quantum wire. In
optical and electrical characteristits There are many tech- the above mentioned papers, the Coulomb interaction be-
nigues to fabricate various real-quantum wires, such as eletween electron and hole was not taken into account. On the
tron beam lithography and etching, growth on the substratether hand, there are several theoretical works on the exciton
with V grove, and selective growth on Si@atterned GaAs state in some ideal quantum wires. Binding energies of ex-
(110 substrate, etc. In general, there are two kinds of quaneiton in GaAs/AlGa _,As rectangular quantum wires were
tum wires. In the first kind of quantum wires, one material isinvestigated by Brown and Spectbrand Degani and
embedded in another material. The second kind of quanturilipolito.?* Banyai et al?? also calculated the exciton and
wires has a free surface on the entire side or part of the sideiexciton ground-state binding energies assuming infinite
in the air, which are formed by lithography and chemicalconfining potential. Shik considered a dielectric cylinder
etching. In this field, recent investigations focus on the V-with the dielectric constaré>1 placed in vacuum. He cal-
shaped and T-shaped quantum wite®¥. These quantum culated the impurity bound-state binding energy, and found
wires share desirable optical propertigse enhancement of that image charge causes an obvious increase in binding en-
exciton binding energy and a small linewiltfor device ergy. Very recently, Xia and Che&hinvestigated the exci-
applications. ton states in an isolated quantum wire in which the valence-

Electric field applied perpendicularly to the layer of quan-band mixing effect is taken into account. They found the
tum wells can change significantly the optical properfas  exciton binding energy in the isolated wire is about ten times
sorption, reflection, and photoluminescer(@)] of semi- larger than that in the quantum well. Benner and Haug
conductor quantum-well structures. This effect is referred taassumed a parabolic confining potential and investigated the
as the quantum-confined Stark effdQCSH; it has been QCSE in a quantum wire. Hartree correction and the
studied extensively in the past decade¥*for application of ~ exchange-correlation effects are both taken into account.
optical switches and modulators. Theoretically, the quantunThey found the blueshifts of PL peaks for low fields.
wires and quantum dots can offer the advantage of lower In this paper, we apply a numerical method to calculate
switching energy and enhanced oscillator strength over théhe exciton states in real quantum-wire structures formed in
guantum well. Therefore, the low-dimensional systems aré&/-grooved substrate in the presence of an electric field. The
promised for low-energy optoelectronics devices. Recentlybinding energies of excitons are studied by using two-
the electro-optical properties has been investigated in Vdimensional Fourier transformation and the variational
shaped GaAs/AGa _,As quantum wires by PL experi- method. A possible mechanism of blueshifts of PL peaks is
ments; blueshifts of PL peak under electric field wasproposed. It arises from the two aspects; one comes from the
observed?® asymmetric geometry of wire cross section and another re-

It is necessary to calculate the energy eigenvalues of thsults from the electric-field-induced change of Coulomb in-
real quantum-wire structure for design of the device. Inoshitderaction. The former is different from the result of Benner
and SakaKkf calculated the electronic structure of a ridgeand Haug's study. In Sec. II, the theory of the QCSE in
wire recently. They modeled the confined potential by anV-shaped quantum wires is presented. In Sec. lll, the nu-

0163-1829/98/5@1)/2031(7)/$15.00 PRB 58 2031 © 1998 The American Physical Society



2032 KAI CHANG AND J. B. XIA PRB 58

25 0, Regionl
Vi(X,y)= . 6
(xy) Vi, Regionll, ©
20
region II mY,, Region |
] m*(z)=4 : 0
15 my,, Regionll,
wherei=e,h denotes electron or hole.
= 10 7 Electron and hole states in quantum wires are determined
S by the following Schrdinger equations respectively:
>
5 -
HWV.=EV,, (8)
region |
0 Hh‘l,h:E\I,h- (9)
5 In general, these equations cannot be solved analytically
i due to complex geometry of a real quantum wire. In this
paper, we expand the envelope functidn , in terms of a
-10 . , | , | series of orthogonal complete bases that are composed of the
15 10 5 0 5 10 15 plane waves in thg-y direction with periodic boundary con-

X(nm) dition. In quantum-well structures, Xia and Hudhgnd Zhu
and Chan§f have used the similar method to solve the
FIG. 1. Typical cross section of a V-shaped quantum wire de-Schralinger equation in the presence of an external field.
rived from TEM micrographs; the frame of figure denotes the 2DThis method has also been applied to study the exciton op-
periodic cell. tical transition in GaAs/AlGa, _,As multiple quantum wells
as a function of the field strength and proved successfully by
merical results are given and discussed. Finally, we give theomparison with experimeAt.We extend the method to a
conclusion in Sec. IV. two-dimensional case here; we assume that the barrier is so
high and thick that it will bring in only a minor error by
Il. THEORY cutting the electric field at the barrier center and repeat it
periodically. Thus, the potential in the presence of the elec-
We consider a quantum-wire sample formed in a V-tric field is
grooved substrate, which is grown epitaxially by selective
growth technique. A sketch of the sample is shown in Fig. 1. Vi(x+nL,,y+mL,)=Vi(x,y)
Electron and hole are confined in tlx¢ plane and move

. i . . +eFy, Region |
freely along the wire directionz(axis). After separation of _
center-of-mass and relative motion in tkedirection, the Vi(x,y)*eFy, Regionll.
Hamiltonian for the system can be written as (10)
H=He+Hp+Vent Ve, oy This assumption is both necessary for obtaining bound
states in the presence of an external electric field and reason-
52 able for long-lived quasibound states provide that the field
He=—Ve————Vet+Ve(xy), (2)  strength is not too large. Following Ref. 25, we expand the
2mg (x,y) electron or hole wave function in terms of normalized plane-
wave basis set, respectively,
hZ
Hy=—-V,——V,+Vu(Xy), (3)
" ey T 12 S
) (X, ): a e'kxx+'Knxelkyy'HKmye'kZZ.
o2 e,hlX,Y ’_LxLyﬂ,m nm
Vep= — ——m———, 4 1D
4eqez®+ p?
Ve=+eFy, (5) Ins_erting Eq.(11) into Eq. (8), we obtained the secular
equation

wherep=/(Xo—Xp)*+ (Yo— Yp)? is the relative distance be-
tween electron and hole in they plane, e the electron _
chargei the Planck constantn? (my) the effective mass [Homan'm' = Ednn’ S| =0. (12
of the electror(hole), F the strength of external electric field, The elements of the Hamiltonian matrix can be given as
and V= *eFy the potential induced by the external static

electric field. Vq(x,y) [Vh(X,y)] is the confining potential My nmn'm =T amn'm' T Meonnmn'm’ T {VE)nmn'm’

for the electron(hole), (13
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(M amn'm'’ Coulomb interaction between the electron and hole. An ap-
b L proximate solution of Eq(1) can be written in the forAl
—— | 7 dxdye KmemiKnyy,
—Ly2J L2
42 W (Xe ,YerXn Yh2) =V (Xe,Ye) V(Xn,Yn) ¢2,,(2), (19
X —————V,e/Km>elKn'y| (14
2m* (x,y) . . : ) .
where ¢, ,(2) is a variational wave function. By inserting
Li2 Ly _ _ Eq. (19 into Eq. (1), an effective one-dimensional equation
(Veonthnmn'm' = f dxdyéfnnXeKmmYv/,(x,y), for the relative motion along the wire direction is obtained:
—Ly/2 7Ly/2
(15)
0 o 2 d2
m=m EetBi— 5, <5+ Vert(@) | ¢2,(D)=Eyer,(2),
(VE)nmnrm' = + FeFl , #d
(_1)mfm .—rénn’ m#m , (20)
2ilm—m )

(16)
where + is for the hole while— is for the electronl, and
L are the periods of two-dimensional superlattice inxhe

lane Kyl =nke, Kn-msiL,=my, andnm— voyiz)= [ [ [ [ anavenaniviin o
nn’ mm’

whereVq¢¢(2) is

X|Wh(Xn, YW [PV (Xe=Xn,Ye—Yn,2),  (21)

2
Kop=(n—n")—, (17) . . rpe . . .
Lx which is difficult to evaluate. In evaluating the interaction
) integration in Eq{(2), we employ a two-dimensional Fourier
N transform
Kmm/z(m—m )L— (18)
y
e_lel

In principle, the dimensionality of the Hamiltonian matrix ;: ifw er dgdg,e 'Q” ,
is infinite. Since we are only concerned with the ground VZ2+p? 27) )= Y Q
states, we can truncate the series in 8d). For V-shaped
wires considered here, this series with 15 terms can giv«whereQ=\/qX2+ qyz.
convergent results. By using this transformation, we can integrate the all real-
After we obtained the eigenvalues and wave functions obpace variables analytically, which gives the following ex-
the electron and hole, respectively, we then take into accoungression:

(22

- qX)LX/2

2 i e
e © (o sin(K__,
— * * * * nn
Veh_zﬂ_ 2 aneme E an’m’ E a-nhmh E an’m’f f dQquy e
NeMg ﬂémé e ‘e npmy nr/]mr/‘ h"hJ) —cwJ—x

nn’_q)(

Sin(KE, v —ay)Ly/2 sin(K! | —q,)L/2 sin(KD - —q,)L,/2 e~ Q7
X
h h
K'renm'_qy Knn’_qX Kmm’_qy Q
2 i e _
e 27 (o sinK_  ,—Qcog 6)]L,/2
:2_2 CHINEDYE WD S W) a:,m,f f dedQ - X
NeMe € eném"e € enpmy n hnr;mlf] h"hJo 0 Knnl_QCOSH)
SifKS  —Qsin(0)]L,/2 sifK" ,—Qcog #)IL,/2 sif K"  —Qsin(6)]L,/2 ol 3
X e =4, 23
. h h .
K, — Qsin(6) Ky —Qcog 6) Ky — QSin(6)
|
The original four-dimensional integration has been re- 4y\ V4,
duced to the two-dimensionaD) integration in thek @VZ(? e, (24
space. The singularity B —0 in original real-space inte-
gration has been removed because ligsinx/x=1. wherey is the variation parameter and it can be obtained by

A variational trial wave functionp,, is taken as minimizing the energy
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10 =g¢,h). The contour lines show the distribution of the electron
or hole in V-grooved quantum wire. From this figure, we can

5 see that the electrafimole) on the ground-state level is local-
N ized in the bottom of the V-grooved quantum wire, and these
E 0 - contour lines mirror the cross-section structure of V-shaped
>_

wire. Obviously the localization of the hole is stronger than
5 - that of the electron. This arises from the fact that the effec-
tive mass of the hole is much heavier than that of the elec-
tron. Here we neglected the valence-band mixing effect. This

10 approximation was taken in previous publicatidh&Ve are
only concerned with the heavy-hole ground state since we
51 will compare the transition energy between the ground states
£ of the electron and heavy hole with the experiment. We com-
s 0 pared the contours of the probability ,(x,y)|? in the pres-
ence of electric field with that in the absence of electric field
-5 [Fig. 2(c)], and found that the contour lines vary slightly. It
means that the electric-field-induced variation of the prob-
10 | ! | ability |¥,(x,y)|? is very small. Thus, the separation be-
-10 -5 0 5 10 tween the electron and hole is also small in the quantum wire
X(nm) under the electric field. When an electric field is applied

along the positive direction of the axis, the hole is pushed
FIG. 2. Contour plot of the probability of electrof@ and  tg the top of the wire and the distribution of the hole be-
heavy-hole(b) ground statéW;|*/maX¥;| in the absence of elec- comes a little more extended compared to the case when the
tric field (i=eh). Lines denote 0.2, 0.4, 0.6, 0.8. electric field is along the negative direction of theaxis.
In Figs. 3a) and 3b), we plot the energies of the electron
and hole states as a function of electric field. The results
E,=(e(z.y)]~ 2447 +Verd2e(2,7)). (25 show that the redshifts and blueshifts of the electron and hole
levels are determined by the direction of the electric field
The binding energy of one-dimensional exciton is definec@pplied on the sample. The Coulomb interaction between the
as electron and hole is not taken into account. The redshifts or
blueshifts are caused by the asymmetric structure of the V-
E,=E.+E,—E, (26) grooved quantum wire. In the bottom of the wire the con-
finement is stronger than that in the top of the wire. When
the electron or hole is pushed to the bottom of the wire, the
confinement is enhanced, and this enhancement results in
raising of the energies of the electron and hole states. On the
other hand, the electric field lowers the energies of the elec-
AE=E(F)—E(0)=AE,— AE,, 27) tron and hole states. Th_erg is a cqmpetition between thg con-
finement and the electric field, which leads to the redshift or
whereE(F)=E¢(F) +En(F) —Ey(F), AE, is the difference  blueshift of the electron and hole levels. The insets show the
of the quantized energies of the electron and hole withoutransition energy between the electron and hole ground mi-

2 2

whereE, andE,, are the single-particle energies of the elec-
tron and heavy hole, respectively, is the ground-state en-
ergy of the one-dimensional exciton.

The Stark shift of the exciton is

considering the excitonic effect. nus the band gap of GaAs as a function of electric field.
From the results we find that the asymmetric character of
I1l. NUMERICAL RESULTS AND DISCUSSIONS energy shifts around zero electric field, and the asymmetric

i ) ) . character is enhanced as the wire width increases. From these

. In this section, we present numerical results of equatlonﬁgures’ we find that the asymmetric geometry of the wire
in Sec. Il. We consider a V-shaped GaAg/fGa ¢AS quan-  cross section can cause the blueshifts of PL peaks. This
tum wire. The typical 2D cross section of a V-shaped quanmechanism is different from the mechanism proposed by
tum wire is shown in Fig. 1. In.the V-shaped wire the Iowgr Benner and Haué&?
surface has a sharp corner with an angle between the sides rjgyre 4 shows the energies of the electron and hole states
a=70.6° [the angle between th€l1l) facetd; the upper 5 functions of the width of the quantum wire in the presence
surface also has a sharp corer with an angle between thg g|ectric field. We find that the energies of the electron and
sides=129.52°[the angle between th@11) facety. The  pole states decrease rapidly as the wire width increases.
material parameters used in our calculations @€  From these figures the redshifts and blueshifts of the electron
=0.0665, m; =0.45, the dielectric constané=12.5 for  and hole levels are seen and determined by the direction of
GaAs, m} =0.0997, m} =0.45, V=313 meV, V,=209 the electric field applied on the sample. In narrow wire, the
meV, e=10.9 for Aly Ga, ¢AS. confinement is much stronger than that in wide wire. There-

The probabilities of the single-particle wave function fore the effect of the electric field on the energies of the
| o(x,y)|? and| ¥ (x,y)|? are shown in Figs.(@) and 2b),  electron and hole becomes more and more strong as the wire
respectively. The contours represent lines of constant prolbwidth increases. Since the hole effective mass is heavier than
ability |Wen(i)|¥max¥;(x,y)|?’=0.1, 0.2...,0.8 ( that of the electron, the electric-field-induced shifts of the
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140 plied on the sample, the electron and hole are separated in
- e}'fcltm" the direction of the electric field; thus the effective Coulomb
o' potential V.¢; decreases as the electric field increases. The
120 binding energy of the exciton can be calculated from the
effective Coulomb potentia¥ ¢ in Eq. (26). It is found that
164 4 for dy=14 nm,E,~22 meV. When an electric fiel =40
100 4 kV/icm is applied on the sampl&,~20 meV ford,=14
s 162 7 L . L
~ o In Fig. 6 we plot the Stark shifts of the exciton in a V-
2 160 grooved quantum wiredy=14 nm); the inset shows the
> 80 to transition energy as a function of electric field. From this
g 158
156 80
60 T T T
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FIG. 3. The energies of the electron and hole states versus the
strength of electric field for different wire widttd,=8 nm (a) 14 20
nm (b). The insets shoviE.+ E,, as functions of electric field.
hole energies are larger than those of the electron energies
Figure 5 illustrates the effective Coulomb potent&l; 0 | | | | |

as a function of the relative distance between the electron
and hole along the axis with and without electric field. The
effective Coulomb potentiaV/.;; decreases rapidly as the
relative distance=|z,—z;| increases. There is a slight dif-

50

100

150

200 250

Z (A)

300

_ . FIG. 5. The effective Coulomb interaction energy of ground
ference of the effective Coulomb potential between the casesate versus the relative distance between electron and hole for dif-

with and without electric field. When an electric field is ap- ferent electric fieldF=0, 40 kV/cm for wire widthd, =14 nm.
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155 axis, the blueshift of the electron and hole enerdigsare
1.666 found (AE,>0). The electric-field-induced change of the
binding energy of the exciton is another important factor.
1.664 The binding energy of the exciton decreases with increasing
electric field AE,<0). Since the electric field always sepa-
1.662 rated the electron and hole, the separation leads to the reduc-
ing of the binding energy. Thus the blueshift is attributed to
150 7 1.660 the two factors mentioned above. The first is the asymmetric
cross section of wire, the second arises from the Coulomb
1.658 , | , interaction. Benner and Haug solved the Poisson and Schro
40 20 0 20 40 dinger equations self-consistently. The many-body effects in-
F(kV/cm) clude the Hartree correction and exchange-correlation effects
are considered in their calcualtion. The blueshifts of PL
peaks in their study are attributed to the electric-field-
induced changes of exciton binding energies. It is similar
with the second factor in our calculation. Our numerical re-
sults can give the interpretation of the experimental measure-
ment although the nummerical results are slightly smaller
than experimental measurement. The difference between the
theoretical results and the experimental measurement may
come from the fact that the V-shaped wire structure taken in
the calculation is an ideal model for realistic structure of
quantum wire.

Etran(ev)

Etran-Egap(meV)

145 —

-40 -20 0 20 40

Electric field (kV/cm)

FIG. 6. The Stark shifts of the excitonic ground state in quantum IV. CONCLUSION

wire (d,=14 nm versus the strength of electric field. ) )
In this paper, we presented a numerical approach that al-

figure we can find a blue Stark shift and a strong asymmetri¢0Ows us to calculate the electronic structures of quantum
shift aroundF =0 kV/cm. The redshifts and blueshifts of the Wires in the presence of electric field, taking into account
electron and hole levels have been shown in Figa) 8nd  Coulomb interaction between the electron and hole together
3(b). Due to the asymmetry geometry of the cross section oWith realistic profiles of the confining potential. We studied
the wire, and the difference of the effective masses and corthe quantum-confined Stark shift effect in a V-grooved
finements of the electron and hole, the quantities of the redGaAs/Al, ,Ga As quantum wire, where the shape of the
shifts and blueshifts of the electron and hole are differentconfinement region differs considerably from the ideal quan-

Therefore, the asymmetry of the cross section of wire lead8/m wires in most of the previous investigation. We propose
to the blueshifts of the PL peak even if the Coulomb inter-& mechanism of the blue Stark shifts observed in experiment.

action is not taken into account. The Stark shifts equal &rom our numerical results we find that the blue Stark shift is
difference of the electric-field-induced changes of the enercaused by the special geometry of the cross section of the
gies of the electron and hole quantized levAlE,=AE, quantum wire and the electric-field-induced decrease of the
+AE;, and the binding energieSEy,; AE=AE,—AE,. In Coulomb interaction. The red and blue Stark shifts are deter-
narrow wire the binding energy decreases drastically. Th&nined by the direction of applied electric field. The binding
electric-field-induced change of the binding energy is large€nergy of exciton is calculated by using a two-dimensional
than that of the quantized energies of the electron and hold;ourier transformation and the variational method. The nu-
|AEp|>|AE,|. It leads to the blueshift of the PL peak in the merical results agree well with experimental measurertent.
guantum wire. From our calculation we also find that the

electric-field-induced shifts of the electron and hole are not

always redshift§see Figs. &) and 3b)] they are influenced ACKNOWLEDGMENT
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