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Quantum-confined Stark effects of exciton states in V-shaped GaAs/AlxGa12xAs quantum wires

Kai Chang and J. B. Xia
National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences,

P.O. Box 912, Beijing 100083, People’s Republic of China
~Received 5 January 1998!

Quantum-confined Stark effects are investigated theoretically in GaAs /AlxGa12xAs quantum wires formed
in V-grooved structures. The electronic structures of the V-shaped quantum wires are calculated within the
effective mass envelope function theory in the presence of electric field. The binding energies of excitons are
also studied by two-dimensional Fourier transformation and variational method. The blue Stark shifts are found
when the electric field is applied in the growth direction. A possible mechanism in which the blueshifts of
photoluminescence peaks are attributed to two factors, one factor comes from the asymmetric structure of
quantum wire along the electric field and another factor arises from the electric-field-induced change of the
Coulomb interaction. The numerical results are compared with the recent experiment measurement.
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I. INTRODUCTION

Recently, the low-dimensional semiconductor structur
such as quantum wires@quasi-one-dimensional~Q1D! sys-
tem# and quantum dots~Q0D system!, have aroused much
attention for potential application to high performance d
vices since they are theoretically predicted to offer supe
optical and electrical characteristics.1–3 There are many tech
niques to fabricate various real-quantum wires, such as e
tron beam lithography and etching, growth on the subst
with V grove, and selective growth on SiO2 patterned GaAs
~110! substrate, etc. In general, there are two kinds of qu
tum wires. In the first kind of quantum wires, one materia
embedded in another material. The second kind of quan
wires has a free surface on the entire side or part of the
in the air, which are formed by lithography and chemic
etching. In this field, recent investigations focus on the
shaped and T-shaped quantum wires.4–10 These quantum
wires share desirable optical properties~the enhancement o
exciton binding energy and a small linewidth! for device
applications.

Electric field applied perpendicularly to the layer of qua
tum wells can change significantly the optical properties@ab-
sorption, reflection, and photoluminescence~PL!# of semi-
conductor quantum-well structures. This effect is referred
as the quantum-confined Stark effect~QCSE!; it has been
studied extensively in the past decades11–14for application of
optical switches and modulators. Theoretically, the quan
wires and quantum dots can offer the advantage of lo
switching energy and enhanced oscillator strength over
quantum well. Therefore, the low-dimensional systems
promised for low-energy optoelectronics devices. Recen
the electro-optical properties has been investigated in
shaped GaAs/AlxGa12xAs quantum wires by PL experi
ments; blueshifts of PL peak under electric field w
observed.15

It is necessary to calculate the energy eigenvalues of
real quantum-wire structure for design of the device. Inosh
and Sakaki16 calculated the electronic structure of a rid
wire recently. They modeled the confined potential by
PRB 580163-1829/98/58~4!/2031~7!/$15.00
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approximate analytic expression and employed a coordin
transformation such that the interface was planar.17 The
finite-element method was applied to obtain the confinem
energies. Goldoniet al.18 and Rossi and Molinari19 devel-
oped a numerical method in which the envelope function w
expanded in terms of the plane-wave basis and calculated
electronic structures of realistic V-shaped quantum wire.
the above mentioned papers, the Coulomb interaction
tween electron and hole was not taken into account. On
other hand, there are several theoretical works on the exc
state in some ideal quantum wires. Binding energies of
citon in GaAs/AlxGa12xAs rectangular quantum wires wer
investigated by Brown and Spector20 and Degani and
Hipolito.21 Banyai et al.22 also calculated the exciton an
biexciton ground-state binding energies assuming infin
confining potential. Shik23 considered a dielectric cylinde
with the dielectric constante@1 placed in vacuum. He cal
culated the impurity bound-state binding energy, and fou
that image charge causes an obvious increase in binding
ergy. Very recently, Xia and Cheah24 investigated the exci-
ton states in an isolated quantum wire in which the valen
band mixing effect is taken into account. They found t
exciton binding energy in the isolated wire is about ten tim
larger than that in the quantum well. Benner and Hau25

assumed a parabolic confining potential and investigated
QCSE in a quantum wire. Hartree correction and t
exchange-correlation effects are both taken into acco
They found the blueshifts of PL peaks for low fields.

In this paper, we apply a numerical method to calcul
the exciton states in real quantum-wire structures formed
V-grooved substrate in the presence of an electric field. T
binding energies of excitons are studied by using tw
dimensional Fourier transformation and the variation
method. A possible mechanism of blueshifts of PL peaks
proposed. It arises from the two aspects; one comes from
asymmetric geometry of wire cross section and another
sults from the electric-field-induced change of Coulomb
teraction. The former is different from the result of Benn
and Haug’s study. In Sec. II, the theory of the QCSE
V-shaped quantum wires is presented. In Sec. III, the
2031 © 1998 The American Physical Society
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merical results are given and discussed. Finally, we give
conclusion in Sec. IV.

II. THEORY

We consider a quantum-wire sample formed in a
grooved substrate, which is grown epitaxially by select
growth technique. A sketch of the sample is shown in Fig
Electron and hole are confined in thexy plane and move
freely along the wire direction (z axis!. After separation of
center-of-mass and relative motion in thez direction, the
Hamiltonian for the system can be written as

H5He1Hh1Veh1VF , ~1!

He52¹e

\2

2me* ~x,y!
¹e1Ve~x,y!, ~2!

Hh52¹h

\2

2mh* ~x,y!
¹h1Vh~x,y!, ~3!

Veh52
e2

4pe0eAz21r2
, ~4!

VF56eFy, ~5!

wherer5A(xe2xh)21(ye2yh)2 is the relative distance be
tween electron and hole in thexy plane, e the electron
charge,\ the Planck constant,me* (mh* ) the effective mass
of the electron~hole!, F the strength of external electric field
and VF56eFy the potential induced by the external sta
electric field.Ve(x,y) @Vh(x,y)# is the confining potentia
for the electron~hole!,

FIG. 1. Typical cross section of a V-shaped quantum wire
rived from TEM micrographs; the frame of figure denotes the
periodic cell.
e

-
e
.

Vi~x,y!5H 0, Region I

Vi , Region II,
~6!

m* ~z!5H miw* , Region I

mib* , Region II,
~7!

wherei 5e,h denotes electron or hole.
Electron and hole states in quantum wires are determi

by the following Schro¨dinger equations respectively:

HeCe5ECe , ~8!

HhCh5ECh . ~9!

In general, these equations cannot be solved analytic
due to complex geometry of a real quantum wire. In th
paper, we expand the envelope functionCe,h in terms of a
series of orthogonal complete bases that are composed o
plane waves in thex-y direction with periodic boundary con
dition. In quantum-well structures, Xia and Huang26 and Zhu
and Chang27 have used the similar method to solve t
Schrödinger equation in the presence of an external fie
This method has also been applied to study the exciton
tical transition in GaAs/AlxGa12xAs multiple quantum wells
as a function of the field strength and proved successfully
comparison with experiment.28 We extend the method to
two-dimensional case here; we assume that the barrier i
high and thick that it will bring in only a minor error by
cutting the electric field at the barrier center and repea
periodically. Thus, the potential in the presence of the el
tric field is

Vi~x1nLx ,y1mLy!5Vi~x,y!

5H 6eFy, Region I

Vi~x,y!6eFy, Region II.

~10!

This assumption is both necessary for obtaining bou
states in the presence of an external electric field and rea
able for long-lived quasibound states provide that the fi
strength is not too large. Following Ref. 25, we expand
electron or hole wave function in terms of normalized plan
wave basis set, respectively,

Ce,h~x,y!5
1

ALxLy
(
n,m

anmeikxx1 iK nxeikyy1 iK myeikzz.

~11!

Inserting Eq.~11! into Eq. ~8!, we obtained the secula
equation

uHnm,n8m82Ednn8dmm8u50. ~12!

The elements of the Hamiltonian matrix can be given as

^H&nm,n8m85^T&nm,n8m81^Vcon f&nm,n8m81^VF&nm,n8m8 ,
~13!

-
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^T&nm,n8m8

52E
2Lx/2

Lx/2 E
2Ly/2

Ly/2

dxdye2 iK mxe2 iK ny¹ i

3
\2

2mi* ~x,y!
¹ ie

iK m8xeiK n8y, ~14!

^Vcon f&nm,n8m85E
2Lx/2

Lx/2 E
2Ly/2

Ly/2

dxdyeiK nn8xeiK mm8yVi~x,y!,

~15!

^VF&nm,n8m85H 0 m5m8

~21!m2m8 6eFLy

2i ~m2m8!p
dnn8 mÞm8,

~16!

where1 is for the hole while2 is for the electron,Lx and
Ly are the periods of two-dimensional superlattice in thex-y
plane,Kn5n2p/Lx5nKx , Km5m2p/Ly5mKy , andn,m
are integers.Knn8 andKmm8 are

Knn85~n2n8!
2p

Lx
, ~17!

Kmm85~m2m8!
2p

Ly
. ~18!

In principle, the dimensionality of the Hamiltonian matr
is infinite. Since we are only concerned with the grou
states, we can truncate the series in Eq.~11!. For V-shaped
wires considered here, this series with 15 terms can g
convergent results.

After we obtained the eigenvalues and wave functions
the electron and hole, respectively, we then take into acco
re

-

e

f
nt

Coulomb interaction between the electron and hole. An
proximate solution of Eq.~1! can be written in the form29

C~xe ,ye ,xh ,yh ,z!5C~xe ,ye!C~xh ,yh!wz,g~z!, ~19!

where wz,g(z) is a variational wave function. By insertin
Eq. ~19! into Eq. ~1!, an effective one-dimensional equatio
for the relative motion along the wire direction is obtaine

FEe1Eh2
\2

2m

d2

dz2
1Ve f f~z!Gwz,g~z!5Egwz,g~z!,

~20!

whereVe f f(z) is

Ve f f~z!5E E E E dxedyedxhdyhuCe~xe ,ye!u2

3uCh~xh ,yh!u2V~xe2xh ,ye2yh ,z!, ~21!

which is difficult to evaluate. In evaluating the interactio
integration in Eq.~2!, we employ a two-dimensional Fourie
transform

1

Az21r2
5

1

2pE2`

` E
2`

`

dqxdqye
2 iQ•r

e2Quzu

Q
, ~22!

whereQ5Aqx
21qy

2.
By using this transformation, we can integrate the all re

space variables analytically, which gives the following e
pression:
Veh5
e2

2p (
neme

aneme
* (

ne8me8
an

e8m
e8

* (
nhmh

anhmh
* (

nh8mh8
an

h8m
h8

* E
2`

` E
2`

`

dqxdqy

sin~Knn8
e

2qx!Lx/2

Knn8
e

2qx

3
sin~Kmm8

e
2qy!Ly/2

Kmm8
e

2qy

sin~Knn8
h

2qx!Lx/2

Knn8
h

2qx

sin~Kmm8
h

2qy!Ly/2

Kmm8
h

2qy

e2Quzu

Q

5
e2

2p (
neme

aneme
* (

ne8me8
an

e8m
e8

* (
nhmh

anhmh
* (

nh8mh8
an

h8m
h8

* E
0

2pE
0

`

dudQ
sin@Knn8

e
2Qcos~u!#Lx/2

Knn8
e

2Qcos~u!

3
sin@Kmm8

e
2Qsin~u!#Ly/2

Kmm8
e

2Qsin~u!

sin@Knn8
h

2Qcos~u!#Lx/2

Knn8
h

2Qcos~u!

sin@Kmm8
h

2Qsin~u!#Ly/2

Kmm8
h

2Qsin~u!
e2Quzu. ~23!
by
The original four-dimensional integration has been
duced to the two-dimensional~2D! integration in thek
space. The singularity 1/r ,r→0 in original real-space inte
gration has been removed because limx→0sinx/x51.

A variational trial wave functionwg is taken as
-
wg5S 4g

p D 1/4

e2gz2
, ~24!

whereg is the variation parameter and it can be obtained
minimizing the energy
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Eg5^w~z,g!u2
\2

2m

d2

dz2
1Ve f f~z!uw~z,g!&. ~25!

The binding energy of one-dimensional exciton is defin
as

Eb5Ee1Eh2E, ~26!

whereEe andEh are the single-particle energies of the ele
tron and heavy hole, respectively,E is the ground-state en
ergy of the one-dimensional exciton.

The Stark shift of the exciton is

DE5E~F !2E~0!5DEq2DEb , ~27!

whereE(F)5Ee(F)1Eh(F)2Eb(F), DEq is the difference
of the quantized energies of the electron and hole with
considering the excitonic effect.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results of equati
in Sec. II. We consider a V-shaped GaAs/Al0.4Ga0.6As quan-
tum wire. The typical 2D cross section of a V-shaped qu
tum wire is shown in Fig. 1. In the V-shaped wire the low
surface has a sharp corner with an angle between the s
a570.6° @the angle between the~111! facets#; the upper
surface also has a sharp corner with an angle between
sidesb5129.52° @the angle between the~311! facets#. The
material parameters used in our calculations areme*
50.0665, mh* 50.45, the dielectric constante512.5 for
GaAs, me* 50.0997, mh* 50.45, Ve5313 meV, Vh5209
meV, e510.9 for Al0.4Ga0.6As.

The probabilities of the single-particle wave functio
uCe(x,y)u2 anduCh(x,y)u2 are shown in Figs. 2~a! and 2~b!,
respectively. The contours represent lines of constant p
ability uCe,h( i )u2/maxuC i(x,y)u250.1, 0.2, . . . ,0.8 (i

FIG. 2. Contour plot of the probability of electron~a! and
heavy-hole~b! ground stateuC i u2/maxuC i u in the absence of elec
tric field (i 5e,h). Lines denote 0.2, 0.4, 0.6, 0.8.
d
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5e,h). The contour lines show the distribution of the electr
or hole in V-grooved quantum wire. From this figure, we c
see that the electron~hole! on the ground-state level is loca
ized in the bottom of the V-grooved quantum wire, and the
contour lines mirror the cross-section structure of V-shap
wire. Obviously the localization of the hole is stronger th
that of the electron. This arises from the fact that the eff
tive mass of the hole is much heavier than that of the e
tron. Here we neglected the valence-band mixing effect. T
approximation was taken in previous publications.19 We are
only concerned with the heavy-hole ground state since
will compare the transition energy between the ground sta
of the electron and heavy hole with the experiment. We co
pared the contours of the probabilityuCh(x,y)u2 in the pres-
ence of electric field with that in the absence of electric fie
@Fig. 2~c!#, and found that the contour lines vary slightly.
means that the electric-field-induced variation of the pro
ability uCh(x,y)u2 is very small. Thus, the separation b
tween the electron and hole is also small in the quantum w
under the electric field. When an electric field is appli
along the positive direction of they axis, the hole is pushed
to the top of the wire and the distribution of the hole b
comes a little more extended compared to the case when
electric field is along the negative direction of they axis.

In Figs. 3~a! and 3~b!, we plot the energies of the electro
and hole states as a function of electric field. The res
show that the redshifts and blueshifts of the electron and h
levels are determined by the direction of the electric fie
applied on the sample. The Coulomb interaction between
electron and hole is not taken into account. The redshifts
blueshifts are caused by the asymmetric structure of the
grooved quantum wire. In the bottom of the wire the co
finement is stronger than that in the top of the wire. Wh
the electron or hole is pushed to the bottom of the wire,
confinement is enhanced, and this enhancement resul
raising of the energies of the electron and hole states. On
other hand, the electric field lowers the energies of the e
tron and hole states. There is a competition between the
finement and the electric field, which leads to the redshift
blueshift of the electron and hole levels. The insets show
transition energy between the electron and hole ground
nus the band gap of GaAs as a function of electric fie
From the results we find that the asymmetric character
energy shifts around zero electric field, and the asymme
character is enhanced as the wire width increases. From t
figures, we find that the asymmetric geometry of the w
cross section can cause the blueshifts of PL peaks. T
mechanism is different from the mechanism proposed
Benner and Haug.25

Figure 4 shows the energies of the electron and hole st
as functions of the width of the quantum wire in the presen
of electric field. We find that the energies of the electron a
hole states decrease rapidly as the wire width increa
From these figures the redshifts and blueshifts of the elec
and hole levels are seen and determined by the directio
the electric field applied on the sample. In narrow wire, t
confinement is much stronger than that in wide wire. The
fore the effect of the electric field on the energies of t
electron and hole becomes more and more strong as the
width increases. Since the hole effective mass is heavier
that of the electron, the electric-field-induced shifts of t
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hole energies are larger than those of the electron energ
Figure 5 illustrates the effective Coulomb potentialVe f f

as a function of the relative distance between the elec
and hole along thez axis with and without electric field. The
effective Coulomb potentialVe f f decreases rapidly as th
relative distancez5uze2zhu increases. There is a slight di
ference of the effective Coulomb potential between the ca
with and without electric field. When an electric field is a

FIG. 3. The energies of the electron and hole states versus
strength of electric field for different wire widthdx58 nm ~a! 14
nm ~b!. The insets showEe1Eh as functions of electric field.
s.

n

es

plied on the sample, the electron and hole are separate
the direction of the electric field; thus the effective Coulom
potentialVe f f decreases as the electric field increases. T
binding energy of the exciton can be calculated from
effective Coulomb potentialVe f f in Eq. ~26!. It is found that
for dx514 nm,Eb'22 meV. When an electric fieldF540
kV/cm is applied on the sample,Eb'20 meV for dx514
nm.

In Fig. 6 we plot the Stark shifts of the exciton in a V
grooved quantum wire (dx514 nm!; the inset shows the
transition energy as a function of electric field. From th

he

FIG. 4. The energies of electron and hole states versus the
width under different biasF50 kV/cm, 640 kV/cm.

FIG. 5. The effective Coulomb interaction energy of grou
state versus the relative distance between electron and hole fo
ferent electric fieldF50, 40 kV/cm for wire widthdx514 nm.
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figure we can find a blue Stark shift and a strong asymme
shift aroundF50 kV/cm. The redshifts and blueshifts of th
electron and hole levels have been shown in Figs. 3~a! and
3~b!. Due to the asymmetry geometry of the cross section
the wire, and the difference of the effective masses and c
finements of the electron and hole, the quantities of the r
shifts and blueshifts of the electron and hole are differe
Therefore, the asymmetry of the cross section of wire le
to the blueshifts of the PL peak even if the Coulomb int
action is not taken into account. The Stark shifts equa
difference of the electric-field-induced changes of the en
gies of the electron and hole quantized levelsDEq5DEe
1DEh and the binding energiesDEb ; DE5DEq2DEb . In
narrow wire the binding energy decreases drastically. T
electric-field-induced change of the binding energy is lar
than that of the quantized energies of the electron and h
uDEbu.uDEqu. It leads to the blueshift of the PL peak in th
quantum wire. From our calculation we also find that t
electric-field-induced shifts of the electron and hole are
always redshifts@see Figs. 3~a! and 3~b!# they are influenced
by the geometry of the cross section of the wire. When
electric field is applied along the positive direction of they

FIG. 6. The Stark shifts of the excitonic ground state in quant
wire (dx514 nm! versus the strength of electric field.
pl

S.
ic

f
n-
d-
t.
s

-
a
r-

e
r

le;

t

e

axis, the blueshift of the electron and hole energiesEq are
found (DEq.0). The electric-field-induced change of th
binding energy of the exciton is another important fact
The binding energy of the exciton decreases with increas
electric field (DEb,0). Since the electric field always sep
rated the electron and hole, the separation leads to the re
ing of the binding energy. Thus the blueshift is attributed
the two factors mentioned above. The first is the asymme
cross section of wire, the second arises from the Coulo
interaction. Benner and Haug solved the Poisson and Sc¨-
dinger equations self-consistently. The many-body effects
clude the Hartree correction and exchange-correlation eff
are considered in their calcualtion. The blueshifts of
peaks in their study are attributed to the electric-fie
induced changes of exciton binding energies. It is sim
with the second factor in our calculation. Our numerical
sults can give the interpretation of the experimental meas
ment although the nummerical results are slightly sma
than experimental measurement. The difference between
theoretical results and the experimental measurement
come from the fact that the V-shaped wire structure taken
the calculation is an ideal model for realistic structure
quantum wire.

IV. CONCLUSION

In this paper, we presented a numerical approach tha
lows us to calculate the electronic structures of quant
wires in the presence of electric field, taking into accou
Coulomb interaction between the electron and hole toge
with realistic profiles of the confining potential. We studie
the quantum-confined Stark shift effect in a V-groov
GaAs/Al 0.4Ga0.6As quantum wire, where the shape of th
confinement region differs considerably from the ideal qu
tum wires in most of the previous investigation. We propo
a mechanism of the blue Stark shifts observed in experim
From our numerical results we find that the blue Stark shif
caused by the special geometry of the cross section of
quantum wire and the electric-field-induced decrease of
Coulomb interaction. The red and blue Stark shifts are de
mined by the direction of applied electric field. The bindin
energy of exciton is calculated by using a two-dimensio
Fourier transformation and the variational method. The
merical results agree well with experimental measuremen15
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