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Dynamic dielectric response of an asymmetric double quantum well near the bounding surface
of a semi-infinite dynamic plasmalike host medium

Norman J. M. Horing and Yu¨ksel Ayaz*
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

~Received 21 August 1997; revised manuscript received 6 March 1998!

We have examined the dynamic, nonlocal dielectric response function of a pair of asymmetric quantum
wells embedded in a semi-infinite dynamic~local! host plasmalike medium, near its bounding surface, by
carrying out a closed form inversion of the dielectric function of this system explicitly. The resulting random-
phase-approximation~RPA! inverse dielectric functionK(z,z8;q,v), which depends on lateral wave vectorq
and frequencyv, is obtained analytically in position representation withz,z8 describing distances into the
medium from the bounding surface. In this, we neglect intersubband transitions in the two quantum wells
~assumed to be thin! and ignore tunneling effects. The frequency poles ofK(z,z8;q,v), describe the collective
modes resulting from the coupling of the double quantum well quasi-two-dimensional intrasubband plasmons
with the bulk and surface plasmons of the host medium, and the residues at these poles provide the oscillator
strengths of such coupled collective modes.@S0163-1829~98!03528-0#
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I. RPA INTEGRAL EQUATION
FOR A DOUBLE QUANTUM WELL

EMBEDDED IN A SEMI-INFINITE MEDIUM

The collective electrostatic normal modes of layered el
tron gas systems have been the subject of b
experimental1–3 and theoretical studies for some time. In pa
ticular, the spectra of double quantum well~DQW! plasmons
have been carefully analyzed both with and without a m
netic field.4–13 Our considerations here are focused on
interaction of such DQW plasmons with the collecti
modes of a semi-infinite plasmalike host medium in wh
the quantum-well system is embedded. In this, we will e
amine the coupling of the DQW plasmons with bulk pla
mons of the host and with surface/interface plasmons tha
active in the vicinity of the host’s bounding surface, on t
other side of which lies a different dielectric medium. T
carry out this study, we perform a closed form inversion
the dielectric function of the combined system~DQW and
semi-infinite host plasma! in position representation. Its fre
quency poles explicitly show the preferential coupling of t
DQW plasmons to the host bulk and surface plasmons
function of distance from the bounding surface.

The determination of the inverse dielectric function of
asymmetric double quantum well system embedded nea
bounding surface of a semi-infinite dynamic host medium
addressed here in terms of the random phase approxim
~RPA! integral equation. The system is illustrated in Fig.
The quantum wells are in thex-y plane and have center-to
center separationa and widthsb,b8 in the z direction. The
two quantum wells may have different polarizabilities, a
we assume thata@b,b8 so that both overlap and intersub
band transitions may be neglected. The RPA integral eq
tion for the inverse dielectric function K(1,2)
5dV(1)/dU(2), which describes the effective potenti
V(1) at space-time point 1 due to an impressed poten
U(2) at space-time point 2, may be written in the for
~15r¢1 , t15r¢1 ,z1 ,t1 , etc.!

K~1,2!5d~122!2E d3K~1,3!4pa~3,2!. ~1a!
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Here, 4pa(3,2)52*d18v(3,18)R(18,2) is the joint polar-
izability of the combined system of two quantum we
lodged in a semi-infinite plasmalike medium, andv(3,18) is
the Coulomb potential andR(18,2)5G(18,2)G(2,18) is the
ring diagram density perturbation response funct
@G(18,2) being the free one-particle thermodynamic Gree
function of the system#. Fourier transforming in the transla
tionally invariantx-y plane and in time,r¢12r¢2→q, and t1
2t2→v, we have~supressingq,v!

K~z1 ,z2!5d~z12z2!2E dz3K~z1 ,z3!4pa~z3 ,z2!,

~1b!

and

4pa~z3 ,z2!52E dz1v~ uz12z3u!R~z1 ,z2!. ~2!

FIG. 1. A pair of asymmetric quantum wells having their cente
at distancesz06a/2 from the interface atz50 of the semi-infinite
~local! host plasmalike medium of dielectric function«~v! with an
adjoining medium of dielectric constant«8. The widths of the quan-
tum wells areb andb8.
2001 © 1998 The American Physical Society
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The local polarizability for a semi-infinite medium was d
termined in Ref. 14 as~we allow here that the adjoining
medium has dielectric constant«8 instead of the vacuum
value 1!:

4pasemi~z3 ,z2!5d~z32z2!@h1~z3!21#

1d~z2!~«82«!h2~z3!e2quz3u/2, ~3!

where we have definedh2(z)5u(z)2u(2z)51,0,21 for
z.0,z50,z,0, and h1(z)5«u(z)1«8u(2z)5«,(«8
1«)/2,«8 for z.0,z50,z,0, respectively.@u(z) denotes the
Heaviside unit step function,u(z)51 for z.0, 1/2 for z
50, and 0 forz,0.# The first, local@;d(z32z2)# term of
4pasemi(z3 ,z2) on the right-hand side of Eq.~3! is naively
expected on the basis of the differing dielectric properties
the medium across the planez350. The second term
@;d(z2)# assures correct dynamic imaging due to the int
face.

Designating coordinates relative to the centers of
quantum wells aszs5z2z02sa/2 (s561), the polariz-
ability of the quantum wells may be expressed in terms
the Green’s function for a quantum well withn subbands,

G(1,2)5(a51
n (s561ja

s(z1s)ja
s(z2s)eiEa

s(t12t2)ga
s(r¢12r¢2),

whereja
s denotes a real quantum-well subband wave fu

tion in z direction across thes well, Ea
s denotes the corre

sponding subband energy.ga
s(r¢12r¢2) is the Schro¨dinger

Green’s function for motion on the plane of the quantu
well with chemical potentialzs . This yields the ring
diagram density perturbation response function for
double quantum well system as R(z1 ,z2)

5(a,b(s,s8Rab
ss8ja

s(z1s)jb
s8(z1s8)ja

s(z2s)jb
s8(z2s8) where

the matrix elementRab
ss8 of the response function with sub

band indiciesa,b and well indiciess,s8 is given by

Rab
ss8~q,v!52(

k

f 0~ek1Ea
s2zs!2 f 0~ek2q1Eb

s82zs8!

v1ek2ek2q1Ea
s2Eb

s8
.

~4!

Here, f 0 is the Fermi distribution functionf 05@e(e2z)/kT

11#21 with chemical potentialz andek5\2k2/2m refers to
the part of single-electron kinetic energy along the quantu
well plane, etc. The DQW polarizability, 4paDQW, is thus

4paDQW~z3 ,z2!

52(
a,b

(
s,s8

Rab
ss8Vab

ss8~z3!ja
s~z2s!jb

s8~z2s8!, ~5!

whereVab
ss8 is a matrix element of the Coulomb potential,

Vab
ss8~z1!5

2pe2

q E dz2e2quz12z2uja
s~z2s!jb

s8~z2s8!.

~6!

Within the framework of the RPA the joint polarizabilit
4pa of the combined system is given by the sum of t
polarizabilities of the constituent parts~DQW and semi-
infinite medium!, 4pa54pasemi14paDQW, whence
f

-

e

f

-

e

-

4pa~z3 ,z2!5d~z32z2!@h1~z3!21#

1d~z2!~«82«!h2~z3!e2quz3u/2

2(
a,b

(
s,s8

Rab
ss8Vab

ss8~z3!ja
s~z2s!jb

s8~z2s8!.

~7!

Employing this result in Eq.~1b!, the RPA integral equation
for K(z1 ,z2) takes the form

K~z1 ,z2!5
1

h1~z2! H d~z12z2!2d~z2!~«82«!K~z1 ,q!/2

1(
a,b

(
s,s8

Rab
ss8ja

s~z2s!jb
s8~z2s8!Kab

ss8~z1!J ,

~8!

where we have definedK(z1 ,q) and Kab
ss8(z1) as K(z1 ,q)

5*dz3h2(z3)e2quz3uK(z1 ,z3) and Kab
ss8(z1)

5*dz3Vab
ss8(z3)K(z1 ,z3). Our analysis of the integral equa

tion yieldsK(z1 ,q) in terms ofKab
ss8(z1) as

K~z1 ,q!5@h2~z1!/h1~z1!#e2quz1u

1(
a,b

(
s,s8

Rab
ss8I ab

ss8Kab
ss8~z1!, ~9!

where

I ab
ss85E dz2e2quz2uja

s~z2s!jb
s8~z2s8!@h2~z2!/h1~z2!#

5
1

« E dz2e2quz2uja
s~z2s!jb

s8~z2s8!, ~10!

~the DQW subband states are taken to be wholly confi
within the bounding surface!. Therefore, the integral equa
tion may be rewritten in the form

K~z1 ,z2!5
1

h1~z2! H d~z12z2!2d~z2!~«82«!

3@h2~z1!/2h1~z1!#e2quz1u

1(
a,b

(
s,s8

Rab
ss8Kab

ss8~z1!@ja
s~z2s!jb

s8~z2s8!

2d~z2!~«82«!I ab
ss8/2#J . ~11!

Further analysis of this integral equation yields a mat

equation forKab
ss8(z1) as

Kmn
s9s-~z1!5@1/h1~z1!#Mmn

s9s-~z1!

1(
a,b

(
s,s8

Rab
ss8Nabmn

ss8s9s-Kab
ss8~z1!, ~12!



PA
lect

of

-

PRB 58 2003DYNAMIC DIELECTRIC RESPONSE OF AN . . .
where we have defined

Mmn
s9s-~z1!5Vmn

s9s-~z1!2Gh2~z1!e2quz1uVmn
s9s-~0!,

~13a!

Nabmn
ss8s9s-5Jabmn

ss8s9s-2GI ab
ss8Vmn

s9s-~0!, ~13b!

with

Jabmn
ss8s9s-5E dz2ja

s~z2s!jb
s8~z2s8!Vmn

s9s-~z2!/h1~z2!

5
2pe2

q« E dz1E dz2e2quz12z2uja
s~z2s!

3jb
s8~z2s8!jm

s9~z1s9!jn
s-~z1s-!, ~13c!
o
ow
m

s
ra

,

ial
ry

s

-

andG5(«82«)/(«81«).

II. SOLUTION OF RPA INTEGRAL EQUATION
NEGLECTING INTERSUBBAND TRANSITIONS

AND TUNNELING

Our considerations here are directed at solving the R
integral equation in circumstances where we may neg
intersubband transitions in the two quantum wells~assumed
to be thin! and tunneling effects are small. The neglect

intersubband transitions may be expressed asRab
ss8

→dabRaa
ss8 , and the elimination of tunneling effects corre

sponds toja
s(zs)jb

s8(zs8)→dss8ja
s(zs)jb

s(zs). With these
replacements, Eq.~11! reduces to
K~z1 ,z2!5
1

h1~z2! H d~z12z2!2d~z2!~«82«!@h2~z1!/2h1~z1!#e2quz1u

1(
a

(
s

Raa
ssKaa

ss~z1!@ja
s~z2s!ja

s~z2s!2d~z2!~«82«!I aa
ss/2 #J , ~14!
i-

s

and Eq.~12! becomes

Knn
s8s8~z1!5M nn

s8s8~z1!/h1~z1!

1(
m

(
s

Rmm
ss Nmmnn

sss8s8Kmm
ss ~z1!. ~15!

The dimension of this matrix equation is twice the number
occupied subbands and it may be solved numerically. H
ever, we can obtain an analytic solution for thin quantu
wells, such thatqb,qb8!1. Sinces,s8 each takes value
61, we distinguish two cases in the evaluation of the integ

Jabmn
ss8s9s- @Eq. ~13c!# for thin quantum wells:~i! s ands8 are

confined to the same quantum well: Because of thinnessz1
2z2>b,b8!1/q, the integrals of Eq.~13c! are determined
by orthonormality of the subband wave functions~note that
the condition qb,qb8!1 assumes that the exponent
e2quz12z2u varies slowly even if subband wave functions va
rapidly across the quantum well!, whence

Jmmnn
sss8s85

2pe2

q«
e2qb'

2pe2

q«
~s5s8!,

~ii ! s ands8 are different: Translating integration variable
to the quantum well centers,~z̃15z12z02s8a/2; z̃25z2
2z02sa/2!, ‘‘thin’’ now means that the four wave func
tions in the integrand of Eq.~13c! amount tod( z̃1)d( z̃2),
whence

Jmmnn
sss8s85

2pe2

q«
e2qu sa/2 2 s8a/2 u5

2pe2

q«
e2qa ~sÞs8!.

For the two cases jointly we have
f
-

l

Jmmnn
sss8s85

2pe2

q«
e2qu sa/2 2 s8a/2 u. ~16!

Similar considerations yield

I mm
ss 5

1

«
e2q~z01 sa/2!, Vnn

s8s8~z1!5
2pe2

q
e2quz12z02 s8a/2 u.

~17!

Within the scope of these approximations we writeM nn
s8s8

andNmmnn
sss8s8 in Eq. ~13! as

M nn
s8s8~z1![Ms8s8~z1!

5
2pe2

q
@e2quz12z02 s8a/2 u

2Gh2~z1!e2quz1ue2quz01 s8a/2 u#, ~18a!

Nmmnn
sss8s8[Nsss8s8

5
2pe2

q«
@e2qu sa/2 2 s8a/2 u

2Ge2q~z01 sa/2!e2quz01 s8a/2 u#. ~18b!

It should be noted that, in the thin quantum well limit, ne

ther M nn
s8s8(z1) nor Nmmnn

sss8s8 depends on subband indicie

m,n. Subsitution of M nn
s8s8(z1)[Ms8s8(z1) and Nmmnn

sss8s8

[Nsss8s8 of Eq. ~18! into Eq. ~15! yields
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Knn
s8s8~z1!5Ms8s8~z1!/h1~z1!2

1

« (
m

(
s

4pamm
ss Kmm

ss ~z1!@e2qu sa/2 2 s8a/2 u2Ge22qz0e2q~sa/2 1 s8a/2!#, ~19!

where we have defined the dynamic nonlocal 2D polarizability of subbandm in quantum wells ~with chemical potential
measured relative toEm

s! as

4pamm
ss [4pamm

ss ~q,v!52
2pe2

q
Rmm

ss ~q,v!. ~20!

Considering each of the two values ofs85681, the sum overs561 on the right hand side of Eq.~19! yields

Knn
11~z1!5M 11~z1!/h1~z1!2c1(

m
4pamm

11Kmm
11~z1!2c2(

m
4pamm

22Kmm
22~z1!, ~21a!

Knn
22~z1!5M 22~z1!/h1~z1!2c2(

m
4pamm

11Kmm
11~z1!2c3(

m
4pamm

22Kmm
22~z1!, ~21b!

where we have defined

c15~12Ge22qz0e2qa!/«, c25~e2qa2Ge22qz0!/«, c35~12Ge22qz0eqa!/«. ~22!

Furthermore, we define a total dynamic, nonlocal 2D polarizability for the quantum wells by summing Eq.~20! over subband
index m,

4pa2D
ss[4pa2D

ss~q,v!5(
m

4pamm
ss ~q,v!. ~23!

Neglecting intersubband transitions, it is clear that each subband contributes like an independent 2D plasma, popul
Fermi function having the chemical potential measured relative toEm

s . To solve Eqs.~21a,b!, we multiply Eq. ~21a! by
4pann

11 and Eq.~21b! by 4pann
22 and sum over indexn, obtaining two simultaneous equations for(n4pann

66Knn
66(z1),

which have the solutions,

(
n

4pann
11Knn

11~z1!5
4pa2D

11

Dh1~z1!
@~11c34pa2D

22!M 11~z1!2c24pa2D
22M 22~z1!#, ~24a!

(
n

4pann
22Knn

22~z1!5
4pa2D

22

Dh1~z1!
@~11c14pa2D

11!M 22~z1!2c24pa2D
11M 11~z1!#. ~24b!

Here,D is given by

D5~11c1 4pa2D
11!~11c3 4pa2D

22!2c2
2 4pa2D

11 4pa2D
22 . ~25!

Combining Eqs.~24a,b! into a single expression, we have

(
n

4pann
ssKnn

ss~z1!5
4pa2D

ss

Dh1~z1!
@Mss~z1!1~c1ds21c3ds1!4pa2D

2s2sMss~z1!2c24pa2D
2s2sM 2s2s~z1!#, ~26!

which we employ in Eq.~19! and Eq.~14! to finally obtainK(z1 ,z2) as

K~z1 ,z2!5
1

h1~z2! H d~z12z2!2d~z2!~«82«!@h2~z1!/2h1~z1!#e2quz1u1 (
a51

n

(
s561

4paaa
ss$@ja

s~z22z02sa/2!#2

2d~z2!~1/2«!~«82«!e2q~z01 sa/2!%
2q

2pe2

1

h1~z1! S Mss~z1!2 (
s8561

4pa2D
s8s8

«D
~e2qu sa/22 s8a/2 u

2Ge22qz0e2q~sa/2 1s8a/2!!@Ms8s8~z1!1~c1ds821c3ds81!4pa2D
2s82s8Ms8s8~z1!

2c24pa2D
2s82s8M 2s82s8~z1!# D J , ~27!

whereMss(z1) is given by Eq.~18!. This result reduces properly to known results for the case of a single quantum
(«8Þ«) ~Ref. 14! and for the case of a DQW in a uniform background («85«).15
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III. COUPLED-MODE DISPERSION RELATION

The dispersion relation for the coupled plasma oscillations of the system illustrated in Fig. 1 is given by the p
K(z1 ,z2) as

«D

G
5

1

G F«14pa2D
1114pa2D

221
1

«
4pa2D

114pa2D
22~12e22qa!G

2F4pa2D
11e2qa14pa2D

22eqa1
2 sinh~qa!

«
4pa2D

114pa2D
22Ge22qz050, ~28!

wherea is the separation between the two quantum wells,z0 is the distance between the center of the two quantum wells
the bounding surface of the host medium. For the local cold plasma limit 4pa2D

66→2v2D(6)
2 /v2, where v2D(6)

2

52pn6e2q/m6 is the 2D classical plasma frequency of a single plane sheet of plasma having 2D densityn6 . Also, «
5«02vp

2/v2, where«0 is the background dielectric constant, andvp
254pe2r/m is the 3D classical plasma frequency of th

semi-infinite host plasma, andG5(«82«)/(«81«).
In some cases, the roots of Eq.~28! can be obtained analytically~approximately!:
~i! For z0 large, the coupled plasma oscillation roots of Eq.~28! show that the 2D DQW plasmons couple preferentially

the bulk plasmon of the host medium and the surface plasmon is approximately uncoupled. Writing the 2D DQW p
dispersion relation in the absence of the background host plasma and in the absence of a bounding surface as~we define
v2D

2 5v2D(1)
2 1v2D(2)

2 !

v6
2 5

1

2«0
$v2D

2 6@~v2D
2 !224v2D~1 !

2 v2D~2 !
2 ~12e22qa!#1/2%, ~29!

the coupling of the modes described by Eq.~28! for large z0 yields weakly perturbed rootsV6
2 close tov6

2 1vp
2/«0 and

another rootVs
2 close to the surface plasmonvs

25vp
2/(«81«0) as follows ~we employ the definitionv II

25v2D(1)
2 e2qa

1v2D(2)
2 eqa):

V6
2 5H v6

2 1
vp

2

«0
2e22qz0

~«0v6
2 !@gv6

2 1~«8/«0!vs
2#

@v6
2 1~«8/«0!vs

2#~v6
2 2v7

2 !
Fv II

222
v2D~1 !

2 v2D~2 !
2

«0v6
2 sinh~qa!G J , ~30a!

Vs
25vs

2H 11e22qz0
~«8vs

2!@2«8/~«81«0!#

@v1
2 1~«8/«0!vs

2#@v2
2 1~«8/«0!vs

2#
Fv II

212
v2D~1 !

2 v2D~2 !
2

«8vs
2 sinh~qa!G J , ~30b!

whereg5(«82«0)/(«81«0), independent of frequency.
~ii ! For z0 small, near the bounding surface~z05a/2 is as close as the DQW system can come to the bounding su

without expelling part of the quantum well from the host!, the 2D DQW plasmons couple preferentially to the surface plasm
For z05a/2, these coupled modes are given by

ṽ6
2 5

1

2«0
H ~vp

21v2D~1 !
2 !1S «0

«81«0
D ~vp

212v2D~2 !
2 !2gv2D~1 !

2 e22qa6S F ~vp
21v2D~1 !

2 !1S «0

«81«0
D ~vp

212v2D~2 !
2 !

2gv2D~1 !
2 e22qaG2

24S «0

«81«0
D @~vp

21v2D~1 !
2 !~vp

212v2D~2 !
2 !1v2D~1 !

2 ~vp
222v2D~2 !

2 !e22qa# D 1/2J , ~31!

and there is a third mode atṽp
25vp

2/«0 . For z0 neara/2, the coupling of the modes described by Eq.~28! for smallz0 yields

weakly perturbed rootsṼ6
2 close toṽ6

2 and another rootṼp
2 close to the classical plasma frequency of the semi-infinite h

plasma as follows:

Ṽ6
2 5ṽ6

2 H 11~e2qa2e22qz0!
~«82«01vp

2/ṽ6
2 !

~ṽ6
2 2ṽ7

2 !
Fv II

222
v2D~1 !

2 v2D~2 !
2

«0~ṽ6
2 2vp

2/«0!
sinh~qa!G J , ~32a!

Ṽp
25

vp
2

«0
H 12~e2qa2e22qz0!

2~«8/«0!v2D~1 !
2 v2D~2 !

2

~ṽ1
2 2vp

2/«0!~ṽ2
2 2vp

2/«0!
sinh~qa!J . ~32b!

In both cases~i! and ~ii ! much of the bulk is located at large distances from both the double-quantum-well system a
bounding surface, and the associated bulk plasmon given by«50,v25vp

2/«0 , is clearly evident in a denominator factor« in
the structure of the inverted dielectric functionK(z,z8;q,v), Eq. ~27!. Moreover, the relative oscillator strengths of the
various modes, and their dependencies onz, z8, andz0 may be obtained from the residues ofK(z,z8;q,v) at the correspond-
ing frequency poles.
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The explicit analytic dispersion relations Eq.~30! and Eq.~32! are approximate forz0 large andz0 small (z0'a/2),
respectively. More generally, the exact dispersion relation, Eq.~28!, is cubic inv2 in the local cold plasma limit,

~v2!31b~v2!21c~v2!1d50 , ~33!

where the coefficientsb, c, andd are given by

b52
1

«0
$«0vs

212vp
21v2D

2 2gv II
2e22qz0%, ~34a!

c5
1

«0
2 $«0vs

2~2vp
21v2D

2 !1@vp
2~vp

21v2D
2 !1v2D~1 !

2 v2D~2 !
2 ~12e22qa!#

1@«0vs
2v II

22g~vp
2v II

212 sinh~qa!v2D~1 !
2 v2D~2 !

2 !#e22qz0%, ~34b!
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wherevs
2 , v2D

2 , andv II
2 were defined above. The three roo

of this cubic equation forv2 can be obtained either analyt
cally or numerically for arbitraryz0 . The results shown in
the figures are based on GaAs/AlxGa1-xAs parameter values
r5231018 cm23, n15231012 cm22, n25131012 cm22,
m650.063me , m50.084me , «851.00, «0510.33; a
5100 Å; and we normalizeq to units of Q50.1
3(2pn2)1/252.50663105 cm21.

Figure 2 illustrates the dependencies of the three lo
collective mode frequenciesv/(vp /«0

1/2) on z0 in Å for q
5Q. The lowest mode changes character from being a
coupled bulk plasmonv2;vp

2/«0 near the interface (z0

5a/2550 Å) to being a decoupled surface plasmonv2

;vs
25vp

2/(«81«0) when the DQW is deep in the host m
dium (z0→`). The highest mode is a DQW plasmo
coupled to a surface plasmonṽ1 in the vicinity of the inter-
face (z05a/2550 Å) and it changes character deep ins
for largez0 (→`) to become a DQW plasmon coupled to
bulk plasmonV1 . The middle mode represents the oth
DQW plasmon coupled to the surface plasmonṽ2 at the
interface, changing asz0 becomes large to represent the co
pling of a DQW plasmon with the bulk plasmonV2 . The

FIG. 2. v/(vp /«0
1/2) for a DQW system as a function of it

distancez0 from the bounding surface of the host plasmalike m
dium, for q5Q. ~The parameters are given in the text.!
al

e-

r

-

middle mode is relatively unperturbed by the variation ofz0 ,
remaining close to bulk plasmon frequency for the parame
ranges considered here.

In Fig. 3, the dispersion of the three modes,v/(vp /«0
1/2),

is shown as a function of wave numberq/Q for the fixed
valuez05100 Å. Forq/Q51.0, on the right, the three mod
frequencies are just those of Fig. 2 forz05100 Å. On the
left, for q/Q→0, the upper two modes merge to the bu
plasmon frequency, and the lowest mode approaches the
face plasmon frequency, all decoupled from the nonexis
DQW modes, which vanish forq/Q→0. Mode repulsion is
clearly in evidence in the vicinity ofq/Q50.15.

In Figs. 4 and 5, we exhibit the two modes which occur
a perfect metal («8→2`) replaces the adjoining medium
The surface plasmon and its possible couplings are el
nated sincevs

25vp
2/(«81«0)→0, so there are just two loca

modes that can be obtained as the roots of a quadratic e
tion ~to which the cubic reduces! as

v6
2 5

1

2«0
$2vp

21v2D
2 2v II

2e22qz06@~v2D
2 2v II

2e22qz0!2

28v2D~1 !
2 v2D~2 !

2 sinh~qa!~e2qa2e22qz0!#1/2%.

~35!

- FIG. 3. v/(vp /«0
1/2) for a DQW system as a function of latera

wave numberq/Q for z05100 Å.
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These modes represent the interaction of the modes of
DQW system, including its image across the perfect me
interface, with the bulk plasmon. In Fig. 4, they are exhibit
as functions ofz0 for q/Q51. Deep in the medium (z0

→`), the lower mode isV2
2 5v2

2 1vp
2/«0 ~coupling of the

lower DQW plasmon to bulk plasmon!, and asz0 approaches
the interface (z0→a/2) the bulk plasmon decouples, as o
should expect. The upper mode, similarly, isV1

2 5v1
2

1vp
2/«0 far from the interface, where the image is not fe

Near the interface it becomesṽ1
2 , adjusted for«8→2` and

g→1. The coupling of the imaged DQW plasmons with t
bulk mode is given explicitly in Fig. 4 for intermediatez0
values. Finally, the dependence of these mode frequencie
dispersion is shown as a function of wave number in Fig
for z05100 Å. Forq/Q→0, the DQW plasmon frequencie
vanish, so both modes converge to the decoupled b
plasma frequency. Forq/Q51, the two modes in Fig. 5 tak
the values shown in Fig. 4 forz05100 Å.

FIG. 4. v/(vp /«0
1/2) for a DQW system as a function of it

distancez0 from the interface of the host plasmalike medium with
perfect metal («8→2`), for q5Q.
l-
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IV. SUMMARY

This analysis of the DQW mode spectrum as a function
z0 explicitly exhibits the transference of DQW mode co
pling from the bulk plasmon deep in the medium (z0→`),
to the surface plasmon where the DQW approaches
bounding surface (z0→a/2). Our explicit inversion of the
inverse dielectric function@Eq. ~27!# permits further determi-
nation of the relative excitation amplitudes of the vario
modes as functions of the distance of the DQW system f
the interface. This determination can be carried out by s
ply evaluating the residues ofK(z,z8;q,v) at the frequency
poles corresponding to the coupled modes, and can
readily executed for comparision with experimental data a
becomes available.
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FIG. 5. v/(vp /«0
1/2) for a DQW system as a function of later
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