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We have examined the dynamic, nonlocal dielectric response function of a pair of asymmetric quantum
wells embedded in a semi-infinite dynanfiocal) host plasmalike medium, near its bounding surface, by
carrying out a closed form inversion of the dielectric function of this system explicitly. The resulting random-
phase-approximatiofRPA) inverse dielectric functiolk(z,z’;q, ), which depends on lateral wave vectpr
and frequencyw, is obtained analytically in position representation watla’ describing distances into the
medium from the bounding surface. In this, we neglect intersubband transitions in the two quantum wells
(assumed to be thjirand ignore tunneling effects. The frequency pole&(#,z’;q, ), describe the collective
modes resulting from the coupling of the double quantum well quasi-two-dimensional intrasubband plasmons
with the bulk and surface plasmons of the host medium, and the residues at these poles provide the oscillator
strengths of such coupled collective modez0163-18288)03528-(

I. RPA INTEGRAL EQUATION Here, 4ra(3,2)=—[d1'v(3,1")R(1’,2) is the joint polar-
FOR A DOUBLE QUANTUM WELL izability of the combined system of two quantum wells
EMBEDDED IN A SEMI-INFINITE MEDIUM lodged in a semi-infinite plasmalike medium, an,1’) is

the Coulomb potential anR(1',2)=G(1',2)G(2,1") is the

The collective electrostatic normal modes of layered e|eCfing diagram density perturbation response function
ton gas systems have been the subject of botig(1’,2) being the free one-particle thermodynamic Green's
Eéﬁgr'r?ﬁgts&r . ;rr‘g ;?Z%fg‘lgal ngndtijeri fvc\)(té;(g\r;‘v()? tllrgsmlgngar_ function of the systef Fourier transforming in the transla-
have been Ceirefully analyzeéI both with and Wi?hout a magponally invariantx-y plane and in timer; —r,—d, andt,
netic field*~® Our considerations here are focused on the 2@ We have(supressing,w)
interaction of such DQW plasmons with the collective
modes of a semi-infinite plasmalike host medium in which
the quantum-well system is embedded. In this, we will ex- K(21,22)=5(21—Zz)—f dzsK(z1,25)4ma(23,2,),
amine the coupling of the DQW plasmons with bulk plas-
mons of the host and with surface/interface plasmons that are (1b)
active in the vicinity of the host’s bounding surface, on the
other side of which lies a different dielectric medium. To gnq
carry out this study, we perform a closed form inversion of
the dielectric function of the combined systdlQW and
semi-infinite host plasman position representation. Its fre- Ara(z,2y)= _f dzyu(|z,—23))R(24,2,). 2)
guency poles explicitly show the preferential coupling of the
DQW plasmons to the host bulk and surface plasmons as a
function of distance from the bounding surface. Q-welll Q-well2

The determination of the inverse dielectric function of an
asymmetric double quantum well system embedded near the
bounding surface of a semi-infinite dynamic host medium is
addressed here in terms of the random phase approximation ¢
(RPA) integral equation. The system is illustrated in Fig. 1.
The quantum wells are in the y plane and have center-to-
center separation and widthsb,b’ in the z direction. The 0
two quantum wells may have different polarizabilities, and
we assume tha>b,b’ so that both overlap and intersub-
band transitions may be neglected. The RPA integral equa-
tion for the inverse dielectric function K(1,2)
=6V(1)/6U(2), which describes the effective potential
V(1) at space-time point 1 due to an impressed potential
U(2) at space-time point 2, may be written in the form  FIG. 1. A pair of asymmetric quantum wells having their centers
(1=ry, t;=r1,24,t;, etc) at distanceg,*a/2 from the interface at=0 of the semi-infinite
(local) host plasmalike medium of dielectric functiefiw) with an
adjoining medium of dielectric constast. The widths of the quan-
tum wells areb andb’.

interface

K(1,2)=5(1—2)—f d3K(1,347a(3,2). (19
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The local polarizability for a semi-infinite medium was de- 47a(z3,2,)= 8(z3—2,)[ 7+ (23) — 1]
termined in Ref. 14 agwe allow here that the adjoining

medium has dielectric constast instead of the vacuum +8(2) (8" — &) n_(z5)e 9%l12
value 1:
_ —> 2 RIGVIE (29) €225 €5 (2250).
4ma*®™z3,2,) = 8(23— 25)[ 9+ (23) — 1] @B g0’
+8(z)(5' —e)m_(z)e W52, (3) 0

Employing this result in Eg(1b), the RPA integral equation

where we have defineg_(z)=6(z)— 6(—2z)=1,0,—1 for for K(2,,2,) takes the form

z>0z=0z<0, and 7#,(2=¢60(2)+&'0(—2)=¢,(c’
+¢&)/2,e’ for z>0,z=0,z<0, respectively] §(z) denotes the

Heaviside unit step functionf(z)=1 for z>0, 1/2 for z K(z1,2)=——— 1 8(z,—2,) — 8(Z5) (' —&)K(2,,0)/2
=0, and 0 forz<0.] The first, local[ ~ §(z3—2,)] term of 7+(22)

47a**™(z5,2,) on the right-hand side of Ed3) is naively

expected on the basis of the differing dielectric properties of +2 2 R7S ZZg—)gﬁ (2y5)K gg’(zl) ,

the medium across the plary;=0. The second term
[~ &8(z,)] assures correct dynamic imaging due to the inter-
face.

Designating coordinates relative to the centers of the
guantum wells az,=z—z9—cal2 (o0==*=1), the polariz-

®

where we have defined(z;,q) and K "B'(zl) as K(zl,q)

ability of the quantum wells may be expressed in terms of=/dZ7-(z3)e" WzslK (2,,25) and K95 (z1)
the Green’s function for a quantum well with subbands, = [dz;Vgj (z5)K(2;,23). Our analysis of the integral equa-
G(12)=3} 15— +1€0(21,) €X(22,) €1 71Dg(r1~T;),  tion yieldsK(z;,q) in terms ofK7% (z,) as
where &7 denotes a real quantum-well subband wave func-
tion in z direction across the well, EY denotes the corre- K(zl,q):[n,(zl)lm(zl)]e‘q‘zl‘
sponding subband energg’(r,—r,) is the Schrdinger ,
Green'’s function for motion on the plane of the quantum +E 2 Raﬁ ag ap (Z1), 9
well with chemical potential{,. This yields the ring B g0’
diagram density perturbation response function for the
where
double quantum well system as R(z1,2))
=24 p200'Rep E210)E5 (2101) E(220) €5 (225) Where vo! a0 o
the matrix elemenRY¢ of the response function with sub-  !as :f dzpe” V280 225) €5 (220)[ 1-(22) 14 (22) ]

band indiciesw,8 and well indicieso, o’ is given by

1 '
, ~= [ aze g2, 7 (22, (10
folex+Eq—4o) —folek—qTEj = o) &
o+e—eqtEq— Eg' ' (the DQW subband states are taken to be wholly confined
(4)  within the bounding surfage Therefore, the integral equa-
tion may be rewritten in the form

RIS (q,w)=2>,
k

Here, f, is the Fermi distribution functiorfo=[el¢~ /KT
+1]* with chemical potential and e,=#2k?/2m refers to
the part of single-electron kinetic energy along the quantum- K(z;,z,)= —[ 8(21—25)— 8(2p) (e’ —¢)
well plane, etc. The DQW polarizability, #a®?%, is thus +(22)

X[ n_ /2 —qzq|
47TaDQW(Z3,22) [7-(z21)27.(z1)]e

+2 2 RIGKIG (2)[EU220) €5 (Zag)

__Sb 2 RIS VIS (23) EX(200) € (2207), (5) o
whereV”g is a matrix element of the Coulomb potential, —3(zy)(e'—€)lgg /2]]- (13)
2
Z,(Zl): 2me “,(er ). Further analysis of this integral equation yields a matrix
equation fork %% (z;) as
(6) q aB ( 1)
Within the framework of the RPA the joint polarizability K (z)=[1n(z)IM7,7” (21)
47a of the combined system is given by the sum of the
polarizabilities of the constituent par®QW and semi- +E 2 R7% Ng%ﬁ"ﬂ"kﬂg (z), (12

DQW

infinite medium, 47a=47a%™+ 47a?%, whence @B 4o
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where we have defined andl'=(g'—¢)l(e' +¢&).

M%7 (z) =V, (z1)—Tn_(z)e alve 7 (0),

(139 Il. SOLUTION OF RPA INTEGRAL EQUATION
Cm S D NEGLECTING INTERSUBBAND TRANSITIONS
Zg;ﬁ 7= Zg,ﬁ 7 —FIZZ VZV‘T (0), (13b AND TUNNELING
with Our considerations here are directed at solving the RPA
integral equation in circumstances where we may neglect
Joo'a"a" _ f dZo£7(2o VE% (2o W 7" (2) 1. (2 intersubband transitions in the two quantum weédissumed
aBuy 28u(220)€p (2201 )V (22)174(22) to be thin and tunneling effects are small. The neglect of
2 mre? | | intersubband transitions may be expressed lagg’
— —(q|z1—Z o 2
" e szlf dzpe” M7 %2E0(2,,) —8,4R5%", and the elimination of tunneling effects corre-
: . spoNds 10£7(2,) €5 (2,7) = 85y £0(2,)€5(2,). With these
X &5 (2251) €, (215n) €y (Zygm), (130 replacements, Eq11) reduces to
- : ~dlzy
K(z1,25)= 2y=25) = 8(2,)(e" —€)[n-(21)/12m4(21) ]Je” ™2
7+(22)
+2 X RIKUZ)[E0(220) E0(200) — 8(2o) (2 )1 G2I2 ] (14)
|
and Eq.(12) becomes 2
a ( ) J(J’(J’U"U"Z 2me efq\ cal2 — (r'a/Z\. (16)
Kuvy ge

K2, (2)=MY,” (z0) (22
Similar considerations yield
+2 X RIINIITIKT (7)), (15)
e 2me?

(zo+ oal2) Vo/a’(zl): e Ulzi—2o— o'al2|
1 v .

The dimension of this matrix equation is twice the number of'ZZ=;e‘q v
occupied subbands and it may be solved numerically. How- (17)
ever, we can obtain an analytic solution for thin quantum

wells, such thagb,qb’<1. Sinceo,s’ each takes values ithin the scope of these approximations we Wit "’
+1, we distinguish two cases in the evaluation of the integra}N i P PP N,
andN?7% ? in Eq. (13) as

Jgg;;;”“’” [Eq. (130] for thin quantum wells(i) o ando’ are Kpvy
confined to the same quantum well: Because of thinrgss,
—2,=h,b’<1/q, the integrals of Eq(13c) are determined M%7 (2)=M7"7"(z;)
by orthonormality of the subband wave functioimote that

the condition gb,gb’<1 assumes that the exponential 2me?
e~ 922l yaries slowly even if subband wave functions vary -

rapidly across the quantum wglivhence

[e,q‘zl,ZO, a'al2|

—Ty_(zy)e Yalg=dzt o'a2l] (184

JO’O’O’IO'I 27Te2 —gb 27782 ( I)
= e ~ o=0g
Huvy !
qs q8 ()'(J'(J',(J',= 0'0'0"0"
N/L,uvv =N
(i) o and o’ are different: Translating integration variables 2 a2
to the quantum well centerdz,=z,—2z,—o'al2; z,=2, ~ [e-dlva2—oal]
—Zzp— gal2), “thin” now means that the four wave func-
tions in the integrand of Eq(13¢ amount to8(z;) 8(z,), —le 920+ 0aldg=dlzo+ o'al2] - (18p)
whence
9 re? 9 re? It should be noted that, in the thin quantum well limit, nei-
goo'o’ _ Lee—q\ oal2- o'ai2| _ Lee—qa (a£0). ther M%7 (z,) nor NZ‘;‘;;"' depends on subband indicies
Mmpvy de qe

m,v. Subsitution ofM‘V’;"'(zl)EM"'”'(zl) and NZZZ;"'
For the two cases jointly we have =N77"7" of Eq. (18) into Eq. (15) yields
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rr 1o 1 _ _ _ _ ’
K37 (2) =M (z)l . (20) = = 2 2 dmagy Ko (z)[ed 032~ 7'a2l_Te2ang alwalz ofa) - (19)
M o

where we have defined the dynamic nonlocal 2D polarizability of subhamd quantum wello (with chemical potential
measured relative tEZ) as

2

o0 —

Ama, =4may (0,w)= Ry (0, @). (20

q
Considering each of the two values @f = +'1, the sum over= =1 on the right hand side of E419) yields

Kiﬁ(zl):M**(zg/m(zl)—cl; 4m;;K,t;<zl>—c2§ dra,, K, (21), (213

K,, (z)=M""(z0)/ 94(21)— €, >, dma,, K, (2))— 3> dmra,, K, (21), (21b
w w

where we have defined
c;=(1-Te 29%e 9% /g, c,=(e 93—Te 29%)/g, cz=(1—-Te 29%el3)/¢, (22)

Furthermore, we define a total dynamic, nonlocal 2D polarizability for the quantunoviilsumming Eq(20) over subband
index u,

Arall=4mall(q,w)=>, dmra,(9,0). (23
m

Neglecting intersubband transitions, it is clear that each subband contributes like an independent 2D plasma, populated by a
Fermi function having the chemical potential measured relativ€ o To solve Egs.(21a,h, we multiply Eq (21a) by

47Ta++ and Eq.(21b by 47a,,” and sum over indew, obtaining two simultaneous equations Emwa (zl)

wh|ch have the solutions,

++
ges

E 47701++K++(21)_ Az (2;)[(1"‘03477“507)'\/'++(21)_Cz4770‘27D7M77(21)]1 (243

+\£1

—— - 4mazp +H\p— — VR

> 4ma,, K, (z)=———[(1+cidmagy )M~ " (29) — Crdmagy Mt (z1)]. (24b)

v A7]+(21)

Here, A is given by

A=(1+c, dmazg ) (1+c3 dmayy ) —C5 dmagy 4mayy . (25)

Combining Egs(24a,h into a single expression, we have

E 47m‘"’K"‘T(zl)— [M‘T"(Zl)+(C16 +C30,1)4mayy ‘M%(z)) —Cldmayy "M™77%z))], (26)

(Z )
which we employ in Eq(19) and Eq.(14) to finally obtainK(z;,z,) as

1
K(zl,z2>=m{5<zl 2,)— 8(zp)(s' — ) m_(21)127,(z1)]€” q'21‘+2 2 4ol £9(2,— 29— 0al2)]?

a=1 o==*

47'ra2D

l ! !
_5(22)(1/28)(8 —g)e” q(zg+ aa/2)} —9 (Mog(zl)_ E T( —q\aalz o'al2|

2mwe? 9.(21) oot
_Fefzqzoe*Q(UaIZ+o’a/2))[Ma’a’(Zl)+(0150,74_C350,+)4wa£67’ﬂf’Ma’a’(Zl)
—CoAmayy ¢ MU’U’(zl)]) } 27

whereM?7(z;) is given by Eq.(18). This result reduces properly to known results for the case of a single quantum well
(¢'#¢) (Ref. 14 and for the case of a DQW in a uniform backgrourd € ¢).1°
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Ill. COUPLED-MODE DISPERSION RELATION

The dispersion relation for the coupled plasma oscillations of the system illustrated in Fig. 1 is given by the poles of
K(z1,2,) as

sA_l
T T

1
e+4ma,y +4masy + 5477a2+5477a275(1—672qa)

2 sinh(ga)
—|4masy e Pt+drasy eqa+T4 Ta,n Amayy |e

e 20%=0, (29

wherea is the separation between the two quantum we}jss the distance between the center of the two quantum wells and
the boundmg surface of the host medium. For the local cold plasma limit 4 — — wzo(+ lw?, where sz(+)
=27n.e? q/m+ is the 2D classical plasma frequency of a single plane sheet of plasma having 2D densifjlso, ¢
=gg— wp/w , Whereg, is the background dielectric constant, anﬁz 4mre’p/m is the 3D classical plasma frequency of the
semi-infinite host plasma, afdd= (&' —¢)/(&' +¢).

In some cases, the roots of H&8) can be obtained analyticallapproximately.

(i) For z, large, the coupled plasma oscillation roots of E2f) show that the 2D DQW plasmons couple preferentially to
the bulk plasmon of the host medium and the surface plasmon is approximately uncoupled. Writing the 2D DQW plasmon
dispersion relation in the absence of the background host plasma and in the absence of a bounding suvéackefase

2 _ 2 2
W5p= Wop(+) T Wop(-))

1
T (@20 [(@20) "~ 4wy, wop (1 —e 2993, (29

2 _
W =

the coupling of the modes described by E&8) for large z, yields weakly perturbed rootﬁ2 close t0w++w /s0 and
another rootQ2 close to the surface plasmang —w2/(8 +¢&q) as follows (we employ the defmmonw,, wZD(He —qa

2 2 2 ’ 2 2
w (ggwi)[ ywi+(e'leg)wg] Wp(4)® 2D( )
02 ={ @2+ P _g 2% - = 2_p o
- {“’ 0 © Wi (e lsgullel—ol) ol oA (303
(s'wi)[Zs'/(s’—i—so)] 2D(+ %D )
2_ 2l 14 =242 2., (—
= o e O e e wlllw? + (e Tegw] | 12 z— sintqa) (300

wherey= (&' —¢gp)/ (e’ +&g), independent of frequency.

(ii) For zy small, near the bounding surfa¢g,=a/2 is as close as the DQW system can come to the bounding surface
without expelling part of the quantum well from the hoshe 2D DQW plasmons couple preferentially to the surface plasmon.
For zo=a/2, these coupled modes are given by

~ & €
2 _ 2 2 0 2 2 2 -2 2 2 0 2 2
wt——zso (wp+w2D(+))+ —8,+80 (wp+2w2D(7))—'yw2D(+)e qai( (wp+w2D(+))+ —8,+80 (wp+2w2D(,))
2 12
t]
2 -2 0 2 2 2 2 2 2 2 -2
~Y0zp+)8 | - s’+so)[(‘”p+“’20<+>)(“’p+2“’20<>)+wzo<+>(“’p—2w20<>)e qa]> } (Y

and there is a third mode Etf): w,z)/so. For zy neara/2, the coupling of the modes described by E2f) for smallz; yields

weakly perturbed root§)% close tow?% and another roof} close to the classical plasma frequency of the semi-infinite host
plasma as follows:

=5 ~p (¢'—gotwpwl) [ Wp+) W0
Q2 =0%{1+(e 92— 29%) —m w”—2~2—sm}"(qa) (323
- - (0%~ 0% 80((1’i_wp/80)
2 ' 2 2
. ® 2(e'leg)w W50 _
ng_p[l_(eqa_emz()) ~2( 20 o) 2 sinr(qa)]. (32b)
€0 (0% —wpleg) (w2 —wy/eo)

In both casegi) and (i) much of the bulk is located at large distances from both the double-quantum-well system and the
bounding surface, and the associated bulk plasmon givenztlywzzwglso, is clearly evident in a denominator factoin

the structure of the inverted dielectric functiét(z,z’';q,w), Eq. (27). Moreover, the relative oscillator strengths of these
various modes, and their dependenciezor’, andz, may be obtained from the residueskfz,z’;q,») at the correspond-

ing frequency poles.
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The explicit analytic dispersion relations E0) and Eq.(32) are approximate fog, large andz, small (zo~a/2),
respectively. More generally, the exact dispersion relation,(E8), is cubic inw? in the local cold plasma limit,

(0?)3+b(w?)?+c(w?)+d=0, (33

where the coefficientb, ¢, andd are given by

1
b=— 8—{80w§+2w§+ w%D— ywﬁe_zqzo}, (34a
0

1

200 2., 2 2, 2, 2 2 2 -

c= ?{8Ows(2wp+ wjp) T wp(wp+ w3p) + wop 4 w5y (1—e 2q3)]
0

+leqwlwd— y(wrz)wﬁ +2 Sinf'(qa)wgD(+)w§D(_))]672Q%}, (34b

2
Ws 5 2, 2 2 - 2 2 - 2 2 -
d=—- ?{wp(wp-i- w5p) T Wop 4 wop—)(1—€ 2qa)+[wpw||+2 sinh(qa) w3p 1 w5 ]e 2azo1 (340
0

wherew?, »3p, andw; were defined above. The three roots middle mode is relatively unperturbed by the variatiorzgf

of this cubic equation fow? can be obtained either analyti- remaining close to bulk plasmon frequency for the parameter

cally or numerically for arbitraryz,. The results shown in ranges considered here.

the figures are based on GaAs/Bk,_,As parameter values, In Fig. 3, the dispersion of the three modeﬁ(wp/sélz),

p=2x10%cm™3 n,=2x102cm™2 n_=1x102cm 2  is shown as a function of wave numbgfQ for the fixed

m.=0.063n,, m=0.084n,, &'=1.00, ,=10.33; a valuezo=100 A. Forg/Q=1.0, on the right, the three mode

=100 A; and we normalizeq to units of Q=0.1 frequencies are just those of Fig. 2 fpy=100 A. On the

X (27rn_)Y?=2.5066<10° cm ™. left, for q/Q—0, the upper two modes merge to the bulk
Figure 2 illustrates the dependencies of the three locgblasmon frequency, and the lowest mode approaches the sur-

collective mode frequencies/(wp/sé’z) onzyin A for q face plasmon frequency, all decoupled from the nonexistent

=Q. The lowest mode changes character from being a ddPQW modes, which vanish fog/Q— 0. Mode repulsion is

coupled bulk plasmomw?~wj/eo near the interfacez,  clearly in evidence in the vicinity of/Q=0.15.

=a/2=50 A) to being a decoupled surface plasmen In Figs. 4 and 5, we exhibit the two modes which occur if
ngwa/(surSO) when the DQW is deep in the host me- & perfect metal £’ — — ) replaces the adjoining medium.

dium (zo—x). The highest mode is a DQW plasmon The surface plasmon and its possible couplings are elimi-

~ : 2__ 2 ’ .
coupled to a surface plasman, in the vicinity of the inter- nated sincavs = wy/(e +.8°)H0’ SO there are just two I_ocal
face (z,=a/2=50 A) and it changes character deep insidemodes that can be obtained as the roots of a quadratic equa-

for largezy (— =) to become a DQW plasmon coupled to ation (to which the cubic reducgss

bulk plasmon(), . The middle mode represents the other 1
~ 2 = " 1002+ wly— wie 9%+ [(wiy— wie” 29%)2
DQW plasmon coupled to the surface plasmen at the ®x 280{ Wyt wrp— 0 € *[(w3p— wje
interface, changing ag, becomes large to represent the cou-
pling of a DQW plasmon with the bulk plasmdd_. The —8wip ) wop sinh(ga)(e” 93— e 29%)]2
1.16 (35
1.12 112 f
QA108 :
S 1.08 | . 1.08 -
s
20T S 1,04 |
3 <
1.00 - a
3 ¥ S 1.00
0.96 | ~
L s 0.96 1.
092 1 ‘ ‘ — ‘ ‘ :
50 150 250 350 450 550 650 750 850 950 0.92 P T ———
z, (A) 00 01 02 03 04 05 06 07 08 09 1.0

1/ . . q/0Q
FIG. 2. w/(wplaoz) for a DQW system as a function of its
distancez, from the bounding surface of the host plasmalike me- FIG. 3. w/(wp/eé’z) for a DQW system as a function of lateral
dium, forq=Q. (The parameters are given in the text. wave numben/Q for z,=100 A.
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1.05
1.10 104 |
N 1.08 & 103 ]
0 ~
& 1.06 o
& s 1.02
21,04 | 2
3 $ 1ot
= S
g 1021 S 100
1.00{ 0.99 -
0.98 : ‘ ——t 0.98

50 150 250 350 450 550 650 750 850 950 00 01 02 03 04 05 06 07 08 09 1.0

Zo (A) q/Q

FIG. 4. w/(w,/e5?) for a DQW system as a function of its FIG. 5. w/(w,/eg? for a DQW system as a function of lateral
distancez, from the interface of the host plasmalike medium with a \yave numben/Q for z,=100 A, when the adjoining medium is a
perfect metal §'— —o), for q=Q. perfect metal §’ — — ).

. . IV. SUMMARY
These modes represent the interaction of the modes of the

DQW system, including its image across the perfect metal This analysis of the DQW mode spectrum as a function of
interface, with the bulk plasmon. In Fig. 4, they are exhibitedz, explicitly exhibits the transference of DQW mode cou-
as functions ofzy for q/Q=1. Deep in the mediumz{  pling from the bulk plasmon deep in the mediumyo°),
—), the lower mode is§)2_=w2_+wf,/so (coupling of the to the surface plasmon where the DQW approaches the
lower DQW plasmon to bulk plasmgrand asz, approaches bounding surface z,—a/2). Our explicit inversion of the
the interface ¢,—a/2) the bulk plasmon decouples, as oneinverse dielectric functiofEq. (27)] permits further determi-
should expect. The upper mode, similarly, ﬁi:wi nation of the relative excitation amplitudes of the various
+ wile, far from the interface, where the image is not felt: M0des as functions of the distance of the DQW system from
Near the interface it becomag , adjusted foe’ — — o and the mterfac_e. This de'Fermlnatlon (/:gn be carried out by sim-

—1. The coupling of the imaged DQW plasmons with theply evaluating the_re5|dues #1(2,2';9,) at the frequency
Y=t o I . . poles corresponding to the coupled modes, and can be
bulk mode is given explicitly in Fig. 4 for intermediaig

. . readily executed for comparision with experimental data as it
values. Finally, the dependence of these mode frequencies y P P

. S ) 1ENCIes Yicomes available.
dispersion is shown as a function of wave number in Fig. 5,

for ;=100 A. Forq/Q—0, the DQW plasmon frequencies
vanish, so both modes converge to the decoupled bulk
plasma frequency. Fa/Q=1, the two modes in Fig. 5 take We are pleased to acknowledge the participation of Greg
the values shown in Fig. 4 far,=100 A. Recine in our numerical computations.

ACKNOWLEDGMENTS

*Permanent address: Department of Physics, Zonguldak Karaelma®R. A. Mayanovic, G. F. Giuliani, and J. J. Quinn, Phys. Rev. B
University, Devrek Faculty of Arts and Sciences, Zongul- 33, 8390(1986.

dak 67100, Turkey. 9G. E. Santoro and G. F. Giuliani, Phys. Rev3R 937(1988.
1D. Olego, A. Pinczuk, A. C. Gossard and W. Wiegmann, Phys1°G. F. Giuliani, P. Hawrylak, and J. J. Quinn, Phys. S5, 946
Rev. B25, 7867(1982. (1987.
2A. Pinczuk, M. G. Lamont, and A. C. Gossard, Phys. Rev. Lett.'*G. Gumbs and G. R. %in, Phys. Rev. B51, 7074(1995.
56, 2092(1986. 12G, R. Azin and G. Gumbs, Phys. Rev. &, 1890(1995; 54,
3A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N.  2049(1996.
Pfeiffer and K. W. West, Phys. Rev. Le@3, 1633(1989. 133, A. Simmons, S. K. Lyo, N. E. Harff, and J. F. Klem, Phys. Rev.
4y, Takada, J. Phys. Soc. Jp#3, 1727(1977. Lett. 73, 2256(1994).
5S. Das Sarma and A. Madhukar, Phys. Re\23 805 (1981). 14N. J. M. Horing, T. Jena, H. L. Cui, and J. D. Mancini, Phys. Rev.
6G. Qin, G. F. Giuliani, and J. J. Quinn, Phys. Rev28 6144 B 54, 2785(1996.
(1983. 15Norman J. M. Horing and Jay D. Mancini, Phys. Rev38 8954

’G. F. Giuliani and J. J. Quinn, Phys. Rev. Lét, 919(1983. (1986.



