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Electron concentration and on-site interaction effects for the spin and charge excitation spectra
in the two-dimensional Hubbard model
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CEP 70919-970 Brası´lia-DF, Brazil
~Received 20 October 1997; revised manuscript received 27 January 1998!

Electron concentration and on-site interaction effects for spin and charge excitations in the two-dimensional
Hubbard model are investigated. Using the auxiliary boson approach, which takes into account the spin and
charge fluctuation effects, we derive an effective model which reproduces qualitatively well electronic states
for the weak- and intermediate-coupling Hubbard models. The spin response function shows drastic changes as
a function of the interaction and of the electron concentration. For the intermediate coupling regime, the Stoner
enhancement aroundq5(p,p) and the spin-density-wave-like collective mode are obtained. In contrast, the
charge response function does not have any specific structure for this interaction range. Finally, the electron
concentration dependence of the zero sound velocity is discussed for the weak-coupling regime. The zero
sound mode is shown to have a specific doping dependence that is associated with the existence of a hopping
in the lattice.@S0163-1829~98!06428-5#
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I. INTRODUCTION

Electronic states of the Hubbard model have been inv
tigated intensively in many studies1–11 since the discovery o
high-temperature~high-Tc) superconductors. As a result, it
now possible to draw a relatively detailed picture of t
single-particle spectrum for that model. The behavior of
spectral function shows dramatic changes as a function o
interactionU, the electron concentrationn, and the tempera
ture T. For example, in the doped system, the single-part
density of states has a quasiparticle peak structure at
Fermi energy. For the intermediate- or strong-coupling
gime, the density of states has a pseudogap, and, if the
tem is not doped, there is a Mott-Hubbard gap in any dim
sion, with the lower and upper Hubbard bands being form
in the negative and positive high-energy regions, resp
tively.

However, not much is known about the dynamical pro
erties of the response functions in the Hubbard model. H
we focus on the dynamical behavior of the spin and cha
response functions in the Hubbard model. Keeping in m
its relation to the high-Tc superconductors, we consider th
two-dimensional~2D! Hubbard model, but some results w
also hold in higher-dimensional models.

So far, only the spin and charge response functions of
2D t-J model have been investigated in many works.12–17

Though the local electron configuration constraint in t
model is a strong restriction not always present in the H
bard model, the properties of the response functions in
t-J model may well give important information which ma
be generally true for all strongly correlated systems. T
following features can be observed in thet-J model: ~i! the
spin response function has a low-energy sharp peak in
small doping regime, especially around the moment
~p,p!; ~ii ! the charge response function is rather broad i
wide energy range, and no sharp excitation can be obser
In some investigations1,10,18 on the 2D Hubbard model, th
PRB 580163-1829/98/58~4!/1853~9!/$15.00
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spin and charge response functions show a similar beha
in the low-doping and strong-coupling regimes.

The above-mentioned electronic state evolution must p
an important role in characterizing the behavior of the
sponse functions. However, how they precisely relate to e
other is still unclear. The reason for this is that interacti
effects on the evolution of the dynamical properties of t
response functions have not been fully investigated.
clarify these points, in this paper we study both the effects
the electron concentrationn and the interactionU in the re-
sponse functions, by taking into explicit account the evo
tion of the single-particle spectra.

In our previous work11 the electronic states of the Hub
bard model were investigated numerically using an auxili
boson approach in which the effects of both the spin a
charge fluctuations were considered in an equal footing.
self-energies were calculated up to one-loop order, tak
into account the fermion-boson interaction. Although the
was a strict restriction on the maximum value of the inter
tion U due to the Stoner criterion, the obtained spectral fu
tion reproduced qualitatively well both the narrow quasip
ticle band on the Fermi energy and the lower and up
Hubbard bands.11

In this paper, we use the same scheme to investigate
dynamical properties of the spin and charge response fu
tions. The effects of the electron concentrationn and the
Hubbard interactionU on the dynamical spin and charg
response functions are analyzed in detail. In Sec. II, the
mulation of our auxiliary boson method is reviewed briefl
An effective fermion-boson model and an important expr
sion needed to describe the electronic states are derive
Sec. III, the spin and charge response functions are obta
from the effective model. The numerical results showing
evolution of the spin and charge spectra are given in Sec.
We find for both the spin and charge spectra a very spec
and drastic evolution when we change the electron conc
tration n and the interactionU. Section V is devoted to con
cluding remarks. Finally, in the Appendix, we summarize t
1853 © 1998 The American Physical Society
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1854 PRB 58T. SAIKAWA AND A. FERRAZ
doping dependence of the zero sound velocity in the we
coupling Hubbard model within the conventional rando
phase approximation. We find that the zero sound in
Hubbard model has a specific doping dependence which
siderably modifies the result obtained for the interact
electron-gas model.

II. MODEL

We consider the standard Hubbard model in a tw
dimensional square lattice with a unit lattice constant at z
temperature. Ink5(k,v) space, the action11 equivalent to
the Hubbard model is

S5(
s

E
k
C̃s

†~k!~v1m2«k!C̃s~k!

2
U

2 (
a,b50

3 E
q
s̃~a!~2q!habs̃

~b!~q! , ~2.1!

where *k[* (dv/2p) @dk/(2p)2#, q5(q,n), and C̃s
†(k),

and C̃s(k) are the Grassmann fields for the electrons a
«k522t(coskx1cosky). The last term corresponds to th
Hubbard interaction withh0051, h115h225h33521 and
hab50 for aÞb. We have defined

s̃~a!~q!5
1

2 (
s,s8

E
k
C̃s

†~k1q!tss8
~a! C̃s8~k! , ~2.2!

where thet (a)’s are Pauli matrices witha51, 2, and 3, and
t (0) is the 232 unit matrix.11

We next introduce four auxiliary bosonic operato
f̃ (a)(q) for the charge (a50) and the spin (a51,2,3) chan-
nels through an appropriate Hubbard-Stratonov
transformation.11 The following effective action is thus ob
tained:

Seff5(
s

E
k
C̃s

†~k!~v1m2«k!C̃s~k!

1
1

2 (
a,b50

3 E
q
f̃~a!~2q!habf̃

~b!~q!

1 (
a,b50

3 E
q
f̃~a!~2q!habAUs̃~b!~q! . ~2.3!

Integrating out the Grassmann fields, we have that

Seff8 ~f̃ !5
1

2 (
a,b50

3 E
q
f̃~a!~2q!habf̃

~b!~q!

2 i tr ln@M ~f̃ !# , ~2.4!

whereM is defined by
k-
-
e
n-

g

-
o

d

h

@M ~f̃ !#ks,k8s85~v1m2«k!dk,k8ds,s8

1 (
a50

3

f̃~a!~k2k8!
AU

2
haatss8

~a! .

~2.5!

Taking into account the fluctuations of the boson field
we can expand the effective action around the saddle-p
solution. Here we use the saddle-point solutionsf0

(0)

52AUn/2 for a50 and f0
(a)50 for aÞ0. The electron

numbern is calculated from

n52 i(
s

E
k
G0~k!, ~2.6!

where the saddle-point Green’s function is defined by

G0~k!5
1

v1m02«k1 ih sgn~v!
. ~2.7!

The chemical potentialm05m2Un/4 is determined consis
tently with the given electron concentrationn.

The second-order term of theSeff8 expansion can be writ-
ten as

S285
1

2 (
a50

3 E
q
df̃~a!~2q!Daa~q!21df̃~a!~q!, ~2.8!

with the boson propagator determined by

Daa~q!215haa1
U

2
x0~q!, ~2.9!

wherex0(q) is given by

x0~q!5 i E
k
G0~k1q!G0~k!. ~2.10!

For a paramagnetic state, each spin component contrib
equally toDaa(q).

To calculate the Green’s function beyond the saddle-po
approximation, we consider a new fermion-boson act
Seff9 , takingDaa(q) as the zeroth-order boson propagator:

Seff9 5(
s

E
k
C̃s

†~k!~v1m2«k!C̃s~k!

1
1

2 (
a50

3 E
q
df̃~a!~2q!Daa~q!21df̃~a!~q!

1 (
a50

3

(
s,s8

E
k
E

q
df̃~a!~q!

AU

2
haa

3C̃s
†~k1q!tss8

~a! C̃s8~k! . ~2.11!

We can easily establish the Feynman rules for this eff
tive action. Up to one-loop order, the fermion Green’s fun
tion can be written as
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G~k!215v1m* 2«k2 i
U

4 (
a50

3 E
q
G0~k1q!Daa~q! ,

~2.12!

where the chemical potentialm* is determined consistentl
with the electron concentrationn. The U-dependent term
above is the one-loop fermion self-energy for both the s
and charge components.

III. SPIN AND CHARGE RESPONSE FUNCTIONS

We define the spin (a5s) and charge (a5c) retarded
response functionsxa ~Ref. 22! as

xs~q,t2t8!5 iu~ t2t8!^@m~z!~q,t !,m~z!~2q,t8!#&
~3.1!

and

xc~q,t2t8!5 iu~ t2t8!^@n~q,t !,n~2q,t8!#& , ~3.2!

wherem(z)(q,t) andn(q,t) are the (q,t) representation of

m~z!~r ,t !5(
s

sgn~s!Cs
†~r ,t !Cs~r ,t ! ~3.3!

and

n~r ,t !5(
s

Cs
†~r ,t !Cs~r ,t ! . ~3.4!

Following the same scheme used above to derive the
mion Green’s function, we perturbatively expand the
sponse functionxa . The zeroth-order term ofxa gives only
the noninteracting polarization functionP0(q)[2x0(q). To
simplify the calculation, we take no account of vertex co
rections, at this stage.

However, in the series expansion forxa(q), we have to
avoid the double counting of the noninteracting polarizat
bubblex0(q). This is due to the fact that the boson line itse
already includes the one-loop polarizationx0(q) to infinite
order, as is indicated by Eq.~2.9!. For this, it is useful to
introduce the renormalized polarization functionP(q) given
in terms of the corresponding renormalized single-part
Green’s functions. That is,P(q) is given by

P~q!5 i E
k
G~k1q!G~k! . ~3.5!

We can write the expansion ofxa(q) diagrammatically, as
shown in Fig. 1~a!. By subtracting P0(q) from P(q)
52P(q) in the intermediate diagram, as shown in the rect
gular brackets of Fig. 1~a!, we automatically take into ac
count the elimination of all diagrams which contain doub
countedx0(q). The full Green’s function is represented
Fig. 1~b!. From the figure, we can write

xa5P2PVaP1PVa~P2P0!VaP

2PVa~P2P0!Va~P2P0!VaP1•••, ~3.6!

whereVa(q)[(U/4)Da(q), the sign of each term being de
termined by the number of fermion loops. Here, for simpl
ity, the boson propagators have been redefined by introd
n

r-
-

-

n

e

-

-
c-

ing the subscripta, wherea5s or c, instead ofa51, 2, and
3 or a50. ThusDa

215ha1(U/2)x0(q) with hs[21 and
hc[1, and we have

xa5P2P
Va

11~P2P0!Va
P . ~3.7!

Thus, the charge and spin response functions can be wr
as

xa~q!5
2P~q!

11ha ~U/2! P~q!
. ~3.8!

The denominator of Eq.~3.8! has a factorU/2 which is dif-
ferent from the standard random-phase-approximation~RPA!
expression. It produces a shift from the standard RPA e
in the weak-coupling limit. The difference originates in th
interaction term of our four-auxiliary-boson approach sho
in Eq. ~2.3!. The coupling constant of the boson-fermio
interaction term isAU/4 in our four-auxiliary-boson ap-
proach. The numerical factor in general depends on the n
ber of auxiliary bosons.19,20 If we considern bosons, the
corresponding boson-fermion coupling isAU/n, and the fac-
tor in thexa denominator becomes 2U/n. This latter factor
of 2 is produced by the spin summation in the fermion loo
Since in our case there are four bosons, we arrive at
factor U/2. The denominator factor in the boson propaga
Da has the same origin.

The spectra of the spin (a5s) and charge (a5c) re-
sponse functions are defined by the corresponding imagin
part of xa(q) as

Im xa~q!5
2 ImP~q!

~11ha ~U/2!Re P~q!!21~U/2 Im P~q!!2 ,

~3.9!

with

FIG. 1. Diagram representations of~a! the expansion series o
the response functionsxa(q) and ~b! the Dyson equation of the
fermion Green’s functionG(k). The solid line, thick solid line, and
dashed line representG0(k), G(k), andDa(q), respectively.



ur
a-
co
on
he
in

on

i

r
nc

cib
n
th

.
se
lf
rb
tin
o
om

ith
d
ti
e
ar

io

o
he

eak
ion

of

in

sity
,

um

n

1856 PRB 58T. SAIKAWA AND A. FERRAZ
Im P~q!5E
k
@12sgn~v1n!sgn~v!#Im G~k1q!Im G~k! ,

~3.10!

and ReP(q) being calculated from ImP(q) by the
Kramers-Kronig transformation.

Note that we neglected all vertex corrections to avoid f
ther numerical difficulty. Although with such an approxim
tion we might lose some processes produced by vertex
rections, this scheme is useful, and it is the simplest
available in order to investigate directly the effect of t
spectral functions in the response function. One shortcom
of this approach is the violation of the spin and charge c
servation denoted by Imxa(q50,v)50. In our calculation,
however, the intensity of Imxa(q;0,v) is sufficiently
small in comparison with the results obtained for otherq
values. Thus, it does not give any essential modification
all the results from this work.

In our formulation we take into account the one-loop fe
mion and boson self-energies in the fermion Green’s fu
tion G(k) and the boson propagatorDa(q). We also con-
sider the dressed one-loop bubble diagram as the irredu
polarization function in the spin and charge response fu
tions. In this respect our approximation reminds one of
so-called fluctuation exchange~FLEX! approximation,1,21

that also takes into account the dressed one-loop diagram
their treatment both Green’s function and one-loop dres
fermion bubble are obtained perturbatively in a se
consistent manner. Our method is a combined nonpertu
tive and perturbative treatment. We use the noninterac
one-loop bubble in our nonperturbatively derived bos
propagators. This makes our scheme totally different fr
the FLEX approximation.

IV. NUMERICAL RESULTS

A. U dependence of the response functions

In Figs. 2 and 3, we show the contour line plot drawn w
the numerical results of theU dependence of the spin an
charge response functions for a fixed electron concentra
n50.8. ForU/t50, both response functions are determin
by the imaginary part of the noninteracting one-loop pol
ization function written as

Im P0~q!52 Imx0~q!52p sgn~n!(
k

@u~«k1q2m!

2u~«k2m!#d~n2«k1q1«k! .

~4.1!

From Fig. 2~a!, we find that ImP0(q) has two different
characteristic properties. One is manifest in the reg
around the zone corner (p,p). Im P0(q) at q5(p,p) can
be written as

Im P0~q5~p,p!,n!52p(
k

d~n12«k! , ~4.2!
-

r-
e

g
-

n

-
-

le
c-
e

In
d

-
a-
g

n

on
d
-

n

wheren.2umu for n.0. Apart from the low-energy gap in
the region 0,n,2umu, the right-hand side is equivalent t
the density of states of the tight-binding band with t
nearest-neighbor hopping 2t.

The second property is the existence of the sharp p
structures near the upper limit of the particle-hole excitat
energy aroundq5(0.1p,0.1p);(0.5p,0.5p) for q in the
(1,1) direction, and also for allq’s in the (1,0) direction. To
understand that structure we shall rewrite the integration
Eq. ~4.1! into the contour integral

Im P0~q!52p sgn~n!E
n5«k1q2«k

3
dlk

~2p!2

u~«k1q2m!2u~«k2m!

u¹k~«k1q2«k!u
. ~4.3!

FIG. 2. Contour plot of theU dependence of the dynamical sp
response function Imxs(q) at n50.8, for ~a! U/t50, ~b! 3.0, ~c!
5.0, and~d! 6.0. Sequence of symbols represent an equal inten
line of Im xs(q). The symbols3, * , triangle, square, diamond
circle, and solid circle correspond to Imxs(q)50.02, 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6, respectively. The thick curve represents maxim
intensity points. There is one maximum point for eachq value.
Thick dashed curves in~c! and ~d! represent the SDW dispersio
relation forU/t55.0 and 6.0, respectively.
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PRB 58 1857ELECTRON CONCENTRATION AND ON-SITE . . .
The peak of ImP0(q) in the (1,1) direction comes from th
contribution near the singularity pole of the integra
1/u¹k(«k1q2«k)u and the particle-hole conditionu(«k1q
2m)2u(«k2m)Þ0. The pole corresponds to the excitatio
between k1q5(p/21qx/2,p/21qy/2) and k5(p/2
2qx/2,p/22qy/2), which has the excitation energyn(q)
54t@sin(qx/2)1sin(qy/2)#. This excitation takes place fo
dopings near the half-filling, because it goes across a bou
ary which is the Fermi surface~line! at half-filling. As the
electron concentration decreases away from half-filling, t
excitation process is forbidden because it violates
particle-hole condition. The small momentum-transferq
;0) processes are very sensitive to this restriction, si
these processes are quickly excluded outside the Fermi
face as electron concentration decreases. Though the ab
mentioned pole is located within the range of validity of t
particle-hole condition for largeq’s, no sharp peak is ob
served due to the quick decrease of ImP0(q).

With a similar analysis, we can see that the origin of t
peak structure in the~1,0! direction is the pole of
1/u¹k(«k1q2«k)u. We chooseq5(qx,0). The excitation pro-
cess associated with the pole is again the transition betw
k1q5(p/21qx/2,ky) and k5(p/22qx/2,ky) with excita-
tion energy n(q)54t sin(qx/2), where ky is chosen arbi-
trarily within the particle-hole condition. Because of this a
bitrariness ofky , the peak of ImP0 for the ~1,0! direction is
sharper than that for the~1,1! direction. Thus, in the finite
interaction case, the peak structure in the~1,0! direction is
more stable against the incoherent single-particle spectra
fect than the peak in the~1,1! direction. We will find this
trend in the results obtained next for appropriate values oU.

FIG. 3. Contour plot of theU dependence of the dynamica
charge response function Imxc(q) at n50.8, for ~a! U/t50, ~b!
3.0, and~c! 5.0. The meanings of symbols are the same as in Fig
d-

is
e

e
ur-
ve-

e

en

ef-

Note that the properties obtained forU50 are associated
with the original structure that can be completely determin
by the noninteracting band structure, or, in other words, t
can be determined by the nature of the nearest-neighbor
ping in the 2D square lattice without interactions.

Figures 2~b!–2~d! show the nonzeroU results. AsU in-
creases, the above-mentioned sharp structures are broad
However, forU/t53.0, the corresponding structures still r
main to some extent intact, especially the peak structure
the ~1,0! direction. Finally, atU/t56.0, no corresponding
structure can be seen. This is produced by the broadening
the incoherent part of the spectral functionA(k)
52(1/p)sgn(v)Im G(k) in the high-energy region.

The thick curve in Fig. 2 indicates the sequence of
maximum intensity points, one for eachq, of Im xs(q). It
can be seen that, asU/t increases, the curve is modified an
moved to the low-energy regime. That can be interpreted
the formation of the low-energy collective mode, i.e., t
spin-density wave~SDW!. For comparison with our numeri
cal data, we draw the SDW band dispersion@dashed curve in
Figs. 2~c! and 2~d!# nSDW(q)52JA12@«q /(4t)#2 derived
from the 2D antiferromagnetic Heisenberg model with t
Holstein-Primakoff transformation.23 HereJ;4t2/U and«q
522t(cosqx1cosqy). Though this analytical band dispe
sion may be valid for sufficiently small dopings and for th
large coupling regime, the agreement with our data is fi
The difference betweennSDW and our data is due to th
effect of the finite doping concentration (d512n50.2) in
our calculation.

Around q;(p,p) in Im xs(q), we observe the sharp
peak structure that is already present forU/t53.0. This
Stoner enhancement is a genuine many-body collective e
tation. To observe this in detail, in Fig. 4 we show the ev
lution of Im xs(q) at q5(p,p). The Stoner excitation is
well enhanced up toU/t55.0. ForU/t56.0, we are close to
the Stoner instability condition in the boson propaga
Ds(q), and the low-energy intensity of Imxs(q) is reduced.
This originates in the decrease of the low-energy quasipa
cle weight in the single-particle spectra for the finite dopi
regime as we obtained in our previous work.11 The tail of the
excitation spectrum is spread toward the high-energy reg
asU/t increases. This behavior is correlated with the dev
oping of the tail in the single-particle electronic states.11

The U dependence of the charge response functions
shown in Fig. 3. As in the case of the spin response funct

3.

FIG. 4. U dependence of the dynamical spin response func
Im xs(q) for q5(p,p) at a fixed electron concentrationn50.8.
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1858 PRB 58T. SAIKAWA AND A. FERRAZ
the sharp peak structures on the upper limit of the parti
hole continuum become structureless asU/t increases. The
broad weak peak can be seen aroundq5(p,p), and the
broad nature is well spread over a wideq range. Because o
the quick development of the incoherent tail above
particle-hole continuum, no collective mode is observ
However, as is well known, the system described within
Landau-Fermi liquid picture must have a zero sound mod
small q regions. In the Appendix, we discuss the dopi
dependence of the zero sound mode in the weak-coup
Hubbard model using the conventional RPA framework. W
found that the zero sound velocity in the small electron c
centrationn increases rapidly asn increases, and that it ha
no q direction dependence. Contrary to this, in the largen
region near half-filling, the zero sound velocity does not d
pend onn, and has a largeq direction dependence.

B. Doping dependence of the response functions

Figure 5 shows the doping dependence evolution of
response functions for fixed interactionU/t55.0. At n
50.5, a clear peak structure can be observed in the~1,0!
direction ofq. This structure is weakened atn50.65, since
the self-energy effect becomes larger as the electron con
tration increases. Atn50.8, this structure seems to be reco
ered again, but this is the collective effect similar to t
Stoner enhancement. The gap structure in the low-ene
region atq5(p,p) is gradually buried asn increases. An-

FIG. 5. Contour plot of then dependence of the dynamical sp
response function Imxs(q) at U/t55.0, for ~a! n50.5, ~b! 0.65,
and~c! 0.8. The symbols used are the same as in Fig. 3. Thick cu
represents maximum intensity points. As before, for eachq there is
one appropriate maximum point. The thick dashed curve in~c! rep-
resents the SDW dispersion relation forU/t55.0.
-

e
.
e
at

ng
e
-

-

e

n-

gy

other gaplike~pseudogap! structure can be seen in the~1,1!
direction. It has a bell-shaped structure with its top po
around q5(p/2,0). It looks as if this structure is shifte
toward the sharp peak in the~1,0! direction. Asn increases,
this pseudogap is smeared, and a new pseudogap ap
with a maximum gap atq5(p,0). This new pseudogap for
mation is related to the development of the spin collect
mode~SDW! which will be discussed below. A similar tren
can be seen in the results of the quantum Monte Ca
simulation.10

At n50.5, a weak peak structure is seen aroundq
5(p,p). This structure becomes sharper and moves tow
the low-energy region asn becomes larger in the small dop
ing regime. Finally, atn50.8 the strong Stoner enhanceme
peak arises. Figure 6 shows the development of the Sto
enhancement atq5(p,p). A low-energy enhancement pea
is drastically produced, but the high-energy behavior is
sensitive to the change of the electron concentration. T
strong enhancement in the dynamical spin response funct
at q5(p,p) is also seen in the earlier FLEX approximatio
work.1

The thick curve in Fig. 5 shows the maximum intensity
Imxs . The curve has a drastic change, i.e., the spin collec
mode ~SDW! is formed asn approaches the small dopin
toward half-filling.

Figure 7 shows the evolution of the charge response fu
tion for the fixed valueU/t55.0. At n50.5, peak structures
can be seen in the~1,1! direction aroundq5(0,0), and in the
~1,0! direction. As already discussed above, they are
traces of the particle-hole excitation in the noninteract
polarization function. These structures are easily smea
and finally disappear asn increases. Roughly speaking, the
are two structures atn50.5; the relatively broad high-energ
peak aroundq5(p,p), and the sharp peak in the~1,0! di-
rection. The latter originates in the structure of the nonint
acting one-loop polarization function ImP0(q). As n in-
creases, these two structures are connected and beco
single broad structure which is mainly located in the hig
energy region aroundn/t56 – 7. As previously pointed out
the spin response function shows similar emerging behav
but that can be interpreted in terms of the formation of
SDW dispersion.

V. CONCLUDING REMARKS

In this paper, we investigated the dynamical properties
the spin and charge response functions in the 2D Hubb

e

FIG. 6. n dependence of the dynamical spin response func
Im xs(q) at U/t55.0 andq5(p,p).
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model by varying the interaction energyU/t and the electron
concentrationn. To calculate the dynamical spin and char
response functions, we have used an effective model w
makes use of the Hubbard-Stratonovich auxiliary bosons
sociated with the spin and charge fluctuations coupled w
the fermion field. The one-loop order self-energies w
taken into account both in the boson propagator and the
mion Green’s function.

For n50.8, asU/t increases, low-energy antiferroma
netic Stoner enhancement aroundq5(p,p) is enhanced up
to the intermediate-coupling regime. When this takes pla
SDW-like dispersion formation is observed. AsU/t ap-
proaches the Stoner instability criterion, the Stoner enhan
ment weakens because of the decrease in the quasipa
weight in the low-energy region around the Fermi ener
Such a decrease is associated with the formation of
pseudogap.

The sharp peak structure located around the upper lim
the particle-hole continuum in the noninteracting case
comes broader and structureless asU/t increases. Further
more, the tail structure spreads toward the high-energy
gime. Both these broadening features can be explaine
terms of the incoherent structure in the single-particle sp
trum.

Using a slave-boson technique, Khaliullin and Hors17

have obtained a low-q collective mode which has a broa
peak especially for the~1,0! direction in the charge respons
function of the t-J model. A similar low-q mode in the
charge response function of the Hubbard model can als
seen in the quantum Monte Carlo~QMC! simulation by
Preusset al.10 In our calculation, the charge response fun
tion becomes completely broad, and no clear collective m

FIG. 7. Contour plot of then dependence of the dynamica
charge response function Imxc(q) at U/t55.0, for ~a! n50.5, ~b!
0.65, and~c! 0.8. The symbols are the same as in Fig. 3.
ch
s-
h
e
r-

e,

e-
icle
.
e

of
-

e-
in
c-

be

-
e

is seen. It is not certain that this collective mode exists in
Hubbard model. However, if it does, it might be produced
some vertex correction neglected in the present work.

In conclusion, our formulation takes into account tw
main features in the response functions. They are the in
herent and coherent properties of the single-particle spe
function and the Stoner-like enhancement factor. By cons
ering those two properties, we can explain the doping a
interaction dependences of the dynamical spin and cha
response functions. Our approach reproduces rather wel
doping dependence obtained in the QMC simulation.10
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APPENDIX: DOPING DEPENDENCE OF THE ZERO
SOUND VELOCITY IN THE WEAK-COUPLING

HUBBARD MODEL

In this appendix, we discuss the doping effects of the z
sound velocity in the Hubbard model using the stand
random-phase approximation~RPA!. Our reference model is
the two-dimensional Hubbard model with weak on-site Co
lomb interaction. In this interaction regime, the RPA is a
plicable to analyze the charge response function of
model. In this approximation, the charge response func
can be written as

xRPA~q!5
2x0~q!

11Ux0~q!
~A1!

wherex0(q) is defined by Eq.~2.10!. The charge excitation
is given by

Im xRPA~q!5
2 Imx0~q!

@11U Rex0~q!#21@U Im x0~q!#2
.

~A2!

This approximation describes the particle-hole excitatio
and also the collective modes for sufficiently weak couplin

The collective mode in the charge response function
the energy range above the particle-hole excitation can
obtained as a solution of the following equation within t
RPA,

11U Rex0~q!50 . ~A3!

Performing the frequency integration, we have

11U(
k

u~«k2m!2u~«k1q2m!

n2«k1q1«k
50 . ~A4!

To study the velocity of the zero sound mode which can
expected to exist near the zero momentum, we expand
above expression arounduqu'0, whereuqu5(qx

21qy
2)1/2, im-

mediately obtaining
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12U(
k

d~«k2m!~]«k /]k! •q

n2~]«k /]k! •q
50 . ~A5!

By performing the integration of thed function, we have the
following contour integral:

UE
«k5m

dlk

~2p!2u¹k«ku

~]«k /]k! •q

n2~]«k /]k! •q
51 . ~A6!

The solution of this integral equation determines the z
sound velocityvZS that can be defined as

vZS~q/uqu![
n

uqu
, ~A7!

dependent on the direction of momentumq.
In Fig. 8, we show the electron concentrationn depen-

dence of the zero sound velocityvZS for the ~1,1! and ~1,0!
directions ofq. In the dilute electron concentration regim
(n;0), the zero sound velocity increases rapidly as the e
tron concentrationn increases. In addition, the two curves f
the ~1,0! and ~1,1! directions overlap almost completely, in
dicating that the zero sound velocity does not depend on
direction ofq in the large doping regime.

That can be proved as follows. In the dilute limit, th
band dispersion can be approximated by

«k;24t12t~kx
21ky

2! . ~A8!

Then the contour equation of the line integral becomes

24t12t~kx
21ky

2!5m ~A9!

or, in polar coordinates,

kx5A21m/2t cosu ,
~A10!

ky5A21m/2t sin u ,

whereu can vary from 0 to 2p. It also follows that

u¹k«ku54tA21m/2t . ~A11!

Then, by introducing

FIG. 8. Electron concentration dependence of the zero so
velocity vZS within the RPA calculated forU/t52.0 ~solid curve!
andU/t→01 ~dashed curve!.
o

c-

he

qx5uqucosa , ~A12!

qy5uqusin a ,

Eq. ~A6!, which determines the zero sound velocity, b
comes

UE
0

2p du

~2p!2

A21m/~2t !cos~u2a!

n/uqu24tA21m/~2t !cos~u2a!
51 .

~A13!

Since this integral does not depend ona, we can conclude
that the zero sound velocity in the dilute limit does not d
pend on the direction ofq. This happens because the ex
tence of a lattice is not important in such low electron co
centrations.

Contrary to this, we can observe entirely opposite tren
in the dilute doping regime (n;1) in Fig. 8. In this regime,
the zero sound velocity has almost no electron concentra
dependence, but itsq direction dependence becomes larg
We avoid calculations aroundn51, since we cannot apply
the present RPA approximation at half-filling.

We shall now show analytically then-independent behav
ior of vZS. When U is sufficiently small, the zero soun
velocity is dominated by the polen2(]«k /]k)•q50 of the
integrand of Eq.~A6!. Hence, in this case,vZS is obtained
from

n

uqu
5

]«k

]k
•

q

uqu
, ~A14!

with the constraint«k5m which comes from the integration
range of Eq.~A6!. On the other hand, we note that for th
small q limit the particle-hole excitation energyn(q)
5«k1q2«k becomesn;(]«k /]k)•q, and the particle-hole
condition«k,m,«k1q approaches«k;m. Thus we can see
that almost the whole possible range of Eq.~A14! is in the
particle-hole excitation, and only the pole at the upper ed
of the particle-hole excitation givesvZS in the weak-coupling
limit. As a result, the zero sound velocity for the smallU
limit is obtained by the maximum value of the right-han
side of Eq.~A14! for a fixedq,

vZS5maxS ]«k

]k U
«k5m

•

q

uqu D . ~A15!

We then obtain

vZS52A2t†sin$arccos@m/~24t !#%‡ , ~A16!

for the ~1,1! direction, and

vZS5H 2t for m<22t

2t sin$arccos@m/~22t !21#% for m.22t
~A17!

for the ~1,0! direction. These expressions are shown as
dashed curves in Fig. 8. For small dopings (n;1, i.e., m
;0), vZS approaches 2A2t for the ~1,1! direction and 2t for
the ~1,0! direction.
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