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Electron concentration and on-site interaction effects for the spin and charge excitation spectra
in the two-dimensional Hubbard model
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Electron concentration and on-site interaction effects for spin and charge excitations in the two-dimensional
Hubbard model are investigated. Using the auxiliary boson approach, which takes into account the spin and
charge fluctuation effects, we derive an effective model which reproduces qualitatively well electronic states
for the weak- and intermediate-coupling Hubbard models. The spin response function shows drastic changes as
a function of the interaction and of the electron concentration. For the intermediate coupling regime, the Stoner
enhancement arourgi= (7,77) and the spin-density-wave-like collective mode are obtained. In contrast, the
charge response function does not have any specific structure for this interaction range. Finally, the electron
concentration dependence of the zero sound velocity is discussed for the weak-coupling regime. The zero
sound mode is shown to have a specific doping dependence that is associated with the existence of a hopping
in the lattice.[S0163-182808)06428-3

[. INTRODUCTION spin and charge response functions show a similar behavior
in the low-doping and strong-coupling regimes.

Electronic states of the Hubbard model have been inves- The above-mentioned electronic state evolution must play
tigated intensively in many studies’since the discovery of ~an important role in characterizing the behavior of the re-
high-temperaturéhigh-T.) superconductors. As a result, itis SPonse functions. However, how they precisely relate to each
now possible to draw a relatively detailed picture of theother is still unclear. The reason for this is that interaction
single-particle spectrum for that model. The behavior of theffects on the evolution of the dynamical properties of the
spectral function shows dramatic changes as a function of thgSPonse functions have not been fully investigated. To
interactionU, the electron concentratian and the tempera- Clarify these points, in this paper we study both the effects of
ture T. For example, in the doped system, the single-particléhe electron concentratiamand the interaction) in the re-
density of states has a quasiparticle peak structure at t onse func_tlons, by _taklng into explicit account the evolu-
Fermi : . ; ion of the single-particle spectra.

ermi energy. For the intermediate- or strong-coupling re- - i .
ime, the density of states has a pseudogap, and, if the sys- In our previous work the eIectron_lc state_s of the Hlfl.b_
'?em i's not doped, there is a Mott-Hubbard ga|£) i a’ny dimenBard model were investigated numerically using an auxiliary

. ith the | d bbard bands bei oson approach in which the effects of both the spin and
sion, with the lower and upper Hubbard bands being formeqy, o e fiyctuations were considered in an equal footing. The

in the negative and positive high-energy regions, respecseit.energies were calculated up to one-loop order, taking
tively. . _ into account the fermion-boson interaction. Although there
However, not much is known about the dynamical prop-yas a strict restriction on the maximum value of the interac-
erties of the response functions in the Hubbard model. Hergon U due to the Stoner criterion, the obtained spectral func-
we focus on the dynamical behavior of the spin and charggion reproduced qualitatively well both the narrow quasipar-
response functions in the Hubbard model. Keeping in mindicle band on the Fermi energy and the lower and upper
its relation to the highF, superconductors, we consider the Hubbard band&!
two-dimensional2D) Hubbard model, but some results will In this paper, we use the same scheme to investigate the
also hold in higher-dimensional models. dynamical properties of the spin and charge response func-
So far, only the spin and charge response functions of théons. The effects of the electron concentratiorand the
2D t-J model have been investigated in many wotks’  Hubbard interactionJ on the dynamical spin and charge
Though the local electron configuration constraint in thisresponse functions are analyzed in detail. In Sec. Il, the for-
model is a strong restriction not always present in the Hubmulation of our auxiliary boson method is reviewed briefly.
bard model, the properties of the response functions in thén effective fermion-boson model and an important expres-
t-J model may well give important information which may sion needed to describe the electronic states are derived. In
be generally true for all strongly correlated systems. TheSec. Ill, the spin and charge response functions are obtained
following features can be observed in thd model: (i) the  from the effective model. The numerical results showing the
spin response function has a low-energy sharp peak in thevolution of the spin and charge spectra are given in Sec. IV.
small doping regime, especially around the momentunmVe find for both the spin and charge spectra a very specific
(7r,m); (ii) the charge response function is rather broad in and drastic evolution when we change the electron concen-
wide energy range, and no sharp excitation can be observettation n and the interactiotd. Section V is devoted to con-
In some investigatiorts®8on the 2D Hubbard model, the cluding remarks. Finally, in the Appendix, we summarize the
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doping dependence of the zero sound velocity in the weak- [M(P) kot or = (@+ = £1) St O o
coupling Hubbard model within the conventional random- o e

phase approximation. We find that the zero sound in the s U

Hubbard model has a specific doping dependence which con- + > P (k—k") - NaaT oo -
siderably modifies the result obtained for the interacting a=o

electron-gas model. (2.5

Taking into account the fluctuations of the boson fields,
Il. MODEL we can expand the effective action around the saddle-point

. . . O
We consider the standard Hubbard model in a twoSOlution. Here we use the saddle-point solutiop”

dimensional square lattice with a unit lattice constant at zers= — VUN/2 for a=0 and ¢{?=0 for a#0. The electron
temperature. Irk=(k,w) space, the actidh equivalent to numbern is calculated from
the Hubbard model is

n=—i> feo(k>. (2.6
~ ~ o k
S= VK (0+p—e )W,k
2(:’ k ARt p=eWo(k) where the saddle-point Green’s function is defined by
U 3
- = ‘s@(— s®(q), (2.1 -
> abEZO SUC- 7S Gk~ oo Ty sae) 2.7)

B ) B ~ 4 The chemical potentighy=ux—Un/4 is determined consis-
where [ =/ (dw/2m) [dk/(2m)%], a=(q,v), and ¥ ,(K),  tently with the given electron concentration
and ¥ (k) are the Grassmann fields for the electrons and The second-order term of tH# expansion can be writ-
g= — 2t(cosk+cosky). The last term corresponds to the ten as
Hubbard interaction withygo=1, 711= 720= 735= —1 and
3

1na.p=0 for a#b. We have defined L
' @ 15
%272 a§=:0 q5¢ (—=a)Daa(@) 764 (a), (2.8

~ 1 ~ ~
s@(@)=5 > | Uik+q)7?,W,(k), (22  with the boson propagator determined by
2 K

]
where ther®’s are Pauli matrices wita=1, 2, and 3, and Daa(d) ™= 7aat 7 Xo(q), 2.9
9 is the 2x2 unit matrix!!
We next introduce four auxiliary bosonic operatorswherey,(q) is given by
$@(q) for the charge 4=0) and the spingd=1,2,3) chan-

nels through an appropriate Hubbard-Stratonovich )
transformatiort* The following effective action is thus ob- Xo(d) =i kao(k"’ A4)Go(k). (2.10
tained:

For a paramagnetic state, each spin component contributes
_ _ equally toD,,(q).
Sefi= 2 J \I’(Tr(k)(w-i-,u—sk)\lfo(k) To calculate the Green'’s function beyond the saddle-point
o Jk approximation, we consider a new fermion-boson action
1 3 _ _ o, taking D ,4(q) as the zeroth-order boson propagator:
+5 2| PV a) 76 (0)
a,b=0 Jq _ _
=2 Jk‘lff,<k><w+ﬂ—sk>~lfg(k>

3
+ f (=) 7 VUsP(q). (2.3
a,b=0 Jq

13 1 - ~
+5 2 | 86 (—a)Dax(a) 56 ()
0 Jqg

a=

3
~ VU
(a) R
+a20 020’ fquéd’ (a) 2 Naa

Integrating out the Grassmann fields, we have that

~ 1S (- ~
' = (@) — (b) ~ ~
Sl @)= 3 &, Jqd’ (D 7a0f ) XU (k+q) 72T, (K) (2.12

—itr In[M(#)], 2.4 We can easily establish the Feynman rules for this effec-
tive action. Up to one-loop order, the fermion Green’s func-
whereM is defined by tion can be written as
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U 3
G =t p, —emig 2 fqeo(k+q)Daa(q), @) = + O

(2.12
where the chemical potential, is determined consistently " O """ * [O B O]° """ Q
with the electron concentration. The U-dependent term
above is the one-loop fermion self-energy for both the spin * O """ * [O B Q]

and charge components. X o [O _ Q] _____ O

Ill. SPIN AND CHARGE RESPONSE FUNCTIONS

+
We define the spind=s) and charge ¢=c) retarded
response functiong, (Ref. 22 as &
t—t)=i6(t—t' )}{[m?(q,t),m?(—q,t’ = * *
w(@t=t) =it mA@n.m-an) c @ o s o
and FIG. 1. Diagram representations @) the expansion series of

the response functiong,(q) and (b) the Dyson equation of the
xc(g,t—t")=io(t—t"){{n(qg,t),n(—q,t’)]), (3.2  fermion Green's functioi(k). The solid line, thick solid line, and

. dashed i &y (k), G(k), andD ,(q), tively.
wherem®(q,t) andn(q,t) are the €,t) representation of oo cu he [EPrEse o(K), G(k), andD (q). respectively

@ B t ing the subscripty, wherea=s or ¢, instead ofa=1, 2, and
M) =2 sgna) VOV 33 30a-0. ThusD 1= 5+ (Ul2)xo(q) with ne=—1 and

n.=1, and we have
and

Ve
n(r,t):g W)W, (r,t). (3.4) Xe=P=PI v P 3.7

Following the same scheme used above to derive the ferFhus, the charge and spin response functions can be written
mion Green’s function, we perturbatively expand the re-as
sponse functiory, . The zeroth-order term of, gives only
the noninteracting polarization functidy(q)=2x,(q). To 211(q)
simplify the calculation, we take no account of vertex cor- Xo(q)= a .
rections, at this stage. 14 7, (U72)1(q)
However, in the series expansion fgf(q), we have to , L
avoid the double counting of the noninteracting polarization! & denominator of E¢3.8) has a factolJ/2 which is dif-
bubblex,(q). This is due to the fact that the boson line itself ferent from the standard random-phase-approximafi)
already includes the one-loop polarizatigp(q) to infinite ~ €XPression. It produces a shift from the standard RPA even
order, as is indicated by Eq2.9). For this, it is useful to " the vyeak-couplmg limit. The. _d|fference originates in the
introduce the renormalized polarization functififq) given interaction term of our fpur—auxmary-boson approach shpwn
in terms of the corresponding renormalized single-particld” Ed- (2.3). The coupling constant of the boson-fermion
Green’s functions. That idJ(q) is given by interaction term |s.\/m in-our four-auxiliary-boson ap-
proach. The numerical factor in general depends on the num-
. ber of auxiliary boson$??° If we considern bosons, the
(q)=i ka(kJFQ)G(k) . (3.9 corresponding boson-fermion coupling\it)/n, and the fac-
tor in the x, denominator becomeslZn. This latter factor
We can write the expansion af,(q) diagrammatically, as of 2 is produced by the spin summation in the fermion loops.
shown in Fig. 1a). By subtracting Po(q) from P(q) Since in our case there are four bosons, we arrive at the
=2I1(q) in the intermediate diagram, as shown in the rectanfactor U/2. The denominator factor in the boson propagator
gular brackets of Fig. (&), we automatically take into ac- D, has the same origin.
count the elimination of all diagrams which contain doubly = The spectra of the spina(=s) and charge ¢=c) re-
countedyq(q). The full Green’s function is represented in sponse functions are defined by the corresponding imaginary

(3.8

Fig. 1(b). From the figure, we can write part of x,(q) as
Xoa=P—PV,P+PV, (P—Pg)V,P 2 ImII(g)
—PV,(P=Po)V(P=Py)V,P+---, (3.6 Im X“(q):(1+na(U/z)ReH(q))2+(U/2|m Q)2
whereV,(q)=(U/4)D ,(q), the sign of each term being de- (3.9

termined by the number of fermion loops. Here, for simplic-
ity, the boson propagators have been redefined by introdugvith
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Im I1(q)= fk[l—sgr(w+v)sgr(w)]lm G(k+q)im G(k), 10 @) ;  Imxsta)

: n=0.8
(3.10 S URe00

and Rell(q) being calculated from ImI(g) by the
Kramers-Kronig transformation. F

Note that we neglected all vertex corrections to avoid fur- 0 :
ther numerical difficulty. Although with such an approxima- T T T
tion we might lose some processes produced by vertex cor- 10 [-(b) : ; Imyy(@)
rections, this scheme is useful, and it is the simplest one [ " e :
available in order to investigate directly the effect of the
spectral functions in the response function. One shortcoming 5
of this approach is the violation of the spin and charge con-
servation denoted by Iny,(g=0,w)=0. In our calculation,
however, the intensity of Iny,(q~0,0) is sufficiently
small in comparison with the results obtained for otler
values. Thus, it does not give any essential modification in
all the results from this work.

In our formulation we take into account the one-loop fer-
mion and boson self-energies in the fermion Green’s func-
tion G(k) and the boson propagatér,(q). We also con- "
sider the dressed one-loop bubble diagram as the irreducible 0%;35,;;*@
polarization function in the spin and charge response func- e O,
tions. In this respect our approximation reminds one of the R B ETM
so-called fluctuation exchang@LEX) approximationt:?! (T
that also takes into account the dressed one-loop diagram. In
their treatment both Green'’s function and one-loop dressed e
fermion bubble are obtained perturbatively in a self- O
consistent manner. Our method is a combined nonperturba- P i ———
tive and perturbative treatment. We use the noninteracting Fgi ,,%»»..
one-loop bubble in our nonperturbatively derived boson h‘k\;ﬁ‘f ;
propagators. This makes our scheme totally different from
the FLEX approximation.
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FIG. 2. Contour plot of thé&) dependence of the dynamical spin
response function Inys(q) atn=0.8, for(a) U/t=0, (b) 3.0, (c)
5.0, and(d) 6.0. Sequence of symbols represent an equal intensity
A. U dependence of the response functions line of Im xs(q). The symbolsXx, *, triangle, square, diamond,

. . .., circle, and solid circle correspond to Igy(q) =0.02, 0.1, 0.2, 0.3,
In Figs. 2 and 3, we show the contour line plot drawn Wlth0.4, 0.5, and 0.6, respectively. The thick curve represents maximum

the numerical results of the dependence of the spin and intensity points. There is one maximum point for eagtvalue.
charge response functions for a fixed electron concentrationyick dashed curves i) and (d) represent the SDW dispersion
n=0.8. ForU/t=0, both response functions are determined,g|ation foru/t=5.0 and 6.0, respectively.

by the imaginary part of the noninteracting one-loop polar-
ization function written as

IV. NUMERICAL RESULTS

wherev>2|u| for v>0. Apart from the low-energy gap in
the region G<v<2|u|, the right-hand side is equivalent to
the density of states of the tight-binding band with the

Im Po(q)=2 Imxo(q) =2 sgn( v); [6(ekq— ) nearest-neighbor hopping 2
The second property is the existence of the sharp peak
—0(ex—p)18(v—gyiqter) . structures near the upper limit of the particle-hole excitation

energy aroundy=(0.17,0.17)~ (0.57,0.57) for q in the

(1,1) direction, and also for afi’s in the (1,0) direction. To

understand that structure we shall rewrite the integration of
From Fig. 2a), we find that ImPy(q) has two different EQ. (4.1) into the contour integral

characteristic properties. One is manifest in the region

around the zone cornerr(7). Im Py(q) at g=(,7) can

be written as Im Pyo(q) =27 sgn(v)

4.9

V=ekqT 8k

« dly  O(egrq—m) = 0(ex—n)
(27)? |Vi(eksq— &0

Im Po(qz(w,w),v):zw; S(v+2e), (4.2 4.3
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FIG. 4. U dependence of the dynamical spin response function
Im xs(q) for g=(,7) at a fixed electron concentratior=0.8.

B LN LR L Note that the properties obtained fdr=0 are associated
e Q) with the original structure that can be completely determined

by the noninteracting band structure, or, in other words, that
can be determined by the nature of the nearest-neighbor hop-
ping in the 2D square lattice without interactions.
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AAAAAAAAAAA - Figures 2Zb)—2(d) show the nonzerdJ results. AsU in-
e e, NS creases, the above-mentioned sharp structures are broadened.
B A W I B SN RN However, forU/t=3.0, the corresponding structures still re-
(0,0) rm q O 0.0) main to some extent intact, especially the peak structures in

the (1,0 direction. Finally, atU/t=6.0, no corresponding
FIG. 3. Contour plot of theJ dependence of the dynamical structure can be seen. This is produced by the broadenings of
charge response function Im,(q) atn=0.8, for(a) U/t=0, (b)  the incoherent part of the spectral functioA(k)
3.0, and(c) 5.0. The meanings of symbols are the same as in Fig. 3= — (1/7)sgn(w)Im G(k) in the high-energy region.
The thick curve in Fig. 2 indicates the sequence of the
The peak of ImPy(q) in the (1,1) direction comes from the maximum intensity points, one for each of Im yx¢(q). It
contribution near the singularity pole of the integrandcan be seen that, &t increases, the curve is modified and
1Vi(ex+q— k)| and the particle-hole conditio(ey. q moved to the low-energy regime. That can be interpreted as
—u)— 0(g— p)#0. The pole corresponds to the excitation the formation of the low-energy collective mode, i.e., the
between k+q=(m/2+0q,/2,m/2+qy/2) and k=(w/2  spin-density wavéSDW). For comparison with our numeri-
—qx/2,m/2—qy/2), which has the excitation energy(q)  cal data, we draw the SDW band dispersidashed curve in
=4t[sin(gy/2) +sin(,/2)]. This excitation takes place for Figs. Zc) and 2d)] vgpy(q)=2J \/1—[8q/(4t)]2 derived
dopings near the half-filling, because it goes across a boundrom the 2D antiferromagnetic Heisenberg model with the
ary which is the Fermi surfacéline) at half-filling. As the  Holstein-Primakoff transformatioff. Here J~4t?/U ande
electron concentration decreases away from half-filling, this= —2t(cosq,+cosqy). Though this analytical band disper-
excitation process is forbidden because it violates theion may be valid for sufficiently small dopings and for the
particle-hole condition. The small momentum-transfer ( large coupling regime, the agreement with our data is fine.
~0) processes are very sensitive to this restriction, sinc&he difference betweemwgpy and our data is due to the
these processes are quickly excluded outside the Fermi sugffect of the finite doping concentratiod€1—n=0.2) in
face as electron concentration decreases. Though the abovair calculation.
mentioned pole is located within the range of validity of the  Around g~ (a,7) in Im x¢(q), we observe the sharp
particle-hole condition for largg’s, no sharp peak is ob- peak structure that is already present foft=3.0. This
served due to the quick decrease ofRgp{q). Stoner enhancement is a genuine many-body collective exci-
With a similar analysis, we can see that the origin of thetation. To observe this in detail, in Fig. 4 we show the evo-
peak structure in the(1,0) direction is the pole of Ilution of Im x,(q) at q=(,7). The Stoner excitation is
UV (ek+q—&k)|. We choose = (qy,0). The excitation pro-  well enhanced up tdJ)/t=5.0. ForU/t=6.0, we are close to
cess associated with the pole is again the transition betweehe Stoner instability condition in the boson propagator
k+q=(m/2+0q,/2k,) and k=(7/2—0q,/2k,) with excita- Dg(q), and the low-energy intensity of Inps(q) is reduced.
tion energy v(q)=4t sin(,/2), wherek, is chosen arbi- This originates in the decrease of the low-energy quasiparti-
trarily within the particle-hole condition. Because of this ar- cle weight in the single-particle spectra for the finite doping
bitrariness ok, , the peak of ImP,, for the (1,0) directionis  regime as we obtained in our previous wotk he tail of the
sharper than that for th€l,1) direction. Thus, in the finite excitation spectrum is spread toward the high-energy region
interaction case, the peak structure in ti€d) direction is asU/t increases. This behavior is correlated with the devel-
more stable against the incoherent single-particle spectral ebping of the tail in the single-particle electronic states.
fect than the peak in thél,1) direction. We will find this The U dependence of the charge response functions are
trend in the results obtained next for appropriate valudd.of shown in Fig. 3. As in the case of the spin response function,
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FIG. 6. n dependence of the dynamical spin response function
Im xs(q) atU/t=5.0 andq= (7, ).
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other gaplike(pseudogapstructure can be seen in tlig,1)
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n‘:géq) direction. It has a bell-shaped structure with its top point
........ : . aroundg=(#/2,0). It looks as if this structure is shifted

Ui=5.0
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toward the sharp peak in th&,0) direction. Asn increases,

this pseudogap is smeared, and a new pseudogap appears
with a maximum gap afj=(,0). This new pseudogap for-
mation is related to the development of the spin collective

v/t
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e,
*

d
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NG IR
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0 s « mode(SDW) which will be discussed below. A similar trend
(0,0 (tm g (0 (0,0) can be seen in the results of the quantum Monte Carlo
simulation®®

FIG. 5. Contour plot of the dependence of the dynamical spin At n:0.5, a weak peak structure is seen around
response function Iny.(q) at U/t=5.0, for (8 n=0.5, (b) 0.65, = (ar, ). This structure becomes sharper and moves toward

and(c) 0.8. The symbols used are the same as in Fig. 3. Thick curvéhe 'OW_‘e”ergy region as becomes larger in the small dop-
represents maximum intensity points. As before, for epthere is  '"d regime. Finally, an=0.8 the strong Stoner enhancement
one appropriate maximum point. The thick dashed curv@)inep- peak arises. Figure 6 shows the development of the Stoner

resents the SDW dispersion relation foft=5.0. enhancement af= (7). A low-energy enhancement peak
is drastically produced, but the high-energy behavior is not
sensitive to the change of the electron concentration. This

thhel sharp. peak T)tructures on the Iljppﬁ;[;'m't of the paL“Cle'strong enhancement in the dynamical spin response functions
ole continuum become structurelessléi increases. The 5 o— (7 ) is also seen in the earlier FLEX approximation

broad weak peak can be seen aroupd(w,7), and the k!

broad nature is well spread over a wigeange. Because of  The thick curve in Fig. 5 shows the maximum intensity of
the quick development of the incoherent tail above themy.. The curve has a drastic change, i.e., the spin collective
particle-hole continuum, no collective mode is observedmode (SDW) is formed asn approaches the small doping
However, as is well known, the system described within the&oward half-filling.

Landau-Fermi liquid picture must have a zero sound mode at Figure 7 shows the evolution of the charge response func-
small g regions. In the Appendix, we discuss the dopingtion for the fixed valudJ/t=5.0. Atn=0.5, peak structures
dependence of the zero sound mode in the weak-couplingan be seen in th@,1) direction aroundj= (0,0), and in the
Hubbard model using the conventional RPA framework. We(1,0) direction. As already discussed above, they are the
found that the zero sound velocity in the small electron coniraces of the particle-hole excitation in the noninteracting
centrationn increases rapidly as increases, and that it has polarization function. These structures are easily smeared
no q direction dependence. Contrary to this, in the lange and finally disappear asincreases. Roughly speaking, there
region near half-filling, the zero sound velocity does not de-are two structures at=0.5; the relatively broad high-energy

pend onn, and has a largg direction dependence. peak aroundy= (, ), and the sharp peak in th&,0 di-
rection. The latter originates in the structure of the noninter-

acting one-loop polarization function IRy(g). As n in-
B. Doping dependence of the response functions creases, these two structures are connected and become a
Figure 5 shows the doping dependence evolution of thsingle broqd structure which is mainlyllocated i_n the high-
response functions for fixed interactiod/t=5.0. At n  €Nerdy region arouna/t=6-7. As previously pointed out,
=0.5, a clear peak structure can be observed in(1h®) the spin response function s_hows similar emerging behavior,
direction ofq. This structure is weakened at=0.65, since but that can be interpreted in terms of the formation of the

the self-energy effect becomes larger as the electron concerrPW dispersion.
tration increases. At=0.8, this structure seems to be recov-
ered again, but this is the collective effect similar to the
Stoner enhancement. The gap structure in the low-energy In this paper, we investigated the dynamical properties of
region atq= (1, ) is gradually buried a® increases. An- the spin and charge response functions in the 2D Hubbard

V. CONCLUDING REMARKS
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RN AR R AR AR is seen. It is not certain that this collective mode exists in the
0f@ '”_‘géq) Hubbard model. However, if it does, it might be produced by
lj/_t=‘5.6‘*~u. some vertex correction neglected in the present work.

A In conclusion, our formulation takes into account two
main features in the response functions. They are the inco-
herent and coherent properties of the single-particle spectral
function and the Stoner-like enhancement factor. By consid-
ering those two properties, we can explain the doping and
interaction dependences of the dynamical spin and charge
response functions. Our approach reproduces rather well the
doping dependence obtained in the QMC simulatfon.
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'- APPENDIX: DOPING DEPENDENCE OF THE ZERO
(0.0) (mm  q (@0 (0,0) SOUND VELOCITY IN THE WEAK-COUPLING
HUBBARD MODEL

FIG. 7. Contour plot of then dependence of the dynamical

charge response function Igt(q) atU/t=5.0, for (8 n=0.5, (b) In this appendix, we discuss the doping effects of the zero
0.65, and(c) 0.8. The symbols are the same as in Fig. 3. sound velocity in the Hubbard model using the standard

: . : random-phase approximatidRPA). Our reference model is
model by varying the interaction energ,y_t and t_he electron the two-dimensional Hubbard model with weak on-site Cou-
concentratiom. To calculate the dynamical spin and chargejli

functi h d Htocti del whi omb interaction. In this interaction regime, the RPA is ap-
resEonse unfct;‘?n?—i Vg(; 3vsetuste a'f‘ﬁ ec !;_/e mg € WhiCjicaple to analyze the charge response function of this
makes use ot the nubbard-stratonovich auxiliary DOSONS A%, e | this approximation, the charge response function
sociated with the spin and charge fluctuations coupled Wltl?:an be written as
the fermion field. The one-loop order self-energies were
taken into account both in the boson propagator and the fer- 2x0(Q)
mion Green'’s function. XreA D= T00 0 (o) (A1)
- . . +Uxo(q)

For n=0.8, asU/t increases, low-energy antiferromag- _ . o
netic Stoner enhancement around (7, 7) is enhanced up Wherexo(q) is defined by Eq(2.10. The charge excitation
to the intermediate-coupling regime. When this takes placd$ diven by
SDW-like dispersion formation is observed. As$/t ap-

proaches the Stoner instability criterion, the Stoner enhance- IM yrea(Q) = 2 1mxo(q) .
ment weakens because of the decrease in the quasiparticle RPA [1+U Rexo(@)]?+[U Im xo(q)]?
weight in the low-energy region around the Fermi energy. (A2)

Such a decrease is associated with the formation of they;s 4nnroximation describes the particle-hole excitations

pseudogap. - ?lnd also the collective modes for sufficiently weak coupling.
The sharp peak structure located around the upper limit of - o cqjjective mode in the charge response function for

the particle-hole continuum "? the noninteracting caﬁe bethe energy range above the particle-hole excitation can be
comes broader and structurelesslé8 increases. Further- pained as a solution of the following equation within the

more, the tail structure spreads toward the high-energy reqpa

gime. Both these broadening features can be explained in '

terms of the incoherent structure in the single-particle spec- 1+U Rey(q)=0. (A3)
trum.

Using a slave-boson technique, Khaliullin and Hdfsh
have obtained a low collective mode which has a broad
peak especially for thé€l,0) direction in the charge response
function of thet-J model. A similar lowg mode in the
charge response function of the Hubbard model can also bEo study the velocity of the zero sound mode which can be
seen in the quantum Monte Car[@MC) simulation by expected to exist near the zero momentum, we expand the
Preusset al° In our calculation, the charge response func-above expression aroung| ~0, where|q|=(q2+ qi)l’z, im-
tion becomes completely broad, and no clear collective modeediately obtaining

Performing the frequency integration, we have

1+UE a(sk_;u')_a(sk-%-q_:u’):o. (Ad)
k

V—ExtqT &k
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Uit=2.0, q//(1.1)

Ve
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Ult—w= 0+, q//(1,0)
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g,=|g|cosa, (A12)

gy=lalsina,

Eq. (A6), which determines the zero sound velocity, be-
comes

UJ'ZW dé V2+ ul(2t)coq 60— ) 1
0 (2m)2 vl|g|—4tN2+ ul(2t)cod 0— @)

(A13)

Since this integral does not depend enwe can conclude
that the zero sound velocity in the dilute limit does not de-
pend on the direction off. This happens because the exis-

FIG. 8. Electron concentration dependence of the zero sountence of a lattice is not important in such low electron con-

velocity v zg within the RPA calculated fob)/t=2.0 (solid curve
andU/t— 0+ (dashed curve

Uy Aol

v—(de, 1K) -q
By performing the integration of thé function, we have the
following contour integral:

K= M (27T)2|Vk8k| V_([?gk/(?k) q -

The solution of this integral equation determines the zero

sound velocityv ;5 that can be defined as

14
v /lg]) =1,
zs(d/|q| Iq]
dependent on the direction of momentam
In Fig. 8, we show the electron concentratinrdepen-

dence of the zero sound velocity for the (1,1) and (1,0

(A7)

centrations.

Contrary to this, we can observe entirely opposite trends
in the dilute doping regimen~1) in Fig. 8. In this regime,
the zero sound velocity has almost no electron concentration
dependence, but itg direction dependence becomes large.
We avoid calculations arouna=1, since we cannot apply
the present RPA approximation at half-filling.

We shall now show analytically the-independent behav-
ior of vzs. When U is sufficiently small, the zero sound
velocity is dominated by the pole— (de, /0k)-q=0 of the
integrand of Eq.(A6). Hence, in this casey,s is obtained
from

V_(78k q
lal ok |q|’

with the constraink, = x which comes from the integration
range of Eg.(A6). On the other hand, we note that for the
small g limit the particle-hole excitation energy(q)
=&y q— €k becomesv~(dey /JK)-q, and the particle-hole
conditione, < u<egy 4 approaches,~ u. Thus we can see

(A14)

directions ofq. In the dilute electron concentration regime that almost the whole possible range of E414) is in the
(n~0), the zero sound velocity increases rapidly as the elegarticle-hole excitation, and only the pole at the upper edge
tron concentratiom increases. In addition, the two curves for of the particle-hole excitation givess in the weak-coupling
the (1,0 and(1,1) directions overlap almost completely, in- limit. As a result, the zero sound velocity for the smlll
dicating that the zero sound velocity does not depend on thimit is obtained by the maximum value of the right-hand

direction ofq in the large doping regime.

That can be proved as follows. In the dilute limit, the

band dispersion can be approximated by

ey~ —4t+2t(k2+k2) . (A8)

y

Then the contour equation of the line integral becomes
2 2y _

—4t+2t(kg+k)) = p

or, in polar coordinates,

ky=+\2+ ul2tcosé,
ky=+\2+ul2tsin o,

where # can vary from 0 to 2. It also follows that

|Vk8k|:4t\/2+M/2t .

Then, by introducing

(A9)

(A10)

(A11)

side of Eq.(A14) for a fixedq,

(?Sk
=max ——
Uzs ok

_ i)
N
We then obtain

vzs=2\2t[sin{arccogu/(—4t)]}],
for the (1,1) direction, and

2t
vzs™ { 2t sinfarccofu/(—2t)—1]}

(A15)

(Al6)

for u<-—2t

for u>-—2t
(A17)

for the (1,0) direction. These expressions are shown as the
dashed curves in Fig. 8. For small dopings—(1, i.e., u
~0), v,s approaches 22t for the (1,1) direction and 2 for

the (1,0 direction.
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