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Localized electromagnetic waves in a layered periodic dielectric medium with a defect
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Electromagnetic waves propagating perpendicularly to the layers in a layered periodic dielectric medium
with an embedded defect are studied. We develop an analytical method to obtain the solution to the spectral
problem for such a one-dimensional system with an arbitrary configuration of the period cell and of the defect.
It is shown that the defect induces localized electromagnetic modes with a discrete spectrum of frequencies
located in the band gaps of an unchanged continuous spectrum. We derive equations for the gaps, for the
discrete spectrum, and for the localization rate. For a case of a two-layer periodic medium with an embedded
one-layer defect we carry out a complete analysis of the dependence of the frequency and of the rate of
localization of a defect-induced mode on the parameters of the defect and of the periodic medium.
[S0163-182698)03925-3

I. INTRODUCTION the defect interval, then the spectral problem reduces to a
matrix recurrence equation on a chain of the cell boundary
Periodic dielectric medigécalled photonic crystalsexhib-  points spaced with one period.
iting band gaps in the frequency spectrum have attracted sig- We show that a defect embedded in the periodic medium
nificant attention in recent yeats® The problem of localized does not alter its continuous spectrum which exhibits fre-
electromagnetic waves with frequencies arising in the gapguency bands separated by gaps and corresponds to propa-
due to an isolated defect in the periodic structure is of speciajating waves. The defect induces a discrete set of frequen-
interest®’ Such modes were observed experimentally for mi-cies which are located in the gaps of the continuous spectrum
crowaves in a three-dimension&BD) systenf for 2D  and correspond to localized modes that decay exponentially
systems ! and for a 1D systed.The problem was ad- away from the defect. We derive the equations for the band
dressed theoretically for 3D systefré using a supercell gaps and for the frequencies of localized modes and an ex-
method with plane-wave expansion and for 2D systérhs plicit formula for the localization rate. All the equations are
using the Green’s function method. Although localized statesvritten in terms of the frequency-dependent propagation ma-
with frequencies in a gap were obtained, the convergence dfices for the periodic medium and for the defect. We show
the numerical computations is sld#>*° that the rate of localization of a defect-induced mode de-
The simplest system exhibiting localized electromagnetiqpends on the configuration of the defect only through the
modes is a layered periodic medium with an embedded ddrequency of the mode and that the wave delocalizes when its
fect layer and with electromagnetic waves polarized parallefrequency approaches the gap edges.
to the layers. Such a 1D system allows us to analyze the We apply the method to the simplest situation of a one-
conditions for the rise of a localized mode in a gap and thdayer defect in a two-layer periodic medium where we obtain
dependence of its frequency and of the localization rate oexplicit formulas for entries of the propagation matrices. Us-
the parameters of the system. The results for the layereitig the phase-amplitude representatfofor the gap-edge
systems could give some important analytical insight for fur-equation we show the followindi) the gap width oscillates
ther numerical investigation of 2D and 3D systems. They aravith the gap number while an average gap width does not
also useful for a variety of applications such as microwavedecrease for higher gapéi) the gap-edge values decrease
filters, lasers, and light-emitting diod&&?> while the width of each gap oscillates with the increase of
The 1D problem has been considered for the simplest cagbe dielectric contrast or of the thickness ratio for the two-
of a vacancy defetand for a case of a substitution deféct layer mediumfiii) the ratio of an average gap width over an
in a two-layer periodic medium. Both papers offered analyti-average bandwidth increases with the increase of the dielec-
cal solutions for the defect modes using the transfer-matrixric contrast.
method and the symmetry of inversion for these special con- As to the localized modes, we prove analytically that
figurations. there is always at least one such state in each gap for the
In this paper we study 1D systems using a differentone-layer defect. We also show tHak the rate of localiza-
method, which we call the propagation matrix method. Thetion is maximal when the mode frequency is in the middle of
method is a generalization of the monodromy matrix ap-the gapjii) the rate maximum is greater for wider gafs;)
proach to the spectral problem for pure periodic 1Dthe upper limit for the localization rate depends only on the
Schralinger® and Maxwelt” operators. It enables us to ob- dielectric contrast between two layers in the period cell and
tain analytically a solution to the spectral problem for a 1Dincreases with the contrast. In addition to that we observe
system with any configuration of a defect embedded in arthat when the dielectric contrast between the defect and the
arbitrary periodic medium. If the Cauchy problem for the medium or relative thickness of the defect layer increases,
wave equation is solved on a one period cell interval and onthen: (i) localized mode frequencies arise at the upper edge
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of a gap and vanish at the lower edge of the gap, while irHence, the frequency spectrum depends, up to a certain fac-
between, the frequency of each such mode decreases mortof, only on the relative values of the dielectric permittivity
tonically; (i) an average number of the localized states inas a function of the relative coordinate. For a system of ho-
each gap increases. mogeneous layers, as in E®), the thickness and dielectric
constant for one of the layers can be taken as the scaling

IIl. BASIC EQUATIONS parameterd., and &.

We considgr a layered Iossles_s dielectric _medium and Ill. PROPAGATION MATRIX METHOD
electromagnetic waves propagating perpendicularly and, FOR THE SPECTRAL PROBLEM
hence, polarized parallel to the layers. For such a system the
Maxwell equations reduce to the following scalar wave equa- Let us introduce a sequen{e,} of points spaced with the
tion for the magnetic fieldH (x,t): one-cell interval in the two halves of the periodic medium
starting on both sides of the defect,

1
—2.20 0 _ _ _ _
¢ “dH éxs(x) axH, ) Xx,=D+(n—1)L, n=123..., ©
wherex is the coordinate along the direction orthogonal to Xp=(n+1)L, n=-1,-2,-3,... .

the layers,c is the speed of light in the vacuum, aadx)
=1 is the position-dependent dielectric permittivity.
Considering time harmonic fields,

We will call the pointsx, the cell boundary points.
Each solution/(x) of the second-order equatid®) on an
interval (Xg,Xg+1) is uniquely defined by initial values of
_ ; the function and its derivative)(Xxy) and#’(Xg), and can be
H(x,t) = ¢(x)exp(i wt) +c.c. , 2 - [0/ 2 S0 . '
(B =g0expiot) @ expressed as their linear combination with functional coeffi-
we arrive at the following spectral problem for the spatial cients based on a pair of fundamental solutioihgx) and

modes: f5(x). If we introduce the two-component column vector
g —(“’)2 ) v V) 10
XS(X) Xw(x)_ C lp(x) 1 (X)_ lﬂ'(X)/s(X) ’ ( )
where /(x) is supposed to be bounded everywhere: then we can write the propagation relation,
[p(x)] <o (4) W (x)=P(x,X0;@)¥(Xo), X>Xo, (11

whereP(x,Xq; w) is the 2x 2 frequency-dependent matrix of

We study an infinite layered periodic medium of a perIOdpropagation of the vectol'(x) over the subintervalg.x):

L with an embedded defect of a finite thicknd3sIn terms

of the dielectric functiore(x) we have P(X,X0) =Q(x)Q 1(xy), 12
e(D+mL+x")=¢g4(x'), m=0,12..., f1(x) fo(x)

= . 13

e(ML+x")=g4(x'), m=-1-2-3,... Q) F1007e(x)  f2()/e(x) 3

®) We prefer to conside’ (x)/e(x) [rather than justy’ (x)] as

the second component 8f(x) in Eq. (10) because it is still
continuous[see Eqgs(3), (4)] when the dielectric function
£(x) is only piecewise continuoyss in Egs(6), (7)]. Due
i.e., the same period celi;(x') (0<x’<L) of the thickness !0 that, the matrix of propagation over an interval divided
L repeats on the right and on the left of the defect intervalnto subintervals is equal to just the product of matrices of
0<x<D. propagation over the subintervals:

The simplest realization of such a system is a periodic _ , , ,
medium with two homogeneous layers of different sub- POCX0) =POGXPIX,Xo), - Xp=X! <X, (14)
stances in the period cell, In addition, the matriXP(x”,x’; w) of propagation for vector
¥ (x) in Eq. (10) on any subintervalX’,x") is unimodular
[see Eq(12)]:

at 0<x’'<L,

e(X) isarbitrary at B<x<D,

Sl(X,):Gl, 0<X,<Ll,

(6)

g1(X")=€p, Li<xX'<L;+L,=L, defP(X",X";w)]=1 (15

and with one homogeneous layer of a third substance as tHecaused,defQ(x)]=0 according to Egs(10) and (3).
defect, Note also that since the coefficients in E) are real the

entries of the matriXP(x,Xq; ) are real valued.

e(X)=€3, 0<x<D. (7) Considering the propagation relati¢hl) for a one-period

cell interval, &,,X,+1), Nn=21,£2,+3, ..., we findthat the
Note that Eq(3) can be scaled as follows: values of the vector functiod’(x) at two subsequent cell

_ _ 5 boundary points on the same side of the defect are related as
Xx—x=xILg, e—e=cleg, w—o=wlole. (8)  follows:



182

V(X 1) =T(0)V(X,), n=1,=2+3,..., (16
t1(w) tifw)
T@=| ) togay| PO Xeio) D

where T(w) is the matrix of propagation over one period

cell. Due to translational symmeti$) of Eq. (3) within the

periodic medium, the matriX (w) does not depend on the

index n of the cell boundary poink, .
Applying the propagation relatiofil) to the defect inter-

val (x_1,X;) we obtain the relation between the values of the

vector function (x) at the cell boundary points_,;=0 and
x;=D at the edges of the defect:

V(X)) =S w)¥(X_1), (18
Si(w) S w)
Sw)= Sp(w) Syl w) ~POaX-giw), 19
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Applying recurrence16) (or its inverse repeatedly, starting
atn=1 (or atn=—1) with ¥(x..;) decomposed as in Eq.
(21), and using Eq(22), we obtain the general solution for
W (Xp):

‘P(xn)=i212crr{“lui, n=1,23... .
(26)
‘I’(Xn)=i;2c(7?*lui, n=—1,-2,-3,...,
where
Cr=Ci(x+), =12 (27)

Because of relatiorf24) between eigenvalues; and 7,
there are two possible situations for their absolute values.
The first one is

|7 =|7|=1. (29)

where S(w) is the matrix of propagation over the defect All different pairs of the eigenvalues satisfying E¢@8) and

interval.
To actually find the matrice$(w) and S(w) one has to
solve Cauchy problem for Eq3) on the one-cell interval

and on the defect interval, respectively. Then the spectr
problem (3), (4) reduces to solving the recurrence equatio

(16) on each side of the defect, together with the relais)
over the defect, foW (x,,) as a function of the cell boundary
point nhumber,n=+1,+2+3,... . Thefrequency spec-
trum is found as all values» for which the solution is
bounded,

W (Xp) | <@

at |n|—ce. (20

Let us represent the vectdr(x,) as a linear combination

(24) can be represented as

=X rm=e% Osksw (29)

r?(Inote that such eigenvalues are complex conjygate

In this case, the sequendg(x,,) defined by Eq(26) will
just oscillate as1— *+ . Hence, the boundedness condition
(20) is satisfied for any coefficients™ . The vector equation
(18) due to the defect relates the two pairs of coefficiens,
andc; , i=1,2, so just one of the pairs remains arbitrary.
Using Eqgs.(29) and (25) we obtain the equation

Tr[T(w)]=2cogk), (30

which determines the dispersion relatios (k). This con-
tinuous spectrum od coincides with the entire spectrum for
the periodic media with no defett.In general, it exhibits

Oosk=m,

N4 = i Ui, 21 )

(Xn) izEl,Z Ci(xn)U; @Y bands of allowed values ab, separated by gaps described
with the inequality following from Eq(30),

whereU;, i=1,2, are the eigenvectors of the matiiXw)

corresponding to its eigenvalues, i=1,2, i.e., T T(w)]|>2. (32)

T(w)U;=1U;. 22) The second situation is

We readily find the eigenvectors in terms of the entries of the [71|>1, |ral<1 (32

matrix T(w): (note that in this case the eigenvalues must be.réakn the
boundedness conditiof20) is satisfied only if

ty .
U= =ty (i=1,2 (23 ¢/ =0, c,=0, (33

(we have specified an arbitrary factor taking it equal Yo 1
Because all entries of the matri{ w) are real valued its

two eigenvalues are either complex conjugate or both real.

Since the matrixT(w) is unimodular[see Eqs.(17) and
(15)], its two eigenvalues are mutually inverse:

T17o=1. (24
Note that for the trace of the matrik(w) we have
1
TMT(w)]=11+ =7+ - (25
1

and ¥ (x,) in Eq. (26) is a multiple of only one of the two
eigenvectors on each side of the defect:

W(xy)=cy 15 ‘U,, n=123...,

(34)

V(x,)=c; U, n=-1,-2,-3,....
This means tha¥ (x,) decays exponentially at— =« on
both sides of the defe¢see Eq.(24)],
V(x)=Cr; NV n=x1+2+3 ...
( n) 71 (35)

C*=c,U,, C =c;Uy,
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with the multiplicative rate of the localization equal to

7=|ml. (36)
An effective localization length can be defined as
N=L/In(7). (37

Relation(18) due to the defect gives a homogeneous syste
of two equations,
¢, Up=¢; S(w)Uy (38)

that relates two coefficients, andc; , so one of them can

from Eq. (38). The solvability condition,

(U2)2 _ (S(w)U1);

(Uz)1  (S(w)Uy)q’
where (), and (-), stand for the first and the second com-
ponents of a column vector, relates the frequeacsnd the

localization factorr;. Indeed, due to Eqs(23) and (24),
relation (39) takes the form

(39

7'1_1_'f11_ Sat1ot Spa 71— t11)
SpatiotSiT1—t11)
where the entrie; ands;; are functions of the frequeney.
Equation(25) gives the second relation betweepand

0 (40

which can be written in terms of the entries of the matrix

T(w) as follows:

LOCALIZED ELECTROMAGNETIC WAVES INA . ..

183
with an additional condition
sgn(x)=sgn(»), (47)
which follows from the inequality
|71l =1+ xI=] 7 == xl. (48)

Mve can combine Eq44) with condition (47) as follows:

sgn(x)Vx*+1=1. (49)

Solutions of Eq.(49) form the discrete spectrum @b in-

n(Ejjuced by the defect embedded into the periodic medium.

The localization factor; as a function ofv can be easily
found from Eq.(41):

m=n+sgn(n)Vn?-1. (50

We see in Eq950), (46) that the functionr;(w) depends on
the configuration of the defect only through the frequeacy
Note also that the inequalidl) for the gaps between bands
of the continuous spectrum af can be written as

| 7(w)[>1. (51)

According to Egs(50) and(51), the localization rater Eq.
(36) decreases to Ithe wave delocalizeswhen the fre-
quencyw for the localized state approaches the gap edges.

IV. TWO-LAYER CELL PERIODIC MEDIUM
WITH ONE-LAYER DEFECT

_ -1
tpttyp=7t+7 7. (42) We apply the propagation matrix method to the periodic

The system of equation@0) and (41) determines possible Medium with two layers in the period ceB) with one-layer
values of the frequency for localized state$35) induced ~ defect(7). Within a homogeneous layeg<x<x,+h with
by the defect and the corresponding values of the localizatiofonstant dielectric permittivitg (x) = e Eq. (3) simplifies as
factor 7. Because the absolute value of the right-hand siddollows:

in EQ. (41) exceeds 2 for any real-valueqd these values of
o should be located in the gag31) of the continuous spec-
trum.

With a proper substitution of; * from Eq. (41) and use
of the unimodularity of the matri¥ (o),

tigtoo—titn=1 (42

[see Egs(17) and(15)], we obtain from Eq(40) the follow-
ing relation:

o S11t22F Spat11— S1otar— Saataz
! S11t S22

. (43

Excluding 7, from the system of equatiorig¢1) and(43) we
obtain the following equation for values af for the local-
ized states:

X*+1=7? (44)
where
(S117 822 (111~ t20) + 2(S1t 1+ Soit10)
x(w)== 2(s111+52) 49
and
n(w)=(ty1+152)/2, (46)

— 2(x) = (av)2P(X), (52)

a= e,

Given the initial valueg/(x;) and’(x;) at the left end point
x; of the layer interval, we can write the solution of E§2)
as

v=uwl/C.

(53

!

(x1)
av

P(X)= (X)) cos(av(x—x)))+ d sin (av(x—Xx))).
(54)

Hence, the matrix of propagatidil) for ¥ (x) Eg. (10) in
the homogeneous layer is

P(X,X ;0)=R(X—X;;a;w), X<x<x+h, (55
o cos(avy) av”sin (avy)
RYi@iw)=| _ -1, sin(avy)  cos(avy)
(56)

Thus, the matrix of propagation through the layer interval
(x;,x,+h) is equal toR(h; «; w) and depends on the thick-
nessh and the dielectric parameter (53) of the layer. So,
for the matrix(17) of propagation over the two-layer period
cell (6) we have, taking into account E¢L4),
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T=R(Ly;ap;0)R(L;;a;;0), (57)

and for the matrix(19) of propagation over the one-layer
defect interval(7) we have

a1 2= V€12

S=R(D;azw), az=es.
Using Eq.(56) in Egs.(57) and(58), we obtain

(58)

ay . .
t11=cos(u1) Cos(ﬂz)_a_l sin (u1) sin (u2),
1 1 )
ty=—v a sin (1) cos(uz)+ a_z cos(u1) sin(uz) |,
1 . :
t12:;[a1 sin (u1) €OS(u2)+az cos(uy) sin(uz)],

typ=COS (121) COS(p1)— Z—l Sin (1) sin (u2), (59

and

S17=COS(u3),

J— V H

_ %3 .
512—7 sin (u3),

S5o=COS(u3), (60)

where
,ui=aiLiv=aiLiw/C, i=1,2,3 (L3:D) (61)

Thus, we have the following expressions for functions
(45) and (46) engaged in Eq(49) for the spectrum of the
localized states:

7(w)=Ccos(u1) COS(p2) =P SiN (1) SiN(uy), (62

1
ol 9
x(w)=tan (u3)[d; Sin (u1) cos(uy)
+05 cos(uq) sin(uy)], (64)
1/ asz qj i
qi=§<z a—3)>1, i=1,2. (65)

Observe that the functiong(w) and y(w) in Egs.(62), (63
and(64), (65) with (61) do not alter if parameters of the first

and second substances are exchanged. Hence, we can assume

with no loss of generality that
(66)
Note also thaty and y in Egs.(62), (63) and(64), (65) with

ar> .

(61) can be represented as functions of the scaled spectral

variable, u= agLqw/c, to depend on the relative dielectric
parameterg; /ay and relative thickness,; /L, of the layers,
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i=1,2,3, whereay andL, are parameters of one of them.
This is a consequence of the general scaling prop@jtyf
the spectral problen®).

The wave functiony(x) for a spectral mode can be found
explicitly on each period cell intervalxg,x,+L), n=1,
+2,+3,...,and on théefect interval X_;,x;). We can do
that starting from the left end point, of the interval and
using the propagation relatidl), (14) with the matrix(55),
(56) in each homogeneous layer. The wave function at each
point x,, n=*1,+2,+3, ..., isdetermined by Eqs(26),
(18) or (35), (38) for propagating or localized modes, respec-
tively.

V. ANALYSIS OF THE SPECTRUM

Representing function&62) and (64) in Eq. (49) for the
spectrum of the localized states in terms of the rescaled spec-
tral variable

,uzalLlw/C, (67)
we have
n(p)=cos(u) cos(ru)—p sin(u) sin(ru), (68)
ay L2
A ©9
and
x(p)=tan (vu)[dy sin (u) cos(ru)
+0, cos(u) sin(ru)l, (70
a3 D
"o (72)

Let us firstly analyze inequality51) for the gaps in the
continuous spectrum, as they confine spectral values for pos-
sible localized states. We can represent the functén)

Eq. (68) in the phase-amplitude forhf:

n(p)=A(u) cos(6(u)), (72

O(p)=ru+o(u), (73
cos(u)

A= Sos(a)” (74)

where8(un) andA(u) are the phase and the amplitude, re-
spectively, and

tan(¢)=p tan(u). (79
The last equation can be solved f¢ras
g sin(2u)
¢(w)=pu+arctan T—g cos(2m) cos(Z,u))’ (76)
I 7
9=o71 <g<1, (77)

so, A in Eq. (74) is non-negative and, using EGZ5), we
obtain
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FIG. 1. Graphical representation of E@®O0) for the edges of
gaps in the continuous spectrum in terms of the scaled spectral

variable,u= g, w/c.

A(p)=V1+(p*=1)sinf(p). (78)

Using the phase-amplitude representati@g), the gap in-
equality (51) can be written as

1
|cos (6(w)|>+—

An) (79

It defines the gapsu(,u") in terms of the rescaled spectral

variable u. The gap-edge pointg' (lower edge and u“
(upper edggsatisfy the corresponding equation

1
lcos (0(w)|= +— (80)

Alp)

This equation is represented graphically in Fig. loaf a4
=25 andL,/L;=0.5.

The amplitude functior{78) oscillates between 1 anul

1<A(p)<p. (81

Relations(75), (74), and(81) imply
"(w)= =—>0, 82
W= a7 (82

so, the phase functiod(u) in Eq. (73) is monotonically
increasing. In addition to that, using Eqg3), (82), and(78)
one can show that

|9,|cos (8(w))l|>

1| 1
&“W’ if |cos(0(,u))|=m.
(83

Due to Eqgs(81), (82), and(83), there is exactly one root of
Eqg. (80) contained in each interval of monotonicity of the
function|cos(#(u))|. So, we have the following inequalities

for the edgesu' and " of each gap &', u):

0 | - 0
< pin<pn<tn<fni1, (89

where ;n is one of points of the maximum of the

|cos(O(w))l,

6(u,)=nm, n=123..., (85)

and ,uﬂ and ,uﬂ +, are two adjacent to;n zeroes of
|cos(6(w))l,
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o 1
a(un)=<n——)w, n=12,3... . (86)

2
The pointu, can be called a center of tiith gap (uln )
Relations(84), (85), and(86) allow us to separate roots of
Eq. (80) for the gap edges, as it is necessary for numerical
computations. The roota, and u2 (n=1,2,3...) of Egs.
(85) and(86) themselves can be located using the inequality
following from Eqgs.(73) and(76),

|6(w)— (r+1) | <ml2. (87)
According to Eqs(73) and (76), the phase function,
g sin (2u)
O(w)=(r+1)u+arctan m) (88)

exhibits additive symmetric modulations jpa with the pe-
riod 7. At the same time it is growing witlx at an average
rate of (r +1) which by itself would correspond to the left-
hand side in Eq(79) being periodic inu with the period
a/(r+1). In the right-hand side in Eq79), the amplitude
function(78) oscillates inu with the periods. At =0 both
the left- and right-hand sides in E({9) are equal to 1. Thus,

if the ratior (69) is rational, the periodsr/(r+1) and =
become commensurate, then the gaps with such nummbers
in Eq. (84) that

n=m(r+1), m=123..., (89

will be closed. In general, the closer the cen?grof thenth
gap[where|cos(8(w))|=1; see Eq(85)] is to a valuemnr,
m=1,2,3...,[whereA(u)=1; see Eq(78)] the narrower

the gap is. On the contrary, the closer the ceptgrof the
nth gap is to a valueri—3)7, m=1,2,3 ..., [where both
1/A(n) and 6'(u) are minimal; see Eq978), (73), and
(82)] the wider the gap is. So, the gap width{— w!) os-
cillates with the gap numbar, while an average gap width
does not decrease for higher (This is different from the
situation with an analogous Scliager problent® where the
gap width decreases to zero at higher gap numbers.

One can see in Eq$84), (85), (86), and(88) that whenr
increases$due to increase of the dielectric contrast/ a4 or
of the thickness ratid., /L, for the two-layer medium; see
Eq.(69)] then the edge valugs'" will decrease for all gaps.
At the same time, the width of each gap will oscillate, start-
ing from zero atr =0.

One may also see in Eq&’9) and(78) with Eq. (63) that
when the contrast,/a;>1 increases, the ratio of an aver-
age gap width over an average band width also increases. At
ay/ag— all bands are closing, while at, / ;=1 all gaps
were closed.

The results of numerical calculations for the edge values
wu"Y for the first five gaps at varying values of,/a; or
L,/L, are shown with solid lines in Figs. 2 and 3.

Let us now turn to Eq(49) with Egs.(68) and(70) for the
spectral valueg.* for localized states. That equation is rep-
resented graphically in Fig. 4 at,/a1=2.5,L,/L;=0.5,
a3/a1= 2, andD/L]_: 15

The first factor iny(u) in Eqg. (70) changes monotoni-
cally from 0 to* on each intervalmaz/v,(m=1/2)w/v],
m=1,2,3 ..., while (u) in Eq. (68) is bounded. Hence,
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azfon

3.0 3.5 4.0

FIG. 2. Scaled spectral valug,= \/s—lLlw/c for the gap edges
(solid lineg and for the localized statdgloty at varying dielectric
contrast, a,/a;= e, /e, between two layers in the period cell
with the thickness ratit.,/L,;=0.5.

there will be a solutiopn* of Eq. (49) in one of the two such
intervals adjacent to each of zero poipis of the first factor

in x(u) in Eq. (70),

wm=mmlv, m=123..., (90
if the point ' is located in a gap ;(L,,uﬁ) [where
|7(n)|>1, see Eq(5D)]:

p* € (i it oml20)  for phe(uy,mp), (9

o=+1 or o=-1.

In addition, the second factor jp(«) in Eq. (70) has zeroes
and changes sign at poings’ where

(92

tan(ru”) = —utan(u")

with
(93
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FIG. 3. Scaled spectral valug,= vz ,L,w/c for the gap edges
(solid lineg and for the localized statddoty at varying thickness

ratioL, /L, between two layers in the period cell with the dielectric
contrasta,/a,=2.5.
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FIG. 4. Graphical representation of E49) for the scaled
spectral value w=+e;L;w/c for localized states; o(u)

=sgn () \/X2+1 .

There should be one such poiat next to the centeﬁ of
each gap because

(=]

tan (rp)=—p tan(u), (94)

due to Eqs(85), (73), and(75). Moreover, we can show that
each such poini” is located in a gap. Indeed, using Egs.
(68) and(92) we obtain

(1+puz?

_ATRPUDT (w0,
r21ruzg’ 2 amw)=0

(") = (95)
It is easy to show that the quotiemfsee Eqs(93) and(65)]
is confined between valueszlal and a4 /a, at any values
of the parameters;, i =1,2,3, so that+ 1/u<2p [see Eq.
(63)]. This prowdesnz(,u,”)>l in Eq.(95), so, u” satisfies
the gap inequalitf51). Thus, there is one point” in each

gap (', n"):
whe(uh,ud, n=123.... (96)

Due to that, the number of solutiops® of Eq. (49) located
in each gap is one more than the number of poirtpresent
in that gap. Indeed, if there are poinis in a gap, then the
change of sign of(u«) over the pointw” yields the presence
of two solutionsu* next to one poing’ (the closest tqu”),
one solutionu* on each side of the point’; that is de-
scribed by bothr=+1 ando=—1 in Eq.(92). If there are
no pointsu’ in a gap, there still is one solution* in it,
becausey(n) has zero at the point”. So, there is at least
one spectral valug* for a localized state in each gap.

One can see in Eq91) with Eq. (90) that whenv in-
creases$due to increase of the defect-medium dielectric con-
trast a3/ a4 or of the relative thicknesB/L, of the defect
layer, see Eq(71)] then each spectral valye* will arise at
the upper edgg" of a gap, decrease, and vanish at the lower
edgeu' of the gap, while an average number of the spectral
valuesu* in each gap is increasing.

Results of numerical calculations for the spectral values
w* for localized states in the first five gaps at varying values
of az/ay or D/L, are shown in Figs. 5 and 6 ai,/a,
=2.5andL,/L;=0.5.

The rate of localization36) for a defect-induced state
(35 with a spectral valugw* is equal tor(u*) where the
function

m(w)=|n|+Vn*-1, (97)
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state versus its scaled spectral vajue v ;L w/c at the dielectric
contrasta,/a;=2.5, and the thickness ratib,/L;=0.5 in the

FIG. 5. Scaled spectral valug,= ;L w/c for the localized two-layer periodic medium,

states at varying defect-medium dielectric contrastz/a;

=\/e3le4 for the defect relative thickneds/L,=1.5. . o L
Concerning variations of parameters of the periodic me-

dium, one can see in E¢P1) with Eq. (90) that whena,/a;

or L,/L, increases each spectral valué& will arise at the
fwer edgeu' and vanish at the upper edg# of a gap due

to decrease of the edge values for all gaps as discussed
above. The results of numerical calculations for the spectral

. . ) e .
One can see that when the spectral vaifespans a gap valuesu™* for localized states in the first five gaps at varying

(with a numbem) following variations of the parameters of Values ofa;/a; orlL,/L, are shown with dots in Figs. 2 and
the defect, the multiplicative rate(u*) of localization in- 33ta3/a1=2.0_andD/!_1=1.5. We observe that the values
creases from 1 at one edge of the gap up to a maximum if# decrease with the increase @§/a; or L,/L;.

the middle of the gap and then decreases to 1 at the other
edge of the gap. According to Eq®7), (72), and(81), the
highest possible value of the maximum«tfu*) in a gap at

a given value ofw,/a; is

[see Eq.50)] depends on parametess /a; andL,/L, of
the periodic mediunisee Eq.(68) with Eqgs.(63) and (69)]
and does not depend on the parameters of the defect. T
graph of the functionr(w) is shown in Fig. 7(with the
vertical u axis) at ay/a;=2.5 andL,/L;=0.5.

VI. CONCLUSIONS

We obtained the following general results for an arbitrary
1D periodic dielectric system with an embedded defégt:
Tmax= P+ Vp°—1, (98) the frequency spectrum of electromagnetic modes consists of

a continuous set and a discrete 4@9; the continuous spec-
which is greater for higher values af,/a;>1 [see EQ. trum coincides with the entire spectrum for the same periodic
(63)]; this value may be actually reached by tuning the ratiomedium without a defect(iii) the discrete spectrum is lo-
L,/L; in such a way that the center, of the gap[see Eq. cated in the gaps of the continuous spectrum and corresponds
(85)] coincides with a point fi— 3)7 of maximum of the to localized waves that decay exponentially away from the
function A(w) in Eqg. (78). defect;(iv) the rate of localization of a defect-induced mode
depends on the configuration of the defect only through the
mode frequencyv) the localized wave delocalizes when its
frequency approaches the gap edges.

These results agree with the general analysif the
spectral problem for periodic 1[as in the left-hand side of
Eq. (3)] and 3D Maxwell operators with perturbations. It was
proven there that the continuous spectrum is stable under a
local perturbation of the periodic operator. It was also shown
that discrete eigenvalues can be induced in the gaps of the
spectrum of the unperturbed operator and correspond to ex-
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ponentially localized eigenmodes.

For a particular situation of a one-layer defect in a two-
layer periodic medium we carry out complete analysis of the
gaps in the continuous spectrum and of the existence of lo-
calized modes and of their dependence on parameters of the
system: (i) we show that an average gap width does not

decrease for higher gap numbefis) we prove analytically
that there always is at least one discrete spectral value in
each gap of the continuous spectruifi; we show analyti-
cally and numerically that when the dielectric contrast be-

FIG. 6. Scaled spectral valug,= \e,L,w/c for the localized
states at varying relative thickneBgL ; of the defect layer with the
dielectric contrastyg/a;=2.
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tween the defect and the periodic medium or the relativeelated to the exponential decay of the Green’s function for
thickness of the defect layer increases then the discrete spettie periodic Maxwell operator with the decay rate depending
tral values arise at the top of a gap, decrease, and vanish @i the dielectric contrast in the periodic medium. The pres-
the bottom of the gap, while an average number of the speence of a defect eigenvalue in every gap at any values of
tral values in each gap increasés) we observe that the rate parameters of the defect is probably the only artifact of the
of localization of a defect-induced mode is greater for fre-1p system. For a 3D system there is a thresHofdr the

quencies in the middle of the gap and for wider gapswe  strength of a local defect for localized eigenmodes with fre-
obtain a simple formula for the maximal possible rate ofguencies in a gap to arise.

localization and show that it depends only on the dielectric
contrast between two layers in the cell of the periodic me-
dium and increases with the contrast.

These results are consistent with the general operator
analysi€® for the number and behavior of the defect-induced We thank Professor S. Molchanov for useful discussions.
eigenvalues in a gap. The decrease of the discrete eigenvdlhe work of A.F. and V.G. was sponsored by the Air Force
ues is related to the decrease of the perturbed Maxwell opoffice of Scientific Research, Air Force Materials Command,
erator with the increase of the dielectric constant of the deUSAF, under Grant No. F49620-94-1-0172DEF and
fect. The localization of a mode induced by a local defect isF49620-97-1-0019.
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