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Localized electromagnetic waves in a layered periodic dielectric medium with a defect

Alexander Figotin and Vladimir Gorentsveig
Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223

~Received 12 January 1998!

Electromagnetic waves propagating perpendicularly to the layers in a layered periodic dielectric medium
with an embedded defect are studied. We develop an analytical method to obtain the solution to the spectral
problem for such a one-dimensional system with an arbitrary configuration of the period cell and of the defect.
It is shown that the defect induces localized electromagnetic modes with a discrete spectrum of frequencies
located in the band gaps of an unchanged continuous spectrum. We derive equations for the gaps, for the
discrete spectrum, and for the localization rate. For a case of a two-layer periodic medium with an embedded
one-layer defect we carry out a complete analysis of the dependence of the frequency and of the rate of
localization of a defect-induced mode on the parameters of the defect and of the periodic medium.
@S0163-1829~98!03925-3#
s

ap
ci
i

-
l

te
e

ti
d
lle
th
th
o
r

ur
ar
v

a
t
ti
tr
o

n
h
p
D
-
D
a
e
o

o a
ary

ium
re-
ropa-
en-

rum
ially
nd
ex-

re
a-

ow
de-
the
n its

e-
ain
s-

not
se
of
o-
n
lec-

at
the

of

he
nd
rve
the
es,

dge
I. INTRODUCTION

Periodic dielectric media~called photonic crystals! exhib-
iting band gaps in the frequency spectrum have attracted
nificant attention in recent years.1–5 The problem of localized
electromagnetic waves with frequencies arising in the g
due to an isolated defect in the periodic structure is of spe
interest.6,7 Such modes were observed experimentally for m
crowaves in a three-dimensional~3D! system,8 for 2D
systems,9–11 and for a 1D system.9 The problem was ad
dressed theoretically for 3D systems8,12 using a supercel
method with plane-wave expansion and for 2D systems13,9

using the Green’s function method. Although localized sta
with frequencies in a gap were obtained, the convergenc
the numerical computations is slow.14,9,15

The simplest system exhibiting localized electromagne
modes is a layered periodic medium with an embedded
fect layer and with electromagnetic waves polarized para
to the layers. Such a 1D system allows us to analyze
conditions for the rise of a localized mode in a gap and
dependence of its frequency and of the localization rate
the parameters of the system. The results for the laye
systems could give some important analytical insight for f
ther numerical investigation of 2D and 3D systems. They
also useful for a variety of applications such as microwa
filters, lasers, and light-emitting diodes.2,4,5

The 1D problem has been considered for the simplest c
of a vacancy defect9 and for a case of a substitution defec15

in a two-layer periodic medium. Both papers offered analy
cal solutions for the defect modes using the transfer-ma
method and the symmetry of inversion for these special c
figurations.

In this paper we study 1D systems using a differe
method, which we call the propagation matrix method. T
method is a generalization of the monodromy matrix a
proach to the spectral problem for pure periodic 1
Schrödinger16 and Maxwell17 operators. It enables us to ob
tain analytically a solution to the spectral problem for a 1
system with any configuration of a defect embedded in
arbitrary periodic medium. If the Cauchy problem for th
wave equation is solved on a one period cell interval and
PRB 580163-1829/98/58~1!/180~9!/$15.00
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the defect interval, then the spectral problem reduces t
matrix recurrence equation on a chain of the cell bound
points spaced with one period.

We show that a defect embedded in the periodic med
does not alter its continuous spectrum which exhibits f
quency bands separated by gaps and corresponds to p
gating waves. The defect induces a discrete set of frequ
cies which are located in the gaps of the continuous spect
and correspond to localized modes that decay exponent
away from the defect. We derive the equations for the ba
gaps and for the frequencies of localized modes and an
plicit formula for the localization rate. All the equations a
written in terms of the frequency-dependent propagation m
trices for the periodic medium and for the defect. We sh
that the rate of localization of a defect-induced mode
pends on the configuration of the defect only through
frequency of the mode and that the wave delocalizes whe
frequency approaches the gap edges.

We apply the method to the simplest situation of a on
layer defect in a two-layer periodic medium where we obt
explicit formulas for entries of the propagation matrices. U
ing the phase-amplitude representation18 for the gap-edge
equation we show the following:~i! the gap width oscillates
with the gap number while an average gap width does
decrease for higher gaps;~ii ! the gap-edge values decrea
while the width of each gap oscillates with the increase
the dielectric contrast or of the thickness ratio for the tw
layer medium;~iii ! the ratio of an average gap width over a
average bandwidth increases with the increase of the die
tric contrast.

As to the localized modes, we prove analytically th
there is always at least one such state in each gap for
one-layer defect. We also show that~i! the rate of localiza-
tion is maximal when the mode frequency is in the middle
the gap;~ii ! the rate maximum is greater for wider gaps;~iii !
the upper limit for the localization rate depends only on t
dielectric contrast between two layers in the period cell a
increases with the contrast. In addition to that we obse
that when the dielectric contrast between the defect and
medium or relative thickness of the defect layer increas
then: ~i! localized mode frequencies arise at the upper e
180 © 1998 The American Physical Society
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PRB 58 181LOCALIZED ELECTROMAGNETIC WAVES IN A . . .
of a gap and vanish at the lower edge of the gap, while
between, the frequency of each such mode decreases m
tonically; ~ii ! an average number of the localized states
each gap increases.

II. BASIC EQUATIONS

We consider a layered lossless dielectric medium
electromagnetic waves propagating perpendicularly a
hence, polarized parallel to the layers. For such a system
Maxwell equations reduce to the following scalar wave eq
tion for the magnetic fieldH(x,t):

c22] t
2H5]x

1

«~x!
]xH, ~1!

wherex is the coordinate along the direction orthogonal
the layers,c is the speed of light in the vacuum, and«(x)
>1 is the position-dependent dielectric permittivity.

Considering time harmonic fields,

H~x,t !5c~x!exp~ ivt !1c.c. , ~2!

we arrive at the following spectral problem for the spat
modes:

2]x

1

«~x!
]xc~x!5S v

c D 2

c~x! , ~3!

wherec(x) is supposed to be bounded everywhere:

uc~x!u,`. ~4!

We study an infinite layered periodic medium of a peri
L with an embedded defect of a finite thicknessD. In terms
of the dielectric function«(x) we have

«~D1mL1x8!5«1~x8!, m50,1,2, . . . ,

«~mL1x8!5«1~x8!, m521,22,23, . . .

at 0,x8,L,

«~x! is arbitrary at 0,x,D,

~5!

i.e., the same period cell,«1(x8) (0,x8,L) of the thickness
L repeats on the right and on the left of the defect inter
0,x,D.

The simplest realization of such a system is a perio
medium with two homogeneous layers of different su
stances in the period cell,

«1~x8!5e1 , 0,x8,L1 ,
~6!

«1~x8!5e2 , L1,x8,L11L25L,

and with one homogeneous layer of a third substance as
defect,

«~x!5e3 , 0,x,D. ~7!

Note that Eq.~3! can be scaled as follows:

x→ x̃5x/L0 , «→ «̃5«/e0 , v→ṽ5vL0Ae0. ~8!
n
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Hence, the frequency spectrum depends, up to a certain
tor, only on the relative values of the dielectric permittivi
as a function of the relative coordinate. For a system of
mogeneous layers, as in Eq.~6!, the thickness and dielectri
constant for one of the layers can be taken as the sca
parametersL0 ande0.

III. PROPAGATION MATRIX METHOD
FOR THE SPECTRAL PROBLEM

Let us introduce a sequence$xn% of points spaced with the
one-cell interval in the two halves of the periodic mediu
starting on both sides of the defect,

xn5D1~n21!L, n51,2,3, . . . ,
~9!

xn5~n11!L, n521,22,23, . . . .

We will call the pointsxn the cell boundary points.
Each solutionc(x) of the second-order equation~3! on an

interval (x0 ,x01 l ) is uniquely defined by initial values o
the function and its derivative,c(x0) andc8(x0), and can be
expressed as their linear combination with functional coe
cients based on a pair of fundamental solutions,f 1(x) and
f 2(x). If we introduce the two-component column vector

C~x!5F c~x!

c8~x!/«~x!
G , ~10!

then we can write the propagation relation,

C~x!5P~x,x0 ;v!C~x0!, x.x0 , ~11!

whereP(x,x0 ;v) is the 232 frequency-dependent matrix o
propagation of the vectorC(x) over the subinterval (x0 ,x):

P~x,x0!5Q~x!Q21~x0!, ~12!

Q~x!5F f 1~x! f 2~x!

f 18~x!/«~x! f 28~x!/«~x!
G . ~13!

We prefer to considerc8(x)/«(x) @rather than justc8(x)# as
the second component ofC(x) in Eq. ~10! because it is still
continuous@see Eqs.~3!, ~4!# when the dielectric function
«(x) is only piecewise continuous@as in Eqs.~6!, ~7!#. Due
to that, the matrix of propagation over an interval divid
into subintervals is equal to just the product of matrices
propagation over the subintervals:

P~x,x0!5P~x,x8!P~x8,x0!, x0,x8,x. ~14!

In addition, the matrixP(x9,x8;v) of propagation for vector
C(x) in Eq. ~10! on any subinterval (x8,x9) is unimodular
@see Eq.~12!#:

det@P~x9,x8;v!#51 ~15!

because]xdet@Q(x)#[0 according to Eqs.~10! and ~3!.
Note also that since the coefficients in Eq.~3! are real the
entries of the matrixP(x,x0 ;v) are real valued.

Considering the propagation relation~11! for a one-period
cell interval, (xn ,xn11), n51,62,63, . . . , we findthat the
values of the vector functionC(x) at two subsequent cel
boundary points on the same side of the defect are relate
follows:
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182 PRB 58ALEXANDER FIGOTIN AND VLADIMIR GORENTSVEIG
C~xn11!5T~v!C~xn!, n51,62,63, . . . , ~16!

T~v!5F t11~v! t12~v!

t21~v! t22~v!
G5P~xn11 ,xn ;v!, ~17!

where T(v) is the matrix of propagation over one perio
cell. Due to translational symmetry~5! of Eq. ~3! within the
periodic medium, the matrixT(v) does not depend on th
index n of the cell boundary pointxn .

Applying the propagation relation~11! to the defect inter-
val (x21 ,x1) we obtain the relation between the values of t
vector functionC(x) at the cell boundary pointsx2150 and
x15D at the edges of the defect:

C~x1!5S~v!C~x21!, ~18!

S~v!5Fs11~v! s12~v!

s21~v! s22~v!
G5P~x1 ,x21 ;v!, ~19!

where S(v) is the matrix of propagation over the defe
interval.

To actually find the matricesT(v) andS(v) one has to
solve Cauchy problem for Eq.~3! on the one-cell interva
and on the defect interval, respectively. Then the spec
problem~3!, ~4! reduces to solving the recurrence equat
~16! on each side of the defect, together with the relation~18!
over the defect, forC(xn) as a function of the cell boundar
point number,n561,62,63, . . . . The frequency spec-
trum is found as all valuesv for which the solution is
bounded,

uC~xn!u,` at unu→`. ~20!

Let us represent the vectorC(xn) as a linear combination

C~xn!5 (
i 51,2

ci~xn!Ui , ~21!

whereUi , i 51,2, are the eigenvectors of the matrixT(v)
corresponding to its eigenvaluest i , i 51,2, i.e.,

T~v!Ui5t iUi . ~22!

We readily find the eigenvectors in terms of the entries of
matrix T(v):

Ui5F t12

t i2t11
G ~ i 51,2! ~23!

~we have specified an arbitrary factor taking it equal to 1!.
Because all entries of the matrixT(v) are real valued its

two eigenvalues are either complex conjugate or both r
Since the matrixT(v) is unimodular @see Eqs.~17! and
~15!#, its two eigenvalues are mutually inverse:

t1t251. ~24!

Note that for the trace of the matrixT(v) we have

Tr@T~v!#5t11t25t11
1

t1
. ~25!
al

e

l.

Applying recurrence~16! ~or its inverse! repeatedly, starting
at n51 ~or at n521) with C(x61) decomposed as in Eq
~21!, and using Eq.~22!, we obtain the general solution fo
C(xn):

C~xn!5 (
i 51,2

ci
1t i

n21Ui , n51,2,3, . . . .

~26!

C~xn!5 (
i 51,2

ci
2t i

n11Ui , n521,22,23, . . . ,

where

ci
65ci~x61!, i 51,2. ~27!

Because of relation~24! between eigenvaluest1 and t2
there are two possible situations for their absolute valu
The first one is

ut1u5ut2u51. ~28!

All different pairs of the eigenvalues satisfying Eqs.~28! and
~24! can be represented as

t15eik, t25e2 ik, 0<k<p ~29!

~note that such eigenvalues are complex conjugate!.
In this case, the sequenceC(xn) defined by Eq.~26! will

just oscillate asn→6`. Hence, the boundedness conditio
~20! is satisfied for any coefficientsci

6 . The vector equation
~18! due to the defect relates the two pairs of coefficients,ci

1

and ci
2 , i 51,2, so just one of the pairs remains arbitra

Using Eqs.~29! and ~25! we obtain the equation

Tr@T~v!#52cos~k!, 0<k<p, ~30!

which determines the dispersion relationv5v(k). This con-
tinuous spectrum ofv coincides with the entire spectrum fo
the periodic media with no defect.16 In general, it exhibits
bands of allowed values ofv, separated by gaps describe
with the inequality following from Eq.~30!,

uTr@T~v!#u.2. ~31!

The second situation is

ut1u.1, ut2u,1 ~32!

~note that in this case the eigenvalues must be real!. Then the
boundedness condition~20! is satisfied only if

c1
150, c2

250, ~33!

andC(xn) in Eq. ~26! is a multiple of only one of the two
eigenvectors on each side of the defect:

C~xn!5c2
1t2

n21U2 , n51,2,3, . . . ,
~34!

C~xn!5c1
2t1

n11U1 , n521,22,23, . . . .

This means thatC(xn) decays exponentially atn→6` on
both sides of the defect@see Eq.~24!#,

C~xn!5C6t1
2~ unu21! , n561,62,63, . . . ,

~35!

C15c2
1U2 , C25c1

2U1 ,
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PRB 58 183LOCALIZED ELECTROMAGNETIC WAVES IN A . . .
with the multiplicative rate of the localization equal to

t5ut1u. ~36!

An effective localization length can be defined as

l5L/ ln~t!. ~37!

Relation~18! due to the defect gives a homogeneous sys
of two equations,

c2
1U25c1

2S~v!U1 ~38!

that relates two coefficients,c2
1 andc1

2 , so one of them can
be chosen arbitrarily and then the other one has to be fo
from Eq. ~38!. The solvability condition,

~U2!2

~U2!1
5

~S~v!U1!2

~S~v!U1!1
, ~39!

where (•)1 and (•)2 stand for the first and the second com
ponents of a column vector, relates the frequencyv and the
localization factort1. Indeed, due to Eqs.~23! and ~24!,
relation ~39! takes the form

t1
212t11

t12
5

s21t121s22~t12t11!

s11t121s12~t12t11!
, ~40!

where the entriest i j andsi j are functions of the frequencyv.
Equation~25! gives the second relation betweent1 andv

which can be written in terms of the entries of the mat
T(v) as follows:

t111t225t11t1
21 . ~41!

The system of equations~40! and ~41! determines possible
values of the frequencyv for localized states~35! induced
by the defect and the corresponding values of the localiza
factor t1. Because the absolute value of the right-hand s
in Eq. ~41! exceeds 2 for any real-valuedt1 these values of
v should be located in the gaps~31! of the continuous spec
trum.

With a proper substitution oft1
21 from Eq. ~41! and use

of the unimodularity of the matrixT(v),

t11t222t12t2151 ~42!

@see Eqs.~17! and~15!#, we obtain from Eq.~40! the follow-
ing relation:

t15
s11t221s22t112s12t212s21t12

s111s22
. ~43!

Excludingt1 from the system of equations~41! and~43! we
obtain the following equation for values ofv for the local-
ized states:

x2115h2, ~44!

where

x~v!52
~s112s22!~ t112t22!12~s12t211s21t12!

2~s111s22!
~45!

and

h~v!5~ t111t22!/2, ~46!
m

nd

n
e

with an additional condition

sgn~x!5sgn~h!, ~47!

which follows from the inequality

ut1u5uh1xu>ut1
21u5uh2xu. ~48!

We can combine Eq.~44! with condition ~47! as follows:

sgn~x!Ax2115h. ~49!

Solutions of Eq.~49! form the discrete spectrum ofv in-
duced by the defect embedded into the periodic medium

The localization factort1 as a function ofv can be easily
found from Eq.~41!:

t15h1sgn~h!Ah221. ~50!

We see in Eqs.~50!, ~46! that the functiont1(v) depends on
the configuration of the defect only through the frequencyv.
Note also that the inequality~31! for the gaps between band
of the continuous spectrum ofv can be written as

uh~v!u.1. ~51!

According to Eqs.~50! and ~51!, the localization ratet Eq.
~36! decreases to 1~the wave delocalizes! when the fre-
quencyv for the localized state approaches the gap edg

IV. TWO-LAYER CELL PERIODIC MEDIUM
WITH ONE-LAYER DEFECT

We apply the propagation matrix method to the perio
medium with two layers in the period cell~6! with one-layer
defect ~7!. Within a homogeneous layerxl,x,xl1h with
constant dielectric permittivity«(x)5e Eq. ~3! simplifies as
follows:

2]x
2c~x!5~an!2c~x!, ~52!

a5Ae, n5v/c. ~53!

Given the initial valuesc(xl) andc8(xl) at the left end point
xl of the layer interval, we can write the solution of Eq.~52!
as

c~x!5c~xl ! cos„an~x2xl !…1
c8~xl !

an
sin „an~x2xl !….

~54!

Hence, the matrix of propagation~11! for C(x) Eq. ~10! in
the homogeneous layer is

P~x,xl ;v!5R~x2xl ;a;v!, xl,x,xl1h, ~55!

R~y;a;v!5F cos~any! an21sin ~any!

2a21n sin ~any! cos~any!
G .

~56!

Thus, the matrix of propagation through the layer interv
(xl ,xl1h) is equal toR(h;a;v) and depends on the thick
nessh and the dielectric parametera ~53! of the layer. So,
for the matrix~17! of propagation over the two-layer perio
cell ~6! we have, taking into account Eq.~14!,
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T5R~L2 ;a2 ;v!R~L1 ;a1 ;v!, a1,25Ae1,2, ~57!

and for the matrix~19! of propagation over the one-laye
defect interval~7! we have

S5R~D;a3 ;v!, a35Ae3. ~58!

Using Eq.~56! in Eqs.~57! and ~58!, we obtain

t115cos~m1! cos~m2!2
a2

a1
sin ~m1! sin ~m2!,

t2152nF 1

a1
sin ~m1! cos~m2!1

1

a2
cos~m1! sin ~m2!G ,

t125
1

n
@a1 sin ~m1! cos~m2!1a2 cos~m1! sin ~m2!#,

t225cos~m1! cos~m2!2
a1

a2
sin ~m1! sin ~m2!, ~59!

and

s115cos~m3!,

s2152
n

a3
sin ~m3!,

s125
a3

n
sin ~m3!,

s225cos~m3!, ~60!

where

m i5a iL in5a iL iv/c, i 51,2,3 ~L35D !. ~61!

Thus, we have the following expressions for functio
~45! and ~46! engaged in Eq.~49! for the spectrum of the
localized states:

h~v!5cos~m1! cos~m2!2p sin ~m1! sin ~m2!, ~62!

p5
1

2S a2

a1
1

a1

a2
D.1, ~63!

x~v!5tan ~m3!@q1 sin ~m1! cos~m2!

1q2 cos~m1! sin ~m2!#, ~64!

qi5
1

2S a3

a i
1

a i

a3
D.1, i 51,2. ~65!

Observe that the functionsh(v) andx(v) in Eqs.~62!, ~63!
and~64!, ~65! with ~61! do not alter if parameters of the firs
and second substances are exchanged. Hence, we can a
with no loss of generality that

a2.a1 . ~66!

Note also thath andx in Eqs.~62!, ~63! and~64!, ~65! with
~61! can be represented as functions of the scaled spe
variable,m5a0L0v/c, to depend on the relative dielectr
parameter,a i /a0 and relative thickness,Li /L0 of the layers,
ume

ral

i 51,2,3, wherea0 and L0 are parameters of one of them
This is a consequence of the general scaling property~8! of
the spectral problem~3!.

The wave functionc(x) for a spectral mode can be foun
explicitly on each period cell interval (xn ,xn1L), n51,
62,63, . . . , and on thedefect interval (x21 ,x1). We can do
that starting from the left end pointxn of the interval and
using the propagation relation~11!, ~14! with the matrix~55!,
~56! in each homogeneous layer. The wave function at e
point xn , n561,62,63, . . . , is determined by Eqs.~26!,
~18! or ~35!, ~38! for propagating or localized modes, respe
tively.

V. ANALYSIS OF THE SPECTRUM

Representing functions~62! and ~64! in Eq. ~49! for the
spectrum of the localized states in terms of the rescaled s
tral variable

m5a1L1v/c, ~67!

we have

h~m!5cos~m! cos~rm!2p sin ~m! sin ~rm!, ~68!

r 5
a2

a1

L2

L1
, ~69!

and

x~m!5tan ~vm!@q1 sin ~m! cos~rm!

1q2 cos~m! sin ~rm!#, ~70!

v5
a3

a1

D

L1
. ~71!

Let us firstly analyze inequality~51! for the gaps in the
continuous spectrum, as they confine spectral values for
sible localized states. We can represent the functionh(m)
Eq. ~68! in the phase-amplitude form:18

h~m!5A~m! cos„u~m!…, ~72!

u~m!5rm1f~m!, ~73!

A~m!5
cos~m!

cos~f!
, ~74!

whereu(m) andA(m) are the phase and the amplitude, r
spectively, and

tan ~f!5p tan ~m!. ~75!

The last equation can be solved forf as

f~m!5m1arctanS g sin ~2m!

12g cos~2m! D , ~76!

g5
p21

p11
, 0,g,1, ~77!

so, A in Eq. ~74! is non-negative and, using Eq.~75!, we
obtain
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A~m!5A11~p221!sin2~m!. ~78!

Using the phase-amplitude representation~72!, the gap in-
equality ~51! can be written as

ucos„u~m!…u.
1

A~m!
. ~79!

It defines the gaps (m l ,mu) in terms of the rescaled spectr
variable m. The gap-edge pointsm l ~lower edge! and mu

~upper edge! satisfy the corresponding equation

ucos„u~m!…u5
1

A~m!
. ~80!

This equation is represented graphically in Fig. 1 ata2 /a1
52.5 andL2 /L150.5.

The amplitude function~78! oscillates between 1 andp,

1<A~m!<p. ~81!

Relations~75!, ~74!, and~81! imply

f8~m!5
p

A2~m!
>

1

p
.0, ~82!

so, the phase functionu(m) in Eq. ~73! is monotonically
increasing. In addition to that, using Eqs.~73!, ~82!, and~78!
one can show that

u]mucos„u~m!…uu.U]m

1

A~m!
U if ucos„u~m!…u5

1

A~m!
.

~83!

Due to Eqs.~81!, ~82!, and~83!, there is exactly one root o
Eq. ~80! contained in each interval of monotonicity of th
function ucos„u(m)…u. So, we have the following inequalitie
for the edgesm l andmu of each gap (m l ,mu):

mn
0,mn

l ,m̄n,mn
u,mn11

0 , ~84!

where m̄n is one of points of the maximum of th
ucos„u(m)…u,

u~m̄n!5np, n51,2,3, . . . , ~85!

and mn
0 and mn11

0 are two adjacent tom̄n zeroes of
ucos„u(m)…u,

FIG. 1. Graphical representation of Eq.~80! for the edges of
gaps in the continuous spectrum in terms of the scaled spe
variable,m5A«1L1v/c.
u~mn
0!5S n2

1

2Dp, n51,2,3, . . . . ~86!

The pointm̄n can be called a center of thenth gap (mn
l ,mn

u).
Relations~84!, ~85!, and~86! allow us to separate roots o

Eq. ~80! for the gap edges, as it is necessary for numer
computations. The rootsm̄n andmn

0 (n51,2,3, . . . ) of Eqs.
~85! and~86! themselves can be located using the inequa
following from Eqs.~73! and ~76!,

uu~m!2~r 11!mu,p/2. ~87!

According to Eqs.~73! and ~76!, the phase function,

u~m!5~r 11!m1arctanS g sin ~2m!

12g cos~2m! D ~88!

exhibits additive symmetric modulations inm with the pe-
riod p. At the same time it is growing withm at an average
rate of (r 11) which by itself would correspond to the lef
hand side in Eq.~79! being periodic inm with the period
p/(r 11). In the right-hand side in Eq.~79!, the amplitude
function~78! oscillates inm with the periodp. At m50 both
the left- and right-hand sides in Eq.~79! are equal to 1. Thus
if the ratio r ~69! is rational, the periodsp/(r 11) andp
become commensurate, then the gaps with such numben
in Eq. ~84! that

n5m~r 11!, m51,2,3, . . . , ~89!

will be closed. In general, the closer the centerm̄n of thenth
gap@whereucos„u(m)…u51; see Eq.~85!# is to a valuemp,
m51,2,3, . . . , @whereA(m)51; see Eq.~78!# the narrower
the gap is. On the contrary, the closer the centerm̄n of the
nth gap is to a value (m2 1

2 )p, m51,2,3, . . . , @where both
1/A(m) and u8(m) are minimal; see Eqs.~78!, ~73!, and
~82!# the wider the gap is. So, the gap width (mn

u2mn
l ) os-

cillates with the gap numbern, while an average gap width
does not decrease for highern. ~This is different from the
situation with an analogous Schro¨dinger problem16 where the
gap width decreases to zero at higher gap numbers.!

One can see in Eqs.~84!, ~85!, ~86!, and~88! that whenr
increases@due to increase of the dielectric contrasta2 /a1 or
of the thickness ratioL2 /L1 for the two-layer medium; see
Eq. ~69!# then the edge valuesm l ,u will decrease for all gaps
At the same time, the width of each gap will oscillate, sta
ing from zero atr 50.

One may also see in Eqs.~79! and~78! with Eq. ~63! that
when the contrasta2 /a1.1 increases, the ratio of an ave
age gap width over an average band width also increases
a2 /a1→` all bands are closing, while ata2 /a151 all gaps
were closed.

The results of numerical calculations for the edge valu
m l ,u for the first five gaps at varying values ofa2 /a1 or
L2 /L1 are shown with solid lines in Figs. 2 and 3.

Let us now turn to Eq.~49! with Eqs.~68! and~70! for the
spectral valuesm* for localized states. That equation is re
resented graphically in Fig. 4 ata2 /a152.5, L2 /L150.5,
a3 /a152, andD/L151.5.

The first factor inx(m) in Eq. ~70! changes monotoni-
cally from 0 to6` on each interval@mp/v,(m61/2)p/v#,
m51,2,3, . . . , while h(m) in Eq. ~68! is bounded. Hence

ral
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there will be a solutionm* of Eq. ~49! in one of the two such
intervals adjacent to each of zero pointsm8 of the first factor
in x(m) in Eq. ~70!,

mm8 5mp/v, m51,2,3, . . . , ~90!

if the point m8 is located in a gap (mn
l ,mn

u) @where
uh(m)u.1, see Eq.~51!#:

m* P~mm8 ,mm8 1sp/2v ! for mm8 P~mn
l ,mn

u!, ~91!

s511 or s521.

In addition, the second factor inx(m) in Eq. ~70! has zeroes
and changes sign at pointsm9 where

tan~rm9!52utan~m9! ~92!

with

u5q1 /q2 . ~93!

FIG. 2. Scaled spectral value,m5A«1L1v/c for the gap edges
~solid lines! and for the localized states~dots! at varying dielectric
contrast,a2 /a15A«2 /«1 between two layers in the period ce
with the thickness ratioL2 /L150.5.

FIG. 3. Scaled spectral value,m5A«1L1v/c for the gap edges
~solid lines! and for the localized states~dots! at varying thickness
ratio L2 /L1 between two layers in the period cell with the dielect
contrasta2 /a152.5.
There should be one such pointm9 next to the centerm̄ of
each gap because

tan ~r m̄ !52p tan ~m̄ !, ~94!

due to Eqs.~85!, ~73!, and~75!. Moreover, we can show tha
each such pointm9 is located in a gap. Indeed, using Eq
~68! and ~92! we obtain

h2~m9!5
~11puz!2

~11z!~11u2z!
, z5tan2~m9!.0. ~95!

It is easy to show that the quotientu @see Eqs.~93! and~65!#
is confined between valuesa2 /a1 anda1 /a2 at any values
of the parametersa i , i 51,2,3, so thatu11/u,2p @see Eq.
~63!#. This providesh2(m9).1 in Eq. ~95!, so,m9 satisfies
the gap inequality~51!. Thus, there is one pointm9 in each
gap (m l ,mu):

mn9P~mn
l ,mn

u!, n51,2,3, . . . . ~96!

Due to that, the number of solutionsm* of Eq. ~49! located
in each gap is one more than the number of pointsm8 present
in that gap. Indeed, if there are pointsm8 in a gap, then the
change of sign ofx(m) over the pointm9 yields the presence
of two solutionsm* next to one pointm8 ~the closest tom9),
one solutionm* on each side of the pointm8; that is de-
scribed by boths511 ands521 in Eq. ~91!. If there are
no pointsm8 in a gap, there still is one solutionm* in it,
becausex(m) has zero at the pointm9. So, there is at leas
one spectral valuem* for a localized state in each gap.

One can see in Eq.~91! with Eq. ~90! that whenv in-
creases@due to increase of the defect-medium dielectric co
trast a3 /a1 or of the relative thicknessD/L1 of the defect
layer, see Eq.~71!# then each spectral valuem* will arise at
the upper edgemu of a gap, decrease, and vanish at the low
edgem l of the gap, while an average number of the spec
valuesm* in each gap is increasing.

Results of numerical calculations for the spectral valu
m* for localized states in the first five gaps at varying valu
of a3 /a1 or D/L1 are shown in Figs. 5 and 6 ata2 /a1
52.5 andL2 /L150.5.

The rate of localization~36! for a defect-induced state
~35! with a spectral valuem* is equal tot(m* ) where the
function

t~m!5uhu1Ah221, ~97!

FIG. 4. Graphical representation of Eq.~49! for the scaled
spectral value m5A«1L1v/c for localized states; s(m)
5sgn (x)Ax211 .
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@see Eq.~50!# depends on parametersa2 /a1 and L2 /L1 of
the periodic medium@see Eq.~68! with Eqs. ~63! and ~69!#
and does not depend on the parameters of the defect.
graph of the functiont(m) is shown in Fig. 7~with the
vertical m axis! at a2 /a152.5 andL2 /L150.5.

One can see that when the spectral valuem* spans a gap
~with a numbern) following variations of the parameters o
the defect, the multiplicative ratet(m* ) of localization in-
creases from 1 at one edge of the gap up to a maximum
the middle of the gap and then decreases to 1 at the o
edge of the gap. According to Eqs.~97!, ~72!, and~81!, the
highest possible value of the maximum oft(m* ) in a gap at
a given value ofa2 /a1 is

tmax5p1Ap221, ~98!

which is greater for higher values ofa2 /a1.1 @see Eq.
~63!#; this value may be actually reached by tuning the ra
L2 /L1 in such a way that the centerm̄n of the gap@see Eq.
~85!# coincides with a point (m2 1

2 )p of maximum of the
function A(m) in Eq. ~78!.

FIG. 5. Scaled spectral value,m5A«1L1v/c for the localized
states at varying defect-medium dielectric contrast,a3 /a1

5A«3 /«1 for the defect relative thicknessD/L151.5.

FIG. 6. Scaled spectral value,m5A«1L1v/c for the localized
states at varying relative thicknessD/L1 of the defect layer with the
dielectric contrasta3 /a152.
he

in
er

o

Concerning variations of parameters of the periodic m
dium, one can see in Eq.~91! with Eq. ~90! that whena2 /a1
or L2 /L1 increases each spectral valuem* will arise at the
lower edgem l and vanish at the upper edgemu of a gap due
to decrease of the edge values for all gaps as discu
above. The results of numerical calculations for the spec
valuesm* for localized states in the first five gaps at varyin
values ofa2 /a1 or L2 /L1 are shown with dots in Figs. 2 an
3 ata3 /a152.0 andD/L151.5. We observe that the value
m* decrease with the increase ofa2 /a1 or L2 /L1.

VI. CONCLUSIONS

We obtained the following general results for an arbitra
1D periodic dielectric system with an embedded defect:~i!
the frequency spectrum of electromagnetic modes consis
a continuous set and a discrete set;~ii ! the continuous spec
trum coincides with the entire spectrum for the same perio
medium without a defect;~iii ! the discrete spectrum is lo
cated in the gaps of the continuous spectrum and corresp
to localized waves that decay exponentially away from
defect;~iv! the rate of localization of a defect-induced mo
depends on the configuration of the defect only through
mode frequency;~v! the localized wave delocalizes when i
frequency approaches the gap edges.

These results agree with the general analysis19 of the
spectral problem for periodic 1D@as in the left-hand side o
Eq. ~3!# and 3D Maxwell operators with perturbations. It wa
proven there that the continuous spectrum is stable und
local perturbation of the periodic operator. It was also sho
that discrete eigenvalues can be induced in the gaps of
spectrum of the unperturbed operator and correspond to
ponentially localized eigenmodes.

For a particular situation of a one-layer defect in a tw
layer periodic medium we carry out complete analysis of
gaps in the continuous spectrum and of the existence of
calized modes and of their dependence on parameters o
system: ~i! we show that an average gap width does n
decrease for higher gap numbers;~ii ! we prove analytically
that there always is at least one discrete spectral valu
each gap of the continuous spectrum;~iii ! we show analyti-
cally and numerically that when the dielectric contrast b

FIG. 7. Multiplicative ratet of localization for a defect-induced
state versus its scaled spectral valuem5A«1L1v/c at the dielectric
contrasta2 /a152.5, and the thickness ratioL2 /L150.5 in the
two-layer periodic medium.
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tween the defect and the periodic medium or the rela
thickness of the defect layer increases then the discrete s
tral values arise at the top of a gap, decrease, and vani
the bottom of the gap, while an average number of the sp
tral values in each gap increases;~iv! we observe that the rat
of localization of a defect-induced mode is greater for f
quencies in the middle of the gap and for wider gaps;~v! we
obtain a simple formula for the maximal possible rate
localization and show that it depends only on the dielec
contrast between two layers in the cell of the periodic m
dium and increases with the contrast.

These results are consistent with the general oper
analysis20 for the number and behavior of the defect-induc
eigenvalues in a gap. The decrease of the discrete eige
ues is related to the decrease of the perturbed Maxwell
erator with the increase of the dielectric constant of the
fect. The localization of a mode induced by a local defec
ic
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related to the exponential decay of the Green’s function
the periodic Maxwell operator with the decay rate depend
on the dielectric contrast in the periodic medium. The pr
ence of a defect eigenvalue in every gap at any values
parameters of the defect is probably the only artifact of
1D system. For a 3D system there is a threshold20 for the
strength of a local defect for localized eigenmodes with f
quencies in a gap to arise.
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