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We present a theoretical study of resonances and thresholds, two specific features of Rydberg-state forma-
tion of multiply charged ion§Z=6, 7, and 8 escaping a solid surface at intermediate velocities { a.u.) in
the normal emergence geometry. The resonances are recognized in pronounced maxima of the experimentally
observed population curves of Ani ions for resonant values of the principal quantum numben,..=11
and for the angular momentum quantum numbersl and 2. Absence of optical signals in detectors of
beam-foil experiments far>ny, of Svi and Clvii ions(with =0, 1, and 2and Arvii for | =0 is interpreted
as a threshold phenomenon. An interplay between resonance and threshold effects is established within the
framework of quantum dynamics of the low angular momentum Rydberg-state formation, based on a gener-
alization of Demkov-Ostrovskii’'s charge-exchange model. In the model proposed, the Aesonances
appear as a consequence of electron tunneling in the very vicinity of the ion-surface potential barrier top and
at some critical ion-surface distand®s. The observed thresholds are explained by means of a decay mecha-
nism of ionic Rydberg states formed dominantly above the Fermi [Eyedf a solid conduction band. The
theoretically predicted resonant and threshold valogsandny,, of the principal quantum numbex, as well
as the obtained population probabilitig,=P,,(v,Z), are in sufficiently good agreement with all available
experimental findingd.S0163-182608)05947-9

I. INTRODUCTION character of the electron-capture process is dominant. It is
natural to expect, however, that with an increasing velagcity
It has been known for a relatively long time that someof the projectiles, both the adiabatic approximation and the
multiply charged ionge.g., with core charg&€=6,7,8) es-  supposition about resonant electron captures break down.
caping solid surfaces in the normal emergence geometry captaving faced the complexity of reported experimental
ture a solid electron into a highly excited Rydberg statedatd™* we concluded that the selective population of Ryd-
Several papets® report that in the case of the hydrogenlike berg statesi~Z for v~1 a.u. andZ=6, 7, and 8 must be
sulfur, chlorine, and argo(Svi, Clvii, and Arviil) moving  considered from the very beginning as a nonadiabatic and
at intermediate velocitiewt=1 a.u.), a remarkable selective nonresonant electron-capture process.
population of few Rydberg states around the principal quan- A systematic quantum-mechanical study of the cited
tum numbem~Z appears for all relevant angular momen- experiment§™ has been developed recentlynder the re-
tum quantum numbers=0,1, ... n—1. In the cited beam- striction to the low angular momentum quantum numbers
foil experiments, carbon foils have been used. The relativél =0, 1, and 2. The mathematical basis for our dynamic
level population probabilities have been measured excluguantum model has been found through a generalization of
sively by methods of optical spectroscopy, detecting the phoBemkov-Ostrovskii's asymptotic thed?'! (used previously
ton deexcitations of formed Rydberg states in the outgoingn the study of ion-atom collisions at arbitrary velocijies
part of the ionic trajectory. In the presentation of experimen-The obtained formula for the population probability
tally obtained population curves, an absence of an opticaP,,(v,Z) of the Rydberg statén,l) predicted very well the
signal in the detector has been interpréted a vanishing selectivity n~Z of the electron-capture process as a basic
population probability of the tested Rydberg states). experimental result in the intermediate velocity region of the
From a theoretical point of view, even in the simplestmultiply charged ionic projectile.
(normal emergengegeometry, the electron-capture pro- An important experimental fact, however, has not been
cesses into Rydberg states of a moving multiply charged iosupported by the cited modéNamely, in the case of ionic
represent an extremely complex quantum-mechanical prodrydberg sublevelssl=1 and 2 of Arvii, it has been
lem. The quantum picture of the process essentially dependsbserved that the peak in the dependence oP,,(v,Z) is
not only on the value of the ionic char@e but also on the shifted from the “normal” positionn~Z=8 to n=11, be-
velocity region of the ionic projectile. Over the past decadecoming at the same time very pronoun¢sde Figs. @) and
many valuable contributions have been made toathénitio  7(c)]. In other words, a resonance-type shape has been evi-
guantum-mechanical calculations of relevant physical quandently superimposed on the “normal” forms of the popula-
tities as matrix elements and transition ratese, for ex- tion curves, suggesting a kind of resonance phenomenon.
ample, Refs. 598 Most of the theoretical studies performed  There was also an additional detail in some of the experi-
so far have concentrated on the low velocity regian ( mentally registered population curves which has not been
<1a.u.) of the multiply charged ions, in which a resonanttaken into account more carefully in our modéllamely, in
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the casé® of the ions Sv1 and Clvii with =0, 1, and 2, as the ionization of these states will be suppressed by the filled
well as in the caseof the Arvii ion with | =0, the experi- valence band of the solid. Their photon deexcitations will
mentally observedP,,, curves rapidly decrease after their result in very pronounced and experimentally observable
“normal” maxima at n~Z [see Figs. 5, 6, and (@], Peaks inP, curves. Roughly speaking, the X reso-
whereas the proposed modgredicts a slightly slower de- nances(with |=1 and 3 are formed dominantly at critical
creasing of the curves. In other words, instead of the resdon-surface distanceR; by an electron tunneling in the very
nance forms of Awill type (with |=1 and 3, the shapes of Vicinity of the potential barrier top. In other words, the high
the experimentally obtained population curves for theseg/alues ofPy for n=nof the mentioned Awii cases can
cases suggest a thresholdlike behavior in the highregion.  be attributed to a high transparency of the ion-surface barrier
It is worth noting that a dilemma about the interpretation ofunder the described conditions. Our calculations showed that
the population curves for higher values has been present the resonant values,sare placed just at the experimentally
from the very beginning of the experimental studies of thedetected valua =11 [see Figs. #) and 1c)]. Moreover,
Rydberg-state formation at solid surfadese, for example, the shapes of the theoretically predicteg, graphs around
Refs. 12 and % n=ns coincide well with the experimental findings.

This paper is devoted to an analysis of the resonance and This paper is organized as follows. In Sec. Il we formu-
threshold phenomena in the context of further elaboration ofate the problem in the context of our model of the Rydberg-
our guantum nonresonant dynamic moUgVe realized that State population process. Section Il is devoted to the study
the study of these phenomena requires a few nontrivial mattef the energy eigenproblem of the ion-surface system. Quan-
ematical extensions of the asymptotic methodology exposetéim dynamics of the process is treated in Sec. IV, in which
in Ref. 9. In the framework of the energy eigenproblem cal-we calculated the experimentally verifiable population prob-
culations(fixed ion-surface distancB) it was necessary to ability P,,. Some relevant concluding remarks will be given
find a new set of the energy eigenfunctions valid in the veryin Sec. V.
vicinity of the ion-surface potential barrier top. In that sense, Atomic units €*=#%=m,=1) will be used through the
a generalization of Slavyanov’s etalon equation metht  paper unless indicated otherwise.
has been donénstead of the JWKB methdil The previ-
ously used electron-capture quantum dynamicR=uvt
#const) of Demkov-Ostrovskii's type is extended by the
method of the complex eigenenergiéshis has been done A general structure of our model of the Rydberg-state
in order to include an ionization mechanism activity appearformation at a solid surface has been described previdusly.
ing with those ionic Rydberg states dominantly populatedn this section we shall formulate the problem, explicating in
above the Fermi leveEr of the solid conduction band. Our more detail only those points which are relevant in our sub-
o-matrix multichannel approaého the final expression for sequent discussions.
the population probability?,(v,Z) is elaborated in accor-
dance with the changes cited above.

The following physical picture of the Rydberg-level
population of multiply charged ions at solid surfaces We consider an active electroaT) of the process in the
emerges from the analysis which will be explicated in thisCoulomb field of pointlike multiply charged ionic core (
paper. First of all, from the standpoint of a pure electron->1) and in the field of a polarized semi-infinite conducting
capture process, the “resonance@lefined as the ionic Ry- solid. For fixed and larg®, the polarized solid interacts with
dberg states witm=n, and populated with sufficiently the electrore™ (positioned outside the solidhy forces of the
high probabilitie$ are not characteristic only of the Ami electron imaged™) and of the ionic core image~(Z); Fig.
ions but also the ions of @ and Clvii. However, in the case 1(a). The potential of the active electron placed inside the
of Svi and Clvii ions for1=0, 1, and 2 as well as fdr  solid is described by the Sommerfeld model. Difficulties
=0 of Ar v, these Rydberg resonances are formed domiwith forms of the image potentials in the near surface region
nantly at some critical ion-surface distanceR,  Will not be essentidl in determination of the population
=R.(n,1,Z,v) when their energy level§, are positioned probability within the asymptotic methodology applied in
above the Fermi leve of the solid. Accordingly, they will  this paper. Behavior of the total potentidl of the active
be destroyed fast by the resonant ionization mechanisnglectron along the axis is presented in Fig.().

Such kinds of short-lived Rydberg resonances will not be In our subsequent discussion, two types molecularlike
able to send a sufficiently intense photon radiation beforeigenfunctions of the HamiltoniaH of the active electron
their ionization decay; in that sense we can say that they wilwill play an important role, corresponding to the continuous
be “hidden” from the standpoint of the detection system ofand discrete parts of the energy spectrum. We have
optical spectroscopy. The same holds for all other Rydberg

stateqn,l) formed by the electron capture abdeg, i.e., for e

levels satisfying the condition>ny, . Thus, the absence of HPya=EPya, E=—= (2.1a

the signals in the detector appears as a thresholdlike behavior

of P, curves. Our calculations of threshold valugg are in
a sufficiently good correlation with experimental ddtee
Figs. 5, 6, and )

On the other hand, the Rydberg resonances ofiArions
for =1 and 2 are formed below the Fermi le\&gt so that

II. FORMULATION OF THE PROBLEM

A. Eigenproblem of the Hamiltonian

and

HOpy=Ea®am, Ea=-—

2
YA
> (2.1b
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@ The variables of the eigenproblef2.1b can be separated
v Py u S T"' in two different ways, depending on the relevant space re-
be g v N gions. Restricting ourselves to the large region around the
e‘Of" e o A0y [N fonie core ionic core[see Fig. 1b)], a separation of variables in spheri-
P F e KV cal coordinates is possible, so that we have the eigenfunction
(?;\f active RS A O =P an(r,6,¢) associated with the quantum numbers
foil a 2>>1 (n,I,ma). On the other hand, in the bulk of the solid and in
e ~ the region around the ionic core, as well as in the narrow
cylindrical region around the axis, the separation of vari-
ables is possible by using the parabolic coordinates, which
leads us to the functiod 5y =P am(€, 7,¢) characterized
by the parabolic quantum numbens;f ,n,5,My).

For the purpose of quantum dynamics we need exclu-
sively those parabolic stateb,y (¢, 7,¢) associated with
the energy level&€, above the Fermi levekEr so that the
o4 L boundary conditions are given ,u(0)=0,X;m()=0
| andYu(0)=0,Y (%)= outgoing wave, in solid. The lat-
06 | ter of the two conditions indicates that the metallic states
e Siiniiuitai it 1 above the Fermi leveEg are empty(in the cold metal ap-
proximation and can be occupied by a time-decay mecha-
1oL nism of the eigenstat® (£, 7,¢). The corresponding ion-

I \ ‘ ization ratel'S"(R) is defined by’
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FIG. 1. (a) Geometry of the process. The potentiblg, Uy, ,

andUAM are explicated in Ref. Elb) Energies_ Of the process in the where EA(R) represents the Comp|ex energy of the eigen_
stage when the electron-capture probability reaches maximurproblem(2.1b) for fixed and largeR. The indexu stands for

[Arvinion at ion-surface distanc®=26.6 a.u,E=—v/2, vy 3 get of parabolic quantum numbers associated with the func-
=0.6 a.u.; the parameteRs. andy correspond to the electron cap- tion @ 5.

ture into the Rydberg statehn=10, |=1)]. Note a relatively flat
plate of the potential curvel=Up+Uy+Upp -
B. Quantum dynamics of the Rydberg-state formation

where y and y, are the corresponding continuous and dis-  We shall first formulate the electron-capture dynamics ne-
crete energy parameters, respectively. glecting the possibility of the Rydberg-state ionization. After
The energy eigenprobler(2.13 for the function®y,  that we pass to a more realistic, “renormalized” quantum
will be solved in the narrow cylindrical region around the dynamics, which takes into account the ionization mecha-
axis[see Fig. 1a)] representing the most relevant region for nism of Rydberg states dominantly formed abde.
the electron transitions into the low angular momentum Ry- We consider the electron capture into the Rydberg state
dberg stated=0, 1, and 2. In that case we can separatqn |) as an electron transition from its solid eigenstafg (at
variables in the eigenproblef2.13 by using the parabolic time t=0) to a moving atomic state}(t). A procedure
coordinate=ra+za, 7=ra=zs, ande=arctany/x). explicated in Ref. 11briefly reviewed in Ref. Penables us
We express the functiofy, in the form to express the transition probability of the process in terms of
the mixed electron flux(t) through a moving Firsov plane
Xmal(€)Yma(7) (2.5  Se. positioned between the solid surface and the moving ion

Pya= T exp(xime), [see Fig. 1a)]. Namely, we have
where : Vg _l_V\I,nl*
d*Xya(é) '« :EL ‘I’KAM_ ‘I’/n«A*
MA "
—d§2_+ P2(£,B1)Xual€)=0, (2.3 d
a

2 _2iv<1_ﬁ)ez WA WS, 2.5
d“Yya(7)

TJFQZ(?],Bz)YMA( 7)=0, (2.3b . o .
7 where a=a(t) denotes theS plane instant position with
whereasm stands for the absolute value of the magnetic'®SPect to the moving ion, wherea@S=dSe,. The time-
guantum numberi=0,1,2...). The relevant separation dependentwave functiof(t) represents an evolved initial
constants8, and 3, are related by3,+ 8,=Z. We impose state df,(r) at timet. For ‘I’Rl we have a state that will
the following boundary conditionsXyA(0)=0, Xya()  evolve into the moving atomic stateh'(t) att—oo. At suf-
=0 andYyA(0)=0, Yyua( %)= (incoming+reflecting wave,  ficiently large ion-surface distand@=uvt, we také that the
in solid. functions W, (r,t) and \IfR'(r,t) represent the space-time
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modifications of the eigenstatds,, and® 5, [Egs.(3.133

and (3.3 of Ref. 9, respectively Pn|=[1—eXFX—Tn|)]9XP( - > <Tn'|/>|'), (211
The electron-capture transition probability from a set of n’sn

initial states of unity interval (around giveny) of the foil  whereT,, =[=n T2 dy is the total transition probability and

valence band to the moving Rydberg stéte)) during a fi- (T, .}, denotes the averaged value of the transition prob-

nite time interval fromt=0 tot is determined by ability T, with respect td .
t 2

TZ|(t):‘ j [(t)dt| . (2.6 Ill. CALCULATION OF THE ENERGY EIGENFUNCTIONS
In order to estimate the critical ion-surface distaRgavhere Our first task is to calculate the parabolic eigenfunctions
the electron-capture process takes place dominantly, we usk,,,(&,7,¢), which will be done in Secs. lll A, 1l B, and
the normalized electron-capture rate Il C. The results obtained can be used in the study of the

parabolic® (&, 7, ¢) stategSec. 1l D). At the end of Sec.
7 (R)— 1 dTh(t) 27 NID we shall discuss the spherical eigenfunctions
nl( )_TIZI dR ! ) (I)AM(I',H,(,D).

where T}, =T (). By definition, the critical distanc®, A. Scaling procedure

represents the position of maximum of the transition rate Differential equations(2.33 and (2.3 can be trans-

I'i(R) as a function oR. formed by an appropriate scaling procedure into the forms
The ionization mechanism of the Rydberg states of thgitaple for application of the etalon equation method.

multiply charged ions escaping a solid surface at intermedi- | the scaling procedure of théy . equation we intro-

ate velocities is not yet known in more detail. It is a separate . _ 4= N =
and complex problem to incorporate simultaneously the ion—iulg(i ihé ;ﬁglngg;niefgam 4?5/5\/2(3” 23 tvrllgesriaEled
ization and electron capture from the very beginning of the — N '

calculation in a dynamic model of Demkov-Ostrovskii's Variableé=é&/(2Ra,). Thus, we arrive at a scaled equation
type. We realized that a sufficiently good approach, correlatof the form (2.3, but with the scaled quasimomentum

ing with the existing experimental facts? can be based on

; ; fenl iy — 2(8) \
the following transformation of the functiodr , (t): Pz(g,a§)= —bé p:(é +b, ?§+~12 (3.13
— 3
TRO—-TR(D)=E, (DT, (2.9
0 where
where 2
= -~ 1-m
1 be=2Ra\—2E, K= Bl~, =
E,(H)=expg — = f r'"(R)dt|<1, 2.9 —2E
ol ) p[ 5 | TiR) (29 a1b
whereasu represents a set of parabolic quantum numberdhe functionpg(E) is defined by
corresponding to the leading state from a set of all possible
intermediate state® =P am(é, 7, 9). 5 I
By using the fast ionization conditiof2.9) we can obtain Pe=1+—17, (3.19
a transformed expression for the transition probabilify 1-¢lé

into a Rydberg statén,l) dominantly formed abovg,, i.e., ~ . B
for R.<Rg. The ion-surface distanc®: is defined by wherego= (2/ag) (2 1/2)/ ~1).
|EA(Re)|= ¢, where ¢ denotes the work function of the
solid. On the other hand, the influence of the ionization pro
cess on the electron transitions localized mainliRat Re is
negligible. Therefore, including the ionization, we arrive to 2ER

the following expression fol ), : a=a,= S_1 (3.2a
—z

Passing to a scaling procedure of the differential equation
(2.3b for the functionYya(7), we introduce the second
'scaling parameter

2
. R>Re (2109 @S well as the scaled variabife= 7/(2Ra). The correspond-

ing scaled quasimomentum is given by

ERINEE
0

2 p?(7,a)
4

o ) X7
; Re=<Re. (2.10H QX (Ha)=—b thetzr (329

TKF‘f I h(t)dt

Re

We specified the initial and final states in the mixed gy~ Where

by using the notatioh(t)=17(t). 3
The population probability,, of a Rydberg statén,|) is b=2Ray—2E, N=-——2

given by the multichannel expressfon V—2E

(3.20
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B. Application of the etalon equation method

150 matching ()

regizn
- ionic

core 1‘]1 1‘[2

Jl

A ..,
T N7 S - Ay Ty
04 05 0.6 0.7 0.8 0.9 1.0 1.1
scaled parabolic coordinate 1|

The scaled differential equations for the functidiga ()
and?MA(“ﬁ) will be solved by using a procedure based on
Slavyanov’s etalon equation methttt? Its application to

the Xy a(€) case follows the standard etalon equation treat-
ment. However, a generalization of Slavyanov’'s method is

necessary for solving th¥é (%) equation.

We look for a solutionXy(€) regular até=0 in the
form

t

-
=3
=3
T

o
o

o
4

a
t=3

T
/o—

squared quasi-momentum Q?

-100

(3.3

~ 1
ma(§) = \/— ng m2(DeUe),
U

001 where M)\gym/z(b§U§) represents the Whittaker function,

. whereasu, is an etalonic variable and=dug(€)/dé. The

i % scaled boundary conditioXiy () =0 will be satisfied only
if

o
o
o

m+1
Neg=ny+——,

5 (3.9

discriminant D
T

o
o
=
T

wheren;=0,1,2 ... denotes the parabolic quantum number.
In the lowest order of approximation we obtdiu,~ y¢
andu;~1, so that we can write

Xma(&)=Xya(é)= Mn, +(m+ zmiz( Y. (3.9

On the other hand, using the obtained value for the scaled
spectral paramet&é, we have

'ﬁlll | | | | | §

1.0 1.1 1.2 1.3 14 15 1.6
scaling parameter o

FIG. 2. (a) Typical behavior of the functio®? along the axis. E
(Parameters of the system are the same as in Fig. 1; for these pa- ,31~7\§‘/_2E_ E (3)@.,. 7).

rametersa=1.24) (b) The a dependence dD(«,Z) for Z=86, 7,
In order to solve the scaled differential equation for

and 8.

Yua(7), we define the regiond; and.4, on the% axis[see
Fig. 2@@)], which contain the turning pointg, and7,, re-
spectively. In that case the etalon equation method can be
applied separately in the regioof and.A,.
Uo/E; 7>, In the “atomic” region A4;, we have

where %= (1l/a)(Z2—1/2)/(Z—-1/4). For the functionp ~

(3.6

The functionp?(%,«) is defined by

22— a’7]o 21— a/”;]o

p?=1+ a 2— am a l-ap’

n<
7<la 5 g

=p(7) we adopted the following phase conventigr: |p|
for p>>0 andp=i|p| for p?<0.
A typical behavior of the functio®?(%,«) is illustrated

(1) — A b ~
A7) = \/—M)\mlz( u), 7neA, (3.7

whereA is a constant and’ (%) =du(%)/d%. The variable

in Fig. 2@ for fixed @, b, X, and . The turning pointsy,
and 7, satisfy a third-order algebraic equation of the form
7 +a, 7%+ a,m+az=0. lts coefficients are expressed ex-
clusively in terms ofx andZ; moreover, for sufficiently large
Z, the @ dependence is dominant.

uis determined by

u(n)—den+—“ (fpdn) ¢7

A classification of the turning points configurations with % 1
respect to the values ef can be done by using the discrimi- - p(O)j (p7%) Yd7|+0 b7) (3.8
nant D=D(«,Z) of the mentioned algebraic equation. In 0
Fig. 2(b) we presented thex dependence of th®(«,Z) 5 I
function for relevant valueZ=6, 7, and 8 of the experimen- whereas the spectral paramelerEd. (3.29, is given by
tally investigated ions 81, Clvii, and Arviil. In the limiting _ p’(0) 1
case”;="7,, the values of the scaling parameteare de- A=Ap(0)+ bp(0) (3\*+7)+0 b2 ) (3.9

termined byD(«q,Z)=0. By solving this equation we ob-
tain the valuesyy=1.115, 1.035, and 0.965 f&=6, 7, and
8, respectively.

The results presented up to now enable us to determine the
etalonic spectral parameter:
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m+1 expression obtained by means of two-large-parameter as-
n,+ > | ymptotics of the Whittaker functioM, .(bu). Denoting
(3.10 the gamma function by'(---), we have

z
A=p Y0)\y+O(1b), )\M=;—

o) e , , i AA _
T.he soIgtuanMA( 7?) in the regionA,, encompassing the wal)lx)( 7)= —— [By(\,ug) €211 2\
turning point7.,, is given by Ju”
fe +B,(\,ug)e 2 M2, (3.143

~ C
Yiia() = N [Ai(b%0)+C Bi(b?%0)], Fe Ay,

(3.11)
m+1

where C and C are constants andr’(%)=do(7)/d7, Bl()\rus)mrl(T_)\
whereas Aik) and Bi(x) denote the Airy functions. For the

whereA(ug)=T(m+1)(1-1/lug) " ¥*and

-\

, (3.14b

N

e

function o(7) we get m+1 A m+1
~ 3 (% ~ 2/3 )\p(O) 3 (% ~ _3/4 Bz()\,US)NF_l(T‘f‘)\ E) ex;{iiw()\—T ,
o= 4 J;izp dn) b (Z L]zp dn) (3.149
7 1 whereas f;(ug)=[ug(us—1)]1*? and f,(ug)=ul?+ (ug
x|, (P77 +0 b—). (312 -1y

On the other hand, the distant turning points case (
> ) is associated witlug(7)>1, so that as a sufficiently

good asymptotic form o¥{{A(%) we can use the expression
obtained by one-parameter asymptotics:

_y(m+1
r T—)\

; (3.19

The obtained solution&{ix(7) and Y{?A(%) have to
match smoothly in the subbarrier regiofi=.4;N A, [see
Fig. 2@]; in other words, we impose the following two
matching conditions:

- A
VVE-VETE, Fed (3133 wa ()= 5 Tm+ )
-\

M0 ;2N 4.

Y=Y2,, weA (3.139 |2

According to the standard procedure of the etalon equation "
method® for the functionsY{{\(%) and YA(%) in Eqs.  Wherefi(us) =us—1/2 andfzo(us) =2us™.
(3.133 and(3.13h we can use their asymptotic forms. The proposed asymptotic forms of the functioff§y’ and
From Eg.(3.7) we see that the asymptotic form of the Y{;x’ will differ exclusively with the values o which are
function Y{}A(%) for e A is determined by the asymptotic Very close toag=ao(Z).
expansion of the Whittaker functioM, .,.(bu). We real- The asymptotic form of{3) in the matching regiom is
ized that with an appropriate choice of the asymptotic formdetermined by the asymptotic behavior of the Airy functions
of this function, the following fact appears: in the case ofAi(b??*%) and Bi®?*%) for sufficiently large argument
Rydberg-level population of multiply charged ions, not only b?%%:
the argumenbu but also the first index can be considered 5
as a large parameter. Indeed, for Rydberg states of multiply ~ _, _ ~ CC (b3 ¥4 (1-iC)
charged ions Z>1), the values oi\~Z, Eq. (3.10, will Yma(7)= ﬁ Jo 2C
also be largéfor the most relevant valuas, =0 andm=0).
It is known'® that asymptotic forms of the Whittaker func-
tion M, »(bu) depend on the relative order of the argumentwheref;=$bo?",
and the first index; more precisely, the character of the Wwith the known asymptotic forms oﬁ(%(%) and
asymptotic expansions is determined by the rai§7)  ¥(2) (%) we can return to the first matching condition

|=bu(7;)/4)\. lt:or us("iy)?tlt,}éwef %UStV\?f)](%iCli(ﬂy ?se tt_WO' (3.133, which will be transformed into an appropriate “dis-
arge-parameter asymplofitsol the VWhiaker UNCUon. .o sion relation.” Of course, since the functidigh(7) has

However, ifug(7)>1, the argumenbu of M, o(bu) can : :
be considered as a much larger quantity in comparison to thi/C symptotic forms corresponding to~ a and a> aq,
e obtain two different expressions for the dispersion rela-

first index A. In that sense, instead of two—large—parametery.v In the first of th oned h
asymptotics, it is sufficient to use a one—Iarge—parametepon' n the nrst of the mentioned cases we have
asymptotic expansiot,i.e., we can take that only the argu-

e fs+efs|,

(3.19

m+1 C m+1
mentbu represents a large parameter. sin N |=—=exgxim|———\||D(N),
The mentioned asymptotic forms can be related to the 2 1-ic 2
scaling parameter. Namely, for 7e . A we have ug (%) (3.173

~3(1+ a). Therefore, in the close turning points configura- where
tion (a~ay~1) we haveu,(7)~1 and, consequently, for N
the asymptotic form of the functio¥i{rA(%) we must use the D(\)=e *M3 e? s, (3.17H
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A similar dispersion relation follows from the condition
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simple and plausible analytic expression @f}, on theS:

(3.133 for a> ay; the only change consists in replacing the plane which will be correct for all parameters of the system

function D(\) of Eq. (3.173 by the functionDy(\):

Do(\)=e 4M10rf3he?fs, (3.179

The second matching condition, E§.13bh, enables us to

express the constaAtin terms of the constants andC. For
a~aq, we have the following relation:

(y,n,I,R,Z).

An appropriate asymptotic expression for the function
®{}), on theS: plane can be obtained through a procedure of
analytic continuation of the already known asymptotic form
of that function in the matching regiod. As a result we
have the following form of the functio® ), on theS: plane
and fora=~ ay:

m+1 D =N R Ra%ag" 77, (3.2
0\ 112 L e N N T 14 o
A=CcClZ N _ - 12 where
A CC(W> b T(m+1) o (1 Us) DYA(N).
(3.18 oy 3 3
_ . y=—|1+-—|, Co=1+-——, (3.223
The expressiort3.18 also holds fora> «, but instead of \/C_O a 2a
(1—Uug) Y*DY3(\) we must takeDFA(\). and
C. Energy eigenfunctions®{;) and ®},} 1 9
As a consequence of the applied matching procedure, two @R~ JCo At 44C, 1+ E) . @228
different classes of the eigenfunctiods,, must be distin-
guished: in the case of close turning points configuration 1 JCo
(a~ ag) we shall have the function®{}, , whereas for dis- g=—= ( “Au— —) . (3.229
ing poi iourati iongb (1 VCo 2
tant turning points configuratiorn> ) the functionsd,z
will be relevant. The quantityN,, is given by
Recalling Egs(2.2) and(3.5), we have
~ime N,= 12f Cg VAyN2+2N1gNapN1~ZI7\Co) (2 [C )2,
(h — () =
Pya= Ven Mu,+(m+zmz ¥€) Yua(7),  (3.19 ™ (323
whereY{{,(%) is expressed by{:\(%) for 7€ A; and by where
"\'(fvlz,)\(?y) for 7e A5, Egs.(3.7) and(3.11), respectively. We 1 9
determined the constar@ by a normalization procedure, N1=—4 CovCa (l+ E) (3.24a
based on the eigendifferential technidde: Y=ovo
and
|6| (m+ nl)! 1/2 bl/G 1 (3 Zoa
“lngmiz ] [2afoo1®Ic T Nt 142 (3.240
2 4yColCy | A’ '
where 0V*-0
) The expression foN, can be simplified if we take into
f(N) =2+ D7(M) , (3.20h account thaD(\)<1. In that case, from Ed3.200H we get
4 sir?l |\ — m+1 f(\)=~2, for all values of \#\x, where sifm{Aa—(m
Simy 2 +1)/2]}=0. Let us note thatd{), is proportional to

whereasC is determined by the dispersion relati@®173.
With the constan€ known, we completed the eigenfunction
(), on the entirez axis.

(a/R)™ (%) wherea/R~1/2. Accordingly, with the lead-
ing term in the transition probability,,,;, we havem=0.

What remains is to find an appropriate expression for the
energy eigenfunctio@(h},'A) on theSg plane, responsible for

In our subsequent discussions, however, we need thihe case of distant turning points configuratiars{«,). For
function Q>§J|)A exclusively on the Firsov plarg-. As we can  that purpose we note that the above-described procedure can
see in the context of quantum dynami&ec. I\), the mov-  be repeated step by step, keeping in mind that instead of the
ing Sg plane is positioned in thel; region[see Fig. 2a)]. asymptotic expression given t§$.143 we must use the as-
Therefore, an expression fdpsl)A on the Sz plane can be ymptotics described by E@3.15. In this way, we obtain
obtained from Eq.(3.19 by setting Y{{s(7%) =Y\ (7).

However, such a formula fod{}), would be expressed in

terms of the Whittaker functioM, .,»(bu), so that our fur-  where
ther analysis would be possible on a numerical level exclu-
sively. This numerical approach is not suitable for our quan-

tum dynamic considerations, where we need a sufficiently

q)g\}"A):NyOR)\M+1/(47)a_)‘M_1/2e_yZ, (3253

1
Nyozﬂ ,yl/2+ l/(2y)(2e) l/(4y)272/'y+ l/(2'y). (stb
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Expression3.25 coin;ides with the asyr_nptotic for_r(d\arge D) =Npga?/ 740~ te ™ YadA, (3.273

R) of the ®y, function obtained previouslywithin the ) )

framework of JWKB method. For convenience we express the constdgy in the form
Nao=NaoSni(27a0VR?+p?), (3270

D. Energy eigenfunctions®{), , ®{1), and ®{}}’ _ _
wherep represents the radial coordinate on Seplane. In

We shall first discuss the parabolic eigenfunctionseypression(3.27) we restricted ourselves to the states with
Pam(€,77,¢). Using the same scaling procedure in EQ.m, =0, Namely, due to the orthogonality of the statega
(2.1b as in the case of Ed2.13, all considerations of Sec. anq @ ,,, with respect to thep variable, only the statesi,

Il B can be repeated step by step. o ~ =m could be populated. On the other hand, the solid

As an output of these calculations, we obtain a dispersiojence-pand states with="0 are dominant in the electron-

relation in which the outgoing behavior of the consideredcapture process we are considerfisge the comment con-
function is taken into account. The explicit expression forcerning the expressiof8.21)].

that dispersion relation has a form given by E8.173, but
we must takeC=i instead of the constaf. Also, an atomic
spectral parameter, denoted by, must be used instead of
\. The values of the function®(\,) andDgy(\,) for both
close and distant turning points configuration cases, Egs. The results obtained up to now enable us to explicate our
(3.17hH and(3.179, represent exponentially small quantities final dynamic picture of the Rydberg-state population pro-
again. Accordingly, a new dispersion relation is satisfied excess, as well as to calculate the experimentally verifiable
clusively for a set of discrete values of the parametgr population probabilityP,(v,Z). In Secs. IV A and IV B we
=n,a+ (My+1)/2, wheren,,=0,1,2 ... represents the sec- shall perform the calculations considering the electron-
ond parabolic quantum number. The obtained values of etazapture dynamics without ionization. The consequences of
lonic spectral parameter, enable us to reproduce the well- the ionization activity are discussed in Secs. IV C and IV D.
known asymptotic expression for the atomic energy levels
Ea=— ya0/2+ AE, wherey,o=2Z/n. In that sense, the ion- A. Classification of the electron transitions
surface distanc® is given byRF=(Z—1/2)/(y,§0—2¢). and the mixed flux I (t)

As in the case of th&,, function, the explicit expres-

sions for the fun?t'on@AM(.g'""P) depend on the turning scription of the nonresonant electron-capture processes into
points configuration, described by the scaling parameger

. - i the ionic Rydberg statgs, ). For that reason, at intermediate
- 2E.AR/(Z k11/4)' lrr: the C%STS ?f clqse ;,l)n d d'ds(t;(",llt) turrl'stages of the ion-surface interaction we can speak only about
Ing points, we have the parabolic functi m @Ndan ., a kind of electron “transition” from the statdy,(t) to the

respectively. These eigenfunctions are determined by Eq, nl . i s
(3.19, but instead ofn, n, andy we must takem,, Ny, Gstate\PA(t), which are not the states of well-defined ener

and y,, Wheren s+ Npa+ mat1=n, gies. Only the molecular!|ke elgenstamA gnd Dy are
. . . the components of the mixed flux with definite, but generally
The time-decay process of the parabolic eigenstat

egi :
(.1 . 3 SO ifferent, energies.

q)ioAr?" for R<Rg is described by the |or_1|z€r'5|on rates  An additional fact characterizing the nonadiabatic ap-
I",/(R), Eq.(2.4). In order to obtain the quantity,(R) for 5504 phased on the mixed flug(t) is that this quantity

the functiqnd)ﬂ,)\,l, we start from the dispersion relgtion for represents a very complicated function of titiend energy
the etalonic spectral parameteg. Recalling that this rela-  parametery. According to the values of the scaling param-
tion has the same form as E(B.173, except inC=i, we  gterq, Eq.(3.2a, associated to each point of the plane,
consider the etalonic spectral paramekgr as a complex e can distinguish between two regions, satisfying either the
quantity, i.e., we take\n—Apa=Np—18. Supposing tha  condition a<ag or a>aq. In the first case the turning
=—Im(\p)<1, we get points7, and7, will be complex, and the second region is
characterized by the real values of the turning points. We
72 adopted the following terminology: we define the overbarrier
Fi‘j“(R)w ——=D(\p), (3.26  electron transitions by the requirement- «p, whereas the
mn condition a>aq will be associated with the underbarrier
transitions.
whereD(\,) is determined by Eq(3.17hH. The expression We realized that all points of thet plane will not con-
(3.26 holds also for the functiorI)(A'L} , butinstead oD (\ ») tribute to the electron-capture process in the same degree and
we have to takéDy(\,); see Eq.(3.179. By means of the that a self-consistent procedure can indicate those regions
obtained ionization ratel ‘;’“(R) we can verify that the fast where the process is dominant. Namely, around the critical
ionization condition, Eq(2.9), is satisfied for all experimen- ion-surface distanceR.=vt., the main contribution to the
tally tested ions. For example, by testing thev€lcase with  transition probabilityT % (t), Eq.(2.6), can be expected from
v=2.50,n=11, and =1 we found£~0.3, fort—, sothat those solid valence-band states positioned aropsdymax
we can take€<1. where ya denotes the maximum of the functidif,(t) on
The spherical solution® \(r, 0, qo)=d>§l}¢,) of the eigen-  the y scale. In other words, a dominant contribution comes
problem(2.1b are already knowfEq. (3.179 of Ref. 9. On  from the vicinity of the point §/yax.t), SO that a classifica-
the Firsov plane we have tion of the relevant expressions for the mixed flijxcan be

IV. CALCULATION OF THE POPULATION
PROBABILITY P,

The electron-capture flux(t)=17,(t) is adopted for a de-
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performed according to the values.= a(ymayt,) Of the Zz 3 1 ~
scaling parametew. The position of the point ...t as Co—1, agr— Yao §+ 4y’ Ny—=Nyo, 7=
well as the value ofw, at that point depend on the ionic (4.4

parameters, |, Z, andv. For the experimentally tested pa-
rameters only the caseg.~ «qy and «:> ay appear, which
can be interprete@n the sense mentioned abgws an elec-
tron “tunneling” in the vicinity of the potential barrier top
and a deep underbarrier “tunneling,” respectively.

It is worth noting that such an expression fdt) has the
same form as in our previous paper based on the JWKB
approximatior?

In the casea~ ay, the mixed flux formula can be ob- B. Transition rate T'7(R) and resonant quantum
tained by using the parabolic energy eigensthfj3, and the NUMbErs N e
spherical eigenstat®{}) in order to obtain the functions In order to concretize the type of electron transitions and

v (1) and\If,T(t). The choice of thebg”,\},) function for the to define the resonant quantum numbey, we need to es-
molecularlike atomic statéb »,, is motivated by the fact that timate first the critical ion-surface distandes by evaluating
we neglect the activity of the ionization mechanism in thethe transition ratgfgl(R), Eq.(2.7).

pure electron-capture dynamics, i.e., if the ionization were For a~
absent, the detectors of the optical spectroscopy would Obc'haracteri
serve the spherical statés,l). Thus,

aq the transition ratd'?, as a function ofR is
zed by the bell-shaped maxima, placed at the ion-
surface distanceR. with characteristic half-widtha R. We

da found that a sufficiently good estimation can be given by
1-2—

_i_ iwt
I(t)=z¢€ iR

2 7}’/+ ’yA0+iU

 Ya09+¥(1-0)’

where k(n,l,v) represents a modulating function, weakly
dependent on the principal quantum numbein the case of

R.~2k(n,l,v)Ry, Rn (4.5

2m *® * *
[ o s s

where the low angular momentum Rydberg stafes 0, 1, and 2,
we found as the best fit
1/~=2 2_1.2 a
W=3(Y"=va0)"— 320 1—2§ . (4.1b . .
, , K(n,l,v)=o.74z<1+o.298—' 1+—|, (4.6
The space-time correction factofg and f,, are calculated v 4n

beforehand within the asymptotic method of solving the
Schralinger equatior.

Using the mean value theorem around the paqigt
=n?/[Z(1+1)], we get

where the parametek, is determined byko=1 and x4
=k,=2. Our explicit numerical calculations showed that
AR~T7 a.u., for all experimentally relevant values of the pa-
rameters.

i relwt da The “critical” values a.= a(R,) of the scaling parameter
[(t)=—— N(R)| ¥+ 7A0+iv( 1-2— « are very sensitive to the change of principal quantum num-
Yo dR ber n. For the Rydberg state®,l) populating in the close
S A —TR turning points configuration, the values of the scaling param-
X (14 yppa)e!?” 0% 7R, (4.2 etera? gatisfy the cgondition oP
where 2
Y Re(ac) _ 4
N(R)=RoR*S(27,0VREFP]) (4.3 “TTgIr @7
and We define the resonant quantum numbey as an integer
o a\ Z/7a0~ 32\ 1{Co solution of Eq_.(4.7). To obtai_n the quantityn, it is not
No=NoN, = exp(fX+fy). necessary to include all possible values of the parameter
Namely, in the case of a “tunneling” near the top of the

(4.3D  potential barrier aBR=R., we can takey~ ¢, i.e., the main
The exponentyR appearing in Eq(43a is determined by Contribution arises from Va|ence-bal’ld |eVe|s placed r|ght be-
low the Eg level.
Z 3 1 The results of our numerical treatment of Ed.7) are
=y % 4,C <1+ E)' (430 presented in Table I, where the relevant ionic velocities are
0 taken from available experimerfts? We used the value/y
The calculated mixed electron flut), Eq.(4.2), represents =0.47 a.u. as the energy parameter of the Fermi level
a functional of the Firsov plane positien=gR, whereghas  E, corresponding to the work functioh=3 eV. In Table |
the same form as in Ref. 9, but withinstead ofy. we see that the Rydberg resonances of/rwith | =1 and
In the casea> «ag, the relevant formula for the mixed 2 haven=n, =11 (which is in full agreement with the ex-
flux is constructed by means of the energy eigenfunctionperimentally observed ddta On the other hand, the reso-
o) and®{}) . Its explicit form is described by the expres- nance of A, with | =0 andn=n .= 12 theoretically ob-
sion (4.2), but with Cy, ag, N,, and’y transformed as fol- tained on the basis of pure electron-capture calculations by
lows: means of mixed flud(t), has not been detected in experi-
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TABLE I. Low angular momentum values of the resonant quan-
tum numbem, for the ions of chlorine, sulfur, and argdat ex-
perimentally tested velocities,).

Svi Cll vu Ar v
Nres (v=1.94) (v=2.50) (v=1.42)
1=0 11 12 12
=1 10 11 11
=2 10 11 11

ments. The theoretically obtained resonances are also absent
in the case of 1 and Clvii for all low values offl.

In order to develop our electron-capture dynamics without ion-surface distance R
ionization for the caser>«a,, we calculated the transition

ratelN“rZ,(R), using the second expression for the mixed flux, ®)
mentioned in Sec. IV A. This procedure results again in the
bell-shaped maxima of the quantif%(R) as a function of

R: the maxima positions @& =R, are given by Eq(4.5), R.R.

il
nl

but with the transformatio.4) applied. i i .
IE,]
E —=
C. Transition probability T} and threshold quantum - h
numbers N, T
From the standpoint of detection by the methods of opti- T T \>D

cal spectroscopy, only those Rydberg stdtesluding reso-
nance$ whose formations take place dominantlyRat> Rg
(i.e., whenE, is below the Fermi leveEg) will survive and
be experimentally registered. In Fig(@B we presented this ion-surface distance R

process schematically. On the_ other hand, all Ryd_b_erg states f1o 3 The population process of Rydberg state$ for R,
domlnan_tly formed abové&g, e, under the cono“ﬂoch >Re (|Ex>@#) and R,<Re ([Ex/<@). (@) Electron-capture
<Rg, will be destroyed fast by ionization and will not be ,,cess followed by photon deexcitatiab) Electron-capture pro-

observed in the beam-foil experiments, Figh)3 cess followed by ionization decay of a ionic Rydberg state.
The presented structure of the processes follows from an

analysis of the transition probabiliff},, Eq. (2.10. Let us
consider, first, the case leading to an observable Rydberg
state(n,l) populated dominantly below the Fermi lexi&t so
that the influence of the ionization effect can be neglected. %
Since in this case we hawR,>Rg, our calculation of the
transition probabilityT?, will be performed by means of Eq.
(2.109.

In the configuration of close turning pointe€n,.J, i.e.,
for ne NV,, a relevant formula for the population probability
T2, can be obtained by inserting E@.2) into Eq. (2.103.

T= gZ/ ya0—(Z1y—112)] Ty 3/2( 1— g)u2/[4m( y§o+ v3)]

1—=

g —4Z02/[ ypg(Yag+4vD)]
2)

X[g(2—g) ]2 VP +vH]g=(22-1d/(4va0)  (4.9b)

The quantity| 7|2 is defined by

We get a [ Ya09(art1)v+ Q]2 +w?
J |7|?=v?*Rl%(ag+1) (QZrw?)or2 ,
(4.109
T =T|74?°, R>Rg, nel, (4.9 )
where
where ~
Q=[Y(1-9g)+ yao9]v. (4.10n
2 ~ Taking into account that the quantify, as a function oh
T=— gznl/vqlNAO|2|NV|272(g)[(3/+ Ypo)? decreases rapidly in the regior>n,., the obtained expres-
VAo sion can be used in the calculation of the transition probabili-
+UZ(1_29)2]S%|(4n) (493 ties fOI’n?nres.

In the configuration of distant turning pointa € \V), the
relevant expression faf ), has the same form as given by
and Egs.(4.8), (4.9, and(4.10, but with the parameter§,, c,
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TABLE II. Low angular momentum values of the threshold

guantum numbeny,, for the ions of chlorine, sulfur, and argdat
experimentally tested velocities).

06 |- .
n=
Svi Clvi Ar Vil wE \
Nehr (v=1.94) (v=2.50) (v=1.42) 205
[:3
=0 8 9 11 go4
I=1 8 9 12 % 03 L
=2 8 9 12 g
= 02 |- =8
) | | | te \
N,, andy transformed in accordance with E@.4). In this 01
way, we arrive at an expression fog, which is applicable , I\& |
for n<nyes. —f 05 06 07 08 09 10 11 12
What remains is to consider the population probability energy parametery [a.u]
of the Rydberg levels dominantly formed and destroyed 15

above the Fermi leve . In this case the calculation a7,
must be performed by means of E.10hH. We obtain

where T is given by Eq.(4.99 with S,(2Rg) instead of

S,(4n) and
Rz"Rexp( 20 R,:)
F v
(Q2+w?)?

+ ¥p09(ag+ 1) v P+ WA(1+ ya0gRe) %}
(4.119

(4.11a

|JrZ||2:

L1+ ya09Re

The corresponding expression fof, in the casene N is
obtained after the transformation explicated by &g4) has
been done.
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(@
AVIIl, v=1.42 a.u.
=1

e
o
T

(b)
AVIIL, v=142 a.u.
=1

ArvIll
resonance

nl

10

v

transition probability T

05 06 07 08 09

energy parameter ¥ [a.u.]

FIG. 4. Transition probabilitie3}; (per unity) as a function of
the energy parametey for Ar vin (v=1.42 a.u.) ion, fome NI
=1 andne M, ,|=1, respectively.

The activity of the threshold mechanism becomes evident

by means of a numerical test of the expressiérila for
T?,. Namely, it turns out that the calculated valuesTgf
become negligible for all experimentally tested id@s=6,
7, and 8 with relevant velocities and for all low-angular
momentum case€ =0, 1, and 2. In other words, we have

T2,~0 for n>ny,,, whereny, is the threshold quantum num-

the experimentally tested ionsvé and Clvii with 1=0, 1,
and 2, are similar to those presented in Fig) 4

It can be verified by direct numerical calculations that the
positions of all maxima of thd, curves are placed at the
values y= yma=va(R.). In other words, a quasiresonant
“kernel” yma— va(R.) can be recognized for all relevant

ber. The quantityny,+ 1 represents a minimal integer satis- values of the parameters |, Z, andv. This fact represents

fying the conditionR,<Rg. The numerically obtained val-
ues ofny, are presented in Table II.

the main reason which motivated us to express the results of
the quantum dynamics based on the mixed fl{ixin terms

An interplay of resonance and threshold phenomena caof the most frequently used concepts of the adiabatic and
be seen if the results presented in Tables | and Il are conresonant theoriesee Sec. IV A The calculation of thex,

pared. It is clear that only the Anmi resonance levels

values shows that.> «, so that only the underbarrier ker-

=11 forl=1 or 2 are observable. The other resonances obaels appear for the experimentally investigated ionic states.
tained theoretically inside the electron-capture model exclu-

sively (i.e., without taking their ionization into accourep-

resent a set of short-lived Rydberg states, hidden for the

optical spectroscopy measurements.
The formulas for the transition probabilify}}, enable us

D. Population probability P,

We finalize our study of Rydberg-state formation by an
explicit calculation of the experimentally verifiable popula-

to elucidate the nonresonant character of the electron-captu®n probability P,,,= P, (v,Z), determined by Eq(2.11).
process. Namely, the contributions of solid valence-band To do this, we need first to calculate the transition prob-

electrons in the process are different for different values, of
[, Z, andv. They dependence of ), for Ar vit with =1 at
an experimentally tested velocity € 1.42) is presented in
Figs. 4a and 4b). Note the differenf; scales in Figs. &)
and 4b). The T}, curves forl=0 of Arvui, as well as for

ability T,,; from all states of the foil conduction band to a
Rydberg staten,l). The summation over discrete quantum
numbers is reduced to a summation over the parabolic quan-
tum numbern; and m=mp=0 of the valence-band states,
whereas the integration over energy parametanust be
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taken from y=+2¢ to yy =v2U,. As in our previous o.10
paper? we takeU,=10 eV as the relevant value in the case .= oo0s |- @ SV, v=194au.
of graphite foils. 1=0

0.06 |- theory

In order to proceed from the probabilify, to the experi-
mentally verifiable multichannel population probabilRy, ,
Eq. (2.1, it is necessary to define a set of the background:

e exp.
0.04 |- @
states ',l’) that “interfere” in the population process of 002 - !

the state(n,l). A suitable interference scheme follows from L e % Lo
the analysis of the interference fact@¥ (t) appearing in 48 B i quatmbetn MW
our o-matrix formalism® We define the background states 0.10

population probability P

(n’,1") of the state(n,l) as the states satisfying the condition | 008 L SVI,v=194au.

P, (t) #0, wherep",,(t) stands for the value of the factor I=1

pli\.(t) averaged over the relevant values of thgaram- 3 °%® I R :‘Xe:ry

eter. § 004 | - -~ JWKB
The key points in an estimation of thuﬂ',,,(t) factors are g 002 L

the following facts. First, the population process of a given ;t ‘

Rydberg state(n,l) is mainly finished at the timer=t, P ——

. - . 4 5 6 7 8 9 10 11 12 13 14 15

+ AR/v; accordingly, the transition probabilifl,,(t) can be principal quantum number n

estimated byT,(t)~T,0(t—7), where®(t—7) denotes 0.10

the Heaviside step function. Second, during the population . .| © SVI,v=194au.

process of the stat@,l), all electron-capture channels lead- ‘; 1=2

ing to the statesr(’,1") are open simultaneously; for the 3 006 - theory

transition probabilityT ... (t) we can use the analogous step- € ., | * o

like expression. Third, the mean valup%',,,(t) can be ex- § * @

pressed in terms of,(t) and T,/(t) exclusively. As a § 002 |- ?

consequence of these facts, it turns out that the nonvanishin =
pn,l,(t) values have those channels leading to the states 48 b i quantumumbern 2 2 M
(n’,1"), populated around the critical ion-surface distances .

R.(n’,1") smaller thanR.(n,I)+AR(n,l). Therefore, the FIG. 5 Population pl’Oba.bllltIeE’m of the Rydberg etate(sn,l)
values of the quantum numberg and |’ of the relevant for Swi ion (v=1.94 a.u.) withl =0, 1, and 2, respectively. Dots
“hackground” states can be found by solving the inequality 2@ exPerimental datéefs. 3 and %

R.(n",I")<R.(n,1)+AR(n,l) (4.12 in our previous papet The estimated overall uncertainty in
the measured relative population probabilities is around 20%
(see, e.g., Ref. 4

In Fig. 5 we compared our theoretical predictioffsl|
lines) for sulfur ions Svi with experimental findings
(dot9, restricting ourselves to the low angular momentum
cases(I=0, 1, and 2 The ionic energy used in the cited

Ned1)—1 experiments i€ =3 MeV, which corresponds to the velocity

Pno= noexl{ T '0)

for any given set of the parametersl, Z, andv.

Having the set of relevant background states, we esti-
mated the mean valud /)., of the transition probability
T, over the angular momentum quantum numbéisf the
background states. Finally, for=0 we obtain

2 Toi— > v=1.94 a.u. of the &1 ions. As we can see, the presented
n’'#n n’=ned1),n" #n P, curves have “ordinary” shapes with maxima located at
(4.13 n=ny~Z, but with thresholds an,=8. In the considered
Svi case, the resonant quantum numbers are indicated by
arrows positioned to the right fromy,,, which explains the
a absence of observable resonances in the population curves.
= © _ The dashed line indicated in Fig(® is taken from our
Poi= Pmexp( - 2T ’1)’ N<Nred 1) previous papef:obviously, forn<ny, andl=1 the JWKB
(4.143 prediction correlates to the fub,,, curve of the present pa-
per. The same correlation exists flor 0 and 2 of the S

and, forl=1 and 2, we get

n’#n

ions.
Pm:f’n,ex% — > Tai|; n=ned1), (4.14h In Fig. 6 we presented our results for ldwases of Clii
n’#n with experimentally* tested energy E=5.5MeV (v

~ =2.50a.u.). The obtained,, curves (full lines) of the
whereP, =1—exp(-T,). Relations(4.13 and(4.14 repre-  Clvi ions are similar to those exposed in Fig. 5, but with
sent our final expressions for the population probabHity, thresholds atg,=9 and resonant quantum numberg
which will be compared with available experimental dath. =12 and 11. Nevertheless, the inequatitys>ny, holds, so
We normalize the experimental findings to the theoreticathat the Clvii resonances are also hidden for the optical
ones at the central population maxima nyg~Z, calculated spectroscopy. The dashed JWKB curve fferl marked in
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FIG. 6. Population probabilitieB,, of the Rydberg state,l) FIG. 7. Population probabilitie®,, of the Rydberg stateg,)
for Clvii ion (v=2.50 a.u.) withl =0, 1, and 2, respectively. Dots for Ar viil ion (v=1.42 a.u.) with =0, 1, and 2, respectively. Dots
are experimental dat®Refs. 3 and % are experimental datdref. 2.

Fig. 6(b) follows the full line predicted by the present theory  All simple arguments fail, however, when we pass to a
for n<ny, (the same also holds fée=0 and 2. more detailed, “fine-structure” analysis of the,, curves,

In Fig. 7 we showed the population curves of v ions  especially in the regiom>ny~Z. As we have seen, both
with E=2MeV (v=1.42 a.u.) taken from experimerfts. resonances and thresholds appear in that region as the main
Note the differentP,,; scales in Figs. 5, 6, and 7. In th¥, structures in the shapes of tRg, graphs. Moreover, a spe-
curves of Arvin with =1 and 2, Figs. @) and 7c), very cific interplay of these two effects is characteristic of the
pronounced resonance shapes positionech,gi=11 are considered ion-surface interaction. For this reason, it was not
dominant. Obviously, these observable VAr resonances possible to treat separately the electron-capture process and
arise with inverted positions afy,, and n,.s on then scale the ionization of those Rydberg states formed dominantly
(i.e., forI=1 and 2 we haven,<ng,). In Fig. 7b) we aboveEg. The mentioned charge-exchange processes are
marked the dashed JWKB curve, illustrating a limitation ofrealized mainly in the vicinity of the potential barrier top, so
our previous modél(in the regiomn~n,.=11) as well asits that the ion-surface system is subjected to a kind of “criti-
correctness around the “ordinaryP,, maximum placed at cal” physical condition. This circumstance led us to the fact
No~Z. that even small changes in the parameters of the sygteim

Z, or v) have resulted in drastic modifications of tig,
V. CONCLUDING REMARKS curves forn>ny~Z. The relative stability of thé,,; shapes
established fon=ngy~Z comes as a natural consequence of

The study explicated in this paper indicates that the seledhe validity of the deep underbarrier tunneling approxima-
tive low | Rydberg-state formation of multiply charged ions tion.
escaping a solid surface at intermediate velocities represents, A few additional concluding remarks may be relevant for
essentially, a complicated quantum-mechanical event. Afurther investigation of resonances and thresholds recognized
first sight, this complexity appears somewhat unexpectedn the P, curves of lowl Rydberg-state formation.
because even the simple energetic arguniehtsuggested First, it has been assumed in the matching procedure of
at the very beginning of the experimental investigation of thethe applied etalon equation meth¢®kc. 1l B) that the turn-
process tell us that the foil valence band is nearly resonanting points7, and7, are sufficiently distant even in the case
with the Rydberg states~Z of the multiply charged ions of tunneling in the very vicinity of the potential barrier top.
Z=6, 7, and 8. This assumption appears as a correct one whenever the
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Rydberg-state population process takes place dominantly @bntributions fory< y,a. To resolve this problem, it is nec-
the critical ion-surface distanc®.. However, to have a essary to extend the etalon equation method in the complex

more refined study of the role of the potential barrier top, it3 plane, after which an appropriate quantum dynamics must
would be relevant to elucidate a process of the turning pointge developed.

confluence. In that case, an etalon equation method of the Finally, in presenting our numerical results, we used the

Kolosov typef[see, €.9., Ref. 19, Chap] Wil be_ a more alue ¢= 3 eV for the work function of the carbon fdiBecs.
adequate one. Including the confluence effect in our mixe B and IV D). We realized that this choice is fitting to the

flux dynamics, we expect that the shapes oi/Ar resonance available experimental data. However, according to our dy-

peegl;sccc)zgra;t]eenzwr\gbtlﬁ| leﬂr\gre]fefrig d?gtémgogsgé Statenamic model, the positions of resonances and thresholds in
' P Y g ﬁwe P, curves are dependent on the work functiprso that

formed dominantly above the Fermi levEl was not dis- . .
cussed in more detail in this paper. In our model, the fasihe observablé, curves could differ greatly with different

ionization condition(2.9) appeared to be sufficient to explain V&lues of¢. Accordingly, various surface contamination ef-

all observable facts of the existing experimental data, whict{€Cts (resulting in the change of) can influence to a high
has been the main intention of this paper. In that sense, onfjegree the experimentally obtainedg, curves, especially in

a brief review of the calculations is present&ec. I D). e highem region. The problem of the instability requires
However, from a theoretical point of view, an additional in- further work in both theory and experiment. i
vestigation of the ion-surface interaction dynamics during A 9eneral observation about Demkov-Ostrovski's meth-
the intermediate stages of time evolution of the process wilPdology, applied in this paper, could be of use. Bearing in
be relevant. We point out here that the study of the quantityind that this methd& was originally developed for arbi-
T will differ in comparison to some still known asymptotic trary projectile veIOC|t|§§ of ion-atom cglhsmns, it can be
m%thods applied on the level of energy eigenvalue problerHsed not only as a basis in the mves'glgatlon of the resonances
calculation€%?! The main difference lies in our parametri- @nd thresholds ai~1a.u., but also in a study of the adia-
zation of the eigenproblem by means of the scaling parambat'c limit (v<1a.u.) of the electron capture into Rydberg

eter o, combined with the etalon equation approach. Detail%tates Olf_ multiply clhalrggd |opsd_escap|rrllg tl;e So"r? surfage.
of F';j” calculations, as well as a more complete dynamics ur preliminary calculations indicate that, from the stand-

(leading to more detailed,, curves forn>ny,), will be point of quantum dynamics based on the mixed flux, the
presented in our subsequent publications on the subject. limiting v procedure represents a rather subtle mathematical

Third, considering the transition probability?, (Sec. problem, strongly dependent on the values of the ionic pa-
: : rameters, |, m, andZ. We found that the expected resonant
IVC), we recognized the quasiresonant kernefg.y

) . L . nature of the electron capture appears as a consequence of
—ya(R.) of underbarrier type as the dominant transition *“di- P PP a

; ; . . the limiting procedure.
rections” from the solid valence band into the considered gp

Rydberg statesn,). The nonresonant electron ture “di Some of the known resulfs® relevant in the case of low
ydbe g stategn,l). The nonresonant electron-capture ~di- velocity, can be recognized as an output of our analysis. For
rections” y— ya(R;), satisfying the condition vy

. ) example, under the adiabatic conditions, it emerges a chal-
<vYmax OF Y>> vYmax are taken into account in our calcula-

) . - . . lenging universality® of the differential transition rate
tion of the total transition probabilityf,,, . Strictly speaking, dl/(2ydy), which represents a function exclusively depen-
this approach is based on a validity of tfi& expression

e ) dent on the scaling parameter Also, considering the men-
extended from the vicinity of the pointyfactc) over the  igned transition rate as a function Bf we obtain that the

entire yt plane. For the ionic parameters tested in this PaperRydberg-state formation of a multiply charged ion is domi-
this approximation cannot change thg probability signifi-  pantly localized around the critical ion-surface distarigs
cantly because we obtain sufficiently pronounced maxima, remarkable distortion of the electron clotid comparison

for both T}, andI'}}, especially in the case of Al reso-  to the free atomic statés found at distanceR<R//2. In this
nances. A more precise analysis can be given by a refineggion of the ionic trajectory, we realized that the electron
classification of theby, 5, components in the mixed flux,, density distributions are dependent on the form of the surface
including the overbarried,,, eigenfunctions as possible potential.
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