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Resonances and thresholds in the Rydberg-level population of multiply charged ions
at solid surfaces
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Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Yugoslavia

~Received 3 April 1998; revised manuscript received 11 June 1998!

We present a theoretical study of resonances and thresholds, two specific features of Rydberg-state forma-
tion of multiply charged ions~Z56, 7, and 8! escaping a solid surface at intermediate velocities (v'1 a.u.) in
the normal emergence geometry. The resonances are recognized in pronounced maxima of the experimentally
observed population curves of ArVIII ions for resonant values of the principal quantum numbern5nres511
and for the angular momentum quantum numbersl 51 and 2. Absence of optical signals in detectors of
beam-foil experiments forn.nthr of S VI and ClVII ions~with l 50, 1, and 2! and ArVIII for l 50 is interpreted
as a threshold phenomenon. An interplay between resonance and threshold effects is established within the
framework of quantum dynamics of the low angular momentum Rydberg-state formation, based on a gener-
alization of Demkov-Ostrovskii’s charge-exchange model. In the model proposed, the ArVIII resonances
appear as a consequence of electron tunneling in the very vicinity of the ion-surface potential barrier top and
at some critical ion-surface distancesRc . The observed thresholds are explained by means of a decay mecha-
nism of ionic Rydberg states formed dominantly above the Fermi levelEF of a solid conduction band. The
theoretically predicted resonant and threshold values,nres andnthr of the principal quantum numbern, as well
as the obtained population probabilitiesPnl5Pnl(v,Z), are in sufficiently good agreement with all available
experimental findings.@S0163-1829~98!05947-5#
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I. INTRODUCTION

It has been known for a relatively long time that som
multiply charged ions~e.g., with core chargeZ56,7,8! es-
caping solid surfaces in the normal emergence geometry
ture a solid electron into a highly excited Rydberg sta
Several papers1–4 report that in the case of the hydrogenlik
sulfur, chlorine, and argon~S VI, Cl VII , and ArVIII ! moving
at intermediate velocities (v'1 a.u.), a remarkable selectiv
population of few Rydberg states around the principal qu
tum numbern'Z appears for all relevant angular mome
tum quantum numbersl 50,1, . . . ,n21. In the cited beam-
foil experiments, carbon foils have been used. The rela
level population probabilities have been measured ex
sively by methods of optical spectroscopy, detecting the p
ton deexcitations of formed Rydberg states in the outgo
part of the ionic trajectory. In the presentation of experime
tally obtained population curves, an absence of an opt
signal in the detector has been interpreted4 as a vanishing
population probability of the tested Rydberg states~n,l!.

From a theoretical point of view, even in the simple
~normal emergence! geometry, the electron-capture pr
cesses into Rydberg states of a moving multiply charged
represent an extremely complex quantum-mechanical p
lem. The quantum picture of the process essentially depe
not only on the value of the ionic chargeZ, but also on the
velocity region of the ionic projectile. Over the past deca
many valuable contributions have been made to theab initio
quantum-mechanical calculations of relevant physical qu
tities as matrix elements and transition rates~see, for ex-
ample, Refs. 5–8!. Most of the theoretical studies performe
so far have concentrated on the low velocity regionv
!1 a.u.) of the multiply charged ions, in which a resona
PRB 580163-1829/98/58~24!/16455~15!/$15.00
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character of the electron-capture process is dominant.
natural to expect, however, that with an increasing velocitv
of the projectiles, both the adiabatic approximation and
supposition about resonant electron captures break do
Having faced the complexity of reported experimen
data1–4 we concluded that the selective population of Ry
berg statesn'Z for v;1 a.u. andZ56, 7, and 8 must be
considered from the very beginning as a nonadiabatic
nonresonant electron-capture process.

A systematic quantum-mechanical study of the cit
experiments1–4 has been developed recently,9 under the re-
striction to the low angular momentum quantum numb
~l 50, 1, and 2!. The mathematical basis for our dynam
quantum model has been found through a generalizatio
Demkov-Ostrovskii’s asymptotic theory10,11~used previously
in the study of ion-atom collisions at arbitrary velocities!.
The obtained formula for the population probabili
Pnl(v,Z) of the Rydberg state~n,l! predicted very well the
selectivity n'Z of the electron-capture process as a ba
experimental result in the intermediate velocity region of t
multiply charged ionic projectile.

An important experimental fact, however, has not be
supported by the cited model.9 Namely, in the case of ionic
Rydberg sublevelsl 51 and 2 of ArVIII , it has been
observed2 that the peak in then dependence ofPnl(v,Z) is
shifted from the ‘‘normal’’ positionn'Z58 to n511, be-
coming at the same time very pronounced@see Figs. 7~b! and
7~c!#. In other words, a resonance-type shape has been
dently superimposed on the ‘‘normal’’ forms of the popul
tion curves, suggesting a kind of resonance phenomeno

There was also an additional detail in some of the exp
mentally registered population curves which has not b
taken into account more carefully in our model.9 Namely, in
16 455 ©1998 The American Physical Society
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16 456 PRB 58LJ. D. NEDELJKOVIĆAND N. N. NEDELJKOVIĆ
the case3,4 of the ions SVI and ClVII with l 50, 1, and 2, as
well as in the case2 of the Ar VIII ion with l 50, the experi-
mentally observedPnl curves rapidly decrease after the
‘‘normal’’ maxima at n'Z @see Figs. 5, 6, and 7~a!#,
whereas the proposed model9 predicts a slightly slower de
creasing of the curves. In other words, instead of the re
nance forms of ArVIII type ~with l 51 and 2!, the shapes of
the experimentally obtained population curves for the
cases suggest a thresholdlike behavior in the highern region.
It is worth noting that a dilemma about the interpretation
the population curves for highern values has been prese
from the very beginning of the experimental studies of
Rydberg-state formation at solid surfaces~see, for example
Refs. 12 and 4!.

This paper is devoted to an analysis of the resonance
threshold phenomena in the context of further elaboration
our quantum nonresonant dynamic model.9 We realized that
the study of these phenomena requires a few nontrivial m
ematical extensions of the asymptotic methodology expo
in Ref. 9. In the framework of the energy eigenproblem c
culations~fixed ion-surface distanceR! it was necessary to
find a new set of the energy eigenfunctions valid in the v
vicinity of the ion-surface potential barrier top. In that sen
a generalization of Slavyanov’s etalon equation method13,14

has been done~instead of the JWKB method9!. The previ-
ously used9 electron-capture quantum dynamics (R5vt
Þconst) of Demkov-Ostrovskii’s type is extended by t
method of the complex eigenenergies.15 This has been done
in order to include an ionization mechanism activity appe
ing with those ionic Rydberg states dominantly popula
above the Fermi levelEF of the solid conduction band. Ou
%-matrix multichannel approach9 to the final expression fo
the population probabilityPnl(v,Z) is elaborated in accor
dance with the changes cited above.

The following physical picture of the Rydberg-lev
population of multiply charged ions at solid surfac
emerges from the analysis which will be explicated in t
paper. First of all, from the standpoint of a pure electro
capture process, the ‘‘resonances’’~defined as the ionic Ry
dberg states withn5nres and populated with sufficiently
high probabilities! are not characteristic only of the ArVIII

ions but also the ions of SVI and ClVII . However, in the case
of S VI and ClVII ions for l 50, 1, and 2 as well as forl
50 of Ar VIII , these Rydberg resonances are formed do
nantly at some critical ion-surface distanceRc
5Rc(n,l ,Z,v) when their energy levelsEA are positioned
above the Fermi levelEF of the solid. Accordingly, they will
be destroyed fast by the resonant ionization mechan
Such kinds of short-lived Rydberg resonances will not
able to send a sufficiently intense photon radiation bef
their ionization decay; in that sense we can say that they
be ‘‘hidden’’ from the standpoint of the detection system
optical spectroscopy. The same holds for all other Rydb
states~n,l! formed by the electron capture aboveEF , i.e., for
levels satisfying the conditionn.nthr . Thus, the absence o
the signals in the detector appears as a thresholdlike beh
of Pnl curves. Our calculations of threshold valuesnthr are in
a sufficiently good correlation with experimental data~see
Figs. 5, 6, and 7!.

On the other hand, the Rydberg resonances of ArVIII ions
for l 51 and 2 are formed below the Fermi levelEF so that
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the ionization of these states will be suppressed by the fi
valence band of the solid. Their photon deexcitations w
result in very pronounced and experimentally observa
peaks in Pnl curves. Roughly speaking, the ArVIII reso-
nances~with l 51 and 2! are formed dominantly at critica
ion-surface distancesRc by an electron tunneling in the ver
vicinity of the potential barrier top. In other words, the hig
values ofPnl for n5nres of the mentioned ArVIII cases can
be attributed to a high transparency of the ion-surface bar
under the described conditions. Our calculations showed
the resonant valuesnres are placed just at the experimental
detected valuenres511 @see Figs. 7~b! and 7~c!#. Moreover,
the shapes of the theoretically predictedPnl graphs around
n5nres coincide well with the experimental findings.

This paper is organized as follows. In Sec. II we form
late the problem in the context of our model of the Rydbe
state population process. Section III is devoted to the st
of the energy eigenproblem of the ion-surface system. Qu
tum dynamics of the process is treated in Sec. IV, in wh
we calculated the experimentally verifiable population pro
ability Pnl . Some relevant concluding remarks will be give
in Sec. V.

Atomic units (e25\5me51) will be used through the
paper unless indicated otherwise.

II. FORMULATION OF THE PROBLEM

A general structure of our model of the Rydberg-sta
formation at a solid surface has been described previous9

In this section we shall formulate the problem, explicating
more detail only those points which are relevant in our s
sequent discussions.

A. Eigenproblem of the Hamiltonian

We consider an active electron (e2) of the process in the
Coulomb field of pointlike multiply charged ionic core (Z
@1) and in the field of a polarized semi-infinite conductin
solid. For fixed and largeR, the polarized solid interacts with
the electrone2 ~positioned outside the solid! by forces of the
electron image (e1) and of the ionic core image (2Z); Fig.
1~a!. The potential of the active electron placed inside t
solid is described by the Sommerfeld model. Difficulti
with forms of the image potentials in the near surface reg
will not be essential11 in determination of the population
probability within the asymptotic methodology applied
this paper. Behavior of the total potentialU of the active
electron along thez axis is presented in Fig. 1~b!.

In our subsequent discussion, two types9 of molecularlike
eigenfunctions of the HamiltonianH of the active electron
will play an important role, corresponding to the continuo
and discrete parts of the energy spectrum. We have

HFMA5EFMA , E52
g2

2
~2.1a!

and

HFAM5EAFAM , EA52
gA

2

2
, ~2.1b!
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PRB 58 16 457RESONANCES AND THRESHOLDS IN THE RYDBERG- . . .
whereg and gA are the corresponding continuous and d
crete energy parameters, respectively.

The energy eigenproblem~2.1a! for the function FMA
will be solved in the narrow cylindrical region around thez
axis @see Fig. 1~a!# representing the most relevant region f
the electron transitions into the low angular momentum R
dberg statesl 50, 1, and 2. In that case we can separ
variables in the eigenproblem~2.1a! by using the parabolic
coordinatesj5r A1zA , h5r A2zA , andw5arctan(y/x).

We express the functionFMA in the form

FMA5
XMA~j!YMA~h!

Ajh
exp~6 imw!, ~2.2!

where

d2XMA~j!

dj2 1P2~j,b1!XMA~j!50, ~2.3a!

d2YMA~h!

dh2 1Q2~h,b2!YMA~h!50, ~2.3b!

whereasm stands for the absolute value of the magne
quantum number (m50,1,2, . . . ). The relevant separation
constantsb1 andb2 are related byb11b25Z. We impose
the following boundary conditions:XMA(0)50, XMA(`)
50 andYMA(0)50, YMA(h)5~incoming1reflecting wave!,
in solid.

FIG. 1. ~a! Geometry of the process. The potentialsUA , UM ,
andUAM are explicated in Ref. 9.~b! Energies of the process in th
stage when the electron-capture probability reaches maxim
@Ar VIII ion at ion-surface distanceRc526.6 a.u., E52g/2, g
50.6 a.u.; the parametersRc andg correspond to the electron cap
ture into the Rydberg state~n510, l 51!#. Note a relatively flat
plate of the potential curveU5UA1UM1UAM .
-

-
e

c

The variables of the eigenproblem~2.1b! can be separated
in two different ways, depending on the relevant space
gions. Restricting ourselves to the large region around
ionic core@see Fig. 1~b!#, a separation of variables in spher
cal coordinates is possible, so that we have the eigenfunc
FAM5FAM(r ,u,w) associated with the quantum numbe
(n,l ,mA). On the other hand, in the bulk of the solid and
the region around the ionic core, as well as in the narr
cylindrical region around thez axis, the separation of vari
ables is possible by using the parabolic coordinates, wh
leads us to the functionFAM5FAM(j,h,w) characterized
by the parabolic quantum numbers (n1A ,n2A ,mA).

For the purpose of quantum dynamics we need exc
sively those parabolic statesFAM(j,h,w) associated with
the energy levelsEA above the Fermi levelEF so that the
boundary conditions are given byXAM(0)50,XAM(`)50
andYAM(0)50,YAM(h)5 outgoing wave, in solid. The lat
ter of the two conditions indicates that the metallic sta
above the Fermi levelEF are empty~in the cold metal ap-
proximation! and can be occupied by a time-decay mec
nism of the eigenstateFAM(j,h,w). The corresponding ion-
ization rateGm

ion(R) is defined by15

ĔA~R!5EA~R!2
i

2
Gm

ion~R!, ~2.4!

where ĔA(R) represents the complex energy of the eige
problem~2.1b! for fixed and largeR. The indexm stands for
a set of parabolic quantum numbers associated with the fu
tion FAM .

B. Quantum dynamics of the Rydberg-state formation

We shall first formulate the electron-capture dynamics
glecting the possibility of the Rydberg-state ionization. Aft
that we pass to a more realistic, ‘‘renormalized’’ quantu
dynamics, which takes into account the ionization mec
nism of Rydberg states dominantly formed aboveEF .

We consider the electron capture into the Rydberg s
~n,l! as an electron transition from its solid eigenstateFM

g ~at
time t50! to a moving atomic statewA

nl(t). A procedure
explicated in Ref. 11~briefly reviewed in Ref. 9! enables us
to express the transition probability of the process in terms
the mixed electron fluxI (t) through a moving Firsov plane
SF , positioned between the solid surface and the moving
@see Fig. 1~a!#. Namely, we have

I ~ t !5
i

2 E
SF

F¹CM
g

CM
g 2

¹CA
nl*

CA
nl*

22ivS 12
da

dRDezGCA
nl* CM

g dS, ~2.5!

where a5a(t) denotes theSF plane instant position with
respect to the moving ion, whereasdS5dSez . The time-
dependent wave functionCM

g (t) represents an evolved initia
stateFM

g (r ) at time t. For CA
nl we have a state that wil

evolve into the moving atomic statewA
nl(t) at t→`. At suf-

ficiently large ion-surface distanceR5vt, we take9 that the
functions CM

g (r ,t) and CA
nl(r ,t) represent the space-tim

m
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modifications of the eigenstatesFMA andFAM @Eqs.~3.13a!
and ~3.3! of Ref. 9, respectively#.

The electron-capture transition probability from a set
initial states of unitg interval ~around giveng! of the foil
valence band to the moving Rydberg state~n,l! during a fi-
nite time interval fromt50 to t is determined by9

Tnl
g ~ t !5U E

0

t

I ~ t !dtU2

. ~2.6!

In order to estimate the critical ion-surface distanceRc where
the electron-capture process takes place dominantly, we
the normalized electron-capture rate

G̃nl
g ~R!5

1

Tnl
g

dTnl
g ~ t !

dR
, ~2.7!

where Tnl
g 5Tnl

g (`). By definition, the critical distanceRc

represents the position of maximum of the transition r
G̃nl

g (R) as a function ofR.
The ionization mechanism of the Rydberg states of

multiply charged ions escaping a solid surface at interme
ate velocities is not yet known in more detail. It is a separ
and complex problem to incorporate simultaneously the i
ization and electron capture from the very beginning of
calculation in a dynamic model of Demkov-Ostrovskii
type. We realized that a sufficiently good approach, corre
ing with the existing experimental facts,2–4 can be based on
the following transformation of the functionCA

nl(t):

CA
nl~ t !→C̄A

nl~ t !5Em0
~ t !CA

nl~ t !, ~2.8!

where

Em0
~ t !5expF2

1

2 E
0

t

Gm0

ion~R!dtG!1, ~2.9!

whereasm0 represents a set of parabolic quantum numb
corresponding to the leading state from a set of all poss
intermediate statesFAM5FAM(j,h,w).

By using the fast ionization condition~2.9! we can obtain
a transformed expression for the transition probabilityTnl

g

into a Rydberg state~n,l! dominantly formed aboveEF , i.e.,
for Rc,RF . The ion-surface distanceRF is defined by
uEA(RF)u5f, where f denotes the work function of th
solid. On the other hand, the influence of the ionization p
cess on the electron transitions localized mainly atRc.RF is
negligible. Therefore, including the ionization, we arrive
the following expression forTnl

g :

Tnl
g 5U E

0

`

I nl
g ~ t !dtU2

; Rc.RF , ~2.10a!

Tnl
g 5U E

RF

`

I nl
g ~ t !dtU2

; Rc<RF . ~2.10b!

We specified the initial and final states in the mixed fluxI (t)
by using the notationI (t)5I nl

g (t).
The population probabilityPnl of a Rydberg state~n,l! is

given by the multichannel expression9
f

se

e
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i-
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Pnl5@12exp~2Tnl!#expS 2 (
n8Þn

^Tn8 l 8& l 8D , ~2.11!

whereTnl5*(ngTnl
g dg is the total transition probability and

^Tn8 l 8& l 8 denotes the averaged value of the transition pr
ability Tn8 l 8 with respect tol 8.

III. CALCULATION OF THE ENERGY EIGENFUNCTIONS
FMA AND FAM

Our first task is to calculate the parabolic eigenfunctio
FMA(j,h,w), which will be done in Secs. III A, III B, and
III C. The results obtained can be used in the study of
parabolicFAM(j,h,w) states~Sec. III D!. At the end of Sec.
III D we shall discuss the spherical eigenfunctio
FAM(r ,u,w).

A. Scaling procedure

Differential equations~2.3a! and ~2.3b! can be trans-
formed by an appropriate scaling procedure into the for
suitable for application of the etalon equation method.

In the scaling procedure of theXMA equation we intro-
duce the scaling parameteraj524ẼR/(Z21), where Ẽ
5E2DE and DE5(2Z21)/(4R), as well as the scaled
variablej̃5j/(2Raj). Thus, we arrive at a scaled equatio
of the form ~2.3a!, but with the scaled quasimomentum

P̃2~ j̃,aj!52bj
2

pj
2~ j̃ !

4
1bj

l̃j

j̃
1

t

j̃2
, ~3.1a!

where

bj52RajA22Ẽ, l̃j5
b1

A22Ẽ
, t5

12m2

4
.

~3.1b!

The functionpj( j̃) is defined by

pj
2511

j̃

12 j̃/ j̃0

, ~3.1c!

wherej̃05(2/aj)(Z21/2)/(Z21).
Passing to a scaling procedure of the differential equa

~2.3b! for the function YMA(h), we introduce the second
scaling parameter

a[ah52
2ER

Z2 1
4

, ~3.2a!

as well as the scaled variableh̃5h/(2Ra). The correspond-
ing scaled quasimomentum is given by

Q̃2~ h̃,a!52b2
p2~ h̃,a!

4
1b

l̃

h̃
1

t

h̃2 , ~3.2b!

where

b52RaA22E, l̃5
b2

A22E
. ~3.2c!
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The functionp2(h̃,a) is defined by

p2511H 2

a

22ah̃0

22ah̃
2

2

a

12ah̃0

12ah̃
; h̃,1/a

U0 /E; h̃.1/a,
~3.2d!

where h̃05(1/a)(Z21/2)/(Z21/4). For the functionp
5p(h̃) we adopted the following phase convention:p5upu
for p2.0 andp5 i upu for p2,0.

A typical behavior of the functionQ̃2(h̃,a) is illustrated
in Fig. 2~a! for fixed a, b, l̃, andt. The turning pointsh̃1
and h̃2 satisfy a third-order algebraic equation of the for
h̃31a1h̃21a2h̃1a350. Its coefficients are expressed e
clusively in terms ofa andZ; moreover, for sufficiently large
Z, thea dependence is dominant.

A classification of the turning points configurations wi
respect to the values ofa can be done by using the discrim
nant D5D(a,Z) of the mentioned algebraic equation.
Fig. 2~b! we presented thea dependence of theD(a,Z)
function for relevant valuesZ56, 7, and 8 of the experimen
tally investigated ions SVI, Cl VII , and ArVIII . In the limiting
caseh̃15h̃2 , the values of the scaling parametera are de-
termined byD(a0 ,Z)50. By solving this equation we ob
tain the valuesa051.115, 1.035, and 0.965 forZ56, 7, and
8, respectively.

FIG. 2. ~a! Typical behavior of the functionQ̃2 along theh̃ axis.
~Parameters of the system are the same as in Fig. 1; for thes
rametersa51.24.! ~b! The a dependence ofD(a,Z) for Z56, 7,
and 8.
B. Application of the etalon equation method

The scaled differential equations for the functionsX̃MA( j̃)
and ỸMA(h̃) will be solved by using a procedure based
Slavyanov’s etalon equation method.13,14 Its application to
the X̃MA( j̃) case follows the standard etalon equation tre
ment. However, a generalization of Slavyanov’s method
necessary for solving theỸMA(h̃) equation.

We look for a solutionX̃MA( j̃) regular at j̃50 in the
form

X̃MA~ j̃ !5
1

Auj8
Mlj ,m/2~bjuj!, ~3.3!

where Mlj ,m/2(bjuj) represents the Whittaker function

whereasuj is an etalonic variable anduj85duj( j̃)/dj̃. The

scaled boundary conditionX̃MA(`)50 will be satisfied only
if

lj5n11
m11

2
, ~3.4!

wheren150,1,2, . . . denotes the parabolic quantum numb
In the lowest order of approximation we obtainbjuj'gj
anduj8'1, so that we can write

X̃MA~ j̃ !5XMA~j!5Mn11~m11!/2,m/2~gj!. ~3.5!

On the other hand, using the obtained value for the sca
spectral parameterl̃j , we have

b1'lj
A22Ẽ2

F̃

4Ẽ
~3lj

21t!. ~3.6!

In order to solve the scaled differential equation f
ỸMA(h̃), we define the regionsA1 andA2 on theh̃ axis@see
Fig. 2~a!#, which contain the turning pointsh̃1 and h̃2 , re-
spectively. In that case the etalon equation method can
applied separately in the regionsA1 andA2 .

In the ‘‘atomic’’ regionA1 , we have

ỸMA
~1! ~ h̃ !5

Ã

Au8
Ml,m/2~bu!, h̃PA1 , ~3.7!

whereÃ is a constant andu8(h̃)5du(h̃)/dh̃. The variable
u is determined by

u~ h̃ !5E
0

h̃
p dh̃1

2l

b F E
0

h̃
pS E

0

h̃
p dh̃ D 21

dh̃

2p~0!E
0

h̃

~ph̃ !21dh̃G1OS 1

b2D , ~3.8!

whereas the spectral parameterl̃, Eq. ~3.2c!, is given by

l̃5lp~0!1
p8~0!

bp~0!
~3l21t!1OS 1

b2D . ~3.9!

The results presented up to now enable us to determine
etalonic spectral parameter:

pa-
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l5p21~0!lM1O~1/b!, lM5
Z

g
2S n11

m11

2 D .

~3.10!

The solutionỸMA
(2) (h̃) in the regionA2 , encompassing the

turning pointh̃2 , is given by

ỸMA
~2! ~ h̃ !5

C̃

As8
@Ai ~b2/3s!1C Bi~b2/3s!#, h̃PA2 ,

~3.11!

where C̃ and C are constants ands8(h̃)5ds(h̃)/dh̃,
whereas Ai(x) and Bi(x) denote the Airy functions. For the
function s(h̃) we get

s~h̃!5S 3

4 E
h̃2

h̃
p dh̃ D 2/3

2
lp~0!

b S 3

4 E
h̃2

h̃
p dh̃ D 23/4

3E
h̃2

h̃

~ph̃ !21dh̃1OS 1

b2D . ~3.12!

The obtained solutionsỸMA
(1) (h̃) and ỸMA

(2) (h̃) have to
match smoothly in the subbarrier regionA5A1ùA2 @see
Fig. 2~a!#; in other words, we impose the following tw
matching conditions:

ỸMA
~1!8ỸMA

~2! 5ỸMA
~1! ỸMA

~2!8, h̃PA, ~3.13a!

ỸMA
~1! 5ỸMA

~2! , h̃PA. ~3.13b!

According to the standard procedure of the etalon equa
method,14 for the functionsỸMA

(1) (h̃) and ỸMA
(2) (h̃) in Eqs.

~3.13a! and ~3.13b! we can use their asymptotic forms.
From Eq. ~3.7! we see that the asymptotic form of th

function ỸMA
(1) (h̃) for h̃PA is determined by the asymptoti

expansion of the Whittaker functionMl,m/2(bu). We real-
ized that with an appropriate choice of the asymptotic fo
of this function, the following fact appears: in the case
Rydberg-level population of multiply charged ions, not on
the argumentbu but also the first indexl can be considered
as a large parameter. Indeed, for Rydberg states of mul
charged ions (Z@1), the values ofl;Z, Eq. ~3.10!, will
also be large~for the most relevant valuesn150 andm50!.

It is known16 that asymptotic forms of the Whittaker func
tion Ml,m/2(bu) depend on the relative order of the argume
and the first index; more precisely, the character of
asymptotic expansions is determined by the ratious(h̃)
5bu(h̃)/4l. For us(h̃)>1, we must explicitly use two-
large-parameter asymptotics16 of the Whittaker function.
However, if us(h̃)@1, the argumentbu of Ml,m/2(bu) can
be considered as a much larger quantity in comparison to
first index l. In that sense, instead of two-large-parame
asymptotics, it is sufficient to use a one-large-parame
asymptotic expansion,17 i.e., we can take that only the argu
mentbu represents a large parameter.

The mentioned asymptotic forms can be related to
scaling parametera. Namely, for h̃PA we have us(h̃)
' 1

2 (11a). Therefore, in the close turning points configur
tion (a'a0'1) we haveus(h̃)'1 and, consequently, fo
the asymptotic form of the functionỸMA

(1) (h̃) we must use the
n

f
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e

expression obtained by means of two-large-parameter
ymptotics of the Whittaker functionMl,m/2(bu). Denoting
the gamma function byG~¯!, we have

ỸMA
~1,I !~ h̃ !5

ÃA

Au8
@B1~l,us!e

2 f 1l f 2
22l

1B2~l,us!e
22 f 1l f 2

2l#, ~3.14a!

whereA(us)5G(m11)(121/us)
21/4 and

B1~l,us!'G21S m11

2
2l D S l

eD 2l

, ~3.14b!

B2~l,us!'G21S m11

2
1l D S l

eD l

expF6 ipS l2
m11

2 D G ,
~3.14c!

whereas f 1(us)5@us(us21)#1/2 and f 2(us)5us
1/21(us

21)1/2.
On the other hand, the distant turning points casea

@a0) is associated withus(h̃)@1, so that as a sufficiently
good asymptotic form ofỸMA

(1) (h̃) we can use the expressio
obtained by one-parameter asymptotics:

ỸMA
~1,II !~ h̃ !5

Ã

Au8
G~m11!FG21S m11

2
2l D

3S l

eD 2l

e2 f 10l f 20
22l1¯ G , ~3.15!

where f 10(us)5us21/2 andf 20(us)52us
1/2.

The proposed asymptotic forms of the functionsYMA
(1,I ) and

YMA
(1,II ) will differ exclusively with the values ofa which are

very close toa05a0(Z).
The asymptotic form ofỸMA

(2) in the matching regionA is
determined by the asymptotic behavior of the Airy functio
Ai( b2/3h̃) and Bi(b2/3h̃) for sufficiently large argumen
b2/3h̃:

ỸMA
~2! ~ h̃ !5

C̃C

Ap

~b2/3s!1/4

As8
F ~12 iC !

2C
e2 f 31ef 3G ,

~3.16!

where f 35 2
3 bs2/3.

With the known asymptotic forms ofỸMA
(1) (h̃) and

ỸMA
(2) (h̃) we can return to the first matching conditio

~3.13a!, which will be transformed into an appropriate ‘‘dis
persion relation.’’ Of course, since the functionỸMA

(1) (h̃) has
two asymptotic forms corresponding toa'a0 and a@a0 ,
we obtain two different expressions for the dispersion re
tion. In the first of the mentioned cases we have

sinFpS m11

2
2l D G5

C

12 iC
expF6 ipS m11

2
2l D GD~l!,

~3.17a!

where

D~l!5e24 f 1l f 2
4le2 f 3. ~3.17b!
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A similar dispersion relation follows from the conditio
~3.13a! for a@a0 ; the only change consists in replacing t
function D(l) of Eq. ~3.17a! by the functionD0(l):

D0~l!5e24 f 10l f 20
4le2 f 3. ~3.17c!

The second matching condition, Eq.~3.13b!, enables us to
express the constantÃ in terms of the constantsC andC̃. For
a'a0 , we have the following relation:

Ã5C̃CS 2

p D 1/2

b21/6

GS m11

2
2l D

G~m11! S l

eD lS 12
1

us
D 1/4

D1/2~l!.

~3.18!

The expression~3.18! also holds fora@a0 , but instead of
(121/us)

1/4D1/2(l) we must takeD0
1/2(l).

C. Energy eigenfunctionsFMA
„I … and FMA

„II …

As a consequence of the applied matching procedure,
different classes of the eigenfunctionsFMA must be distin-
guished: in the case of close turning points configurat
(a'a0) we shall have the functionsFMA

(I ) , whereas for dis-
tant turning points configuration (a@a0) the functionsFMA

(II )

will be relevant.
Recalling Eqs.~2.2! and ~3.5!, we have

FMA
~ I ! 5

e6 imw

Ajh
Mn11~m11!/2,m/2~gj!ỸMA

~ I ! ~ h̃ !, ~3.19!

whereỸMA
(I ) (h̃) is expressed byỸMA

(1) (h̃) for h̃PA1 and by

ỸMA
(2) (h̃) for h̃PA2 , Eqs.~3.7! and~3.11!, respectively. We

determined the constantC̃ by a normalization procedure
based on the eigendifferential technique:18

uC̃u5F ~m1n1!!

n1!m! 2 G1/2 b1/6

@2p f ~l!#1/2

1

uCu
, ~3.20a!

where

f ~l!521
D2~l!

4 sin2FpS l2
m11

2 D G , ~3.20b!

whereasC is determined by the dispersion relation~3.17a!.
With the constantC̃ known, we completed the eigenfunctio
FMA

(I ) on the entireh̃ axis.
In our subsequent discussions, however, we need

functionFMA
(I ) exclusively on the Firsov planeSF . As we can

see in the context of quantum dynamics~Sec. IV!, the mov-
ing SF plane is positioned in theA1 region @see Fig. 2~a!#.
Therefore, an expression forFMA

(I ) on the SF plane can be

obtained from Eq.~3.19! by setting ỸMA
(I ) (h̃)5ỸMA

(1) (h̃).
However, such a formula forFMA

(I ) would be expressed in
terms of the Whittaker functionMl,m/2(bu), so that our fur-
ther analysis would be possible on a numerical level exc
sively. This numerical approach is not suitable for our qu
tum dynamic considerations, where we need a sufficie
o

n

he

-
-
ly

simple and plausible analytic expression forFMA
(I ) on theSF

plane which will be correct for all parameters of the syste
(g,n,l ,R,Z).

An appropriate asymptotic expression for the functi
FMA

(I ) on theSF plane can be obtained through a procedure
analytic continuation of the already known asymptotic fo
of that function in the matching regionA. As a result we
have the following form of the functionFMA

(I ) on theSF plane
and fora'a0 :

FMA
~ I ! 5NgRa1Raaae2g̃z, ~3.21!

where

g̃5
g

AC0
S 11

3

4a D , C0511
3

2a
, ~3.22a!

and

a1R5
1

AC0
FlM1

1

4gC0
S 11

9

4a D G , ~3.22b!

aa5
1

AC0
S 2lM2

AC0

2 D . ~3.22c!

The quantityNg is given by

Ng5
1

pA2 f
C0

21/4g1/212N1eN22N12Z/~gAC0!~2AC0!2N1,

~3.23!

where

N15
1

4gC0AC0
S 11

9

4a D ~3.24a!

and

N25
1

4gC0AC0
S 11

3

4a D . ~3.24b!

The expression forNg can be simplified if we take into
account thatD(l)!1. In that case, from Eq.~3.20b! we get
f (l)'2, for all values of lÞlA , where sin$p@lA2(m
11)/2#%50. Let us note thatFMA

(I ) is proportional to
(a/R)m/(2AC0), wherea/R'1/2. Accordingly, with the lead-
ing term in the transition probabilityTnl , we havem50.

What remains is to find an appropriate expression for
energy eigenfunctionFMA

(II ) on theSF plane, responsible for
the case of distant turning points configuration (a@a0). For
that purpose we note that the above-described procedure
be repeated step by step, keeping in mind that instead o
asymptotic expression given by~3.14a! we must use the as
ymptotics described by Eq.~3.15!. In this way, we obtain

FMA
~ II !5Ng0RlM11/~4g!a2lM21/2e2gz, ~3.25a!

where

Ng05
1

2p
g1/211/~2g!~2e!1/~4g!22Z/g11/~2g!. ~3.25b!



n
q
.

io
ed
fo

f

q
s

ex

-
et
ll-
e
-

n

E

te
s

r

t
-

ith

lid
-
-

our
ro-
ble

n-
of

D.

into
te
bout

r-

lly

p-

-

the

is
We
ier

r

and
ions
ical

es

16 462 PRB 58LJ. D. NEDELJKOVIĆAND N. N. NEDELJKOVIĆ
Expression~3.25! coincides with the asymptotic form~large
R! of the FMA function obtained previously9 within the
framework of JWKB method.

D. Energy eigenfunctionsFAM
„I … , FAM

„II … , and FAM
„III …

We shall first discuss the parabolic eigenfunctio
FAM(j,h,w). Using the same scaling procedure in E
~2.1b! as in the case of Eq.~2.1a!, all considerations of Sec
III B can be repeated step by step.

As an output of these calculations, we obtain a dispers
relation in which the outgoing behavior of the consider
function is taken into account. The explicit expression
that dispersion relation has a form given by Eq.~3.17a!, but
we must takeC5 i instead of the constantC. Also, an atomic
spectral parameter, denoted bylA , must be used instead o
l. The values of the functionsD(lA) andD0(lA) for both
close and distant turning points configuration cases, E
~3.17b! and ~3.17c!, represent exponentially small quantitie
again. Accordingly, a new dispersion relation is satisfied
clusively for a set of discrete values of the parameterlA
5n2A1(mA11)/2, wheren2A50,1,2, . . . represents the sec
ond parabolic quantum number. The obtained values of
lonic spectral parameterlA enable us to reproduce the we
known asymptotic expression for the atomic energy lev
EA52gA0

2 /21DE, wheregA05Z/n. In that sense, the ion
surface distanceRF is given byRF5(Z21/2)/(gA0

2 22f).
As in the case of theFMA function, the explicit expres-

sions for the functionsFAM(j,h,w) depend on the turning
points configuration, described by the scaling parameteraA
522EAR/(Z21/4). In the cases of close and distant tur
ing points, we have the parabolic functionsFAM

(I ) andFAM
(II ) ,

respectively. These eigenfunctions are determined by
~3.19!, but instead ofm, n1 , andg we must takemA , n1A ,
andgA , wheren1A1n2A1mA115n.

The time-decay process of the parabolic eigensta
FAM

(I ,II ) for R,RF is described by the ionization rate
Gm

ion(R), Eq.~2.4!. In order to obtain the quantityGm
ion(R) for

the functionFAM
(I ) , we start from the dispersion relation fo

the etalonic spectral parameterlA . Recalling that this rela-
tion has the same form as Eq.~3.17a!, except inC5 i , we
consider the etalonic spectral parameterlA as a complex
quantity, i.e., we takelA→ľA5lA2 id. Supposing thatd
52Im(ľA)!1, we get

Gm
ion~R!'

Z2

pn3 D~lA!, ~3.26!

whereD(lA) is determined by Eq.~3.17b!. The expression
~3.26! holds also for the functionFAM

(II ) , but instead ofD(lA)
we have to takeD0(lA); see Eq.~3.17c!. By means of the
obtained ionization ratesGm

ion(R) we can verify that the fas
ionization condition, Eq.~2.9!, is satisfied for all experimen
tally tested ions. For example, by testing the ClVII case with
v52.50,n511, andl 51 we foundE'0.3, for t→`, so that
we can takeE!1.

The spherical solutionsFAM(r ,u,w)5FAM
(III ) of the eigen-

problem~2.1b! are already known@Eq. ~3.17a! of Ref. 9#. On
the Firsov plane we have
s
.

n

r

s.

-

a-

ls

-

q.

s

FAM
~ III !5NA0aZ/gA021e2gA0r A. ~3.27a!

For convenience we express the constantNA0 in the form

NA05ÑA0Snl~2gA0AR21r2!, ~3.27b!

wherer represents the radial coordinate on theSF plane. In
expression~3.27! we restricted ourselves to the states w
mA50. Namely, due to the orthogonality of the statesFMA
andFAM with respect to thef variable, only the statesmA
5m could be populated. On the other hand, the so
valence-band states withm50 are dominant in the electron
capture process we are considering@see the comment con
cerning the expression~3.21!#.

IV. CALCULATION OF THE POPULATION
PROBABILITY Pnl

The results obtained up to now enable us to explicate
final dynamic picture of the Rydberg-state population p
cess, as well as to calculate the experimentally verifia
population probabilityPnl(v,Z). In Secs. IV A and IV B we
shall perform the calculations considering the electro
capture dynamics without ionization. The consequences
the ionization activity are discussed in Secs. IV C and IV

A. Classification of the electron transitions
and the mixed flux I „t…

The electron-capture fluxI (t)5I nl
g (t) is adopted for a de-

scription of the nonresonant electron-capture processes
the ionic Rydberg states~n,l!. For that reason, at intermedia
stages of the ion-surface interaction we can speak only a
a kind of electron ‘‘transition’’ from the stateCM

g (t) to the
stateCA

nl(t), which are not the states of well-defined ene
gies. Only the molecularlike eigenstatesFMA and FAM are
the components of the mixed flux with definite, but genera
different, energies.

An additional fact characterizing the nonadiabatic a
proach based on the mixed fluxI nl

g (t) is that this quantity
represents a very complicated function of timet and energy
parameterg. According to the values of the scaling param
eter a, Eq. ~3.2a!, associated to each point of thegt plane,
we can distinguish between two regions, satisfying either
condition a,a0 or a.a0 . In the first case the turning
points h̃1 and h̃2 will be complex, and the second region
characterized by the real values of the turning points.
adopted the following terminology: we define the overbarr
electron transitions by the requirementa,a0 , whereas the
condition a.a0 will be associated with the underbarrie
transitions.

We realized that all points of thegt plane will not con-
tribute to the electron-capture process in the same degree
that a self-consistent procedure can indicate those reg
where the process is dominant. Namely, around the crit
ion-surface distancesRc5vtc , the main contribution to the
transition probabilityTnl

g (t), Eq. ~2.6!, can be expected from
those solid valence-band states positioned aroundg'gmax,
wheregmax denotes the maximum of the functionTnl

g (t) on
the g scale. In other words, a dominant contribution com
from the vicinity of the point (gmax,tc), so that a classifica-
tion of the relevant expressions for the mixed fluxI nl

g can be
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performed according to the valuesac5a(gmax,tc) of the
scaling parametera. The position of the point (gmax,tc) as
well as the value ofac at that point depend on the ioni
parametersn, l, Z, andv. For the experimentally tested pa
rameters only the casesac'a0 and ac@a0 appear, which
can be interpreted~in the sense mentioned above! as an elec-
tron ‘‘tunneling’’ in the vicinity of the potential barrier top
and a deep underbarrier ‘‘tunneling,’’ respectively.

In the casea'a0 , the mixed flux formula can be ob
tained by using the parabolic energy eigenstateFMA

(I ) and the
spherical eigenstateFAM

(III ) in order to obtain the functions
CM

g (t) andCA
nl(t). The choice of theFAM

(III ) function for the
molecularlike atomic stateFAM is motivated by the fact tha
we neglect the activity of the ionization mechanism in t
pure electron-capture dynamics, i.e., if the ionization w
absent, the detectors of the optical spectroscopy would
serve the spherical states~n,l!. Thus,

I ~ t !5
i

2
eiwtF g̃1gA01 ivS 122

da

dRD G
3E

0

2pE
0

`

FAM
~ III !* FMA

~ I ! ef A* 1 f Mr dr dc, ~4.1a!

where

w5 1
2 ~ g̃22gA0!22 1

2 v2S 122
a

RD . ~4.1b!

The space-time correction factorsf A and f M are calculated
beforehand within the asymptotic method of solving t
Schrödinger equation.9

Using the mean value theorem around the pointr0
5n2/@Z( l 11)#, we get

I ~ t !5
ipeiwt

gA0
2 N~R!F g̃1gA01 ivS 122

da

dRD G
3~11gA0a!e~ g̃2gA0!ae2g̃R, ~4.2!

where

N~R!5Ñ0RaRSnl~2gA0AR21r0
2! ~4.3a!

and

Ñ05ÑA0* NgS a

RD Z/gA023/22lM /AC0

exp~ f A* 1 f M !.

~4.3b!

The exponentaR appearing in Eq.~4.3a! is determined by

aR5
Z

gA0
2

3

2
1

1

4gC0
3/2 S 11

9

4a D . ~4.3c!

The calculated mixed electron fluxI (t), Eq. ~4.2!, represents
a functional of the Firsov plane positiona5gR, whereg has
the same form as in Ref. 9, but withg̃ instead ofg.

In the casea@a0 , the relevant formula for the mixed
flux is constructed by means of the energy eigenfuncti
FMA

(II ) andFAM
(III ) . Its explicit form is described by the expre

sion ~4.2!, but with C0 , aR , Ng , andg̃ transformed as fol-
lows:
e
b-

s

C0→1, aR→
Z

gA0
2

3

2
1

1

4g
, Ng→Ng0 , g̃→g.

~4.4!

It is worth noting that such an expression forI (t) has the
same form as in our previous paper based on the JW
approximation.9

B. Transition rate G̃nl
g
„R… and resonant quantum

numbers n res

In order to concretize the type of electron transitions a
to define the resonant quantum numbernres, we need to es-
timate first the critical ion-surface distancesRc by evaluating
the transition rateG̃nl

g (R), Eq. ~2.7!.

For a'a0 the transition rateG̃nl
g as a function ofR is

characterized by the bell-shaped maxima, placed at the
surface distancesRc with characteristic half-widthsDR. We
found that a sufficiently good estimation can be given by

Rc'2k~n,l ,v !Rm , Rm5
aR

gA0g1g̃~12g!
, ~4.5!

where k(n,l ,v) represents a modulating function, weak
dependent on the principal quantum numbern. In the case of
the low angular momentum Rydberg states~l 50, 1, and 2!,
we found as the best fit

k~n,l ,v !50.744S 110.298
k l

v D S 11
1

4nD , ~4.6!

where the parameterk l is determined byk051 and k1
5k252. Our explicit numerical calculations showed th
DR'7 a.u., for all experimentally relevant values of the p
rameters.

The ‘‘critical’’ valuesac5a(Rc) of the scaling paramete
a are very sensitive to the change of principal quantum nu
ber n. For the Rydberg states~n,l! populating in the close
turning points configuration, the values of the scaling para
eterac satisfy the condition

ac5
g2Rc~ac!

Z2 1
4

5a0 . ~4.7!

We define the resonant quantum numbernres as an integer
solution of Eq.~4.7!. To obtain the quantitynres it is not
necessary to include all possible values of the parameteg.
Namely, in the case of a ‘‘tunneling’’ near the top of th
potential barrier atR5Rc , we can takeg'gF , i.e., the main
contribution arises from valence-band levels placed right
low the EF level.

The results of our numerical treatment of Eq.~4.7! are
presented in Table I, where the relevant ionic velocities
taken from available experiments.2–4 We used the valuegF
50.47 a.u. as the energy parametergF of the Fermi level
EF , corresponding to the work functionf53 eV. In Table I
we see that the Rydberg resonances of ArVIII with l 51 and
2 haven5nres511 ~which is in full agreement with the ex
perimentally observed data2!. On the other hand, the reso
nance of ArVIII , with l 50 andn5nres512 theoretically ob-
tained on the basis of pure electron-capture calculations
means of mixed fluxI (t), has not been detected in expe
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ments. The theoretically obtained resonances are also ab
in the case of SVI and ClVII for all low values ofl.

In order to develop our electron-capture dynamics with
ionization for the casea@a0 , we calculated the transition
rateG̃nl

g (R), using the second expression for the mixed flu
mentioned in Sec. IV A. This procedure results again in
bell-shaped maxima of the quantityG̃nl

g (R) as a function of
R: the maxima positions atR5Rc are given by Eq.~4.5!,
but with the transformation~4.4! applied.

C. Transition probability Tnl
g and threshold quantum

numbers n thr

From the standpoint of detection by the methods of o
cal spectroscopy, only those Rydberg states~including reso-
nances! whose formations take place dominantly atRc.RF
~i.e., whenEA is below the Fermi levelEF! will survive and
be experimentally registered. In Fig. 3~a! we presented this
process schematically. On the other hand, all Rydberg st
dominantly formed aboveEF , i.e., under the conditionRc
,RF , will be destroyed fast by ionization and will not b
observed in the beam-foil experiments, Fig. 3~b!.

The presented structure of the processes follows from
analysis of the transition probabilityTnl

g , Eq. ~2.10!. Let us
consider, first, the case leading to an observable Rydb
state~n,l! populated dominantly below the Fermi levelEF so
that the influence of the ionization effect can be neglect
Since in this case we haveRc.RF , our calculation of the
transition probabilityTnl

g will be performed by means of Eq
~2.10a!.

In the configuration of close turning points (n'nres), i.e.,
for nPNr , a relevant formula for the population probabili
Tnl

g can be obtained by inserting Eq.~4.2! into Eq. ~2.10a!.
We get

Tnl
g 5Tutnl

g u2, Rc.RF , nPNr , ~4.8!

where

T5
p2

gA0
4 g2n1 /AC0uÑA0u2uNgu2T2~g!@~ g̃1gA0!2

1v2~122g!2#Snl
2 ~4n! ~4.9a!

and

TABLE I. Low angular momentum values of the resonant qua
tum numbernres for the ions of chlorine, sulfur, and argon~at ex-
perimentally tested velocities,v!.

nres

S VI

(v51.94)
Cll VII

(v52.50)
Ar VIII

(v51.42)

l 50 11 12 12
l 51 10 11 11
l 52 10 11 11
ent

t

,
e

i-

es

n

rg

d.

T5gZ/gA02~Z/g21/2!/AC023/2~12g!v2/@4gA0~gA0
2

1v2!#

3S 12
g

2D 24Zv2/@gA0~gA0
2

14v2!#

3@g~22g!#Zv2/@ g̃~ g̃21v2!#e2~2Z21!g/~4gA0!. ~4.9b!

The quantityutnl
g u2 is defined by

utnl
g u25v2aRG2~aR11!

@gA0g~aR11!v1V#21w2

~V21w2!aR12 ,

~4.10a!

where

V5@ g̃~12g!1gA0g#v. ~4.10b!

Taking into account that the quantityTnl
g as a function ofn

decreases rapidly in the regionn.nres, the obtained expres
sion can be used in the calculation of the transition probab
ties for n>nres.

In the configuration of distant turning points (nPN), the
relevant expression forTnl

g has the same form as given b
Eqs.~4.8!, ~4.9!, and~4.10!, but with the parametersC0 , c,

-

FIG. 3. The population process of Rydberg states~n,l! for Rc

.RF (uEAu.f) and Rc,RF (uEAu,f). ~a! Electron-capture
process followed by photon deexcitation.~b! Electron-capture pro-
cess followed by ionization decay of a ionic Rydberg state.
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Ng , andg̃ transformed in accordance with Eq.~4.4!. In this
way, we arrive at an expression forTnl

g which is applicable
for n,nres.

What remains is to consider the population probabilityTnl
g

of the Rydberg levels dominantly formed and destroy
above the Fermi levelEF . In this case the calculation ofTnl

g

must be performed by means of Eq.~2.10b!. We obtain

Tnl
g 5TuJnl

g u2; Rc,RF , nPNr , ~4.11a!

where T is given by Eq.~4.9a! with Snl(2RF) instead of
Snl(4n) and

uJnl
g u25

RF
2aRexpS 2

2V

v
RFD

~V21w2!2 $@11gA0gRF

1gA0g~aR11!v#21w2~11gA0gRF!2%.

~4.11b!

The corresponding expression forTnl
g in the casenPN is

obtained after the transformation explicated by Eq.~4.4! has
been done.

The activity of the threshold mechanism becomes evid
by means of a numerical test of the expression~4.11a! for
Tnl

g . Namely, it turns out that the calculated values ofTnl
g

become negligible for all experimentally tested ions~Z56,
7, and 8! with relevant velocitiesv and for all low-angular
momentum cases~l 50, 1, and 2!. In other words, we have
Tnl

g '0 for n.nthr , wherenthr is the threshold quantum num
ber. The quantitynthr11 represents a minimal integer sati
fying the conditionRc<RF . The numerically obtained val
ues ofnthr are presented in Table II.

An interplay of resonance and threshold phenomena
be seen if the results presented in Tables I and II are c
pared. It is clear that only the ArVIII resonance levelsn
511 for l 51 or 2 are observable. The other resonances
tained theoretically inside the electron-capture model ex
sively ~i.e., without taking their ionization into account! rep-
resent a set of short-lived Rydberg states, hidden for
optical spectroscopy measurements.

The formulas for the transition probabilityTnl
g enable us

to elucidate the nonresonant character of the electron-cap
process. Namely, the contributions of solid valence-ba
electrons in the process are different for different values on,
l, Z, andv. Theg dependence ofTnl

g for Ar VIII with l 51 at
an experimentally tested velocity (v51.42) is presented in
Figs. 4~a! and 4~b!. Note the differentTnl

g scales in Figs. 4~a!
and 4~b!. The Tnl

g curves forl 50 of Ar VIII , as well as for

TABLE II. Low angular momentum values of the thresho
quantum numbernthr for the ions of chlorine, sulfur, and argon~at
experimentally tested velocities,v!.

nthr

S VI

(v51.94)
Cl VII

(v52.50)
Ar VIII

(v51.42)

l 50 8 9 11
l 51 8 9 12
l 52 8 9 12
d

nt

an
-

b-
-

e

re
d

the experimentally tested ions SVI and ClVII with l 50, 1,
and 2, are similar to those presented in Fig. 4~a!.

It can be verified by direct numerical calculations that t
positions of all maxima of theTnl

g curves are placed at th
values g5gmax'gA(Rc). In other words, a quasiresona
‘‘kernel’’ gmax→gA(Rc) can be recognized for all relevan
values of the parametersn, l, Z, andv. This fact represents
the main reason which motivated us to express the result
the quantum dynamics based on the mixed fluxI nl

g in terms
of the most frequently used concepts of the adiabatic
resonant theories~see Sec. IV A!. The calculation of theac
values shows thatac.a0 , so that only the underbarrier ker
nels appear for the experimentally investigated ionic stat

D. Population probability Pnl

We finalize our study of Rydberg-state formation by
explicit calculation of the experimentally verifiable popul
tion probabilityPnl5Pnl(v,Z), determined by Eq.~2.11!.

To do this, we need first to calculate the transition pro
ability Tnl from all states of the foil conduction band to
Rydberg state~n,l!. The summation over discrete quantu
numbers is reduced to a summation over the parabolic qu
tum numbern1 and m5mA50 of the valence-band state
whereas the integration over energy parameterg must be

FIG. 4. Transition probabilitiesTnl
g ~per unitg! as a function of

the energy parameterg for Ar VIII (v51.42 a.u.) ion, fornPN,l
51 andnPNr ,l 51, respectively.
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taken from g5A2f to gU0
5A2U0. As in our previous

paper,9 we takeU0510 eV as the relevant value in the ca
of graphite foils.

In order to proceed from the probabilityTnl to the experi-
mentally verifiable multichannel population probabilityPnl ,
Eq. ~2.11!, it is necessary to define a set of the backgrou
states (n8,l 8) that ‘‘interfere’’ in the population process o
the state~n,l!. A suitable interference scheme follows fro
the analysis of the interference factorspn8 l 8

gnl (t) appearing in
our %-matrix formalism.9 We define the background state
(n8,l 8) of the state~n,l! as the states satisfying the conditio
pn8 l 8

nl (t)Þ0, wherepn8 l 8
nl (t) stands for the value of the facto

pn8 l 8
gnl (t) averaged over the relevant values of theg param-

eter.
The key points in an estimation of thepn8 l 8

nl (t) factors are
the following facts. First, the population process of a giv
Rydberg state~n,l! is mainly finished at the timet5tc
1DR/v; accordingly, the transition probabilityTnl(t) can be
estimated byTnl(t)'TnlQ(t2t), where Q(t2t) denotes
the Heaviside step function. Second, during the popula
process of the state~n,l!, all electron-capture channels lea
ing to the states (n8,l 8) are open simultaneously; for th
transition probabilityTn8 l 8(t) we can use the analogous ste
like expression. Third, the mean valuespn8 l 8

nl (t) can be ex-
pressed in terms ofTnl(t) and Tn8 l 8(t) exclusively. As a
consequence of these facts, it turns out that the nonvanis
pn8 l 8

nl (t) values have those channels leading to the st
(n8,l 8), populated around the critical ion-surface distanc
Rc(n8,l 8) smaller thanRc(n,l )1DR(n,l ). Therefore, the
values of the quantum numbersn8 and l 8 of the relevant
‘‘background’’ states can be found by solving the inequal

Rc~n8,l 8!<Rc~n,l !1DR~n,l ! ~4.12!

for any given set of the parametersn, l, Z, andv.
Having the set of relevant background states, we e

mated the mean valuêTn8 l 8& l 8 , of the transition probability
Tn8 l 8 over the angular momentum quantum numbersl 8 of the
background states. Finally, forl 50 we obtain

Pn05 P̃n0expS 2 (
n8Þn

nres~1!21

Tn812 (
n8>nres~1!,n8Þn

Tn80D
~4.13!

and, for l 51 and 2, we get

Pnl5 P̃nlexpS 2 (
n8Þn

nres~1!21

Tn81D ; n,nres~1!,

~4.14a!

Pnl5 P̃nlexpS 2 (
n8Þn

Tn81D ; n>nres~1!, ~4.14b!

whereP̃nl512exp(2Tnl). Relations~4.13! and~4.14! repre-
sent our final expressions for the population probabilityPnl ,
which will be compared with available experimental data.2–4

We normalize the experimental findings to the theoreti
ones at the central population maximan5n0'Z, calculated
d

n

ng
es
s

ti-

l

in our previous paper.9 The estimated overall uncertainty i
the measured relative population probabilities is around 2
~see, e.g., Ref. 4!.

In Fig. 5 we compared our theoretical predictions~full
lines! for sulfur ions SVI with experimental findings3,4

~dots!, restricting ourselves to the low angular momentu
cases~l 50, 1, and 2!. The ionic energy used in the cite
experiments isE53 MeV, which corresponds to the velocit
v51.94 a.u. of the SVI ions. As we can see, the present
Pnl curves have ‘‘ordinary’’ shapes with maxima located
n5n0'Z, but with thresholds atnthr58. In the considered
S VI case, the resonant quantum numbers are indicated
arrows positioned to the right fromnthr , which explains the
absence of observable resonances in the population cu
The dashed line indicated in Fig. 5~b! is taken from our
previous paper:9 obviously, forn,nthr and l 51 the JWKB
prediction correlates to the fullPnl curve of the present pa
per. The same correlation exists forl 50 and 2 of the SVI

ions.
In Fig. 6 we presented our results for lowl cases of ClVII

with experimentally3,4 tested energy E55.5 MeV (v
52.50 a.u.). The obtainedPnl curves ~full lines! of the
Cl VII ions are similar to those exposed in Fig. 5, but w
thresholds atnthr59 and resonant quantum numbersnres
512 and 11. Nevertheless, the inequalitynres.nthr holds, so
that the ClVII resonances are also hidden for the opti
spectroscopy. The dashed JWKB curve forl 51 marked in

FIG. 5. Population probabilitiesPnl of the Rydberg states~n,l!
for S VI ion (v51.94 a.u.) withl 50, 1, and 2, respectively. Dot
are experimental data~Refs. 3 and 4!.
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Fig. 6~b! follows the full line predicted by the present theo
for n,nthr ~the same also holds forl 50 and 2!.

In Fig. 7 we showed the population curves of ArVIII ions
with E52 MeV (v51.42 a.u.) taken from experiments2

Note the differentPnl scales in Figs. 5, 6, and 7. In thePnl
curves of ArVIII with l 51 and 2, Figs. 7~b! and 7~c!, very
pronounced resonance shapes positioned atnres511 are
dominant. Obviously, these observable ArVIII resonances
arise with inverted positions ofnthr and nres on then scale
~i.e., for l 51 and 2 we havenres,nthr!. In Fig. 7~b! we
marked the dashed JWKB curve, illustrating a limitation
our previous model9 ~in the regionn'nres511! as well as its
correctness around the ‘‘ordinary’’Pnl maximum placed at
n0'Z.

V. CONCLUDING REMARKS

The study explicated in this paper indicates that the se
tive low l Rydberg-state formation of multiply charged ion
escaping a solid surface at intermediate velocities repres
essentially, a complicated quantum-mechanical event.
first sight, this complexity appears somewhat unexpec
because even the simple energetic arguments1–4 ~suggested
at the very beginning of the experimental investigation of
process! tell us that the foil valence band is nearly resona
with the Rydberg statesn;Z of the multiply charged ions
Z56, 7, and 8.

FIG. 6. Population probabilitiesPnl of the Rydberg states~n,l!
for Cl VII ion (v52.50 a.u.) withl 50, 1, and 2, respectively. Dot
are experimental data~Refs. 3 and 4!.
f

c-

ts,
t

d,

e
t

All simple arguments fail, however, when we pass to
more detailed, ‘‘fine-structure’’ analysis of thePnl curves,
especially in the regionn.n0'Z. As we have seen, both
resonances and thresholds appear in that region as the
structures in the shapes of thePnl graphs. Moreover, a spe
cific interplay of these two effects is characteristic of t
considered ion-surface interaction. For this reason, it was
possible to treat separately the electron-capture process
the ionization of those Rydberg states formed dominan
above EF . The mentioned charge-exchange processes
realized mainly in the vicinity of the potential barrier top, s
that the ion-surface system is subjected to a kind of ‘‘cr
cal’’ physical condition. This circumstance led us to the fa
that even small changes in the parameters of the system~n, l,
Z, or v! have resulted in drastic modifications of thePnl
curves forn.n0'Z. The relative stability of thePnl shapes
established forn<n0'Z comes as a natural consequence
the validity of the deep underbarrier tunneling approxim
tion.

A few additional concluding remarks may be relevant f
further investigation of resonances and thresholds recogn
in the Pnl curves of lowl Rydberg-state formation.

First, it has been assumed in the matching procedure
the applied etalon equation method~Sec. III B! that the turn-
ing pointsh̃1 andh̃2 are sufficiently distant even in the cas
of tunneling in the very vicinity of the potential barrier top
This assumption appears as a correct one whenever

FIG. 7. Population probabilitiesPnl of the Rydberg states~n,l!
for Ar VIII ion (v51.42 a.u.) withl 50, 1, and 2, respectively. Dot
are experimental data~Ref. 2!.
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Rydberg-state population process takes place dominant
the critical ion-surface distanceRc . However, to have a
more refined study of the role of the potential barrier top
would be relevant to elucidate a process of the turning po
confluence. In that case, an etalon equation method of
Kolosov type @see, e.g., Ref. 19, Chap. 2# will be a more
adequate one. Including the confluence effect in our mi
flux dynamics, we expect that the shapes of ArVIII resonance
peaks characterizing thePnl curves can be improved.

Second, the problem of intermediate Rydberg sta
formed dominantly above the Fermi levelEF was not dis-
cussed in more detail in this paper. In our model, the f
ionization condition~2.9! appeared to be sufficient to expla
all observable facts of the existing experimental data, wh
has been the main intention of this paper. In that sense,
a brief review of the calculations is presented~Sec. III D!.
However, from a theoretical point of view, an additional i
vestigation of the ion-surface interaction dynamics dur
the intermediate stages of time evolution of the process
be relevant. We point out here that the study of the quan
Gm

ion will differ in comparison to some still known asymptot
methods applied on the level of energy eigenvalue prob
calculations.20,21 The main difference lies in our parametr
zation of the eigenproblem by means of the scaling par
etera, combined with the etalon equation approach. Det
of Gm

ion calculations, as well as a more complete dynam
~leading to more detailedPnl curves forn.nthr!, will be
presented in our subsequent publications on the subject

Third, considering the transition probabilityTnl
g ~Sec.

IV C!, we recognized the quasiresonant kernelsgmax
→gA(Rc) of underbarrier type as the dominant transition ‘‘d
rections’’ from the solid valence band into the consider
Rydberg states~n,l!. The nonresonant electron-capture ‘‘d
rections’’ g→gA(Rc), satisfying the condition g
,gmax or g.gmax, are taken into account in our calcula
tion of the total transition probabilityTnl . Strictly speaking,
this approach is based on a validity of theTnl

g expression
extended from the vicinity of the point (gmax,tc) over the
entiregt plane. For the ionic parameters tested in this pap
this approximation cannot change theTnl probability signifi-
cantly because we obtain sufficiently pronounced max
for both Tnl

g and G̃nl
g , especially in the case of ArVIII reso-

nances. A more precise analysis can be given by a refi
classification of theFMA components in the mixed fluxI nl

g ,
including the overbarrierFMA eigenfunctions as possibl
, I

ca
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he

d

s

t

h
ly

g
ill
ty

m

-
s
s

d

r,

a

ed

contributions forg,gmax. To resolve this problem, it is nec
essary to extend the etalon equation method in the com
h̃ plane, after which an appropriate quantum dynamics m
be developed.

Finally, in presenting our numerical results, we used
valuef53 eV for the work function of the carbon foil~Secs.
IV B and IV D!. We realized that this choice is fitting to th
available experimental data. However, according to our
namic model, the positions of resonances and threshold
the Pnl curves are dependent on the work functionf, so that
the observablePnl curves could differ greatly with differen
values off. Accordingly, various surface contamination e
fects ~resulting in the change off! can influence to a high
degree the experimentally obtainedPnl curves, especially in
the highern region. The problem of thef instability requires
further work in both theory and experiment.

A general observation about Demkov-Ostrovskii’s me
odology, applied in this paper, could be of use. Bearing
mind that this method10 was originally developed for arbi
trary projectile velocities of ion-atom collisions, it can b
used not only as a basis in the investigation of the resona
and thresholds atv;1 a.u., but also in a study of the adia
batic limit (v!1 a.u.) of the electron capture into Rydbe
states of multiply charged ions escaping the solid surfa
Our preliminary calculations indicate that, from the stan
point of quantum dynamics based on the mixed flux,
limiting v procedure represents a rather subtle mathema
problem, strongly dependent on the values of the ionic
rametersn, l, m, andZ. We found that the expected resona
nature of the electron capture appears as a consequen
the limiting procedure.

Some of the known results,5–8 relevant in the case of low
velocity, can be recognized as an output of our analysis.
example, under the adiabatic conditions, it emerges a c
lenging universality7,8 of the differential transition rate
dG/(2gdg), which represents a function exclusively depe
dent on the scaling parametera. Also, considering the men
tioned transition rate as a function ofR, we obtain that the
Rydberg-state formation of a multiply charged ion is dom
nantly localized around the critical ion-surface distancesRc .
A remarkable distortion of the electron cloud~in comparison
to the free atomic state! is found at distancesR,Rc/2. In this
region of the ionic trajectory, we realized that the electr
density distributions are dependent on the form of the surf
potential.
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