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Formation and propagation of shock waves in the conduction channel
of a field-effect-transistor structure
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We consider the evolution of a nonuniform initial electron-density distribution in the conduction channel of
a field-effect-transistor structure using a hydrodynamic description which is a reasonable approximation for
devices with high electron densities and short gate lengths. We show that nonlinear terms in the hydrodynamic
equations may lead to the formation of the shock waves in the quasi-two-dimensional electron gas in the
conduction channel, and study how their propagation is affected by the boundary conditions on the source and
drain sides of the channel. For the time-independent boundary conditions considered in this work, nonlinear
effects such as shocks will decay with time as energy is dissipated at the shock front. However, these examples
will help us to understand nonlinear effects in the response of two-dimensional electron gas to high-frequency
signals. In that situation the nonlinear waves will persist even when dissipation is significant.
[S0163-182608)04848-9

I. INTRODUCTION nomena similar to hydraulic jumps and soliton propagation

. . . . in hydrodynamics of fluids® may exist in the quasi-two-
In a field-effect transisto(FET) the equilibrium density dimensional2D) electron gas in a FET structurg.

of electronsng in the conduction channel is proportional to | this work we will study how the hydrodynamically
the average gate “voltage swingJ, defined as the differ- nonequilibrium initial conditions in a bounded electron sys-
ence between the gate-to-channel voltage and the threshaleim lead to the formation and propagation of nonlinear
voltage. As a result of the screening by the gate electrode thglasma waves. In particular, this formulation provides a con-
dispersion law for plasma waves in the conduction channel igenient example to study how the presence of the boundaries

linear, and the velocity of small amplitude waves is deter-affects propagation of shock waves in a gated 2D plasma. In
mined by the gate voltage swing,=(eU,/m)¥2 wherem this study we do not include the effects of external friction

is the electron effective mass ande is electron charge. a”s"?g from collisions with'phonons and impgrities, and

Recently Dyakonov and Shur studied plasma resonanc‘?‘éOnSIder only the symmetric boundary conditions at the
R ; source and drain sides of the channel.

properties in a shortsubmicron FET and proposed elec-

. . o 4 A study of shock wave propagation in a bounded 2D elec-
tronic devices operating in the terahertz frequency rarige. tron gas is useful because of the role that the shock waves
For the boundary conditions of their detector, i.e., a shor

o ) i ay play in a more realistic modeling of FET devices oper-
circuit on the source side of the channel and an open circulling "ot high frequencies. For example, we found that in the
on the drain side, the plasma resonance frequencyois ghort-channel HEMT-based high-frequency detector recently
= mso/2L wherelL is the channel length. discussed in the literatufe’ the magnitude of the induced

In the case of GaAs high-electron-mobility transistorsdrain-to-source voltage near the plasma resonance is signifi-
(HEMT'’s), for gate lengths from 1 to 0.Lm and a gate cantly different from the one obtained in perturbation
voltage swingU,=1V, the resonance frequeney, varies treatmenf The difference is significant in the same range of
from 0.5 to 5 THz. For typical electron densities of the orderwave amplitudes where the shock waves appear and propa-
of 10*2 cm~2 in a short-channel HEMT, the electron-electron gate in the channel.
collision times can be much smaller then the collision times In Sec. Il we formulate the hydrodynamic equations for
with impurities and phononsUnder such conditions, hydro- one-dimensional flow of the electron gas in a FET channel
dynamic analysis shows that the linear plasmons may beand consider two sets of boundary conditions. In Sec. Il we
come unstable when the density and electric-field variationpresent the results of the numerical solution of the hydrody-
in the channel are not smdllThen interesting nonlinear ef- namic equations for different boundary conditions, and see
fects appear in the device response. These nonlinear effedtew the presence of shocks in a bounded system affects the
were treated in the perturbation approximation in Ref. 2.decay of the plasma waves in time. The numerical method is
Results of recent measurements of a response of a GaAlse well known Lax-Wendroff algorithmh® which is adapted
HEMT used as a detector of microwave radiafiorere con-  here to a system with two boundaries. We checked the reli-
sistent with nonlinear plasma response th@applied at a ability of the numerical method in the analytically solvable
frequency much smaller than,. The perturbation treatment case of a system of nonlinear equations similar to the hydro-
of Ref. 2 is suitable only for small-amplitude density varia- dynamic equations of a FET plasma. This test system will be
tions. For larger amplitudes, various nonlinear wave phedescribed in the Appendix.
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IIl. HYDRODYNAMIC MODEL FOR ELECTRON MOTION
IN A 2D CONDUCTION CHANNEL

The hydrodynamic description of a 2D electron plasma i
semiconductor systems has been used to study confinéme
and scatterinty of plasmons within the linear approximation

of the hydrodynamic equations, referred to as acoustics in
the literature® The equations are derived as mass, momen

tum, and energy balance equatiénApplication of these

equations to the one-dimensional flow of the high-density<

n. . . . . .
’ﬂnetlc motion. We estimate2 from the Fermi velocity of

the 2D ga¥® ass2=3u?/4.
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=nye/mC=eU,/m. The speed of sound can be found from

the inverse compressibility of the electron gas which de-

pends on the number of degrees of freedom in the internal

Consider, as an example, a GaAs HEMT. Then
m=0.06M,. For gate voltageUy,=1V we obtain s,
=1.62x10° cm/s, ny=1.94x10"? cm 2, and s,=0.446
10° cm/s. Therefores?/s3=0.086, and the contribution of

electron gas in conduction channels of FET’s was suggestdfie pressure gradient term in H@) is relatively small com-

in Ref. 1.

Consider a narrow conduction channel of lengthsepa-
rated by a distancd from the gate electrode. Lei(r,t) be
the 2D density of electrons in the channel, wheig the 2D
position vector in the(x,y) plane, with thex axis chosen
along the channel and tlyeaxis across the channel. In FET's

the width of the conduction channel is much larger than the
length. The flow is described by three balance equations,
which in the absence of friction and viscosity can be written

as follows:
&n+ J =0 1
> (?_x(nv)_ \ (1)
1% N 1% . Lldp endU 2
gt ()t o (o)== ™ T ox @
O ey RO -0 3
at (nz) m ox X (nev)=0, ®)

whereU(x,t) is the gate to channel voltagejs the pressure
defined here as a force per unit width, ands the internal
(thermodynamig energy of the electron gas. The internal
energy is given in the equation of state as a function and

p:

e=¢g(p,n). (4)

The electric potential in the channel is determined through
the three-dimensional Poisson’s equation. When the scale of
the electric potential variations in the channel is much

greater than the gate-to-channel separadiotine solution of

the Poisson’s equation can be obtained self-consistently in

the “gradual channel” approximatidn

U(x,t)=§n(x,t), (5)

pared to the contribution of the self-consistent electric-field

term. Then Eqs(1) and(2) decouple from Eqs3) and(4),

and can be written in the following forms:

(9n+ 4 =0 7
5t T 9% (Nv)=0, (73
i + i 2+ % anz_o 7b
gt (o) oo (o) + 5 ox =0 (7b)

For a continuous flow we can use the first of these equations
in the second one to obtain Euler's equation

v v S an

—+p —+ =0.
at Y ox 0

Ng dx ®

Equations(7) and (8) are nonlinear. As a result, when a
compression wave develops from an initial nonuniform den-
sity profile there will appear a shock wave propagating in the
channel. The hydrodynamic variables on the two sides of the
discontinuity, or a shock front, are related by jump condi-
tions. These are obtained by integrating the conservation
equations (7) over a small interval containing the
discontinuity®

Following Ref. 5, let us use indices 1 and 2 to label the
values of the hydrodynamic variables just in front of and
behind the shock. We define a jump of variableas

[U]=U>—-Uy4, 9
and from Eqgs(7) obtain the jump conditions
—u[n]+[nv]=0,
(10

2

S

0

nv24+ — n?
2ng

—u[hv]+ =0,

where u is the shock’s velocity defined as=dx(t)/dt,

whereC is the gate capacitance per unit area. This approxiXs(t) being the position of the shock front.
mation leads to a neglect of higher-order terms in the disper-

sion law!1?We substitute Eq(5) into Eq.(2), which, with
the use of continuity equatiofll), can be rewritten in the
form of Euler's equatiof.

In the linear approximation the solutions are acousti
waves with the following dispersion relation between fre-
guencyw and wave numbek:

w(k)=*k(s§+s5)"2, (6)

wheresy is a plasma velocity derived from the electric-field
term in Eq.(2), ands, is the speed of sound derived from the
pressure gradient term. The value &f is found from sS

c

IIl. NONLINEAR WAVES IN A FET CHANNEL
OBTAINED FROM HYDRODYNAMIC EQUATIONS

Various numerical methods have been developed in hy-
drodynamics to study flows containing shock waves, or hy-
draulic jumps. Because we do not include viscosity terms in
Euler's equation, the resulting shocks have a theoretically
zero width but finite height. We use the Lax-Wendroff nu-
merical methol developed to study discontinuous time-
dependent solutions of hyperbolic systems of nonlinear con-
servation laws like Eqs(7). The solutions satisfy jump
conditions across the discontinuity, referred to as Rankine-
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FIG. 1. Density profiles at two different timeg/T=2.8 and FIG. 3. (8) The magnitude of the shock as a function of time for
t,/T=3.8 for the open-circuit boundary conditiorfEis a charac- OPen-circuit boundary conditions. It is defined as a differeknef
teristic time defined as a ratio of the channel lengtto the linear the density values behind and in front of the shock. At large times
plasmon velocitys, . Each profile is a compression wave containing it decays as 1/ (b) The envelope of the amplitude of the waves as

a shock front propagating in a direction indicated by an arrow. & function of time for the constant potential boundary conditions. In
this caseAn is defined as an absolute value of the maximum de-

Hugoniot relations in the mathematics literatfirghe rel-  Viation from the equilibrium density, .

evant discussions of the stability of this numerical scheme _ _

can be found in Refs. 7 and 8. We adapt the Lax-Wendroff !N accordance with the general properties of shock waves
method to the case of one-dimensional flow in a system witi® Shock’s velocity satisfies an inequality

two boundaries, and consider two different sets of boundary

conditions. U1t $1<U<vy+Sy, (13

_— . where indices are assigned as in E9), and
Open circuit boundary conditions

These boundary conditions are the conditions of zero ve- sz
locity at the source and drain end of the channel, s?(x,t)= = n(x,t). (14
0
v(L,t)=0v(0}t)=0, (11)

After the initial profile is transformed into a propagating
and we choose the initial condition shock wave the flow is a sequence of reflections of one shock
wave whose amplitude decays with time. The time interval
n(x,00=nyX (1+A cosmx/L), v(x,00=0, (120  between two successive reflections is exadttyL/s, even
after many reflections. The magnitude of the shock, defined
whereA is a dimensionless amplitude. as An(t)=n,(t)—ny(t), decays asymptotically astl/as
Define a characteristic time scale BsL/sy. The time it  shown in Fig. 8a). The decay of shocks is a well-known
takes a discontinuity to appear in the compression wave deyeneric phenomendrrelated to energy dissipation at the
pends on the value of the initial amplitude The resulting shock front. The particular law of decay depends on the
density and velocity profiles are shown in Figs. 1 and 2 forboundary conditions. For example, a single shock wave in an
A=0.5. The shallow rapid oscillations near the discontinuityunbounded flodecays as 1/t. The presence of the reflect-
are numerical artifacts that always appear in finite-differenceng boundaries leads to a different time dependende 1/
approximations of a nonviscous fldwThe shock forms at  which is similar to the decay of a periodic compression wave
time t<T, and afterward the flow can be described as sucin an unbounded flow>
cessive reflections of the shock wave at the left and right The velocity of the shock front can be obtained from the
boundaries. jump conditions[Egs. (10)] in terms of the values of the
hydrodynamic variables behind the shock and in front of it.
Let us apply these to the shock reflection at a boundary, say
at x=L. A shock front approaches the boundary with a
speedy; , with the hydrodynamic variables of the flow being
n, andv, behind the shock and; andv in front of the
shock. It reflects with a different speed, with the hydro-
dynamic variables being, andv, in front andn; anduv;
behind the shock. From the boundary conditians=v;
=0, and from Eqgs.(10), we eliminaten; and obtain the
magnitudes ofy; andu, as positive solutions of the follow-

0.3

03 = ; ’ = ing cubic equations:
1] 0.2 04 06 08 1
x/L
s s
_ FIG. 2. Velocny_ proflles_for _the open-circuit boundary condi- Ui3,r+02Ui2,r_ — n2ui,riﬁ nov,=0, (15)
tions at the same times as in Fig. 1. 0 0



16 372 S. RUDIN AND G. SAMSONIDZE PRB 58

v{xt)/s,
n{x,t)/n,
o
(=]
vixt)/s,

x/L x/L

FIG. 4. Density(solid curve, left axis and velocity (broken FIG. 5. Density(solid curve, left axis and velocity (broken
curve, right axis profiles for the constant potential boundary con- curve, right axig profiles for the constant potential boundary con-
ditions. The profiles are shown at tin€lr =3.7. They contain two  ditions, at timet/T=4.2. The flow is continuous during this part of
shock waves propagating toward the boundaries. the cycle, and can be described as two waves moving toward the

middle of the channel.

where the upper signs are to be takendpand the lower for
u, . For a flow where §,/s,)2<n/ng, which is valid for any ~ time dependence is shown in Fig(bB At large times the
initial amplitude after a sufficiently large time, we can ex- decay is much slower than for the previous set of boundary
pand positive solutions of Eq§l5) in powers ofv,: conditions. We find that asymptotically the shock’s ampli-

1 ) tude decays more slowly thanyi/
Q) 02 S (2) (@ The speed of each shock near the boundary can be ex-
Ng/ ~4sy, 16\sy) \ny pressed in terms of hydrodynamic variables behind the
shock,n, andv,. For the present boundary conditions we

To the same order, the magnitude of the shatk  optain a quadratic equation for, the speed of the incident
changes upon the reflection instantaneously by the amount @hock, and find

nOUZ/ZSé, and then decays continuously until it is reflected

1/2

Ui r
' +--- . (16

Sp

from another boundary. These small instantaneous changes U vy, [ny+ng v3\Y2
are not shown in Fig. 3, where only the overall decay is S R TR (19
shown.

At large timesv, becomes small, and,~s;. The re-
Constant electric potential boundary conditions flected wave is not a compression wave and does not contain

These boundary conditions are given By0;)=U(L,t) a shock until it transforms into two compression waves as

—Uy. In the gradual channel approximatipig. (5)] these ~described before.

are replaced by
APPENDIX: AN EXACTLY SOLVABLE NONLINEAR

n(0t)=n(L,t)=ng. 17 FLOW IN A BOUNDED SYSTEM

We choose the following initial conditions: In order to test our computational method we consider a

nonlinear hyperbolic system similar to Eq%) and (8):
n(x,00=ngX(1+A sin wx/L), v(x,00=0. (18

an 0

After some transient time interval the two compression EJF X (nv)=0,
waves develop shocks propagating toward two boundaries,
as shown in Fig. 4. After the shock fronts reach the bound- o o an (A1)
aries atx=0 andL, the profile changes into two continuous — 4y —4+n—=0,
waves, shown in Fig. 5, in which the densitgx,t) is larger gt = ox X
than the equilibrium valueny. The density profile then \yhere we used dimensionless variabtés, t/T, andv/s,.
changes to the one in whiahis smaller tham,, and then In the absence of shock waves these equations describe an

into two compression waves propagating toward the middlggjapatic flow of an ideal gas with one internal degree of
of the channel. Two shock fronts develop and propagate treedom? The hodograph transformatidnwhich inter-

ward each other. Upon “colliding” atx=L/2 the wave changes the roles of dependent and independent variables
transforms into two shocks propagating toward the boundgansforms these equations into linear equationsxtar,v)

aries. This_sequence of profile transformation_s repea_ts aﬂ%{ndt(n,v). These equations and the shock formation can be
each time interval 2. We checked that a choice of higher gyactly analyzed in the case of unbounded motion with a
harmonics in the initial conditions, Ed18), leads to the periodic initial density profilé. An exact analysis can be

same profile at time>T. _ _ done also for the case of zero velocity boundary conditions
The magnitude of the waves, defined for this case as the
maximum deviation in the intervdlo,L] from the equilib- v(0t)=v(11t)=0. (A2)

rium values ofn=nq for the density and =0 for the veloc-
ity, decreases with time. The envelope of the magnitude’s Define new hydrodynamic variablegx,t) and 8(x,t):



PRB 58

a=n+v, B=n—v. (A3)

Then from Egs.(Al) we obtain separate differential equa-
tions for @ and B, and find that solutions satisfy the equations

a=f(x—at), B=g(x+pBt), (A4)

where functiond andg are to be determined from the initial
conditions

n(x,0)+v(x,0)=f(x),
n(x,0) —v(x,0)=g(x),

O=x=<1. (A5)

Equations(A4) define a nonlinear mapping i3 plane.
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&+ (t—x)=—At cog7é),
(A11)
n—(t+x)=At cog 7 7).
These transcendental equations are simple to solve numeri-
cally. Fromé&(x,t) and 5(x,t) we can findn andv:

n=(—&+n)l2t, v=(—&—n+2x)/2t. (A12)
Once a shock is formed, Eq§Al) are not applicable
becausa(¢£) becomes a multivalued function, but a standard
shock fitting procedurecan be used. The multivalued part of
the density or velocity profile is replaced by an appropriate

discontinuity, a jump in the hydrodynamic variable, deter-

We now choose an initial condition of zero velocity profile at Mined by an “equal area” construction. This last relation is
t=0, v(x,0)=0. This choice of initial profile is not essential deduced from mass conservation and was treated in detail in

for the analysis but is a convenient one. Thg(x) = f(x)

=n(x,0) for 0O<x<1. From the boundary conditior€q.

(A2)] we deduce then thatt(x+2)=f(x). Therefore, the
function f(x) is obtained everywhere from(x,0) defined
only in the[0,1] interval:

f(—x)=f(x)=f(x+2), —o<x<o, (AB)
Let us now choose an initial profile
n(x,0)=1+A cos X, (A7)

which is equivalent to the initial conditions in E¢L2) in
dimensionless units. Thef(x)=1+ A cos@@x), and its de-
rivative isf’ (x) = — A sin(wx). The mapping in Eq(A4) is
singular when

[1+tf (x—at)]X[1-tf'(x+ Bt)]=0. (A8)

From this we find that a singularity develops at tinﬁ@
=1/A7 at the positiorx(’) found from the condition

1+ ! <1, N=0,£1,x2
2 A'ﬂ' =4 V-4 -4, .

(A9)

Osxg"):[zNi

Define a further transformation ia,3:

E=x—at, n=x+pt. (A10)

Ref. 5 for a profile similar to ouf(£). We will use labels 1
and 2 for the values in front of and behind a shock, respec-
tively. If the position of the discontinuity at timeis x¢(t),

the shock’s velocity is defined as=dx;/dt, and we obtain

u(t)=1 (A13)

until the shock front reaches=1 and reflects. The jump in
«a is related to the jump i by an equation

apy—ay=—2A sim(&— §1)/2].

The shock is formed at=t{")=1/A with zero strength,
asa,— a1=0 at that time. It reaches its maximum strength,
corresponding tar,— a;=2A, at timet{Y=1/2A. At large
times a,—a;— 2t asymptotically. Correspondinglyn,
—n,;— 1. This inverse linear decay of the shock strength is
identical to the one we obtained numerically for the electron-
gas flow in the FET conduction channgigs. (7)], with
open-circuit boundary conditions. However, unlike in that
case, the shock here propagates with exactly the speed of
linear plasma wavess, in original units. We applied the
Lax-Wendroff method adapted for a bounded flow to the
system described by Eq§Al), and found numerical results
to be in excellent agreement with the analytical ones.

X(t) =3 +t,

(A14)
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