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Formation and propagation of shock waves in the conduction channel
of a field-effect-transistor structure

S. Rudin
U.S. Army Research Laboratory, Adelphi, Maryland 20783
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A. F. Ioffe Physical Technical Institute, St. Petersburg, 191040 Russia

~Received 9 June 1998!

We consider the evolution of a nonuniform initial electron-density distribution in the conduction channel of
a field-effect-transistor structure using a hydrodynamic description which is a reasonable approximation for
devices with high electron densities and short gate lengths. We show that nonlinear terms in the hydrodynamic
equations may lead to the formation of the shock waves in the quasi-two-dimensional electron gas in the
conduction channel, and study how their propagation is affected by the boundary conditions on the source and
drain sides of the channel. For the time-independent boundary conditions considered in this work, nonlinear
effects such as shocks will decay with time as energy is dissipated at the shock front. However, these examples
will help us to understand nonlinear effects in the response of two-dimensional electron gas to high-frequency
signals. In that situation the nonlinear waves will persist even when dissipation is significant.
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I. INTRODUCTION

In a field-effect transistor~FET! the equilibrium density
of electronsn0 in the conduction channel is proportional
the average gate ‘‘voltage swing’’U0 defined as the differ-
ence between the gate-to-channel voltage and the thres
voltage. As a result of the screening by the gate electrode
dispersion law for plasma waves in the conduction channe
linear, and the velocity of small amplitude waves is det
mined by the gate voltage swing,s05(eU0 /m)1/2, wherem
is the electron effective mass and2e is electron charge
Recently Dyakonov and Shur studied plasma resona
properties in a short~submicron! FET and proposed elec
tronic devices operating in the terahertz frequency rang1,2

For the boundary conditions of their detector, i.e., a sh
circuit on the source side of the channel and an open cir
on the drain side, the plasma resonance frequency isv0
5ps0/2L whereL is the channel length.2

In the case of GaAs high-electron-mobility transisto
~HEMT’s!, for gate lengths from 1 to 0.1mm and a gate
voltage swingU051V, the resonance frequencyv0 varies
from 0.5 to 5 THz. For typical electron densities of the ord
of 1012 cm22 in a short-channel HEMT, the electron-electro
collision times can be much smaller then the collision tim
with impurities and phonons.1 Under such conditions, hydro
dynamic analysis shows that the linear plasmons may
come unstable when the density and electric-field variati
in the channel are not small.1 Then interesting nonlinear ef
fects appear in the device response. These nonlinear ef
were treated in the perturbation approximation in Ref.
Results of recent measurements of a response of a G
HEMT used as a detector of microwave radiation3 were con-
sistent with nonlinear plasma response theory2 applied at a
frequency much smaller thanv0 . The perturbation treatmen
of Ref. 2 is suitable only for small-amplitude density vari
tions. For larger amplitudes, various nonlinear wave p
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nomena similar to hydraulic jumps and soliton propagat
in hydrodynamics of fluids4,5 may exist in the quasi-two-
dimensional~2D! electron gas in a FET structure.

In this work we will study how the hydrodynamicall
nonequilibrium initial conditions in a bounded electron sy
tem lead to the formation and propagation of nonline
plasma waves. In particular, this formulation provides a c
venient example to study how the presence of the bounda
affects propagation of shock waves in a gated 2D plasma
this study we do not include the effects of external fricti
arising from collisions with phonons and impurities, an
consider only the symmetric boundary conditions at
source and drain sides of the channel.

A study of shock wave propagation in a bounded 2D el
tron gas is useful because of the role that the shock wa
may play in a more realistic modeling of FET devices op
ating at high frequencies. For example, we found that in
short-channel HEMT-based high-frequency detector rece
discussed in the literature,2,3 the magnitude of the induce
drain-to-source voltage near the plasma resonance is sig
cantly different from the one obtained in perturbatio
treatment.6 The difference is significant in the same range
wave amplitudes where the shock waves appear and pr
gate in the channel.

In Sec. II we formulate the hydrodynamic equations f
one-dimensional flow of the electron gas in a FET chan
and consider two sets of boundary conditions. In Sec. III
present the results of the numerical solution of the hydro
namic equations for different boundary conditions, and
how the presence of shocks in a bounded system affects
decay of the plasma waves in time. The numerical metho
the well known Lax-Wendroff algorithm,7,8 which is adapted
here to a system with two boundaries. We checked the r
ability of the numerical method in the analytically solvab
case of a system of nonlinear equations similar to the hyd
dynamic equations of a FET plasma. This test system will
described in the Appendix.
16 369 ©1998 The American Physical Society
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II. HYDRODYNAMIC MODEL FOR ELECTRON MOTION
IN A 2D CONDUCTION CHANNEL

The hydrodynamic description of a 2D electron plasma
semiconductor systems has been used to study confinem9

and scattering10 of plasmons within the linear approximatio
of the hydrodynamic equations, referred to as acoustic
the literature.4 The equations are derived as mass, mom
tum, and energy balance equations.4 Application of these
equations to the one-dimensional flow of the high-dens
electron gas in conduction channels of FET’s was sugge
in Ref. 1.

Consider a narrow conduction channel of lengthL, sepa-
rated by a distanced from the gate electrode. Letn(r ,t) be
the 2D density of electrons in the channel, wherer is the 2D
position vector in the~x,y! plane, with thex axis chosen
along the channel and they axis across the channel. In FET
the width of the conduction channel is much larger than
length. The flow is described by three balance equatio
which in the absence of friction and viscosity can be writt
as follows:

]n

]t
1

]

]x
~nv !50, ~1!

]

]t
~nv !1

]

]x
~nv2!52

1

m

]p

]x
2

en

m

]U

]x
, ~2!

]

]t
~n«!1

p

m

]v
]x

1
]

]x
~n«v !50, ~3!

whereU(x,t) is the gate to channel voltage,p is the pressure
defined here as a force per unit width, and« is the internal
~thermodynamic! energy of the electron gas. The intern
energy is given in the equation of state as a function ofn and
p:

«5«~p,n!. ~4!

The electric potential in the channel is determined throu
the three-dimensional Poisson’s equation. When the sca
the electric potential variations in the channel is mu
greater than the gate-to-channel separationd, the solution of
the Poisson’s equation can be obtained self-consistentl
the ‘‘gradual channel’’ approximation1

U~x,t !5
e

C
n~x,t !, ~5!

whereC is the gate capacitance per unit area. This appro
mation leads to a neglect of higher-order terms in the disp
sion law.11,12 We substitute Eq.~5! into Eq. ~2!, which, with
the use of continuity equation~1!, can be rewritten in the
form of Euler’s equation.4

In the linear approximation the solutions are acous
waves with the following dispersion relation between fr
quencyv and wave numberk:

v~k!56k~s0
21sa

2!1/2, ~6!

wheres0 is a plasma velocity derived from the electric-fie
term in Eq.~2!, andsa is the speed of sound derived from th
pressure gradient term. The value ofs0 is found from s0
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2/mC5eU0 /m. The speed of sound can be found fro

the inverse compressibility of the electron gas which d
pends on the number of degrees of freedom in the inte
kinetic motion. We estimatesa

2 from the Fermi velocity of
the 2D gas10 assa

253uF
2/4.

Consider, as an example, a GaAs HEMT. Th
m50.067m0 . For gate voltageU051 V we obtain s0
51.623108 cm/s, n051.9431012 cm22, and sa50.446
3108 cm/s. Thereforesa

2/s0
250.086, and the contribution o

the pressure gradient term in Eq.~2! is relatively small com-
pared to the contribution of the self-consistent electric-fi
term. Then Eqs.~1! and ~2! decouple from Eqs.~3! and ~4!,
and can be written in the following forms:

]n

]t
1

]

]x
~nv !50, ~7a!

]

]t
~nv !1

]

]x
~nv2!1

s0
2

2n0

]n2

]x
50. ~7b!

For a continuous flow we can use the first of these equat
in the second one to obtain Euler’s equation

]v
]t

1v
]v
]x

1
s0

2

n0

]n

]x
50. ~8!

Equations~7! and ~8! are nonlinear. As a result, when
compression wave develops from an initial nonuniform de
sity profile there will appear a shock wave propagating in
channel. The hydrodynamic variables on the two sides of
discontinuity, or a shock front, are related by jump con
tions. These are obtained by integrating the conserva
equations ~7! over a small interval containing th
discontinuity.5

Following Ref. 5, let us use indices 1 and 2 to label t
values of the hydrodynamic variables just in front of a
behind the shock. We define a jump of variableU as

@U#[U22U1 , ~9!

and from Eqs.~7! obtain the jump conditions

2u@n#1@nv#50,
~10!

2u@nv#1Fnv21
s0

2

2n0
n2G50,

where u is the shock’s velocity defined asu5dxs(t)/dt,
xs(t) being the position of the shock front.

III. NONLINEAR WAVES IN A FET CHANNEL
OBTAINED FROM HYDRODYNAMIC EQUATIONS

Various numerical methods have been developed in
drodynamics to study flows containing shock waves, or
draulic jumps. Because we do not include viscosity terms
Euler’s equation, the resulting shocks have a theoretic
zero width but finite height. We use the Lax-Wendroff n
merical method8 developed to study discontinuous tim
dependent solutions of hyperbolic systems of nonlinear c
servation laws like Eqs.~7!. The solutions satisfy jump
conditions across the discontinuity, referred to as Ranki
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Hugoniot relations in the mathematics literature.8 The rel-
evant discussions of the stability of this numerical sche
can be found in Refs. 7 and 8. We adapt the Lax-Wend
method to the case of one-dimensional flow in a system w
two boundaries, and consider two different sets of bound
conditions.

Open circuit boundary conditions

These boundary conditions are the conditions of zero
locity at the source and drain end of the channel,

v~L,t !5v~0,t !50, ~11!

and we choose the initial condition

n~x,0!5n03~11A cospx/L !, v~x,0!50, ~12!

whereA is a dimensionless amplitude.
Define a characteristic time scale asT[L/s0 . The time it

takes a discontinuity to appear in the compression wave
pends on the value of the initial amplitudeA. The resulting
density and velocity profiles are shown in Figs. 1 and 2
A50.5. The shallow rapid oscillations near the discontinu
are numerical artifacts that always appear in finite-differe
approximations of a nonviscous flow.7 The shock forms at
time t,T, and afterward the flow can be described as s
cessive reflections of the shock wave at the left and ri
boundaries.

FIG. 1. Density profiles at two different timest1 /T52.8 and
t2 /T53.8 for the open-circuit boundary conditions.T is a charac-
teristic time defined as a ratio of the channel lengthL to the linear
plasmon velocitys0 . Each profile is a compression wave containi
a shock front propagating in a direction indicated by an arrow.

FIG. 2. Velocity profiles for the open-circuit boundary cond
tions at the same times as in Fig. 1.
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In accordance with the general properties of shock wav4

the shock’s velocityu satisfies an inequality

v11s1,u,v21s2 , ~13!

where indices are assigned as in Eq.~9!, and

s2~x,t !5
s0

2

n0
n~x,t !. ~14!

After the initial profile is transformed into a propagatin
shock wave the flow is a sequence of reflections of one sh
wave whose amplitude decays with time. The time inter
between two successive reflections is exactlyT5L/s0 even
after many reflections. The magnitude of the shock, defi
as Dn(t)5n2(t)2n1(t), decays asymptotically as 1/t, as
shown in Fig. 3~a!. The decay of shocks is a well-know
generic phenomenon4 related to energy dissipation at th
shock front. The particular law of decay depends on
boundary conditions. For example, a single shock wave in
unbounded flow4 decays as 1/At. The presence of the reflec
ing boundaries leads to a different time dependencet,
which is similar to the decay of a periodic compression wa
in an unbounded flow.4,5

The velocity of the shock front can be obtained from t
jump conditions@Eqs. ~10!# in terms of the values of the
hydrodynamic variables behind the shock and in front of
Let us apply these to the shock reflection at a boundary,
at x5L. A shock front approaches the boundary with
speedui , with the hydrodynamic variables of the flow bein
n2 and v2 behind the shock andn1 and v1 in front of the
shock. It reflects with a different speedur , with the hydro-
dynamic variables beingn2 and v2 in front andn3 and v3
behind the shock. From the boundary conditionsv15v3
50, and from Eqs.~10!, we eliminaten1 and obtain the
magnitudes ofui andur as positive solutions of the follow
ing cubic equations:

ui ,r
3 7v2ui ,r

2 2
s0

2

n0
n2ui ,r6

s0
2

2n0
n2v250, ~15!

FIG. 3. ~a! The magnitude of the shock as a function of time f
open-circuit boundary conditions. It is defined as a differenceDn of
the density values behind and in front of the shock. At large tim
it decays as 1/t. ~b! The envelope of the amplitude of the waves
a function of time for the constant potential boundary conditions
this caseDn is defined as an absolute value of the maximum
viation from the equilibrium densityn0 .
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where the upper signs are to be taken forui and the lower for
ur . For a flow where (v2 /s0)2!n/n0 , which is valid for any
initial amplitude after a sufficiently large time, we can e
pand positive solutions of Eqs.~15! in powers ofv2 :

ui ,r

s0
'S n2

n0
D 1/2

6
v2

4s0
1

5

16 S v2

s0
D 2S n0

n2
D 1/2

6¯ . ~16!

To the same order, the magnitude of the shockDn
changes upon the reflection instantaneously by the amou
n0v2/2s0

2, and then decays continuously until it is reflect
from another boundary. These small instantaneous cha
are not shown in Fig. 3, where only the overall decay
shown.

Constant electric potential boundary conditions

These boundary conditions are given byU(0,t)5U(L,t)
5U0 . In the gradual channel approximation@Eq. ~5!# these
are replaced by

n~0,t !5n~L,t !5n0 . ~17!

We choose the following initial conditions:

n~x,0!5n03~11A sin px/L !, v~x,0!50. ~18!

After some transient time interval the two compress
waves develop shocks propagating toward two bounda
as shown in Fig. 4. After the shock fronts reach the bou
aries atx50 andL, the profile changes into two continuou
waves, shown in Fig. 5, in which the densityn(x,t) is larger
than the equilibrium valuen0 . The density profile then
changes to the one in whichn is smaller thann0 , and then
into two compression waves propagating toward the mid
of the channel. Two shock fronts develop and propagate
ward each other. Upon ‘‘colliding’’ atx5L/2 the wave
transforms into two shocks propagating toward the bou
aries. This sequence of profile transformations repeats a
each time interval 2T. We checked that a choice of highe
harmonics in the initial conditions, Eq.~18!, leads to the
same profile at timet.T.

The magnitude of the waves, defined for this case as
maximum deviation in the interval@0,L# from the equilib-
rium values ofn5n0 for the density andv50 for the veloc-
ity, decreases with time. The envelope of the magnitud

FIG. 4. Density~solid curve, left axis! and velocity ~broken
curve, right axis! profiles for the constant potential boundary co
ditions. The profiles are shown at timet/T53.7. They contain two
shock waves propagating toward the boundaries.
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time dependence is shown in Fig. 3~b!. At large times the
decay is much slower than for the previous set of bound
conditions. We find that asymptotically the shock’s amp
tude decays more slowly than 1/At.

The speed of each shock near the boundary can be
pressed in terms of hydrodynamic variables behind
shock,n2 and v2 . For the present boundary conditions w
obtain a quadratic equation forui , the speed of the inciden
shock, and find

ui

s0
5

v2

s0
1S n21n0

2n2
1

v2
2

s0
2 D 1/2

. ~19!

At large timesv2 becomes small, andui's0 . The re-
flected wave is not a compression wave and does not con
a shock until it transforms into two compression waves
described before.

APPENDIX: AN EXACTLY SOLVABLE NONLINEAR
FLOW IN A BOUNDED SYSTEM

In order to test our computational method we conside
nonlinear hyperbolic system similar to Eqs.~7! and ~8!:

]n

]t
1

]

]x
~nv !50,

~A1!
]v
]t

1v
]v
]x

1n
]n

]x
50,

where we used dimensionless variablesx/L, t/T, andv/s0 .
In the absence of shock waves these equations describ

adiabatic flow of an ideal gas with one internal degree
freedom.4 The hodograph transformation5 which inter-
changes the roles of dependent and independent varia
transforms these equations into linear equations forx(n,v)
andt(n,v). These equations and the shock formation can
exactly analyzed in the case of unbounded motion with
periodic initial density profile.5 An exact analysis can be
done also for the case of zero velocity boundary conditio

v~0,t !5v~1,t !50. ~A2!

Define new hydrodynamic variablesa(x,t) andb(x,t):

FIG. 5. Density~solid curve, left axis! and velocity ~broken
curve, right axis! profiles for the constant potential boundary co
ditions, at timet/T54.2. The flow is continuous during this part o
the cycle, and can be described as two waves moving toward
middle of the channel.
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a5n1v, b5n2v. ~A3!

Then from Eqs.~A1! we obtain separate differential equ
tions fora andb, and find that solutions satisfy the equatio

a5 f ~x2at !, b5g~x1bt !, ~A4!

where functionsf andg are to be determined from the initia
conditions

n~x,0!1v~x,0!5 f ~x!,

n~x,0!2v~x,0!5g~x!, 0<x<1. ~A5!

Equations~A4! define a nonlinear mapping ina,b plane.
We now choose an initial condition of zero velocity profile
t50, v(x,0)50. This choice of initial profile is not essentia
for the analysis but is a convenient one. Theng(x)5 f (x)
5n(x,0) for 0<x<1. From the boundary conditions@Eq.
~A2!# we deduce then thatf (x12)5 f (x). Therefore, the
function f (x) is obtained everywhere fromn(x,0) defined
only in the @0,1# interval:

f ~2x!5 f ~x!5 f ~x12!, 2`,x,`. ~A6!

Let us now choose an initial profile

n~x,0!511A cospx, ~A7!

which is equivalent to the initial conditions in Eq.~12! in
dimensionless units. Thenf (x)511A cos(px), and its de-
rivative is f 8(x)52Ap sin(px). The mapping in Eq.~A4! is
singular when

@11t f 8~x2at !#3@12t f 8~x1bt !#50. ~A8!

From this we find that a singularity develops at timets
(0)

51/Ap at the positionxs
(0) found from the condition

0<xs
~0!5F2N6S 1

2
1

1

Ap D G<1, N50,61,62, . . . .

~A9!

Define a further transformation ina,b:

j5x2at, h5x1bt. ~A10!

For t,ts
(0) the flow is continuous, and in terms of these ne

variables it is given by the equations
n.

cs
j1~ t2x!52At cos~pj!,
~A11!

h2~ t1x!5At cos~ph!.

These transcendental equations are simple to solve num
cally. Fromj(x,t) andh(x,t) we can findn andv:

n5~2j1h!/2t, v5~2j2h12x!/2t. ~A12!

Once a shock is formed, Eqs.~A1! are not applicable
becausen(j) becomes a multivalued function, but a standa
shock fitting procedure5 can be used. The multivalued part o
the density or velocity profile is replaced by an appropri
discontinuity, a jump in the hydrodynamic variable, dete
mined by an ‘‘equal area’’ construction. This last relation
deduced from mass conservation and was treated in deta
Ref. 5 for a profile similar to ourf (j). We will use labels 1
and 2 for the values in front of and behind a shock, resp
tively. If the position of the discontinuity at timet is xs(t),
the shock’s velocity is defined asu5dxs /dt, and we obtain

xs~ t !5 1
2 1t, u~ t !51 ~A13!

until the shock front reachesx51 and reflects. The jump in
a is related to the jump inj by an equation

a22a1522A sin@p~j22j1!/2#. ~A14!

The shock is formed att5ts
(0)51/pA with zero strength,

asa22a150 at that time. It reaches its maximum streng
corresponding toa22a152A, at time ts

(1)51/2A. At large
times a22a1→2/t asymptotically. Correspondingly,n2
2n1→1/t. This inverse linear decay of the shock strength
identical to the one we obtained numerically for the electro
gas flow in the FET conduction channel@Eqs. ~7!#, with
open-circuit boundary conditions. However, unlike in th
case, the shock here propagates with exactly the spee
linear plasma waves,s0 in original units. We applied the
Lax-Wendroff method adapted for a bounded flow to t
system described by Eqs.~A1!, and found numerical result
to be in excellent agreement with the analytical ones.
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