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Feynman-Haken path-integral approach for polarons in parabolic quantum wires and dots

Qinghu Chen
CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China;
Physics Department, Zhejiang University, Hangzhou 310027, People’s Republic of Thina;
and Physics Department, Hong Kong Baptist University, Hong Kong, People’s Republic of China

Yuhang Ren and Zhengkuan Jiao
Physics Department, Zhejiang University, Hangzhou 310027, People’s Republic of China

Kelin Wang
Centre for Fundamental Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
(Received 5 September 1997; revised manuscript received 4 February 1998

Within the framework of the Feynman-Haké&RH) variational path-integral theory, the expression for the
ground-state energy of the electron and longitudinal-optical phonon system in parabolic quantum wires and
dots with arbitrary electron-phonon coupling constant and confining potential strength is derived in a unified
way with the use of a general effective potential. For quantum dots, due to high symmetry, a simple closed-
form analytical expression for the Feynman energy can be obtained, and the analytical results in the extended-
state and localized-state limit can be further derived. It is shown both analytically and numerically that the
present FH results could be better than those obtained by the second-order Rayl€iglin§ehperturbation
theory and the Landau-Pekar strong-coupling theory for all cases, which, therefore, shows the effectiveness of
the present approach. In quantum wires, it is found in numerical calculations that the binding of polarons is
monotonically stronger as the effective wire radius in the whole coupling regime. Interestingly, when the
confining potential of quantum wire is extremely strengthened, even in the weak- and intermediate-coupling
regime, this system could exhibit some strong-coupling features. More importantly, it is proven strictly that a
very recent result in the literature that “the binding can be weaker than in bulk case at weak coupling” is not
an intrinsic property of this system. In quantum dots, it is found numerically that the polaron binding energy
increases with the decrease in size of the dot and is much more pronounced in two dim@i3jdhan in 3D,
while the relative polaronic enhancement is stronger in 3D than in 2D for not too weak electron-phonon
coupling.[S0163-1828)01544-4

[. INTRODUCTION plane transverse to the wire axis or in all the spatial direc-
tions of dots. First, the confining potential may bring about
With the recent progress in microfabrication technology,much rich phonon modes’*8-4%uch as confined phonon
such as molecular-beam epitaxy and nanolithography, it benodes, interface phonon modes, etc. Second, even for the
comes possible to fabricate the synthetic polar semiconduaonfining potential itself, there are so many types in the lit-
tor structures with low dimensionality, such as dielectricerature. It can be divided into three major types: the rectan-
slabs, heterojunctions, quantum wells, quantum dots, andular (or box typel?~!°cylindrical (or spherg typel*16-23
quantum wires. Two subjects of interest are the quantunand parabolic-typé&*—3143-4"Further, it can also be charac-
wire, 1~*which can be fabricated within low-nm size, and the terized as finit& or infinite 2° symmetri¢’ or asymmetrié*
quantum dot ®which can be realized in both two- and three- A variety of phonon modes and various types of the wire
dimensional(2D and 3D systems, and can also be made aspotential have given rise to rich and varied investigations in
small as a few nm in size. These systems have attractatiis field in the last decade.
substantial attention due to the physical effects coming from More recently, the sole effect of the interaction of electron
their quasi-one-dimensionalitfwires) and ultralow dimen- and bulk longitudinal-opticalLO) phonons and polaronic
sionality (dot9, which are useful for electronic and optoelec- properties in quantum wires and dots have been studied by a
tronic device applications. Recently, many investigationdarge number of author$-3"4=%6Most of the papers are
have been devoted to the effects of the electron-phonon imssociated with the weak-coupling treatments. However, to
teraction on various electronic properties of polar semiconeur knowledge, only a few papefs.g., Refs. 20 and 2%ad
ductor quantum wirés3’ and quantum dots~*3~*"One of  been written on the polaronic effect over the whole coupling
the most significant observations that had been made withiregime, which are also of great theoretical and practical im-
this context is that polaronic effects are extremely importanportance. Except in Ref. 20, the general consensus is that the
in thin wires and small dots, and should, therefore, be takepolaronic correction to the ground state is considerably
into account when making devices with them. stronger with the strength of the wire or dot confining poten-
Polarons in quantum wires or dots are markedly differential. Therefore, high-degree confinement of quantum wires or
from those in bulk materials, due to the presence of wire odots should lead to the enhancement in the effective electron-
dot potentials, which confine the motion of the carriers in thephonon coupling. This would bring about the possibility that,

0163-1829/98/5@4)/1634(013)/$15.00 PRB 58 16 340 ©1998 The American Physical Society



PRB 58 FEYNMAN-HAKEN PATH-INTEGRAL APPROACH FQR . .. 16 341

in spite of weak-polar coupling as in GaAa£0.07); for p? : e
instance, the polaron problem may show up as an H= 7+V(p,z)+; akak"—; (vae " "+H.c),
intermediate- and strong-coupling feature. This is more pro- (1)

nounced in the II-VI compound semiconductdesg., CdS

a=0.53), where the electron-phonon coupling strength is a'wherer=((p:x,y),z) andp are the position and momen-
most in one order of magnitude larger than that in HI-V y;m operators of the electron, aM{p,2) = % w?p?+ L w,22
materials. Consequently, the pure pertur_bation theory is_ nat the confining potentiake,=0 for quantum wires and,
perfectly approprlate for a system Wlth _W_eak-coupllng:w for quantum dots, witho being in units ofw o, mea-
strength, which, hpwever, could also exhibit |n_ter_med|ate—suring the confining strength of the parabolic potemﬁl,
even strong-coupling features through the variation of the,y, are respectively, the creation and annihilation opera-

confining potential strength. It is also evident that thetors of the LO phonons with the wave vector (k  k
Landau-PekafLP) theory*® employed in Refs. 19, 29, and P (kp k2,

44, which is only well suited in the strong-coupling limit,
could not produce precise results for these systems. Thus, a
theory that would be really suited for all coupling regimes
simultaneously is imperative to provide some qualitative in- , ,
sight into the investigation on polarons in this system. On thé/‘”th v being t'he crystal volume and being the electron-
other hand, such a universal theory may stimulate more exhonon coupling constant.

perimental works on some materials with somewhat strong- " this paper, we will employ the FH path-integral
coupling strengths, which will be helpful for better under- approacf’™*to derive the ground-state energy expressions

standing of the role of the electron-LO phonon interaction o these CO““F‘EO' systems. Proceeding.as outlined in Refs. 51
in quantum wires or dots. For instance, recent progress ifnd 52, after integrating over the path integral over the pho-

technology has already allowed the fabrication of nanosizefo" coordinates, assuming that they are in their ground state,
and even atom-sized structures, including those with stronf¢ ¢@n readily obtain the true action corresponding to
ionic substance, e.g., KBr/NaCl, KBr/RbCl, and Nacl/ Familtonian(1),
NaCl001) monolayerd? In these materials, the electron-
phonon coupling constarnt is usually larger than one. S= ftbdt[— 12y
. 2 p,Z)]

In the present paper, we will study the sole effect of the ty
electron-LO phonon interactions on the ground-state energy
of an electron in polar semiconductor quantum wires and +12 J\b b|v |2eik~[r(t)—r(s)]e|t—sldt ds (3)
dots with parabolic confinement for arbitrary coupling con- K t, Ity K
stants in a unified way, within the framework of the
Feynman-Haken(FH) path-integral theory®™>* Such a In the Feynman original approacfitene may choose a
choice for the confining potential, besides facilitating thetrial action
derivations in the theory, is also, more importantly, close to
the realistic case. Recently, Kashal>® have observed some t )
good evidences for the existence of a parabolic potential well S, = j dtf —3r2+ K p?+K,z?]—%C
in quantum wires produced by strain gradients using a pat- ta
terned carbon stress. In addition, it is reasonable to consider _
the electron-phonon interaction with bulk phonons only, as xf J‘e‘W|“S||r(t)—r(s)|2ds dt 4
far as there are no interfaces in these systems with the para- ta/ta

bo[ll'chgor'[:r?lt;\?rl{der of this paper is organized as follows InWe shall, however, follow the procedure developed by
pap 9 - " Hakert! in the treatment of the exciton-phonon problem and

Sec. |l we outline the theory of FH and derive the unlfledIater applied to the bound polarons by Matsutfran ad-
expression for the polaron energy over broad ranges of the

confining potential of the quantum wire and dot, and arbi_vantage of this approach is that the strong-coupling feature

trary electron-phonon coupling strength. In the next sectior?f the system can be clearly characterized, which will be

we also derive the energy expressions for polarons by meat%]own later. For the trial actio§,, we choose

of the second-order Rayleigh-ScHinger perturbation . N

theory(RSP'I_) and the LP strong-coupllng theory. In Sec. IV Sl:J' dt{—%rz—veﬁ[r(t)]}=f dt Ly, (5)

some analytical results for polarons in quantum dots are ob- ty ty

tained analytically. Numerical results and some discussions

are performed in Sec. V. The conclusions are summarized iwhereVgq{r(t)] is the effective trial potential to be chosen

the last section. later. The corresponding quantum-mechanical Hamiltonian
then satisfies

) V2o
lod*=—17 )

Il. THEORY
Her®ET(r) =[3p2+ Ver(1) 10 (r) = EE"DE™(r),  (6)

The Hamiltonian describing the interaction of an electron
and LO phonons in quantum wires and dots with paraboliavhere ®¢"(r) and ES" are the wave function and ground-
potential can be, in a unified way, given iy units ofm  state energy ofH.s. Therefore, the effective Dirac-
=h=wo=1) Schwinger transformation function can be written as
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b
Keﬁ(rb.tb;ra,ta)=f eSiDr(t)

a
_ eff effx —EEﬁ(t —t,)
= OMf(r)de™ (r,)e En (hta),
n

@)
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({S—S;)) being given by

f (S—S;)eSDr(t)

f eSiDr(t)

((S—=8))= =C1+C2, (10

By Jensen-Feynman inequality, the Feynman variationa\INhere

principle now reads

ESSEF=ES"—s, (8) b( (ta S
N _ f U [Veﬁ(r)—v(p,z)]dt]e1Dr(t)

whereEg@“is the exact ground-state energy corresponding o1 22l (1)

to the true action(3), b

e>1Dr(t)
S-S a
s= lim —<<t —t1>>’ 9
(th—tg)—= b "a and
th (to .
fZ[Ezk f f 3uifze O 9gl ol ds] e%Dr(t)
tc’:l ta
C2= (12
J eSiDr(t)
|
According to the procedure of Ref. 51, bdfil andC2 L =(D VT L2+ V(o 2) 1D (¢ 19
can be calculated. To obta®1, we should first calculate its 1=(Po(nllzp (p.2)]|®5(1) (19
numerator. We then can readily have
and
ta
Clnum:f dr(t)f dt Keff(rb ty il t)[Veff(r) |<cDef‘f(r)|[U —ik-r eff 2
bt ; ke “[egi(n)]

o |2=—§ > (20

—V(p,2) [Ke(re 51, ta). (13

Substituting Eq(7) into Eq.(12), in the long-time limit, we
get

C1hum— (tb_ ta)q)gff(rb)q)gff* (ra)87 Egﬁ(tb*ta)

X(DE(N)|[Ver(r) = V(p,2) 1| DF(r)). (14)
In the same limit, the denominator @f1 reads

C1o= offlry) g™ (re S bW, (15)
Thus, we obtain

c1=<tb—ta)<<1>8ﬁ<r)|[veﬁ<r>—V<p,z)]|d>8”<r>>.( )

16

In a similar way, we can get

c2:—(tb—ta>; g |

(@(n)][vke”* | @5(n) P
Eg—Ef"-1

7

By means of Eqs(6) and(9), the inequality(8) becomes
ESKER=1,+1,, (18

where

3 Eff-ES"+1

Equations(18)—(20) will yield the Feynman energy within
the FH theory. It is to note that, if the effective potential
Vei(r) is chosen to be such a form that the corresponding
Schralinger equation can be analytically solved, substitution
of the relevant energy eigenfunctions and eigenvalues into
Egs.(19) and(20) will produce the upper bound to the exact
ground-state energy of the Hamiltoniéh).

It is interesting to find that Eqg18)—(20) will give the
results of the second-order RSPT, if the effective potential
Vei(r) is exact, taken the confining potential(p,z)
=1w?p?+3w,z%. It follows that the second-order RSPT
provides an upper bound to the exact ground-state energy.
Furthermore, better upper bounds may be obtained by select-
ing the effective potential properly.

In this paper, according to the symmetry of the system
studied, we will choose a variational effective potential as
the following harmonic-oscillator-type, which is only isotro-
pic in the p plane

Verl(r)=3N5p"+ 3N327, (2D
where\ , and\, are variational parameters to be determined.
Obviously, the confining potential(p,z) = 3 w?p?+ 3 w,z°
is only a special form of Eq(21) by setting\ ,=w andX,
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=w,. Therefore, the second-order RSPT results should b# should be pointed out that this Feynman energy expression

covered in the following calculation based on Eg1l) in
principle.

(29) could be suited for all coupling constaatand arbitrary
strength of the confining potential.

The energy eigenfunctions and eigenvalues corresponding In the weak-coupling limit, the condition that the confin-

to potential(21) are

N )\%/2 1/2

eff —
(r)= IRy Iz 1 1)

Hj, (V0 H; (VR yH;

E?ﬁ:(jx+jy+1))\p+(jz+ %))\Z!

\/)\_z) e (O pp2/2+ £,Z%12)
z 1]
(22

whereH () is the Hermite polynomial of order. Now Eq.
(19) yields

I o’ w§ 23
+ e .
Using the transformations
= J e e gy (24)
0

and the Slater sum rule for the Hermitian polynomials

1
> ST Ha(AX)HL(AX ) exd — 2N2(x%+x'?)—2np]
n :

— ep _ 142 2
——\/m exp[— N[ (x+x")* tanh(p)
+(x=x")? coth(p)1}, (25)

one can perform the summation ovgr(i=x,y,z) in Eq.
(20) easily. Then using

e ik(r=r")

S S

k

v 1
T An|r—r']’

(26)

one can integrate over the electron position vectoasdr’

by transforming these vectors into center-of-mass veator

=(r+r’)/2 and relative vectors=r—r’, and finally have

| a det W 1 | 1+V1-R
=—— e n ,
> 2 Jo 1-e M J1-R \1-V1-R
(27)
with
N[ 1+ coth(A,t/2
Ry h(\, )]. 28
N[ 1+coth(A t/2)]

ing potential is stronger than the electron-phonon interaction
is always met, so the variational parametgrand\, could

be mainly determined by Eq29) without the fifth term in
the right-hand side,

N=0, \=0,. (30
As a result, we easily have
E =0+ ‘
=w ~ W, — =
2% 2w
ert . Vo, 1 1+\/1—RWC)
e n 1
0 Vi—e ¢ 1-R,c \1—-V1—Rye
(3D
with
_ o[ 1+cothw,t/2)]

w1+ cotwt/2)]

This weak-coupling result will be shown to be just identical
to the second-order RSPT results in the next section.

For quantum wires, setting,= 0, the above equation can
be slightly transformed into

f 1 1+\/1—R’)
S le—R’ 1-V1-R')’
(32
with
, 1
L wt[1+coth( wt/2)]

For quantum dots, since,=», we can get a very simple
closed-form analytical expression for the Feynman energy in
the weak-coupling limit

s o Tl

E -
QT3 @ 1 1\’
3]

(33

w 2

which is no other than the second-order RSPT resuliNor
=3 obtained by Mukhopadhyay and Chatteffe.

Moreover, for comparison, we will study these systems
within the second-order RSPT for weak coupling and the LP

For later use, we now write the Feynman energy comwariational theory for strong coupling as well in the next

pletely in terms of Eqs(18), (23), and(27),

2 2
w w5 o

2, AN, 2im
ijdt LN 1 | 1+V1-R
e n .
0 Vi—e M 1-R |1-JV1-R

(29

EF =2\, + i+ 5—

section.

Ill. STANDARD WEAK- AND STRONG-COUPLING
THEORY

A. Second-order perturbation theory

The second-order RSPT correction to the ground-state en-
ergy due to the electron-LO phonon interaction in Hamil-
tonian (1) is given by
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K®j(r)[[vie ™" Po(r) E[f(k),f*(k)]
AE——; % EEsi1 ., (39
2 2
where the energy eigenfunctiods;(r) and eigenvalueg; =INH N+ %+ 4a;\z +> (k) f(K)
1 2 K

are corresponding to the confining potentid(p,2z)

=1w?p?+Lw,z>. The difference between Eq$34) and 2 2
(20) is that the energy eigenfunctions and eigenvalues are +2 vkexp{— I ”f(k)JrH.c.], (39
corresponding to a different potentisgl(p,z) and Vx(r), k RLSTREL®:
respectively. The ground-state energ$'? in the second-
order RSPT, therefore, can be straightforwardly derived fronnd 9€t
Eq. (29 by setting\ ,= @ and\,=w,, and has exactly the ) )
form (31). Note that the same results can be derived in Fk) = —v¥ ext] — K K
slightly different ways. It should be stressed again $at? Yk AN, 4N,) |
is the upper bound to the true ground-state energy due to the (39
Feynman variational principle E¢8), which will be useful K2 K2
for subsequent discussions. f* (k)= —Ukex;{ — (—"+ z ”
In the bulk limit, i.e., w—0, one can easily obtain 3D 4Ny 4N,

free-polaron ground-state energy-a&. This is just the well-
known results obtained by many authdeee Ref. 54 and
references therejn

Here, we should mention that, although the second-order

Inserting these back into Eq38), we finally have strong-
coupling energy as

RSPT is a standard method in polarons physics, such a uni- ELP—} ot 1 "o w_2+ w_g_ a ™

fied energy expression for polarons in both quantum wires 27142 2N 4, Jm J(N N —1
and quantum dots within this theory as E§1), which ex-

plicitly consists of only a one-dimensional integral has not XIN[ V(N /Np) =1+ VN1 /N5]. (40

been reported before, to the best of our knowledge.
It is interesting to note from both Eq&9) and(40) that,
B. Landau-Pekar strong-coupling theory for the finite value ofw and in the limit of a—, )\p ap-
roaches\, in Eq. (29) and \; approachea, in Eq. (40).

The strong-coupling polarons in quantum wires and dot hen, both equations can be reduced to

can also be investigated by the LP variational sch&tvd-
ternatively, we here proceed to give a more concise repre-

sentation of this scheme. The adiabatic polaron ground state ELP:E X+ w_z_ @ N (41)
can be given through the following product ansatz: 4 2N =m
| Y=(r)|A), (35) Further, if settingw=0 (i.e., bulk casg the ground-state
energy reads
where the electron patk(r) is chosen as the following prod-
uct of two Gaussian-type wave functions in transverse and ELP— _ i o2 (42)
longitudinal coordinates: 37
_ which is no other than the well-known strong-coupling re-
b1 =e¢(p)x(2), sults for 3D free polaron®5556
(36) So far, we have proven that the present FH path-integral
¢(p)~e—>\lp2/2, X(z)~e‘*222/2, method can reproduce the results in both the weak- and

strong-coupling limit obtained by standard perturbation
with \; and \, being variational parameters to be deter-theory and strong-coupling theory, respectively. It is also
mined, andA) is the phonon coherent state, expected that the present approach can produce good results
for polarons in both quantum wires and dots with arbitrary
coupling strength and confining potential. These will be
|A)=exp{2 [f(k)al_f*(k)ak] |0), (37) demonstrated in the numerical calculations performed in
K Sec. V.

heref(k) andf* (k) will be determined variationally|0) is
the unperturbed zero phonon state satisfyi{0)=0 for
all k. Obviously, for quantum wires with the potential of axial

To find the optimal fit tof(k) and f*(k), we should symmetry, the expressions of the Feynman ene@9
minimize the expectation value of the Hamiltoniél) that  cannot be reduced anymore. For quantum dots, however, due
describes a polaron confined in a parabolic potentiato a confining potential with sphere symmetry, we can obtain
V(p,2)=3w%p?+ 3 w,2% in the trial state(35) ( |H| ), which  a simple closed-form analytical expression for the Feynman
has the following functional form: energy by settingy,= w,

IV. ANALYTICAL RESULTS FOR QUANTUM DOTS
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For later use, Eq(43) is also extended to those for polarons Thus, Eq.(44) reduces to

in multidimensional quantum dots

N No? ﬁar<¥) FG)
Ef=g A A 20\ F(E) F(1+1)'

2 N2

(44)

1
FX) NN 2In2
— = |1+ (48)
r(1+1JX - N
N2
N—1
ot
. N Nw* « 2 2In2
Ef =M 5 JXHT. (49

r

2

In principle, minimizing the above energy with respect\to

More interestingly, we can discuss two limiting cases bywould yield the Feynman energy in the localized state. How-

Eq. (44).

A. Extended-state solutions

In the limit «— 0 andw— 0, it can be noted from E¢44)
that there exists an extended-state solution, i.e:0. Thus,
Eq. (44) reduces to

r N—1
EF_N)\ No? ra 2 . A 45
TN 2 Ny (1tg) @9
2
Minimizing the above energy with respect xogives
r N—-1
EF= ym 2
- TF—N“
2
N—1 1/2
. ﬁr(_z ) 26
el tan T Ny ¢ U9
2

Utilizing y1—x~1—x/2 for smallx, we can obtain the same
weak-confinement limit results by the second-order RSPT

method®
In the limit of w— 0, we will get
T N—1
NCaAN
F: —_— ——eee
E 5 : N @ (47
2

ever, it is obvious that one could not obtain a simple analyti-
cal expression for this energy. Only in some extreme cases,
one can get the analytical results.

In the limit «— and for finite w, the value of\ is
mainly determined by the first and last terms in the right-
hand side of Eq(49). Inserting the resultark back into Eq.

(49) we arrive at
. N—1)\1772
1 2

EF=—m —N a?—~Nn2
F(E)
N—1\72
N3e? F(T)
T 202 N (50
F(E)

It is to note that the first terms in the right-hand side of Eq.
(50) is no other than the strong-coupling results for the
ground-state energy of free multidimensional polaffns

In the other case, i.e., in the limii— oo and finitea, the
value of \ is only determined by the first two term in the
right-hand side of Eq(49). In a similar way, we have

F(E)
EF=§ w—g Ii Jo+ %) (51)
r(i

Interestingly, one may find that E¢p1) can also be given by
the second-order RSPT in the strong-confinement limit (
_)oo).43

Finally, we would like to point out that the present
localized-state solution&t9) can also be obtained from the

which is just the well-known second-order perturbation re-LP results. To prove this, one can readily have the LP energy
sult for free N-dimensional polarons obtained by many by extending Eq(40) to the case for polarons in multidimen-

authorsy’

B. Localized-state solutions

We also have the localized-state solution from Et),

i.e., \—o, if either a— or w—cc. In this limit, one can

show that

sional quantum dots

{5

WA, (52)
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which is just identical to Eq(49) in the limit \—o. This
good agreement may demonstrate the correctness of our deri- —
vation. 10 -

RQRRR
R
=00
a2

=000

V. NUMERICAL RESULTS AND DISCUSSIONS

Generally speaking, for arbitrary electron-coupling 1L [
strength and confinement potential of quantum wifes
doty, we may calculate the ground-state energy of the
Hamiltonian (1) by minimizing the Feynman enerdy: in
Eq. (29) [or Eq. (44)] numerically. One of the important 01 b
physical observables to be evaluated in this field is the bind- e e e -
ing energy of polarons, which is defined as the difference of
the ground-state energy of the confined system in the pres- k
ence and absence of the electron-phonon interaction. For 001 ¢

later use, we define the effective radief quantum wires ' ' ' '
or dots as 0 0.5 1 15 2 25

EF

R= —. (53) FIG. 1. The binding energﬁg of polarons in quantum wires
\/Z within the FH path-integral theory, as a function of the effective
wire-radiusk at «=0.01, 0.05, 0.1, and 1.
We will present some numerical results and discussions
for quantum wires and dots, respectively, in the followingindependent ofx and, therefore, exhibit the same behavior,
two subsections. which is shown in Fig. 2. Clearly, the second-order RSPT
results also agree with the general trend, i.e., the binding is
monotonically stronger as the wire radiR-decreases.
) ) ) As stated previously, the results for the ground-state en-
First of all, we would like to mention a recent paffeny _ergy by the second-order RSPT are upper bounds to the true
Ercelebi and Senger. In that paper, within a perturggt'onground—state energy. Thus, even one can obtain the exact
variational scheme proposed previously by Devresisal. results of the ground-state energy of polarons in quantum
in the treatment of polarons bound to a Coulomb center angire which may push th&, vs R curves to the higher po-
later successfull_y qpphed to bipolarotisthe guthors have sition, the values of,, for any R is, absolutely, not lower
calculated the binding energy and the effective mass of pogan 4 the value ofEy, in bulk limit R—. Thus, we have
larons in a cylindrical quantum wire with infinite potential gyricy shown that the key result in Ref. 20 is unreasonable
boundary. The key results obtained is that “at weak Couéamd the general conclusion is still qualitatively right.
pling, the binding energy of the polaron can be smaller and " \yq think that the result obtained in Ref. 20 is only an
its mass less inertial compared with the bulk case when thgtitact produced by the variational scheme, which is quite

wire is m_ade narrow.” Evidently, this is an exceptional re- poor at weak and intermediate couplfifgather than an in-
sult that is contrary to the general trend that the electron-

phonon interaction is inherently stronger in systems of lower 4
dimensionality.

We notice that the model Hamiltonian in Ref. 20 is the
same as Hamiltoniarfl) in the present paper, except for
slightly different wire potentials that topologically have the 3
same shape. Alternatively, in the absence of the electron-
phonon coupling, the energy eigenvalues of the electron in
these two confining potentials are positive and separated.
Therefore, in our opinion, the essential features of polarons
confined in quantum wires with these two potentials should w
be qualitatively consistent.

Motivated by that paper, let us plot the curves for the
polaron binding energEE, which are obtained numerically 1r
from Eq. (29), vs the effective wire-radiuR, at coupling
constants ranging from extreme small valwe 0.005-1.0
in Fig. 1. Unfortunately, at weak coupling, we have not
found any sign to exhibit this exceptional feature displayed 0 05 1 15 2 25
in that paper, but the behaviors of all the curves are just
consistent with the general trend.

We next present the results from the second-order RSPT. g 2. The binding energy of polarons in quantum wiEgd?
Because thé&} ' is proportional toa, one can immediately in units of , within the second-order RSPT as a function of the
notice that the curves d&[ '/« vs R, at weak coupling, are effective wire-radiusR

A. Quantum wires

PTZ/a

o
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06 — Next, it is the nature that we compare the Feynman results
) : with those by the LP strong-coupling theory within E40).
In Fig. 3 we give the relative difference between the Feyn-
man results and the LP results for the polaron binding energy
n'=(EL—ELP)/EL", as a function of the effective wire ra-
dius R. Except in the strong-confinement linfite., o — ),
E} is higher tharEy”, and this trend is more substantial with
the decrease of the coupling constantThe difference be-
tween the results by these two approaches should disappear
not only in the strong-coupling limit, but also in the strong-
confinement limit due to the fact that the high-degree con-
finement of quantum wires would also result in the enhance-
ment of the electron-phonon coupling.

So far, we have shown that for polarons in quantum wires
with parabolic confinement, the FH path-integral theory can
. produce better results than the second-order RSPT and the
e I g LP variational theory in the whole coupling regime.

0.4 0.6 0.8 1 Now, we address a very important problem that is rel-
R evant to the appearance of the critical wire radRys It is

recalled in Sec. Il that we have taken the effective potential

as the form(21), which includes both the transverse and

FIG. 3. The relative difference between results for blndlng en'|ongitude part of the coordinate. In the Strong_coup“ng re-
ergy of polarons in quantum wires within the FH theory and thegime thjs form is reasonable, because even without the con-
second-order RSPF=(E{—Ef™)/Ef™ as a function of the ef-  fining potential, owing to strong phonon-coupling strength,
fective wire-radiuR at «=1, 2, and 3. the polaron wave function should be localized in all direc-

trinsic property of the polarons confined in quantum wires.tions with a factor~e " or ~e "'l This has been evi-
The crucial reason yielding this exceptional and incorrectdently shown in the strong-coupling LP the#ftyand its
conclusion is that the scheme adopted could lead to the ovemodified one’® But in the weak-coupling regime, in terms of
estimation of the ground-state energy of the system at leaghe wire potential withw,=0, polarons could move freely
for 0<a=3. This point is clearly shown from Figs. 2 and 3 along the wire axis, and it seems difficult to imagine that
in Ref. 20. In the bulk limit, i.e.R—, in the regime 0 polarons would be localized along the wire axis. So one
<a<3, the polaron ground-state energy is, surprisingly,might think this effective potential might be unreasonable for
much higher than-a, the well-known results of free po- \weak coupling.

larons within many approximate theories, such as the pertur- portunately, it is not always that case. Before proceeding
bation theory, the Lee-Low-pines theory, and the Feynmagiih any discussions, we will calculate the effective longitu-

path-integral methodsee Ref. 54 _ dinal spatial exten¢, alone the wire axis, which is defined as
Now, we will concentrate on comparing the Feynman re-

sults based on EQq(29 with those obtained within the

second-order RSP[Eq. (32)] and the LP variational theory £ =i (54)
[Eq. (40)] with w,=0 to assess the effectiveness of the FH z

theory for polarons in quantum wires.

It is expected theoretically that the Feynman binding enwhere) , is obtained by minimizing Eq.29) with respect to
ergy Ef, should be not lower thaBf "> by the second-order X, andX,. In principle, the effective transverse spatial ex-
RSPT due to the more general form of the effective potentiatent ¢, is smaller tharg, owing to the confining potential.
(21). As an example to show this prediction, in Fig. 3, we Figure 4 presents the variation §f as the a function of
plot the relative difference between the Feynman results anthe effective wire radiuR at differenta. It is very clear in all
the second-order RSPT results for the polaron binding eneurves thatf, reduces with the shrink of the quantum wire.
ergy n=(EL—ELT/EL™, as a function of the effective In other words, the longitudinal pak?z?/2 in the effective
wire radiusR at different coupling constantgs=1, 2, and 3.  potential (21) is strengthened with the enhancement of the

It is clearly shown thaEf, is really higher tharEf "?in all ~ wire confining potential, so does the transverse part. Thus,
cases. After careful inspection of this figure, it is not difficult the strength of the wire potential is equivalent to the en-
to find: (1) For given a in the weak- and intermediate- hancement of the effective electron-phonon coupling, which
coupling regime, there exists a critical wire radiRs. Be- is consistent with the general trend in the literature.
low R., the difference between the two calculated binding More interestingly, fore<5, all the curves diverge at a
energies become larger substantially whenfurther de-  critical wire radiusR;. Note that the divergence corresponds
creases. On the contrary, abdRg, the difference is so small to the vanishes of the longitudinal padz?/2 in the effective
that it can be negligible, one can say both methods producpotential(21). Whether the longitudinal part in effective po-
equally good results(2) The R, becomes smaller with the tential should exist or not depends only on the values: of
decrease ofv. Then, in the weak-coupling limit, these two andR. Therefore, as a unified variational theory to deal with
curves will coincide with each other. The existenceRyf  this system in the whole coupling regime, this general form
will be explained later. (21) of the effective potential remains naturally reasonable.

i
O] VES

0.4

0.2
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6

0 2 4 6 8 10

o ] ) ) FIG. 5. Comparison of the present resu¢slid lineg for the
_FIG. 4. The longitudinal spatial exterd, in quantum wires  gimensionless binding enerds, /a of polarons in quantum wires
within the FH theory as a function of the effective wire-radRiat and the FVP onesdotted lines (Ref. 29 and IVT ones(dashed
a=1,23,5,6,and8. lines (Ref. 25 as a function of the coupling-constaat for the

o ) . . ) _different effective wire-radiu®* =0.1, 0.5 and FhereR* =v2R).
Now, it is very important to link these discussions to Fig.

3. R/s in Figs. 3 and 4 have the same meaning and ar
nearly identical. BelowR, £, becomes finit(i.e., A, be- radius R, the value ofE,/« is not sensitive tow until &,
comes larger than)p and the system would show some becomes finite

strong-coupling features coming from the highly confining '

potential of quantum wires. Thus, the results of the second-

order, which is only exact in the weak-coupling limit, are B. Quantum dots

quite poor. Conversely, abovg, no strong-coupling fea-  First, it is also natural to compare the present results for
tures show up £, diverges, and the weak-coupling pertur- the binding energy of polarons in quantum dots with those

bative results are then still good approximate ones. by the second-order RSPT used in Ref. 43 and the LP strong-
It is also interesting to note that, far=6, the ¢, remains

finite for arbitrary R. This is because the system itself has

of Ey/a is independent ofa. Therefore, for given wire-

some strong-coupling features even without the wire confin- ¢ 12
ing potential, which is also consistent with the above discus- .
sions. |
Finally, we should compare the present FH results for ST .
polaron binding energy in parabolic quantum wires with | : 49

those for the same system obtained recently by Pokatilov
et al, who used two approache§i) Feynman variational |
principle (FVP) and (ii) interpolation variational theory 4
(IVT) (see Ref. 2h which are exhibited in Fig. )R* in Ref. E" 3
25 and in this figure differs fronR by a factorv2 due to the
definition of the polaron radius. It is interesting to note that
our results lie inbetween those by FVP and IVT approaches
in the whole-coupling regime. It is clear that our results are -
not as good as those by FVP. As the effective wire radius 1 [

o
£

decreases, our results become more and more close to FVI l g -
results. More interestingly, from the highest curves we can , el T Ly
. . 0 =0
see that our results are in good agreement with FVP results 0 2 4 6 8 10
for the small wire radius and large coupling constant.
The appearance of a plateau in the weak-coupling regime o

in the present resglts can be obviously interpreted .by. Fig. 6 FG. 6. The dimensionless binding enerBy/« (thin lines of
where we have simultaneously presented the variations Qfojarons and the longitudinal spatial ext@pt(thick lines within
polaron binding energy and the effective longitudinal spatiakhe FH theory as a function of the coupling constarfor different
extent along the wire axig, with coupling-constant. As  effective wire radiusR* = 0.1 (solid lineg, 0.5(dashed lines and 5
discussed before, as far &sis infinite, the FH results would (dotted line$ (hereR* =v2R and the horizontal thin lines gives the
agree well with the second-order RSPT results that the valusecond-order RSPT results &g/ «).
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FIG. 7. The relative difference between the results for the bind-
ing energy within the FH theory and the second-order RSPT R
=(Ef—EL™/EL™, as a function of the effective dot radifsat

different coupling constants=0.5, 1, 2, and 3 in 2D. FIG. 8. The relative difference between the results for the bind-

ing energy of polarons in 2D dots within the FH theory and the LP
_ _ ~ theory ' =(Ef—E{")/E", as a function of the effective dot ra-
coupling theory employed in Ref. 44, to assess the effectivediusR at «=4, 6, and 18.

ness of this approach for polarons in quantum dots. As dis-

cussed in the last subsection, it is also expected theoreticallys gnd are of practical importance as well for the reason that
that the present I‘esults Should be better than the reSU|tS %antum dots can be techn0|ogica”y rea”zed in both 2D and
these two approaches, which will be shown in the following3p systems.
numerical results. We present the binding energy of 2D and 3D polarons in
In Fig. 7, we plot the relative difference between our re-quantum dots as a function of the effective dot radusith
sults and the the second-order RSPT results for the bindingvo typical coupling constanta=1 and 7 in Fig. 10. It is
energy of polarons in quantum dots=(Ef—ELT/EL™,  clearly shown that the polaronic effect is substantially
as a function of effective dot radilR at different coupling strengthened with contracting the quantum dot in both 2D
constantse in 2D. It is clearly shown that the present and 3D. Itis also noticed that the binding is stronger in 2D
ground-state energlg¢ is really lower than or equal tBpt,
in all cases. In the limit olx— 0, the present results are in 1
good agreement with the second-order RSPT resultsa As a=5
increases, the difference between the two calculated energies
becomes larger and larger, and more interestingly, this trend 08 F
is more pronounced while the confinement lendghis
around 0.5-1. For instance, at=3, the maximum value
Tmax IS @s high as about 12%. 0.6
After careful inspection of this figure, it is not difficult to ’
find that the present results also agree well with the second- &
order RSPT results in the strong-confinement limit, iF.,
—0 for finite . This may be attributed to the fact that both 04 |
of these theories could produce the same strong-confinement
results as shown in E@51) in Sec. lll. The totally different a=10
limiting dependence ofy on the effective radius in this figure 02 -
for dots and in Fig. 3 for wires, in our opinion, is originated
from the intrinsically different confining potentials.
Figure 8 displays the relative difference of the Feynman
results and those by the LP strong-coupling theory within 0 1 2 3 4 5
Eq. (52) for 2D polarons in dots. All the curves in this figure
and in Fig. 9 for wires show similar behavior, and, therefore, R
similar discussions may be made and are not presented
again. FIG. 9. The relative difference between results for the binding
Next, we shall discuss in some depth the effect of dimenenergy of polarons in quantum wires within the FH theory and the
sionality on the polaron properties in quantum dots by study+ P theory ' = (Ef —ELP)/EL”, as a function of the effective wire-
ing it in 2D and 3D, which have also been performed in Ref.radiusR at =5, 7.5, and 103.




16 350 CHEN, REN, JIAO, AND WANG PRB 58

10 55
—-3D
8l 45|
6l 35
25}
al
151
| w
2 05
w o 0
w 45
50 -
35+ =
wol a=1
25|
30
20 b 15}
i 05 :
10 0 1 2 3
0 ' : R
0 1 2 3
R FIG. 11. The RPE to the ground-state energy of an electron in a

gquantum dot within the FH theory as a function of the effective dot

FIG. 10. The binding energEE of polarons in quantum dots radiusR at =1 and 7 in 2D and 3D.

within the FH theory as a function of the effective dot radRiat

w=1 and 7 in 2D and 3D. obtained the fundamental results for the polaron ground-state

energy as well as for the effective mass. Our results for the
than in 3D, and this trend is more pronounced with the in-Pinding energy of polarons in quantum dots qualitatively
crease of the coupling constant. This is consistent with th&9rée with those for the polaronic shift of the electron levels
previous weak-coupling results. due to the bulklike phonon contribution for symmetrical
In order to qualify the effect of confinement on the po- electron states|&0) in dotllkg objects having spherical
laronic effect more precisely, we will calculate the relative Shapescf. b curves of Fig. 2a) in Ref. 11.
polaronic enhancement in quantum dots with respect to the

corresponding bulk value V. CONCLUSIONS
Ep(R) In this paper, we have generalized the previous FH varia-
RPE= ————. (55 tional path-integral theory to investigate the polaronic effects
Ep(R—>)

in both quantum wires and quantum dots with parabolic po-
The numerical results are displayed in Fig. 11. It is observedential in the whole electron-phonon coupling regime and
that, at the weak coupling, the variation of the relative po-confining potential strength in a unitary way. For quantum
laronic enhancemeriRPE) with the effective dot radiuRis  dots, due to higher symmetry compared to quantum wires, a
independent of the dimensionality. This is consistent with thesimple closed-form analytical expression for the Feynman
previous results of the weak-coupling perturbation thédry. energy can be obtained and the analytical results in the
But as the coupling constantincreases, our results indicate extended-state and localized-state limit can be further ar-
that the variation of RPE wittR become sensitive to the rived. In order to test the validity of this theory, we have
dimensionality when the dot is made narrow. This conclu-performed comparisons of the present results with those ob-
sion cannot be made by the second-order RSPT appfdachtained by the standard second-order RSPT, the LP strong-

It is also interesting to note from Fig. 11 that the RPE iscoupling theory, as well as recently more advanced investi-
stronger in 3D than in 2D, while the electron-phonon cou-gation performed by Pokatiloet al, within the FVP and
pling is not too weak, contrary to the absolute binding energyVT approaches.

Ep(R) presented in Fig. 10E,(R—») in Eq. (54) is the On the basis of the obtained analytical and numerical re-
ground-state energy of multidimensional bulk polarons.sults, the main conclusions are summarized as follows.
Since RPEP=RPE?" is always met for arbitraryr shown in (1) The FH variational path-integral theory can produce

Fig. 11, we can deduce that, with the reduced dimensionalityhetter results for polarons in both quantum wires and quan-
although polaronic effects both in quantum dots and in bulkum dots than the second-order RSPT, LP strong-coupling
systems become stronger, the enhancement of the former otteeory does for arbitraryr and confining potential strength.

is not as substantial as the latter one. In addition, the present results for polarons in quantum wires

We would like to mention the work of Klimin, Pokatilov, lie inbetween the recent results obtained by Pokatidbal.,

and Fomint! where the authors have carried out the exacwithin the FVP and IVT approaches.

separation of bulk and interface vibrational excitations in the (2) The binding is monotonically stronger as the decrease
confined system for the first time to our knowledge, andof the effective radiuR of the quantum wires or dots in the
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whole coupling regime, not only at weak coupling. dependent on both the dimensionality and the coupling con-

(3) By selecting a very general form of effective potential stant, different from the previous conclusions by the second-
needed in the variational path-integral theory, it is shownorder RSPT approach. Interestingly, the RPE is found to be
systematically that the strength of the wire potential islarger in 3D than in 2D if the coupling strength is not too
equivalently the enhancement of the effective electronweak.
phonon coupling. Further, it is found that, because of the Finally, it should be pointed out that the present approach
highly confining potential of quantum wires, this systemis also well suited for the problem of bound polarons in these
could even exhibit some strong-coupling features in theconfined systems with parabolic potential. These extensions
weak- and intermediate-coupling regime. Then the wealare in progress.
coupling of the second-order RSPT fails to describe the
ground-state of this system, but the universal variational
path-integral theory is still a very powerful one.

(4) In a strict meaning, it is shown that the exceptional We are very grateful to Professor V. M. Fomin and Pro-
results in a recent papéRef. 20 are not an intrinsic prop- fessor E. P. Pokatilov for providing the results of Ref. 25 and
erty of polarons confined in quantum wires, and is only anmany other kindly assistances, and appreciate helpful discus-
artifact produced by a variational scheme, which is quitesions with Professor L.-H. Tang and Dr. Y.-B. Yu. This
poor at weak coupling. work was supported by the Center for Research and Devel-

(5) It is found that the polaronic effect in quantum dots is opment on Superconductivity of China under Contract No.
enhanced with lowering dimensionality. Furthermore, as thel-A-5222 and was partly supported by the National Nature
coupling constant increases, the value of the RPE become&cience Foundation of China under Grant No. 198040009.

ACKNOWLEDGMENTS

*Mailing address. a6, Q. Hai, F. M. Peeters, J. T. Devreese, and L. Wendler, Phys.
1IR. G. Wheeler, K. K. Choi, A. Goel, R. Wisnieff, and D. E. Rev. B48, 12 016(1993.
Prober, Phys. Rev. Lettt9, 1674(1982. 22| Wendler and R. Kgler, J. Phys.: Condens. Mattér 7857
2T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J.  (1994.
Davies, Phys. Rev. Let66, 1198(1986. 23E. A. P. Oswio, M. H. Degani, and O. Hipito, Phys. Rev. B52,
3M. Watt, C. M. Sotomayer-Torres, H. E. G. Arnot, and S. P.  4662(1995.
Beaumont, Semicond. Sci. Techn).285 (1990). 24T, C. Au-Yeung, C. C. Jong, S. W. Gu, and Eddie M. C. Wong,
4R. C. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, Phys. Lett. A204, 155(1995.
Science258 783(1992. g, p. Pokatilov, V. M. Fomin, J. T. Devreese, S. N. Balaban, S.
5K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C.  N. Klimin, and L. C. Fai, Europhys. Conf. AbstR0A, 48
Tamargo, Appl. Phys. Letd9, 1043(1986. (1996; in Abstract Workbook of Ninth International Conference
®J. Cibert, P. M. Petroff, J. G. Dolan, S. J. Pearton, A. C. Gossard, on the Superlattice, Microstructures and Microdevices, Liege,
and J. H. English, Appl. Phys. Le#t9, 1275(1986. 1996 edited by J. P. Leburton, H. Kurz, J. Destine, C. Lacrosse
M. A. Reed, J. N. Randall, R. G. Aggarwal, R. J. Matyi, and A. E. (Liege, 1996.
Wetsel, Phys. Rev. Let60, 535(1988. 28E, p. Pokatilov, V. M. Fomin, S. N. Balaban, S. N. Klimin, L. C.
8A. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lét. 2559 Fai, and J. T. Devreese, Superlattices Microstrias, 331
(1990. (1998.

M. H. Degani and G. A. Farias, Phys. Rev48, 11 950(1990.  27T. C. Au-Yeung, L. H. Hong, S. W. Gu, S. L. Kho, and Eddie M.
POw. s, Li, S. W. Gu, T. C. Au-Yeung, and Y. Y. Yeung, Phys. C. Wong, Phys. Lett. AL92 91 (1994.

Rev. B46, 4630(1992; Phys. Lett. A166, 377 (1992. 28T, Yildirm and A. Ercelebi, J. Phys.: Condens. Mat&r4375
1S, N. Klimin, E. P. Pokatilov, and V. M. Fomin, Phys. Status  (1991).
Solidi B 184, 373(1994. 29T Yildirm and A. Ercelebi, J. Phys.: Condens. Mat®r1271
12, Tanatar and K. Geen, Semicond. Sci. TechnolO, 803 (1991).
(1995. 30, Wendler, A. V. Chaplik, R. Haupt, and O. Hipolito, J. Phys.:
13M. stroscio, Phys. Rev. B0, 6428(1989. Condens. Matteb, 4817(1993.
K. D. Zhu and S. W. Gu, J. Phys.: Condens. Mater1291  3!'R. Haupt and L. Wendler, Solid-State Electr@7, 1153(1994;
(1992; Phys. Lett. A171, 113(1992. Z. Phys. B94, 49 (1994).
15B. Tanatar, K. Guen, C. R. Bennett, and N. S. Constantinou, 32p. Vasilopoulos, P. Warmenbol, F. M. Peeters, and J. T.
Phys. Rev. B53, 10 866(1996. Devreese, Phys. Rev. &0, 1810(1989.
16W. D. Sheng, J. Q. Xiao, and S. W. Gu, J. Phys.: Condens. MatteB3L. Wendler, A. V. Chaplik, R. Haupt, and O. Hifio, J. Phys.:
5, L129(1993. Condens. Matteb, 8031(1993.
17E. P. Pokatilov, S. N. Klimin, S. N. Balaban, and V. M. Fomin, 3*R. Haupt and L. Wendler, Ann. Phy@\.Y.) 233 214 (1994.
Phys. Status Solidi B91, 311 (1995. 35N. S. Constantinou and B. K. Ridley, J. Phys.: Condens. Matter
18y, B. Campos, M. H. Degani, and O. Hiliim, Solid State Com- 2283(1991).
mun. 79, 473(1991). %H. Y. Zhou and S. W. Gu, Solid State Comm@1, 725(1994).
19A. Ercelebi and R. T. Senger, Solid State Comm@i, 509  %7V. V. Paranjape, Phys. Rev. B3, 6908(1996.
(1995. 38y, Bockelmann and G. Bastard, Phys. Rev4® 8947(1990).

20A. Ercelebi and R. T. Senger, Phys. Rev58 11 008(1996. 39M. H. Degani and G. A. Farias, Phys. Rev4R, 11 950(1990.



16 352 CHEN, REN, JIAO, AND WANG PRB 58

“0K. D. Zhu and S. W. Gu, J. Phys.: Condens. Mat#er1291  5°R. P. Feynman, Phys. Re97, 660 (1955.

(1992. 51H. Haken, Z. Phys147, 323(195%.

41S. Nomura and T. Kobayashi, Phys. Rev4B 11 950(1990. 52M. Matsuura, Can. J. Phy52, 1 (1974.

42K. D. Zhu and S. W. Gu, Phys. Rev. &, 12 941(1993. 53K. Kash, B. P. van der Gaag, D. D. Mahooney, A. S. Gozdoz, L.

“3S. Mukhopadhyay and A. Chatterjee, Phys. Lett.284, 411 T. Florez, and J. P. Harbison, Phys. Rev. L6, 1326(1991).

» (1995. . . 54T, K. Mitra, A. Chatterjee, and S. Mukhopadhyay, Phys. Rep.
K. D. Zhu and T. Kobayashi, Phys. Lett. 390, 337(1995; Solid 153 91 (1987); C. Alexandrou and R. Rosenfeldéojd. 215, 1
State Commun92, 353 (1995, 95, 805(1995. (1992.

“°S. Mukhopadhyay and A. Chatterjee, J. Phys.: Condens. Matter ssq 5 Miyake, J. Phys. Soc. Jg88, 181 (1975 41, 747 (1975.

4017(1999. %6Qinghu Chen, Minghu Fang, Qirui Zhang, Kelin Wang, and Sha-
463. Sahoo, Z. Phys. BO1, 97 (1996.
47Qinghu C,hen Z. Phys. BO4 591 (1997 olong Wan, J. Phys.: Condens. Mat&r7139(1996.
o g » & FYS. B0 ' . 57F. M. Peeters, Wu Xiaoguang, and J. T. Devreese, Phys. Rev. B
L. D. Landau and S. I. Pekar, Zh. Eksp. Teor. Hig, 341(1946 . . o
. ) 33, 3926(1986; Qinghu Chen, Minghu Fang, Qirui Zhang, Ke-
[JETP 18, 341(1948]; A. Chatterjee, Phys. Rev. B1, 1668 lin Wang, and Shaolong Waibid. 53, 11 296(1996

(1990. 58 )
493 A. safron, G. G. Bishop, J. Duan, E. S. Gillman, and P. Rug- J.StT.tD(Ca:WeeseMIj a/:rgasr(dl,giaKartheuser, and F. Brosens, Solid
; . ate Commund4, .
ggrone, surf. S(-:Q?Z 358(1992: S, A. Sa}fron, J. buan, . G. 59F. Luczak, F. Brosens, and J. T. Devreese, Phys. Re62B
Bishop, E. S. Gillman, and J. G. Skofronick, J. Phys. Ch@w. : v ' - » FNyS. d
1749(1993; J. Duan, G. G. Bishop, E. S. Gillman, G. Chern, S. 60 12 743(1995-
A. Safron, and J. G. Skofronick, J. Vac. Sci. Technol.18, A. Ercelebi and R. T. Senger, J. Phys.: Condens. M&{t&455

1999(1992. (1994.



