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Within the framework of the Feynman-Haken~FH! variational path-integral theory, the expression for the
ground-state energy of the electron and longitudinal-optical phonon system in parabolic quantum wires and
dots with arbitrary electron-phonon coupling constant and confining potential strength is derived in a unified
way with the use of a general effective potential. For quantum dots, due to high symmetry, a simple closed-
form analytical expression for the Feynman energy can be obtained, and the analytical results in the extended-
state and localized-state limit can be further derived. It is shown both analytically and numerically that the
present FH results could be better than those obtained by the second-order Rayleigh-Scho¨rdinger perturbation
theory and the Landau-Pekar strong-coupling theory for all cases, which, therefore, shows the effectiveness of
the present approach. In quantum wires, it is found in numerical calculations that the binding of polarons is
monotonically stronger as the effective wire radius in the whole coupling regime. Interestingly, when the
confining potential of quantum wire is extremely strengthened, even in the weak- and intermediate-coupling
regime, this system could exhibit some strong-coupling features. More importantly, it is proven strictly that a
very recent result in the literature that ‘‘the binding can be weaker than in bulk case at weak coupling’’ is not
an intrinsic property of this system. In quantum dots, it is found numerically that the polaron binding energy
increases with the decrease in size of the dot and is much more pronounced in two dimensions~2D! than in 3D,
while the relative polaronic enhancement is stronger in 3D than in 2D for not too weak electron-phonon
coupling.@S0163-1829~98!01544-6#
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I. INTRODUCTION

With the recent progress in microfabrication technolog
such as molecular-beam epitaxy and nanolithography, it
comes possible to fabricate the synthetic polar semicond
tor structures with low dimensionality, such as dielect
slabs, heterojunctions, quantum wells, quantum dots,
quantum wires. Two subjects of interest are the quan
wire,1–4 which can be fabricated within low-nm size, and t
quantum dot5–8 which can be realized in both two- and thre
dimensional~2D and 3D! systems, and can also be made
small as a few nm in size. These systems have attra
substantial attention due to the physical effects coming fr
their quasi-one-dimensionality~wires! and ultralow dimen-
sionality ~dots!, which are useful for electronic and optoele
tronic device applications. Recently, many investigatio
have been devoted to the effects of the electron-phonon
teraction on various electronic properties of polar semic
ductor quantum wires9–37 and quantum dots.11,38–47One of
the most significant observations that had been made w
this context is that polaronic effects are extremely import
in thin wires and small dots, and should, therefore, be ta
into account when making devices with them.

Polarons in quantum wires or dots are markedly differ
from those in bulk materials, due to the presence of wire
dot potentials, which confine the motion of the carriers in
PRB 580163-1829/98/58~24!/16340~13!/$15.00
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plane transverse to the wire axis or in all the spatial dir
tions of dots. First, the confining potential may bring abo
much rich phonon modes,9–17,38–40such as confined phono
modes, interface phonon modes, etc. Second, even for
confining potential itself, there are so many types in the
erature. It can be divided into three major types: the rect
gular ~or box! type,12–15 cylindrical ~or sphere! type,11,16–23

and parabolic-type.24–31,43–47Further, it can also be charac
terized as finite23 or infinite,20 symmetric17 or asymmetric.24

A variety of phonon modes and various types of the w
potential have given rise to rich and varied investigations
this field in the last decade.

More recently, the sole effect of the interaction of electr
and bulk longitudinal-optical~LO! phonons and polaronic
properties in quantum wires and dots have been studied
large number of authors.18–37,41–46Most of the papers are
associated with the weak-coupling treatments. However
our knowledge, only a few papers~e.g., Refs. 20 and 25! had
been written on the polaronic effect over the whole coupl
regime, which are also of great theoretical and practical
portance. Except in Ref. 20, the general consensus is tha
polaronic correction to the ground state is considera
stronger with the strength of the wire or dot confining pote
tial. Therefore, high-degree confinement of quantum wires
dots should lead to the enhancement in the effective elect
phonon coupling. This would bring about the possibility th
16 340 ©1998 The American Physical Society
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in spite of weak-polar coupling as in GaAs (a50.07); for
instance, the polaron problem may show up as
intermediate- and strong-coupling feature. This is more p
nounced in the II-VI compound semiconductors~e.g., CdS
a50.53!, where the electron-phonon coupling strength is
most in one order of magnitude larger than that in III
materials. Consequently, the pure perturbation theory is
perfectly appropriate for a system with weak-coupli
strength, which, however, could also exhibit intermedia
even strong-coupling features through the variation of
confining potential strength. It is also evident that t
Landau-Pekar~LP! theory48 employed in Refs. 19, 29, an
44, which is only well suited in the strong-coupling limi
could not produce precise results for these systems. Thu
theory that would be really suited for all coupling regim
simultaneously is imperative to provide some qualitative
sight into the investigation on polarons in this system. On
other hand, such a universal theory may stimulate more
perimental works on some materials with somewhat stro
coupling strengths, which will be helpful for better unde
standing of the role of the electron-LO phonon interactio
in quantum wires or dots. For instance, recent progres
technology has already allowed the fabrication of nanosi
and even atom-sized structures, including those with str
ionic substance, e.g., KBr/NaCl, KBr/RbCl, and NaC
NaCl~001! monolayers.49 In these materials, the electron
phonon coupling constanta is usually larger than one.

In the present paper, we will study the sole effect of t
electron-LO phonon interactions on the ground-state ene
of an electron in polar semiconductor quantum wires a
dots with parabolic confinement for arbitrary coupling co
stants in a unified way, within the framework of th
Feynman-Haken~FH! path-integral theory.50–52 Such a
choice for the confining potential, besides facilitating t
derivations in the theory, is also, more importantly, close
the realistic case. Recently, Kashet al.53 have observed som
good evidences for the existence of a parabolic potential w
in quantum wires produced by strain gradients using a
terned carbon stress. In addition, it is reasonable to cons
the electron-phonon interaction with bulk phonons only,
far as there are no interfaces in these systems with the p
bolic potential.

The remainder of this paper is organized as follows.
Sec. II we outline the theory of FH and derive the unifi
expression for the polaron energy over broad ranges of
confining potential of the quantum wire and dot, and ar
trary electron-phonon coupling strength. In the next sect
we also derive the energy expressions for polarons by me
of the second-order Rayleigh-Schro¨dinger perturbation
theory~RSPT! and the LP strong-coupling theory. In Sec. I
some analytical results for polarons in quantum dots are
tained analytically. Numerical results and some discussi
are performed in Sec. V. The conclusions are summarize
the last section.

II. THEORY

The Hamiltonian describing the interaction of an electr
and LO phonons in quantum wires and dots with parab
potential can be, in a unified way, given by~in units of m
5\5vLO51!
n
-

l-

ot

-,
e

, a

-
e
x-
-

s
in
d
g

e
y

d
-

o

ll
t-
er
s
ra-

n

e
-
n
ns

b-
s
in

c

H5
p2

2
1V~r,z!1(

k
ak

†ak1(
k

~vkake
2 ik–r1H.c.!,

~1!

where r5„(r5x,y),z… and p are the position and momen
tum operators of the electron, andV(r,z)5 1

2 v2r21 1
2 vzz

2

is the confining potential.vz50 for quantum wires andvz
5v for quantum dots, withv being in units ofvLO , mea-
suring the confining strength of the parabolic potential,ak

†

andak are, respectively, the creation and annihilation ope
tors of the LO phonons with the wave vectork5(kr ,kz),

uvku25
2&pa

nk2 , ~2!

with n being the crystal volume anda being the electron-
phonon coupling constant.

In this paper, we will employ the FH path-integra
approach50–52 to derive the ground-state energy expressio
to these confined systems. Proceeding as outlined in Refs
and 52, after integrating over the path integral over the p
non coordinates, assuming that they are in their ground s
we can readily obtain the true action corresponding
Hamiltonian~1!,

S5E
ta

tb
dt@2 1

2 ṙ22V~r,z!#

1 1
2 (

k
E

ta

tbE
ta

tb
uvku2eik•@r ~ t!2r ~s!#eut2sudt ds. ~3!

In the Feynman original approaches50 one may choose a
trial action

S15E
ta

tb
dt@2 1

2 ṙ21K1r21K2z2#2 1
2 C

3E
ta

tbE
ta

tb
e2Wut2suur ~ t !2r ~s!u2ds dt. ~4!

We shall, however, follow the procedure developed
Haken51 in the treatment of the exciton-phonon problem a
later applied to the bound polarons by Matsuura.52 An ad-
vantage of this approach is that the strong-coupling fea
of the system can be clearly characterized, which will
shown later. For the trial actionS1 , we choose

S15E
ta

tb
dt$2 1

2 ṙ22Veff@r ~ t !#%5E
ta

tb
dt Leff , ~5!

whereVeff@r (t)# is the effective trial potential to be chose
later. The corresponding quantum-mechanical Hamilton
then satisfies

HeffFn
eff~r !5@ 1

2 p21Veff~r !#Fn
eff~r !5En

effFn
eff~r !, ~6!

where Fn
eff(r ) and En

eff are the wave function and ground
state energy of Heff . Therefore, the effective Dirac
Schwinger transformation function can be written as
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Keff~r b ,tb ;r a ,ta!5E
a

b

eS1Dr ~ t!

5(
n

Fn
eff~rb!Fn

eff* ~ra!e2En
eff

~ tb2ta!.

~7!

By Jensen-Feynman inequality, the Feynman variatio
principle now reads

E0
exact<EF5E0

eff2s, ~8!

whereE0
exact is the exact ground-state energy correspond

to the true action~3!,

s5 lim
~ tb2ta!→`

^^S2S1&&
tb2ta

, ~9!
al

g

^^S2S1&& being given by

^^S2S1&&5

E ~S2S1!eS1Dr ~ t !

E eS1Dr ~ t !

5C11C2, ~10!

where

C15

E
a

bH E
tb

ta
@Veff~r !2V~r,z!#dtJ eS1Dr ~ t !

E
a

b

eS1Dr ~ t !

~11!

and
C25

*a
bH((

k Eta

tbE
ta

tb
1
2 uvku2eik•@r ~ t!2r ~s!#eut2sudt dsJ eS1Dr ~ t !

E eS1Dr ~ t !

. ~12!
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According to the procedure of Ref. 51, bothC1 andC2
can be calculated. To obtainC1, we should first calculate its
numerator. We then can readily have

C1num5E dr ~ t!E
tb

ta
dt Keff~r b ,tb ;r t ,t !@Veff~r !

2V~r,z!#Keff~r t ,t;r a ,ta!. ~13!

Substituting Eq.~7! into Eq. ~12!, in the long-time limit, we
get

C1num5~ tb2ta!F0
eff~rb!F0

eff* ~ra!e2E0
eff

~ tb2ta!

3^F0
eff~r !u@Veff~r !2V~r,z!#uF0

eff~r !&. ~14!

In the same limit, the denominator ofC1 reads

C1den5F0
eff~rb!F0

eff* ~ra!e2E0
eff

~ tb2ta!. ~15!

Thus, we obtain

C15~ tb2ta!^F0
eff~r !u@Veff~r !2V~r,z!#uF0

eff~r !&.
~16!

In a similar way, we can get

C252~ tb2ta!(
j

(
k

z^F j
eff~r !u@vke

2 ik•r#uF0
eff~r !& z2

E0
eff2Ej

eff21
.

~17!

By means of Eqs.~6! and ~9!, the inequality~8! becomes

E0
exact<EF5I 11I 2 , ~18!

where
I 15^F0
eff~r !u@ 1

2 p21V~r,z!#uF0
eff~r !& ~19!

and

I 252(
j

(
k

z^F j
eff~r !u@vke

2 ik•r#uF0
eff~r !& z2

Ej
eff2E0

eff11
. ~20!

Equations~18!–~20! will yield the Feynman energy within
the FH theory. It is to note that, if the effective potenti
Veff(r ) is chosen to be such a form that the correspond
Schrödinger equation can be analytically solved, substitut
of the relevant energy eigenfunctions and eigenvalues
Eqs.~19! and~20! will produce the upper bound to the exa
ground-state energy of the Hamiltonian~1!.

It is interesting to find that Eqs.~18!–~20! will give the
results of the second-order RSPT, if the effective poten
Veff(r ) is exact, taken the confining potentialV(r,z)
5 1

2 v2r21 1
2 vzz

2. It follows that the second-order RSP
provides an upper bound to the exact ground-state ene
Furthermore, better upper bounds may be obtained by se
ing the effective potential properly.

In this paper, according to the symmetry of the syst
studied, we will choose a variational effective potential
the following harmonic-oscillator-type, which is only isotro
pic in ther plane

Veff~r !5 1
2 lr

2r21 1
2 lz

2z2, ~21!

wherelr andlz are variational parameters to be determine
Obviously, the confining potentialV(r,z)5 1

2 v2r21 1
2 vzz

2

is only a special form of Eq.~21! by settinglr5v andlz
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5vz. Therefore, the second-order RSPT results should
covered in the following calculation based on Eq.~21! in
principle.

The energy eigenfunctions and eigenvalues correspon
to potential~21! are

F j
eff~r !5S lrlz

1/2

p3/22 j x1 j y1 j zj x! j y! j z!
D 1/2

3H j x
~Alrx!H j y

~Alry!H j z
~Alzz!e2~lrr2/21lzz

2/2!,

~22!
Ej

eff5~ j x1 j y11!lr1~ j z1
1
2 !lz ,

whereHn( ) is the Hermite polynomial of ordern. Now Eq.
~19! yields

I 15 1
2 lr1 1

4 lz1
v2

2lr
1

vz
2

4lz
. ~23!

Using the transformations

1

Ej
eff2E0

eff11
5E

0

`

e2~Ej
eff

2E0
eff

11!tdt, ~24!

and the Slater sum rule for the Hermitian polynomials

(
n

1

2nn!
Hn~lx!Hn~lx8!exp@2 1

2 l2~x21x82!22np#

5
ep

A2 sinh~2p!
exp$2 1

4 l2@~x1x8!2 tanh~p!

1~x2x8!2 coth~p!#%, ~25!

one can perform the summation overj i ( i 5x,y,z) in Eq.
~20! easily. Then using

(
k

e2 ik•~r2r8!

k2 5
n

4p

1

ur2r 8u
, ~26!

one can integrate over the electron position vectorsr andr 8
by transforming these vectors into center-of-mass vectou
5(r1r 8)/2 and relative vectorsv5r2r 8, and finally have

I 252
a

2Ap
E

0

`

dt e2t
Alz

A12e2lzt

1

A12R
lnS 11A12R

12A12RD ,

~27!

with

R5
lz@11coth~lzt/2!#

lr@11coth~lrt/2!#
. ~28!

For later use, we now write the Feynman energy co
pletely in terms of Eqs.~18!, ~23!, and~27!,

EF5 1
2 lr1 1

4 lz1
v2

2lr
1

vz
2

4lz
2

a

2Ap

3E
0

`

dt e2t
Alz

A12e2lzt

1

A12R
lnS 11A12R

12A12RD .

~29!
e

ng

-

It should be pointed out that this Feynman energy expres
~29! could be suited for all coupling constanta and arbitrary
strength of the confining potentialv.

In the weak-coupling limit, the condition that the confin
ing potential is stronger than the electron-phonon interac
is always met, so the variational parameterlr andlz could
be mainly determined by Eq.~29! without the fifth term in
the right-hand side,

lr5v, lz5vz . ~30!

As a result, we easily have

Evc5v1
1

2
vz2

a

2Ap

3E
0

`

dt e2t
Avz

A12e2vzt

1

A12Rwc

lnS 11A12Rwc

12A12Rwc
D ,

~31!

with

Rvc5
vz@11coth~vzt/2!#

v@11coth~vt/2!#
.

This weak-coupling result will be shown to be just identic
to the second-order RSPT results in the next section.

For quantum wires, settingvz50, the above equation ca
be slightly transformed into

EQW
vc 5v2

a

2Ap
E

0

`

dt
e2t

At

1

A12R8
lnS 11A12R8

12A12R8
D ,

~32!

with

R85
1

1
2 vt@11coth~vt/2!#

.

For quantum dots, sincevz5v, we can get a very simple
closed-form analytical expression for the Feynman energ
the weak-coupling limit

EQD
vc 5

3

2
v2

a

Av

GS 1

v D
GS 1

v
1

1

2D , ~33!

which is no other than the second-order RSPT result foN
53 obtained by Mukhopadhyay and Chatterjee.43

Moreover, for comparison, we will study these syste
within the second-order RSPT for weak coupling and the
variational theory for strong coupling as well in the ne
section.

III. STANDARD WEAK- AND STRONG-COUPLING
THEORY

A. Second-order perturbation theory

The second-order RSPT correction to the ground-state
ergy due to the electron-LO phonon interaction in Ham
tonian ~1! is given by



a

om

i

t

rd
u

ire

o

ot

pr
ta

-
an

r

tia

e-

ral
and
on
lso
sults
ry

be
in

al

due
ain
an

16 344 PRB 58CHEN, REN, JIAO, AND WANG
DE52(
j

(
k

z^F j~r !u@vke
2 ik•r#uF0~r !& z2

Ej2E011
, ~34!

where the energy eigenfunctionsF j (r ) and eigenvaluesEj
are corresponding to the confining potentialV(r,z)
5 1

2 v2r21 1
2 vzz

2. The difference between Eqs.~34! and
~20! is that the energy eigenfunctions and eigenvalues
corresponding to a different potentialV(r,z) and Veff(r ),
respectively. The ground-state energyEPT2 in the second-
order RSPT, therefore, can be straightforwardly derived fr
Eq. ~29! by settinglr5v andlz5vz , and has exactly the
form ~31!. Note that the same results can be derived
slightly different ways. It should be stressed again thatEPT2

is the upper bound to the true ground-state energy due to
Feynman variational principle Eq.~8!, which will be useful
for subsequent discussions.

In the bulk limit, i.e., v→0, one can easily obtain 3D
free-polaron ground-state energy as2a. This is just the well-
known results obtained by many authors~see Ref. 54 and
references therein!.

Here, we should mention that, although the second-o
RSPT is a standard method in polarons physics, such a
fied energy expression for polarons in both quantum w
and quantum dots within this theory as Eq.~31!, which ex-
plicitly consists of only a one-dimensional integral has n
been reported before, to the best of our knowledge.

B. Landau-Pekar strong-coupling theory

The strong-coupling polarons in quantum wires and d
can also be investigated by the LP variational scheme.48 Al-
ternatively, we here proceed to give a more concise re
sentation of this scheme. The adiabatic polaron ground s
can be given through the following product ansatz:

u &5f~r !uA&, ~35!

where the electron partf~r ! is chosen as the following prod
uct of two Gaussian-type wave functions in transverse
longitudinal coordinates:

f~r !5w~r!x~z!,
~36!

w~r!;e2l1r2/2, x~z!;e2l2z2/2,

with l1 and l2 being variational parameters to be dete
mined, anduA& is the phonon coherent state,

uA&5expS (
k

@ f ~k!ak
†2 f * ~k!ak# D u0&, ~37!

here f (k) and f * (k) will be determined variationally,u0& is
the unperturbed zero phonon state satisfyingaku0&50 for
all k.

To find the optimal fit to f (k) and f * (k), we should
minimize the expectation value of the Hamiltonian~1! that
describes a polaron confined in a parabolic poten
V(r,z)5 1

2 v2r21 1
2 vzz

2 in the trial state~35! ^ uHu &, which
has the following functional form:
re

n

he

er
ni-
s

t

s

e-
te

d

-

l

E@ f ~k!, f * ~k!#

5 1
2 l11 1

4 l21
v2

2l1
1

vz
2

4l2
1(

k
f * ~k! f ~k!

1(
k

H vkexpF2S kr
2

4l1
1

kz
2

4l2
D G f ~k!1H.c.J , ~38!

and get

f ~k!52vk* expF2S kr
2

4l1
1

kz
2

4l2
D G ,

~39!

f * ~k!52vkexpF2S kr
2

4l1
1

kz
2

4l2
D G .

Inserting these back into Eq.~38!, we finally have strong-
coupling energy as

ELP5
1

2
l11

1

4
l21

v2

2l1
1

vz
2

4l2
2

a

Ap

Al1

A~l1 /l2!21

3 ln@A~l1 /l2!211Al1 /l2#. ~40!

It is interesting to note from both Eqs.~29! and~40! that,
for the finite value ofv and in the limit ofa→`, lr ap-
proacheslz in Eq. ~29! and l1 approachesl2 in Eq. ~40!.
Then, both equations can be reduced to

ELP5
3

4
l1

v2

2l
2

a

Ap
Al. ~41!

Further, if settingv50 ~i.e., bulk case!, the ground-state
energy reads

ELP52
1

3p
a2, ~42!

which is no other than the well-known strong-coupling r
sults for 3D free polarons.48,55,56

So far, we have proven that the present FH path-integ
method can reproduce the results in both the weak-
strong-coupling limit obtained by standard perturbati
theory and strong-coupling theory, respectively. It is a
expected that the present approach can produce good re
for polarons in both quantum wires and dots with arbitra
coupling strength and confining potential. These will
demonstrated in the numerical calculations performed
Sec. V.

IV. ANALYTICAL RESULTS FOR QUANTUM DOTS

Obviously, for quantum wires with the potential of axi
symmetry, the expressions of the Feynman energy~29!
cannot be reduced anymore. For quantum dots, however,
to a confining potential with sphere symmetry, we can obt
a simple closed-form analytical expression for the Feynm
energy by settingvz5v,
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EF5
3

4
l1

3v2

4l
2

a

Al

GS 1

l D
GS 1

l
1

1

2D . ~43!

For later use, Eq.~43! is also extended to those for polaro
in multidimensional quantum dots

EF5
N

4
l1

Nv2

4l
2

Apa

2Al

GS N21

2 D
GS N

2 D
GS 1

l D
GS 1

l
1

1

2D . ~44!

More interestingly, we can discuss two limiting cases
Eq. ~44!.

A. Extended-state solutions

In the limit a→0 andv→0, it can be noted from Eq.~44!
that there exists an extended-state solution, i.e.,l→0. Thus,
Eq. ~44! reduces to

EF5
N

4
l1

Nv2

4l
2

Apa

2

GS N21

2 D
GS N

2 D S 11
l

8D . ~45!

Minimizing the above energy with respect tol gives

EF52
Ap

2

GS N21

2 D
GS N

2 D a

1
N

2
vS 12

Ap

4N

GS N21

2 D
GS N

2 D aD1/2

. ~46!

Utilizing A12x'12x/2 for smallx, we can obtain the sam
weak-confinement limit results by the second-order RS
method.43

In the limit of v→0, we will get

EF52
Ap

2

GS N21

2 D
GS N

2 D a, ~47!

which is just the well-known second-order perturbation
sult for free N-dimensional polarons obtained by man
authors.57

B. Localized-state solutions

We also have the localized-state solution from Eq.~44!,
i.e., l→`, if either a→` or v→`. In this limit, one can
show that
y

T

-

GS 1

l D
GS 1

l
1

1

2DAl

5
Al

Ap
S 11

2 ln 2

l D . ~48!

Thus, Eq.~44! reduces to

EF5
N

4
l1

Nv2

4l
2

a

2

GS N21

2 D
GS N

2 D AlS 11
2 ln 2

l D . ~49!

In principle, minimizing the above energy with respect tol
would yield the Feynman energy in the localized state. Ho
ever, it is obvious that one could not obtain a simple anal
cal expression for this energy. Only in some extreme ca
one can get the analytical results.

In the limit a→` and for finite v, the value ofl is
mainly determined by the first and last terms in the rig
hand side of Eq.~49!. Inserting the resultantl back into Eq.
~49! we arrive at

EF52
1

4N F GS N21

2 D
GS N

2 D G 2

a22N ln 2

1
N3v2

4a2 F GS N21

2 D
GS N

2 D G 2

. ~50!

It is to note that the first terms in the right-hand side of E
~50! is no other than the strong-coupling results for t
ground-state energy of free multidimensional polarons48

In the other case, i.e., in the limitv→` and finitea, the
value of l is only determined by the first two term in th
right-hand side of Eq.~49!. In a similar way, we have

EF5
N

2
v2

a

2

GS N21

2 D
GS N

2 D S Av1
2 ln 2

Av
D . ~51!

Interestingly, one may find that Eq.~51! can also be given by
the second-order RSPT in the strong-confinement limitv
→`).43

Finally, we would like to point out that the presen
localized-state solutions~49! can also be obtained from th
LP results. To prove this, one can readily have the LP ene
by extending Eq.~40! to the case for polarons in multidimen
sional quantum dots

ELP5
N

4
l1

Nv2

4l
2

a

2

GS N21

2 D
GS N

2 D Al, ~52!
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which is just identical to Eq.~49! in the limit l→`. This
good agreement may demonstrate the correctness of our
vation.

V. NUMERICAL RESULTS AND DISCUSSIONS

Generally speaking, for arbitrary electron-couplin
strength and confinement potential of quantum wires~or
dots!, we may calculate the ground-state energy of
Hamiltonian ~1! by minimizing the Feynman energyEF in
Eq. ~29! @or Eq. ~44!# numerically. One of the importan
physical observables to be evaluated in this field is the b
ing energy of polarons, which is defined as the difference
the ground-state energy of the confined system in the p
ence and absence of the electron-phonon interaction.
later use, we define the effective radiusR of quantum wires
or dots as

R5
1

Av
. ~53!

We will present some numerical results and discussi
for quantum wires and dots, respectively, in the followi
two subsections.

A. Quantum wires

First of all, we would like to mention a recent paper20 by
Ercelebi and Senger. In that paper, within a perturbati
variational scheme proposed previously by Devreeseet al.58

in the treatment of polarons bound to a Coulomb center
later successfully applied to bipolarons,59 the authors have
calculated the binding energy and the effective mass of
larons in a cylindrical quantum wire with infinite potenti
boundary. The key results obtained is that ‘‘at weak co
pling, the binding energy of the polaron can be smaller a
its mass less inertial compared with the bulk case when
wire is made narrow.’’ Evidently, this is an exceptional r
sult that is contrary to the general trend that the electr
phonon interaction is inherently stronger in systems of low
dimensionality.

We notice that the model Hamiltonian in Ref. 20 is t
same as Hamiltonian~1! in the present paper, except fo
slightly different wire potentials that topologically have th
same shape. Alternatively, in the absence of the elect
phonon coupling, the energy eigenvalues of the electron
these two confining potentials are positive and separa
Therefore, in our opinion, the essential features of polar
confined in quantum wires with these two potentials sho
be qualitatively consistent.

Motivated by that paper, let us plot the curves for t
polaron binding energyEb

F , which are obtained numericall
from Eq. ~29!, vs the effective wire-radiusR, at coupling
constants ranging from extreme small valuea50.005– 1.0
in Fig. 1. Unfortunately, at weak coupling, we have n
found any sign to exhibit this exceptional feature display
in that paper, but the behaviors of all the curves are
consistent with the general trend.

We next present the results from the second-order RS
Because theEb

PT2 is proportional toa, one can immediately
notice that the curves ofEb

PT2/a vs R, at weak coupling, are
eri-

e

-
f
s-
or

s

-

d

o-

-
d
e

-
r

n-
in
d.
s

d

t
d
st

T.

independent ofa and, therefore, exhibit the same behavio
which is shown in Fig. 2. Clearly, the second-order RS
results also agree with the general trend, i.e., the bindin
monotonically stronger as the wire radiusR decreases.

As stated previously, the results for the ground-state
ergy by the second-order RSPT are upper bounds to the
ground-state energy. Thus, even one can obtain the e
results of the ground-state energy of polarons in quan
wire, which may push theEb vs R curves to the higher po
sition, the values ofEb for any R is, absolutely, not lower
thana, the value ofEb in bulk limit R→`. Thus, we have
strictly shown that the key result in Ref. 20 is unreasona
and the general conclusion is still qualitatively right.

We think that the result obtained in Ref. 20 is only a
artifact produced by the variational scheme, which is qu
poor at weak and intermediate coupling,60 rather than an in-

FIG. 1. The binding energyEb
F of polarons in quantum wires

within the FH path-integral theory, as a function of the effecti
wire-radiusR at a50.01, 0.05, 0.1, and 1.

FIG. 2. The binding energy of polarons in quantum wiresEb
PT2

in units of a, within the second-order RSPT as a function of t
effective wire-radiusR.



es
ec
v
ea
3

ly
-
tu
a

re

H

en
r
tia
e

an
e

lt
-

ng

l
u

o

ults

n-
rgy
-

h

pear
g-
on-
ce-

res
an
the

el-

tial
d

re-
on-

th,
c-

f

at
ne
for

ing
u-
s

x-

e.

he
us,
n-
ich

ds

-
f
ith
rm
le.

en
the

PRB 58 16 347FEYNMAN-HAKEN PATH-INTEGRAL APPROACH FOR . . .
trinsic property of the polarons confined in quantum wir
The crucial reason yielding this exceptional and incorr
conclusion is that the scheme adopted could lead to the o
estimation of the ground-state energy of the system at l
for 0,a<3. This point is clearly shown from Figs. 2 and
in Ref. 20. In the bulk limit, i.e.,R→`, in the regime 0
,a<3, the polaron ground-state energy is, surprising
much higher than2a, the well-known results of free po
larons within many approximate theories, such as the per
bation theory, the Lee-Low-pines theory, and the Feynm
path-integral method~see Ref. 54!.

Now, we will concentrate on comparing the Feynman
sults based on Eq.~29! with those obtained within the
second-order RSPT@Eq. ~32!# and the LP variational theory
@Eq. ~40!# with vz50 to assess the effectiveness of the F
theory for polarons in quantum wires.

It is expected theoretically that the Feynman binding
ergy Eb

F should be not lower thanEb
PT2 by the second-orde

RSPT due to the more general form of the effective poten
~21!. As an example to show this prediction, in Fig. 3, w
plot the relative difference between the Feynman results
the second-order RSPT results for the polaron binding
ergy h5(Eb

F2Eb
PT2)/Eb

PT2, as a function of the effective
wire radiusR at different coupling constantsa51, 2, and 3.

It is clearly shown thatEb
F is really higher thanEb

PT2 in all
cases. After careful inspection of this figure, it is not difficu
to find: ~1! For given a in the weak- and intermediate
coupling regime, there exists a critical wire radiusRc . Be-
low Rc , the difference between the two calculated bindi
energies become larger substantially whenR further de-
creases. On the contrary, aboveRc , the difference is so smal
that it can be negligible, one can say both methods prod
equally good results.~2! The Rc becomes smaller with the
decrease ofa. Then, in the weak-coupling limit, these tw
curves will coincide with each other. The existence ofRc
will be explained later.

FIG. 3. The relative difference between results for binding
ergy of polarons in quantum wires within the FH theory and
second-order RSPTh5(Eb

F2Eb
PT2)/Eb

PT2, as a function of the ef-
fective wire-radiusR at a51, 2, and 3.
.
t

er-
st

,

r-
n

-

-

l

d
n-

ce

Next, it is the nature that we compare the Feynman res
with those by the LP strong-coupling theory within Eq.~40!.
In Fig. 3 we give the relative difference between the Fey
man results and the LP results for the polaron binding ene
h85(Eb

F2Eb
LP)/Eb

LP , as a function of the effective wire ra
dius R. Except in the strong-confinement limit~i.e., v→`!,
Eb

F is higher thanEb
LP , and this trend is more substantial wit

the decrease of the coupling constanta. The difference be-
tween the results by these two approaches should disap
not only in the strong-coupling limit, but also in the stron
confinement limit due to the fact that the high-degree c
finement of quantum wires would also result in the enhan
ment of the electron-phonon coupling.

So far, we have shown that for polarons in quantum wi
with parabolic confinement, the FH path-integral theory c
produce better results than the second-order RSPT and
LP variational theory in the whole coupling regime.

Now, we address a very important problem that is r
evant to the appearance of the critical wire radiusRc . It is
recalled in Sec. II that we have taken the effective poten
as the form~21!, which includes both the transverse an
longitude part of the coordinate. In the strong-coupling
gime this form is reasonable, because even without the c
fining potential, owing to strong phonon-coupling streng
the polaron wave function should be localized in all dire
tions with a factor;e2l2r2

or ;e2l2ur u. This has been evi-
dently shown in the strong-coupling LP theory48 and its
modified one.55 But in the weak-coupling regime, in terms o
the wire potential withvz50, polarons could move freely
along the wire axis, and it seems difficult to imagine th
polarons would be localized along the wire axis. So o
might think this effective potential might be unreasonable
weak coupling.

Fortunately, it is not always that case. Before proceed
with any discussions, we will calculate the effective longit
dinal spatial extentjz alone the wire axis, which is defined a

jz5
1

Alz

, ~54!

wherelz is obtained by minimizing Eq.~29! with respect to
lr and lz . In principle, the effective transverse spatial e
tent jr is smaller thanjz owing to the confining potential.

Figure 4 presents the variation ofjz as the a function of
the effective wire radiusRat differenta. It is very clear in all
curves thatjz reduces with the shrink of the quantum wir
In other words, the longitudinal partlz

2z2/2 in the effective
potential ~21! is strengthened with the enhancement of t
wire confining potential, so does the transverse part. Th
the strength of the wire potential is equivalent to the e
hancement of the effective electron-phonon coupling, wh
is consistent with the general trend in the literature.

More interestingly, fora<5, all the curves diverge at a
critical wire radiusRc . Note that the divergence correspon
to the vanishes of the longitudinal partlz

2z2/2 in the effective
potential~21!. Whether the longitudinal part in effective po
tential should exist or not depends only on the values oa
andR. Therefore, as a unified variational theory to deal w
this system in the whole coupling regime, this general fo
~21! of the effective potential remains naturally reasonab

-
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Now, it is very important to link these discussions to F
3. Rc’s in Figs. 3 and 4 have the same meaning and
nearly identical. BelowRc , jz becomes finite~i.e., lz be-
comes larger than 0!, and the system would show som
strong-coupling features coming from the highly confini
potential of quantum wires. Thus, the results of the seco
order, which is only exact in the weak-coupling limit, a
quite poor. Conversely, aboveRc , no strong-coupling fea-
tures show up (jz diverges!, and the weak-coupling pertur
bative results are then still good approximate ones.

It is also interesting to note that, fora>6, thejz remains
finite for arbitraryR. This is because the system itself h
some strong-coupling features even without the wire con
ing potential, which is also consistent with the above disc
sions.

Finally, we should compare the present FH results
polaron binding energy in parabolic quantum wires w
those for the same system obtained recently by Pokat
et al., who used two approaches:~i! Feynman variationa
principle ~FVP! and ~ii ! interpolation variational theory
~IVT ! ~see Ref. 25!, which are exhibited in Fig. 5.R* in Ref.
25 and in this figure differs fromR by a factor& due to the
definition of the polaron radius. It is interesting to note th
our results lie inbetween those by FVP and IVT approac
in the whole-coupling regime. It is clear that our results a
not as good as those by FVP. As the effective wire rad
decreases, our results become more and more close to
results. More interestingly, from the highest curves we c
see that our results are in good agreement with FVP res
for the small wire radius and large coupling constant.

The appearance of a plateau in the weak-coupling reg
in the present results can be obviously interpreted by Fig
where we have simultaneously presented the variation
polaron binding energy and the effective longitudinal spa
extent along the wire axisjz with coupling-constanta. As
discussed before, as far asjz is infinite, the FH results would
agree well with the second-order RSPT results that the v

FIG. 4. The longitudinal spatial extentjz in quantum wires
within the FH theory as a function of the effective wire-radiusR at
a51, 2, 3, 5, 6, and 8.
.
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of Eb /a is independent ofa. Therefore, for given wire-
radius R, the value ofEb /a is not sensitive toa until jz
becomes finite.

B. Quantum dots

First, it is also natural to compare the present results
the binding energy of polarons in quantum dots with tho
by the second-order RSPT used in Ref. 43 and the LP stro

FIG. 5. Comparison of the present results~solid lines! for the
dimensionless binding energyEb /a of polarons in quantum wires
and the FVP ones~dotted lines! ~Ref. 25! and IVT ones~dashed
lines! ~Ref. 25! as a function of the coupling-constanta for the
different effective wire-radiusR* 50.1, 0.5 and 5~hereR* 5&R!.

FIG. 6. The dimensionless binding energyEb /a ~thin lines! of
polarons and the longitudinal spatial extentjz ~thick lines! within
the FH theory as a function of the coupling constanta for different
effective wire radiusR* 50.1 ~solid lines!, 0.5~dashed lines!, and 5
~dotted lines! ~hereR* 5&R and the horizontal thin lines gives th
second-order RSPT results forEb /a!.
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coupling theory employed in Ref. 44, to assess the effect
ness of this approach for polarons in quantum dots. As
cussed in the last subsection, it is also expected theoretic
that the present results should be better than the result
these two approaches, which will be shown in the followi
numerical results.

In Fig. 7, we plot the relative difference between our
sults and the the second-order RSPT results for the bin
energy of polarons in quantum dots,h5(Eb

F2Eb
PT2)/Eb

PT2,
as a function of effective dot radiusR, at different coupling
constantsa in 2D. It is clearly shown that the presen
ground-state energyEF is really lower than or equal toEPT2

in all cases. In the limit ofa→0, the present results are i
good agreement with the second-order RSPT results. Aa
increases, the difference between the two calculated ene
becomes larger and larger, and more interestingly, this tr
is more pronounced while the confinement lengthR is
around 0.5–1. For instance, ata53, the maximum value
hmax is as high as about 12%.

After careful inspection of this figure, it is not difficult to
find that the present results also agree well with the seco
order RSPT results in the strong-confinement limit, i.e.,R
→0 for finite a. This may be attributed to the fact that bo
of these theories could produce the same strong-confinem
results as shown in Eq.~51! in Sec. III. The totally different
limiting dependence ofh on the effective radius in this figur
for dots and in Fig. 3 for wires, in our opinion, is originate
from the intrinsically different confining potentials.

Figure 8 displays the relative difference of the Feynm
results and those by the LP strong-coupling theory wit
Eq. ~52! for 2D polarons in dots. All the curves in this figur
and in Fig. 9 for wires show similar behavior, and, therefo
similar discussions may be made and are not prese
again.

Next, we shall discuss in some depth the effect of dim
sionality on the polaron properties in quantum dots by stu
ing it in 2D and 3D, which have also been performed in R

FIG. 7. The relative difference between the results for the bi
ing energy within the FH theory and the second-order RSPTh
5(Eb

F2Eb
PT2)/Eb

PT2, as a function of the effective dot radiusR at
different coupling constantsa50.5, 1, 2, and 3 in 2D.
e-
s-
lly
by

-
g
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d

d-

nt

n
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,
ed

-
-
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43 and are of practical importance as well for the reason
quantum dots can be technologically realized in both 2D a
3D systems.

We present the binding energy of 2D and 3D polarons
quantum dots as a function of the effective dot radiusR with
two typical coupling constantsa51 and 7 in Fig. 10. It is
clearly shown that the polaronic effect is substantia
strengthened with contracting the quantum dot in both
and 3D. It is also noticed that the binding is stronger in 2

-

FIG. 8. The relative difference between the results for the bi
ing energy of polarons in 2D dots within the FH theory and the
theory h85(Eb

F2Eb
LP)/Eb

LP , as a function of the effective dot ra
dius R at a54, 6, and 18.

FIG. 9. The relative difference between results for the bind
energy of polarons in quantum wires within the FH theory and
LP theoryh85(Eb

F2Eb
LP)/Eb

LP , as a function of the effective wire
radiusR at a55, 7.5, and 103.
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than in 3D, and this trend is more pronounced with the
crease of the coupling constant. This is consistent with
previous weak-coupling results.

In order to qualify the effect of confinement on the p
laronic effect more precisely, we will calculate the relati
polaronic enhancement in quantum dots with respect to
corresponding bulk value

RPE5
Eb~R!

Eb~R→`!
. ~55!

The numerical results are displayed in Fig. 11. It is obser
that, at the weak coupling, the variation of the relative p
laronic enhancement~RPE! with the effective dot radiusR is
independent of the dimensionality. This is consistent with
previous results of the weak-coupling perturbation theor43

But as the coupling constanta increases, our results indica
that the variation of RPE withR become sensitive to th
dimensionality when the dot is made narrow. This conc
sion cannot be made by the second-order RSPT approa43

It is also interesting to note from Fig. 11 that the RPE
stronger in 3D than in 2D, while the electron-phonon co
pling is not too weak, contrary to the absolute binding ene
Eb(R) presented in Fig. 10.Eb(R→`) in Eq. ~54! is the
ground-state energy of multidimensional bulk polaro
Since RPE3D>RPE2D is always met for arbitrarya shown in
Fig. 11, we can deduce that, with the reduced dimensiona
although polaronic effects both in quantum dots and in b
systems become stronger, the enhancement of the forme
is not as substantial as the latter one.

We would like to mention the work of Klimin, Pokatilov
and Fomin,11 where the authors have carried out the ex
separation of bulk and interface vibrational excitations in
confined system for the first time to our knowledge, a

FIG. 10. The binding energyEb
F of polarons in quantum dots

within the FH theory as a function of the effective dot radiusR at
a51 and 7 in 2D and 3D.
-
e

e
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obtained the fundamental results for the polaron ground-s
energy as well as for the effective mass. Our results for
binding energy of polarons in quantum dots qualitative
agree with those for the polaronic shift of the electron lev
due to the bulklike phonon contribution for symmetric
electron states (l 50) in dotlike objects having spherica
shapes@cf. b curves of Fig. 2~a! in Ref. 11#.

V. CONCLUSIONS

In this paper, we have generalized the previous FH va
tional path-integral theory to investigate the polaronic effe
in both quantum wires and quantum dots with parabolic
tential in the whole electron-phonon coupling regime a
confining potential strength in a unitary way. For quantu
dots, due to higher symmetry compared to quantum wire
simple closed-form analytical expression for the Feynm
energy can be obtained and the analytical results in
extended-state and localized-state limit can be further
rived. In order to test the validity of this theory, we hav
performed comparisons of the present results with those
tained by the standard second-order RSPT, the LP stro
coupling theory, as well as recently more advanced inve
gation performed by Pokatilovet al., within the FVP and
IVT approaches.

On the basis of the obtained analytical and numerical
sults, the main conclusions are summarized as follows.

~1! The FH variational path-integral theory can produ
better results for polarons in both quantum wires and qu
tum dots than the second-order RSPT, LP strong-coup
theory does for arbitrarya and confining potential strength
In addition, the present results for polarons in quantum wi
lie inbetween the recent results obtained by Pokatilovet al.,
within the FVP and IVT approaches.

~2! The binding is monotonically stronger as the decre
of the effective radiusR of the quantum wires or dots in th

FIG. 11. The RPE to the ground-state energy of an electron
quantum dot within the FH theory as a function of the effective d
radiusR at a51 and 7 in 2D and 3D.
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whole coupling regime, not only at weak coupling.
~3! By selecting a very general form of effective potent

needed in the variational path-integral theory, it is sho
systematically that the strength of the wire potential
equivalently the enhancement of the effective electr
phonon coupling. Further, it is found that, because of
highly confining potential of quantum wires, this syste
could even exhibit some strong-coupling features in
weak- and intermediate-coupling regime. Then the we
coupling of the second-order RSPT fails to describe
ground-state of this system, but the universal variatio
path-integral theory is still a very powerful one.

~4! In a strict meaning, it is shown that the exception
results in a recent paper~Ref. 20! are not an intrinsic prop-
erty of polarons confined in quantum wires, and is only
artifact produced by a variational scheme, which is qu
poor at weak coupling.

~5! It is found that the polaronic effect in quantum dots
enhanced with lowering dimensionality. Furthermore, as
coupling constant increases, the value of the RPE beco
r

u
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the
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ite

is
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dependent on both the dimensionality and the coupling c
stant, different from the previous conclusions by the seco
order RSPT approach. Interestingly, the RPE is found to
larger in 3D than in 2D if the coupling strength is not t
weak.

Finally, it should be pointed out that the present appro
is also well suited for the problem of bound polarons in th
confined systems with parabolic potential. These extens
are in progress.
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