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Importance of the spin-orbit split-off band on the tunneling properties of holes
through Al xGa12xAs/GaAs and InP/InyGa12yAs heterostructures

S. Ekbote, M. Cahay, and K. Roenker
Department of Electrical Engineering, University of Cincinnati, Cincinnati, Ohio 45221

~Received 3 November 1997; revised manuscript received 10 August 1998!

The influence of the spin-orbit split-off band on the tunneling of holes across heterostructures is studied
starting with the 636 Luttinger-Kohn Hamiltonian. The latter is diagonalized into 333 blocks ~upper and
lower Hamiltonians! using a unitary transformation. We consider AlxGa12xAs/GaAs and InP/InyGa12yAs
material systems, and study the tunneling of holes through a one-dimensionald scatterer and across abrupt
potential steps. In each case, we show that the presence of the spin-orbit split-off band has a profound influence
on the transmission coefficients of holes, even for holes with energy much lower than the threshold for free
propagation in the spin-orbit split-off band. For the potential steps, we show that the results can be quite
different with upper and lower Hamiltonians. Furthermore, we stress the importance of the spin-orbit split-off
band by comparing the results with those obtained with the 434 Luttinger-Kohn Hamiltonian which neglects
the importance of the spin-orbit split-off band.
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I. INTRODUCTION

In the past, there have been only a few reports on
treatment of hole tunneling in realistic structures based
the transfer-matrix formalism following the originalk•p
model.1 Starting with the 434 Luttinger-Kohn Hamiltonian,
Chuang used a transfer-matrix approach to study the prob
of hole tunneling through simple potential steps.2 He showed
that there is a high probability for a hole to change chara
~heavy to light or the reverse! while tunneling from low-
band-gap to higher-band-gap material at a heterojunction
terface. On the other hand, the probability of convers
from heavy to light or the reverse is much less for ho
incident on an interface from the higher-band-gap mater
The transfer-matrix formalism has also been applied to
problem of hole tunneling through resonant tunneli
structures.3–7 These simulations have shown that t
transfer-matrix method is numerically unstable for dev
structures larger than a few tens of Å. To circumvent
difficulties encountered in the transfer-matrix technique, L
Ting, and McGill recently proposed the use of the multiba
quantum transmitting boundary method~MQTBM!.8 This
technique is easy to implement and numerically stable.
far, Liu, Ting, and McGill applied their MQTBM technique
only to hole transport through resonant tunneling devi
starting with the 434 Luttinger-Kohn Hamiltonian. A
scattering-matrix to describe hole transport was used rece
by Sanchez and Proetto9 to study hole tunneling through
simple barriers and above quantum wells. Recently, we g
eralized that approach to study hole tunneling across
emitter-base junction of abrupt and graded heterojunction
polar transistors starting with the 434 Luttinger-Kohn
Hamiltonian in which only the mixing between heavy a
light holes is taken into account.10

Chao and Chuang4 showed that the spin-orbit split-of
band has a significant effect on the band structure of qu
tum wells especially for highly strained quantum wel
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Chang and Chuang also showed that the inclusion of
spin-orbit split-off band influences all optoelectronic prope
ties of strained quantum-well lasers~threshold current, gain
and absorption spectra!.11 This is mainly a consequence o
the substantial change in the energy dispersion relation
holes ~even for low values of the hole energy! when the
effects of spin-orbit coupling are taken into account. T
spin-orbit split-off band should therefore also have an imp
tant influence on the transport of holes across a heteros
ture even if the hole energy is far below the maximum of t
spin-orbit split-off ~SO! band.

In this paper, we analyze the effects of the SO band on
tunneling properties of holes through unstrained heterost
tures. Recently, Sanchez and Proetto performed an ana
of hole refraction from strained Si12xGex /Si heterojunctions
starting with the 636 Luttinger-Kohn Hamiltonian.12 We
perform a similar analysis of AlxGa12xAs/GaAs and
InP/InyGa12yAs interfaces, which are two of the mos
widely used material systems in the investigation of ultraf
submicron devices for millimeter wave applications. O
analysis is more complete than the one reported by San
and Proetto because we compare the results obtained
the 636 and 434 Luttinger-Kohn Hamiltonians, illustrating
the dramatic influence of the SO band on the tunneling pr
erties of holes even for carriers with a low kinetic energ
Furthermore, we show that the results obtained with the
per and lower Hamiltonians obtained after performing a u
tary transform of the Luttinger-Kohn Hamiltonian are qui
different when the heterostructure lacks inversion symme

This paper is organized as follows. In Sec. II, we deve
the formalism to calculate the eigenvalues and eigenstate
the 636 Luttinger-Kohn Hamiltonian in the axial approx
mation. In Sec. III, we consider the following problems:~1!
hole tunneling through ad scatterer, and~2! hole tunneling
across a potential step. We stress the importance of the s
orbit split-off band by performing simultaneously the calc
lations while neglecting it. Finally, Sec. IV contains our co
clusions.
16 315 ©1998 The American Physical Society
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II. APPROACH

Following Chao and Chuang,4 we start with the Luttinger-Kohn Hamiltonian describing the top of the valence band w
including the effects of the spin-orbit split-off band
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where

P5G1~kx
21ky

21kz
2!, ~2!

Q5G2~kx
21ky

222kz
2!, ~3!

R52)G̃~kx2 iky!21)FG32G2

2 G~kx1 iky!2 ~4!

and

S52)G3~kx2 iky!kz , ~5!

where the wave vectork5(kx ,ky ,kz) is interpreted as a dif-
ferential operator2 i¹. In Eq. ~1!, D is the spin-orbit split-
off energy. Furthermore, the following notations were us

G15\2g1/2m, G25\2g2/2m, G35\2g3/2m, and G̃5(G2
1G3)/2, whereg i are the Luttinger parameters. Hereaft
hole energies are measured as positive moving into the
lence band and taking the top of the valence band as the
of energy.

The Hamiltonian in Eq.~1! is a 636 matrix in the basis
composed of~u 3

2, 63
2&! heavy-hole,~u3

2, 61
2&! light-hole, and

~u1
2, 6 1

2&! split-off Bloch wave functions at the center of th
Brillouin zone. In the axial approximation, the matrix el
mentR in Eq. ~1! is approximated by

R52)G̃kr
2 exp~22if! ~6!

wherekr
25kx

21ky
2 andf5a tan(ky /kx). Hamiltonian~1! can

be block diagonalized using a similarity transformation
described in Refs. 4 and 5. In the new basis set,4 the trans-
formed Hamiltonian can then be written as

H5FH333

0
0

H333
† G , ~7!
:

,
a-
ro

s

whereH333
† is the Hermitian conjugate ofH333 . The ex-

plicit form of the HamiltonianH333 is given by

H333

5F P1Q 2Rr2 iSr 2&Rr1
i

&
Sr

2Rr1 iSr P2Q &Q1 iA3/2Sr

2&Rr2
i

&
Sr &Q2 iA3/2Sr P1D

G
~8!

where

Rr52)G̃kr
2, ~9!

and

Sr52)G3krkz . ~10!

Starting with the upper or lower Hamiltonian, th
eigenenergies and corresponding envelope functions of
valence subbands can be obtained by solving the effect
mass equation

S j@Hi j 1Vh~z!d i j #F j~kp ,r !5E~kr!Fi~kp ,r !, ~11!

where (i , j )5(1,2,3), and Vh(z) is the valence-band
potential-energy profile. In the axial approximation, t
envelope-function componentsF j can be approximated a
follows:

F j~kr ,r !5F j~kr ,z!eikr•r, ~12!

wherez is the direction of growth of the heterostructure.
Eq. ~12!, kr5kxx1kyy andr5xx1yy.
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For a fixed energyE and in-plane wave vectorkr , Eq.
~11! will have three complex wave vector solutionskz and
associated wave vectorsF(kr ,z). We seek solutions of Eq
~11! of the form

F~kr ,z!5Fke
ikzz. ~13!

Substituting Eq.~13! into Eq. ~11!, we find that the eigen-
vectorsFk must satisfy the eigenvalue problem

H333Fk5EFk , ~14!

where each matrix element in the HamiltonianH333 can be
written as a second-order polynomial inkz :

H3335H ~2!kz
21H ~1!~kr!kz1H ~0!~kr!, ~15!

where theH (n) are 333 matrices whose elements are po
nomial at most quadratic in (kx ,ky ,kz). The explicit forms
of the matricesH (2), H (1), andH (0) are given in Appendix
A.

To solve the eigenvalue problem associated with Ham
tonian ~15!, we first transform it into a standard eigenval
problem forkz .13,14The energy-dispersion relations for hol
in the heavy-hole light-hole, and SO bands can then be
tained by solving the eigenvalue problem

F 0

2~H ~2!!21~H0~kr!2E!

1

~H ~2!!21H ~1!~kr!
GF Fk

kzFk
G

5kzF Fk

kzFk
G . ~16!

This last equation has six eigenvalues and six correspon
eigenvectors. Three solutions correspond to solutions pro
gating from left to right. The other three solutions forkz are
just the negative of the first three solutions and correspon
hole propagation from right to left.

Next, we consider tunneling of a heavy hole between t
contacts sandwiching an arbitrary heterostructure. The w
function for a heavy hole~HH! incident from the left can be
written as

cHH~r !5F F1H

F2H

F3H

G ei ~kr•r1kz
~h!z!, ~17!

and the reflected wave can be written as
l-

b-

ng
a-

to

o
ve

c refl~r !5GHHF F1H
2

F2H
2

F3H
2

G ei ~kr•r2kz
~h!z!

1GLHF F1L
2

F2L
2

F3L
2

G ei ~kr•r2kz
~1!z!

1GSOF F1SO
2

F2SO
2

F3SO
2

G ei ~kr•r2kz
~so!z!, ~18!

where (GHH ,GLH ,GSO) are the reflection amplitudes for th
incident heavy hole to be reflected in the heavy-hole lig
hole and SO bands, respectively. The (F1i

2 ,F2i
2 ,F3i

2) with
( i 5HH,LH,SO) are the components of the wave vector
lutions of Eq.~16! for holes propagating from right to left.

In the transmitted region in which the potential ener
profile can be different from the left contact, the transmitt
wave function can be written as

c trans~r !5tHHF F1H
t

F2H
t

F3H
t
G ei ~kr•r1kz;t

~h!z!

1tLHF F1L
t

F2L
t

F3L
t
G ei ~kr•r1kz;t

~ l !z!

1tSOF F1SO
t

F2SO
t

F3SO
t
G ei ~kr•r1kz;t

~so!z!, ~19!

where the labelt is a reminder that the quantities must b
evaluated in the transmitted region. In Eq.~19!, tHF, tLH ,
andtSO are the transmission coefficients from the heavy h
into the heavy-hole, light-hole, and SO bands in the tra
mitted region, respectively.

An arbitrary valence-band energy profile can always
approximated as a series of small steps in which the vale
band edge is assumed to be a constant. At the interface
tween any two steps, the envelope-function compone
(F1 ,F2 ,F3) must be chosen such that

FF1~z!

F2~z!

F3~z!
G ~20!

and
F 2~g122g2!kz

2i)g3kr

2 iA6g3kr

22i)g3kr

2~g112g2!kz

24&g2kz23i&g3kr

iA6g3kr

24&g2kz13i&g3kr

2g1kz

G FF1~z!

F2~z!

F3~z!
G . ~21!
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are continuous.15 In Eq. ~21!, kz52 i (d/dz) and kr is the
magnitude of the in-plane wave vector. Conditions~20! and
~21! are required for the wave function and the current d
sity to be continuous across the interface. Expressions fo
current density operator components are given in
appendixes.8,12

In order to calculate the transmission and reflection co
ficients of holes incident from the left contact, the probabil
current density must be calculated along the growth direc
for the incident, reflected, and transmitted waves. The tra
mission coefficients for a heavy hole incident from the l
are then calculated as follows:

THH5
utHHu2 j z,H

trans

j z,H
inc , TLH5

utLHu2 j z,L
trans

j z,H
inc ,

TSOH5
utSOu2 j z,SO

trans

j z,H
inc , ~22!

and the reflection coefficients are

RHH52
uGHHu2 j 2z,H

inc

j z,H
inc , RLH52

uGLHu2 j 2z,L
inc

j z,H
inc ,

RSOH52
uGSOu2 j 2z,SO

inc

j z,H
inc . ~23!

In Eqs. ~22! and ~23!, the labels inc and trans mean th
the probability current density must be evaluated in the in
dent and transmitted regions, respectively. Furthermore,
relationship j 2z,a52 j z,a holds between the probabilit
current densities corresponding to left (j 2z,a) and right
( j z,a) propagating states (a5H,L, or SO!. Current conser-
vation further requires thatTHH1TLH1TSOH1RHH1RLH
1RSOH51, which is helpful to check the accuracy of th
numerical simulations. The tunneling problem describ
above can then be easily repeated for holes incident from
left contact in the light-hole or SO band. Next, we apply t
formalism described above to the analysis of the tunneling
holes through a one-dimensionald-scatterer and through
abrupt heterointerfaces~in the AlxGa12xAs/GaAs and
InP/InyGa12yAs material systems!.

III. RESULTS

E-k relationship: First we consider an InyGa12yAs region
latticed matched to InP. In this case, the indium mole fr
tion y is equal 0.53. In Fig. 1 we plot the real (Rekz) and
imaginary (Imkz) parts of the heavy-hole, light-hole, and S
bands as a function of the incident energy for a given m
nitude of the transverse wave vector. For comparison,
also show the real and imaginary parts of the hole ba
obtained while neglecting the SO band. The latter cur
were calculated starting with the 434 Luttinger-Kohn
Hamiltonian. In the axial approximation, this Hamiltonia
can also be block diagonalized in two 232 Hamiltonians
~upper and lower Hamiltonians!. In this casse, the uppe
Hamiltonian is formed of the four upper left matrix elemen
in Hamiltonian~8!.2,10

In Fig. 1, the zero of energy is the top of the valence ba
The critical energies (Eh

2 ,Eh
1 ,E1 ,ESO) are the values a
-
he
e

f-

n
s-
t

i-
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d
he

f

-

-
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which there is a sudden break in the energy dependenc
the real and imaginary parts of the heavy-, light-, and S
hole wave vectors. More precisely,Eh

2 is the lowest positive
energy at whichkz

(h) is purely real;Eh
1 is the lowest positive

energy at which Imkz
(l) becomes equal to zero,E1 is the

energy above whichkz
( l ) is purely real, andESO is the energy

above whichkz
(SO) is purely real. Analytical expressions fo

(Eh
2 ,Eh

1 ,E1) were derived in Ref. 2 when the SO band
neglected.16

The following features are readily seen in Fig. 1: whenkr

is nonzero, the heavy-hole dispersion relation is basic
unchanged with the inclusion of the SO band, but the lig
hole dispersion relation is strongly affected. Figure 1 sho
that the energy threshold for purely propagating states
light holes occurs at a lower energy compared to the c
when the SO band is neglected. A similar feature has b
reported by Chao and Chuang in their study of SO inter
tion of the valence-band structure of strained semicondu
quantum wells.4 The change in the energy threshold f
propagating light holes affects the reflection coefficient fo
light hole, but also the energy dependence of the amoun
heavy- to light-hole conversion, as will be shown belo
Furthermore, since the matrix elements~1,3! and ~2,3! in
Hamiltonian~8! are nonzero whenkr is nonzero, we expec
some conversion from a heavy-hole~and light-hole! band to
a SO band past the energy threshold for free propaga
states in the SO band. This will be illustrated in the nume
cal examples below.

The energies (Eh
2 ,Eh

1 ,E1 ,ESO) are functions of the mag
nitude of the transverse wave vectorkr . These variations
with kr were determined numerically and are plotted in F
2. In this figure, we also compare thekr dependence of

FIG. 1. Real and imaginary parts of the hole wave vectors
lutions of the eigenvalue problem in Eq.~16! for a bulk
In0.53Ga0.47As region as a function of energy for a value ofkr

50.04 (2p/a) ~a is 5.83 Å, the lattice constant of InP!. The zero of
energy is the top of the valence band. The real and imaginary p
are expressed in units of 2p/a. For clarity, the imaginary parts
have been shifted vertically by an amount equal to 0.25 (2p/a).
Also shown are the results obtained while neglecting the effect
spin-orbit coupling~Refs. 2 and 10! ~curves labeled with the 232
symbol!. The energies (Eh

2 ,Eh
1 ,E1 ,ESO) defined in the text are

also shown.
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(Eh
2 ,Eh

1 ,E1) with the analytical results obtained while ne
glecting the effects of the SO band.2

Example 1: Tunneling through ad scatterer.We consider
tunneling of holes through a one-dimensionald scatterer.
This amounts to adding the potential-energy termVh(z)
5Gd(z) to the diagonal elements Hamiltonian~8!, whereG
is the strength of the one-dimensionald scatterer. IfG is
selected as negative, this potential energy approximat
models the potential energy due to a uniform sheet of acc
tors in a plane perpendicular to the direction of growth of a
heterostructure in the assumption of strong screening, i
for heavily doped samples.

Integrating both sides of Eq.~14! from z502 to z
501 , we obtain the following set of equations relating th
components of the envelope wave function on either sides
the d scatterer:

~G122G2!@F18~01!2F18~02!#2GF1~01!50, ~24!

~G112G2!@F28~01!2F28~02!#

22&G2@F38~01!2F38~02!#2GF2~01!50,

~25!

G1@F38~01!2F38~02!#

22&G2@F28~01!2F28~02!#2GF3~01!50.

~26!

Using the scattering states in Eqs.~17!–~19!, the continuity
of the components of the wave function and the three eq
tions above lead to a matrix equation which must be solv
for the unknown reflection (GHH ,GLH ,GSOH) and transmis-
sion amplitudes (tHH ,tLH ,tSOH):

M @GHH ,GLH ,GSOH,tHH ,tLH ,tSOH#T5Vh , ~27!

where T stands for the transpose operation. The explic
forms of M and Vh are given in Appendix B. The analysis

FIG. 2. Dependence on the magnitude of the transverse w
vector (kr) of the energies (Eh

2 ,Eh
1 ,E1 ,ESO). Also shown as

dashed lines are thekr dependence of (Eh
2 ,Eh

1 ,E1) when the ef-
fects of spin-orbit coupling are neglected~Refs. 2 and 10!.
ly
p-
n
.,

of

a-
d

it

can be easily repeated for holes incident either in the lig
hole or SO band.

As an example, we consider tunneling through ad scat-
terer with a strength ofG521 eV Å in a region of bulk
In0.53Ga0.47As. Figure 3 is a plot of the tunneling coefficien
as a function of energy for an incident heavy hole with
in-plane wave vector equal to 431022(2p/a). Also shown
as dashed lines are the transmission coefficients calcul
while neglecting the SO band.

Figure 3 indicates the presence of antiresonan
resonance pairs in the energy dependence of the transmi
coefficientTHH . The first antiresonance/resonance pair is o
served in the energy range (Eh

2 ,E1) where only the heavy
holes are freely propagating on either side of thed scatterer.
Within this energy range, both the light-hole and SO sta
are quasiconfined, as shown in Fig. 1. This phenomeno
usually referred to as a Fano resonance in which a resona
antiresonance pair occurs in the transmission through a s
tering potential when a discrete~bound! state is coupled to a
continuum.17–19 The first antiresonance/resonance pair a
pears at a lower energy when the SO band is included
agreement with the shift toward lower energy of the ene
threshold for light-hole propagation. A similar antiresonan
resonance structure was recently reported in the transmis
coefficientTHH of holes across a finite potential well.9

A second antiresonance/resonance pair appears just b
ESO. In that case,THH does not reach 0 and 1 at the an
resonant and resonant energies, respectively. This is p
ably related to the fact that the freely propagating hole
coupled to a freely propagating light hole and to an evan
cent SO state just belowESO. Because of the mismatch be
tween the wave vectors of the two propagating states,
conditions are probably not quite right to observe a perf
antiresonance. This point would need to be investigated
ther.

Another interesting feature in Fig. 3 is the fact thatTHH

ve FIG. 3. Transmission coefficients of a heavy hole through
one-dimensionald scatterer of strengthGd(z) with G521 eV Å.
The in-plane wave vector is set equal tokr50.04 (2p/a) ~wherea
is 5.83 Å, the lattice constant of InP!. For clarity, the transmission
coefficientsTLH and TSOH for the heavy hole to be transmitted i
the light-hole and SO bands, respectively, have been multiplied
a factor 5. Also shown as dashed lines are the transmission am
tudes calculated while neglecting the effects of the SO band.
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does not go down to zero atEh
2 , the threshold energy for a

freely propagating heavy hole. Referring to Fig. 1, this is d
to the fact that Rekz

(h) is nonzero at this energy despite th
fact that Imkz

(h) is exactly zero beyond the point. The tran
mission coefficientTHH only reaches zero atEh

2 when kr

50, and there is no more coupling between the different h
bands.

Referring to Fig. 3, the probabilities for heavy-hole-
light-hole-or heavy-hole-to SO-band conversion are qu
small. These probabilities were multiplied by a factor 5
Fig. 3 to be easily seen. Figure 3 shows thatTLH reaches a
maximum of 0.1 at the energy of the second antiresona
just below ESO, despite the fact that the probabilities fo
hole conversion are quite small, We stress the fact that c
pling between the hole bands is responsible for the obse
tion of the antiresonance/resonance pairs, a feature
present in the tunneling of electrons through on
dimensionald scatterers.

Figure 4 shows the transmission coefficients for holes
cident in the light-hole band. The results are shown for
ergy above the threshold energy for free propagationE
.E1) of light holes. TheTLL curve shifts towards lowe
energy when the effects of the SO band are included
observed in Fig. 3 for heavy holes. In addition, the transm
sion coefficientTLL is lower when the effects of SO band a
included, whereasTHH is more or less the same far from th
antiresonance/resonance pairs. This is due to the much s
ger coupling between light-hole and SO bands, as illustra
in Fig. 1. There is only one antiresonance/resonance pa
the energy dependence ofTLL located slightly belowESO.
This antiresonance/resonance pair has sharper features
the second antiresonance/resonance pair for the inci
heavy holes observed in Fig. 3, because the incident l
hole is more strongly coupled to the evanescent SO state
below ESO. Finally, the transmission coefficientsTHL and
TSOL are also found to be quite small.

FIG. 4. Same as Fig. 3 for a light hole incident on a on
dimensionald scatterer of strengthGd(z) with G521 eV Å. The
in-plane wave vector is set equal tokr50.04 (2p/a) ~wherea is
5.83 Å, the lattice constant of InP!. For clarity, the transmission
amplitudesTHL andTSOL for the light hole to be transmitted in th
heavy-hole and SO bands, respectively, have been multiplied
factor 5. Also shown as dashed lines are the transmission am
tudes calculated while neglecting the effects of the SO band.
e

le

e

ce
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Example 2: Tunneling through a potential step. Next, we
consider the problem of hole tunneling across a poten
step. Such a valence-band profile roughly approximates
valence band across the emitter-base junction of aPnp het-
erojunction bipolar transistor~HBT! under high enough for-
ward bias.10 We consider two potential steps correspondi
to the two lattice-matched interfaces Al0.3Ga0.7As/GaAs and
InP/In0.53Ga0.47As, which are two of the most widely use
structures for HBT technology. For these materials, the v
ues of the Luttinger-Kohn parameters and split-off ene
are listed in Table I. The parameters for the ternary co
pound InyGa12yAs and AlxGa12xAs are obtained by linea
interpolation from the parameters for the binaries.20–22

An important difference exists between the two hete
junctions as shown in Fig. 5. For the Al0.3Ga0.7As/GaAs sys-
tem, the valence-band discontinuity is much smaller than
spin-orbit split-off energy. Holes incident from the left nee
a kinetic energy of around 200 meV before being able
reach the threshold energy for free propagation in the
band in the transmitted region. On the other hand, tunne
through the InP/In0.53Ga0.47As will be very sensitive to pres
ence of the SO band because the spin-orbit split-off ene
in the transmitted region (In0.53Ga0.47As) is smaller than the

-

a
li-

TABLE I. Luttinger-Kohn parameters and spin-orbit split-o
energy used in the simulations. The corresponding values
Al xGa12xAs and InyGa12yAs materials are found by linear interpo
lation.

GaAs AlAs InAs InP

g1 6.85 3.45 20.4 4.95
g2 2.1 0.68 8.3 1.65
g3 2.9 1.29 9.1 2.35
D ~eV! 0.34 0.28 0.38 0.1

FIG. 5. Illustration of the valence-band discontinuity across
Al0.3Ga0.7As/GaAs and InP/In0.53Ga0.47As interfaces. The horizonta
lines labeled ‘‘SO’’ are the locations of the spin-orbit split-o
energy-band minimum on both sides of the structure. The ene
thresholdESO for free propagation in the SO band coincides w
the SO level forkr50, but shifts upward in energy as the magn
tude of the transverse wave vector increases, as shown in Fig.
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valence-band discontinuity (DEv5386 meV). Furthermore
the spin-orbit split-off energy in the left region~InP! is quite
small ~100 meV! and the dispersion relation for heavy an
light holes in this region will be strongly affected by the S
band even for holes with low incident kinetic energy.

Applying boundary conditions~20! and~21! and using the
wave functions~17!–~19! on the left and right sides of th
step, respectively, the unknown reflection and transmiss
amplitudesGHH , GLH , GSO, tHH , tLH , and tSO can be
found as solutions of a matrix equation of the form given
Eq. ~27!. Since the potential steps in Fig. 5 lacks inversi
symmetry, the transmission coefficients will be differe
when calculated with the upper or lower Hamiltonians. T
will be illustrated in the numerical examples below.

Hereafter, we only consider the transmission coefficie
of heavy holes incident from left to right on the potent
steps shown in Fig. 5. In a Pnp HBT, heavy holes wo
constitute the major component of the injected current ac
a forward biased emitter~P-type!/base~n-type! junction.

Case 1: TheAl0.3Ga0.7As/GaAsinterface.Figure 6 shows
the transmission coefficients as a function of energy for ho
incident from left to right on the structure shown on the l
in Fig. 5. The lines labeled~U! and ~L! are the results ob
tained with the upper and lower 333 Hamiltonians, respec
tively. Also shown are the results obtained with the upp
Hamiltonian when the SO band is neglected. Figure 6 in
cates that bothTHH andTLH are not very much affected b
the inclusion of the SO band at energy above the thresh
energyE1 for free propagation in the light-hole band in th
Al xGa12xAs region. BelowE1 , there is a substantial differ
ence between the results forTHH andTLH obtained with the
lower and upper Hamiltonians. This is expected since a
tential step lacks inversion symmetry, and results from
upper and lower Hamiltonians are not expected to be ide

FIG. 6. Transmission coefficients of a heavy hole incident fr
the left side of the Al0.3Ga0.7As/GaAs potential step shown in Fig
5. The results are shown for the upper and lower 333 Hamiltonian.
The valence-band discontinuity is set equal toDEv5141.7 meV.
The in-plane wave vector is set equal tokr50.04 (2p/a) ~wherea
is 5.6566 Å, the lattice constant of GaAs!. Also shown are the
results obtained with the upper and lower Hamiltonians when
effects of the SO band are included. For clarity, the results are
shown for the lower 232 Hamiltonian.
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cal in that case.2 The lower the kinetic energy of the inciden
hole, the more drastic the importance of the valence-b
discontinuity and the larger is the discrepancy in the res
with the upper and lower Hamiltonians. For energy abo
E1 , the results with the upper and lower Hamiltonians are
close agreement.

Furthermore, Fig. 6 shows that the probability of heav
to SO-band (TSOH) transition across the interface is fairl
small. This feature results from the fact that the thresh
energy for free propagation in the SO band is quite high. I
about 500 meV for the incident heavy hole with an in-pla
wave vectorkr54310222p/a considered here. As a resul
we do not expect a large difference between the transmis
coefficients calculated with and without the effects of the S
band.

Case 2: TheInP/In0.53Ga0.47As interface.The situation is
quite different for the second interface shown in Fig. 5.
shown in Fig. 7, the energy dependence of the transmis
coefficients for an incident heavy hole is markedly differe
whether or not the effects of the SO band are included. T
results in Fig. 7 are for the upper~232 and 333! Hamilto-
nians only. Figure 8 shows that for that interface the res
obtained with the upper and lower (333) Hamiltonians are
quite different over the full range of incident energy inves
gated here.

In Figs. 7 and 8, there are cusps in the transmission c
ficient THH appearing at an incident energy equal to t
threshold energies for free propagation in the SO bands
either side of the interface.TSOH is nonzero past the energ
thresholdESO in the InyGa12yAs region ~around 500 meV
according to Fig. 1!. However,TSOH goes back down close
to zero above 535 meV because there is a finite probabilit
be reflected in the SO band in the InP region beyond t
energy.

Figures 9 and 10 are plots similar to Figs. 7 and 8 fo
light hole incident from the InP region. Figure 9 shows th

FIG. 7. Transmission coefficients for a heavy hole incident
the InP/In0.53Ga0.47As interface shown in Fig. 5. Also shown are th
transmission coefficients calculated while neglecting the effects
the SO band. The results are shown for the upper Hamilton
only. The valence-band discontinuity is set equal toDEv
5346 meV. The materials parameters are listed in Table I. T
in-plane wave vector is set equal tokr50.04 (2p/a) ~wherea is
5.83 Å, the lattice constant of InP!.
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the probability of light- to heavy-hole conversion is mu
smaller than the probability of heavy- to light-hole conve
sion shown in Fig. 5. This is expected using a simple e
mate based on the well-known result for electron tunnel
through a potential step

Tji 5
2kj

trans/ki
inc

@kj
trans/ki

inc11#2 , ~28!

where j i 5HL or LH for an incident light and heavy hole
respectively. In Eq.~28!, the ratio of the of thez-component
of the wave vectors is smaller wheni j 5HL, which explains
why THL is smaller thanTLH .

IV. CONCLUSIONS

We have used the 636 Luttinger-Kohn Hamiltonian to
study the effects of the spin-orbit split-off band on the tra
mission and reflection coefficients of holes through vario
heterostructures. The tunneling and reflection coefficient
heavy and light holes were calculated using the upper
lower Hamiltonians obtained through a unitary transform
the 636 Luttinger-Kohn Hamiltonian.

We have shown that SO interaction has a more profo
influence on the light-hole energy dispersion relation than
the heavy-hole energy dispersion relation. More specifica
the energy threshold (E1) for free propagating light-hole
states was found to occur at a lower energy compared to
value obtained when the effects of SO interaction are
glected. We have studied the tunneling of holes through o
dimensionald scatterers and potential steps. These exam
show that the effects of SO interaction can influence
tunneling of heavy-holes even at energies far below
threshold energy for free propagation in the SO band. Thi
due to the lowering of the threshold energy for free pro
gation in the light-hole band resulting from a strong coupli
between the light-hole and SO bands for holes incident o
heterointerface with a nonzero in-plane wave vector.

For the case of tunneling through a one-dimensionad

FIG. 8. Transmission coefficients for a heavy hole incident
the InP/In0.53Ga0.47As interface shown in Fig. 5. Comparison of th
transmission coefficients obtained with the upper and lower 333
Hamiltonians. All parameters are the same as in the caption
Fig. 7.
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scatterer, we have found the presence of antiresona
resonance pairs~Fano resonances! in the energy dependenc
of the heavy- and light-hole transmission coefficients. Th
antiresonance/resonance pairs occur slightly below
threshold energies (E1 and ESO) for heavy holes, and
slightly belowESO for light holes.

For the case of potential steps, the effects of the SO b
on hole tunneling coefficients were found to be minor in t
case of an Al0.3Ga0.7As/GaAs interface but quite drastic i
the case of an InP/In0.53Ga0.47As potential step. This is due to
the much lower values of the threshold energy for free pro
gation in the SO band on either side of the heterointerfac
the InP/In0.53Ga0.47As system, as illustrated in Fig. 8. Ou
results indicate that the SO band cannot be neglected in
calculation of the emitter injection efficiency of Pnp HBT
using InP/In0.53Ga0.47As materials for the emitter-base junc
tion. In that case, the valence-band energy profile through
emitter-base junction under large enough emitter-base

n

of

FIG. 9. Same as Fig. 6 for a light hole incident on th
InP/In0.53Ga0.47As potential step shown in Fig. 5. All parameters a
the same as in the caption of Fig. 6. Also shown are the trans
sion and reflection coefficients calculated while neglecting the
fects of the SO band.

FIG. 10. Same as Fig. 8 for a light hole incident on t
InP/In0.53Ga0.47As potential step shown in Fig. 5. All parameters a
the same as in the caption of Fig. 6.
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approaches the step potential analyzed here.10 Because of the
probability of hole conversion at the interface~especially
heavy to light! the effects of the SO band also affects t
energy distribution of the heavy-holes injected in the base
the Pnp HBTs. The latter controls the HBT base transit ti
which is one of the leading components affecting the hi
frequency performance of these devices.23
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APPENDIX A: EIGENVALUES AND EIGENVECTORS
OF THE H 333 HAMILTONIAN

The 636 Luttinger-Kohn Hamiltonian~1! can be block
diagonalized using a unitary transformation2

H5FH333

0
0

H333
† G , ~A1!

whereH333
† is the Hermitian conjugate ofH333 .
H33353
P1Q 2Rr2 iSr 2&Rr1

i

&
Sr

2Rr1 iSr P2Q &Q1
i

A3/2
Sr

2&Rr2
i

&
Sr &Q2

i

A3/2
Sr P1D

4 ~A2!

This Hamiltonian can be rewritten as

H3335H ~2!kz
21H ~1!~kr!kz1H ~0!~kr!, ~A3!

where

H ~2!5S \2

2m0
D F ~g122g2!

0
0

0
~g112g2!

0

0
0
g1

G , ~A4!

H ~1!~kr!5S \2

2m0
D F 0

2i)g3kr

2 iA6g3kr

22i)g3kr

0
23i&g3kr

iA6g3kr

3i&g3kr

0
G , ~A5!

and

H ~0!~kr!5S \2

2m0
D F ~g11g2!kr

2

)g̃kr
2

A6g̃kr
2

)g̃kr
2

~g12g2!kr
2

&g2kr
2

A6g̃kr
2

&g2kr
2

g1kr
21D

G , ~A6!
nc-
e
-

where g̃5(g21g3)/2. The eigenvalue problem associat
with the HamiltonianH333 is more easily solved when re
cast in the eigenvalue problem for the wave vectorkz as
described in the text@Eq. ~16!#.

With the decomposition of the Hamiltonian describ
above, the current density operator in thez direction can then
be written as follows:8

Jz5
1

\ S 2H ~2!
d

dz
1H ~1!~kr! D . ~A7!

Jz is equal to Eq.~21! in the text multiplied by\2/2m0 . This
expression is needed to calculate the reflection and trans
 is-

sion coefficients as outlined in Sec. II.

APPENDIX B: TUNNELING THROUGH A d SCATTERER

Starting with Eqs.~24!–~26! and using Eqs.~17!–~19!
describing the incident, reflected, and transmitted wave fu
tions on either sides of thed scatterer, the application of th
boundary conditions~20! and ~21! leads to the matrix equa
tion

M @GHH ,GLH ,GSO,tHH ,tLH ,tSO#T5Vh , ~B1!

whereM is given by
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M53
F1h

2 F1l
2 F1so

2 2F1h 2F1l 2F1so

F2h
2 F2l

2 F2so
2 2F2h 2F2l 2F2so

F3h
2 F3l

2 F3so
2 2F3h 2F3l 2F3so

ikz
~h!G2F1h

2 ikz
~ l !G2F1l

2 ikz
~so!G2Fso

2 d~h!F1h d~h!F1l d~h!F1so

ikz
~h!G1F2h

2 ikz
~ l !G1F2l

2 ikz
~so!G1F2so

2 ikz
~h!G1F2h

2 ikz
~ l !G1F2l

2 ikz
~so!G1F2so

2

22i&G2kz
~h!F3h

2 22i&G2kz
~ l !F3l

2 22i&G2kz
~so!F3so

2 22i&G2kz
~h!F3h

2 22i&G2kz
~ l !F3l

2 22i&G2kz
~so!F3so

2

ikz
~h!G1F3h

2 ikz
~ l !G1F3l

2 ikz
~so!G1F3so

2 ikz
~h!G1F3h

2 ikz
~ l !G1F3l

2 ikz
~so!G1F3so

2

22i&G2kz
~h!F2h

2 22i&G2kz
~ l !F2l

2 22i&G2kz
~so!F2so

2 22i&G2kz
~h!F2h

2 22i&G2kz
~ l !F2l

2 22i&G2kz
~so!F2so

2

4 , ~B2!
t-
-

-
f a
ns
whereG25G122G2 , G15G112G2 , and the following no-
tations were introduced:

d~h!5 ikz
~h!G2F1h2G, ~B3!

d~ l !5 ikz
~ l !G2F1l2G, ~B4!

d~so!5 ikz
~so!G2F1so2G, ~B5!

andVh is given by

F 2F1h

2F2h

2F3h

ikz
~h!F1h~G122G2!

ikz
~h!F2h~G122G2!22i&G2kz

~h!F3h

ikz
~h!F3h~G122G2!22i&G2kz

~h!F2h

G . ~B6!
The matrixM is unchanged for an incident hole in the ligh
hole or SO band, but the vectorV must be modified accord
ingly.

APPENDIX C: TUNNELING THROUGH
A POTENTIAL STEP

Starting with Eqs.~17!–~19! describing the incident, re
flected, and transmitted wave functions on either side o
potential step, the application of the boundary conditio
~20! and ~21! leads to the matrix equation

M @GHH ,GLH ,GSO,tHH ,tLH ,tSO#T5Vh , ~C1!

whereM is given by
M53
F1h

2 F1l
2 F1so

2 2F1h
t 2F1l

t 2F1so
t

F2h
2 F2l

2 F2so
2 2F2h

t 2F2l
t 2F2so

t

F3h
2 F3l

2 F3so
2 2F3h

t 2F3l
t 2F3so

t

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

4 , ~C2!
where

M415 i ~g122g2!kz
~h!F1h

2 22)g3krF2h
2 1A6g3krF3h

2 ;

~C3!

M42 andM43 are obtained by changing the indexh to l and
so, respectively;

M445 i ~g1
t 22g2

t !kz
~h!tF1h

t 12)g3
t krF2h

t 2A6g3
t krF3h

t ;

~C4!

M45 andM46 are obtained by changing the indexh to l and
so, respectively;
M5152)g3krF1h
2 2 i ~g112g2!kz

~h!F2h
2

13&g3krF3h
2 22i&g2kz

~h!F3h
2 ; ~C5!

M52 andM53 are obtained by changing the indexh to l and
so, respectively;

M54522)g3
t krF1h

t 1 i ~g1
t 12g2

t !kz
~h!tF2h

t

23&g3
t krF3h

t 22i&g2
t kz

~h!tF3h
t ; ~C6!

M55 andM56 are obtained by changing the indexh to l and
so, respectively;
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M6152A6g3krF1h
2 23&g3krF2h

2

1 ig1kz
~h!F3h

2 22i&g2kz
~h!F2h

2 ; ~C7!

M62 andM63 are obtained by changing the indexh to l and
so, respectively;
al

d
e

Re

r

le
M645A6g3
t krF1h

t 13&g3
t krF2h

t

1 ig1
t kz

~h!tF3h
t 22i&g2

t kz
~h!tF2h

t ; ~C8!

andM65 andM66 are obtained by changing the indexh to l
and so, respectively. In Eq.~C1!, Vh is given by
F 2F1h

2F2h

2F3h

i ~g122g2!kz
~h!F1h12)g3krF2h2A6g3krF3h

22)g3krF1h1 i ~g112g2!kz
~h!F2h22i&g2kz

~h!F3h23&g3krF3h

A6g3krF1h13&g3krF2h22i&g2kz
~h!F2h1 ig1kz

~h!F3h

G . ~C9!

For holes incident in the light-hole or SO band, only the vectorVh must be upgraded while solving Eq.~C1! by changing the
index h to l or so, respectively.
,
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