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Importance of the spin-orbit split-off band on the tunneling properties of holes
through Al,Ga, _,As/GaAs and InP/In,Ga, _,As heterostructures
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The influence of the spin-orbit split-off band on the tunneling of holes across heterostructures is studied
starting with the 6<6 Luttinger-Kohn Hamiltonian. The latter is diagonalized intx 3 blocks (upper and
lower Hamiltoniang using a unitary transformation. We consider,®8& _,As/GaAs and InP/ljGa _,As
material systems, and study the tunneling of holes through a one-dimensisnatterer and across abrupt
potential steps. In each case, we show that the presence of the spin-orbit split-off band has a profound influence
on the transmission coefficients of holes, even for holes with energy much lower than the threshold for free
propagation in the spin-orbit split-off band. For the potential steps, we show that the results can be quite
different with upper and lower Hamiltonians. Furthermore, we stress the importance of the spin-orbit split-off
band by comparing the results with those obtained with tRel4 uttinger-Kohn Hamiltonian which neglects
the importance of the spin-orbit split-off band.
[S0163-182698)08148-X

I. INTRODUCTION Chang and Chuang also showed that the inclusion of the
spin-orbit split-off band influences all optoelectronic proper-
In the past, there have been only a few reports on th&es of strained quantum-well lasefthreshold current, gain
treatment of hole tunneling in realistic structures based ofnd absorption speci& This is mainly a consequence of
the transfer-matrix formalism following the original-p the substantial change in the energy dispersion relations of
model® Starting with the 4<4 Luttinger-Kohn Hamiltonian, holes (even for low values of the hole enejgwhen the
Chuang used a transfer-matrix approach to study the probleff'€CtS Of spin-orbit coupling are taken into account. The
of hole tunneling through simple potential stédse showed spln—_orblt split-off band should therefore also have an impor-
that there is a high probability for a hole to change charactei‘ant mflue_nce on the transport of holes across a heterostruc-
(heavy to light or the reversewhile tunneling from low- suri?]-i\;gir: gtl?for]lfo(lgg)ns;%)é Is far below the maximum of the
band-gap to higher-band-gap material at a heterojunction in—pm this papper, we analyze .the effects of the SO band on the

terface. On the' other hand, the prpbability of ConVer‘c’iontunneling properties of holes through unstrained heterostruc-
fror_n heavy to _Ilght or the reverse is much less for hol_estures. Recently, Sanchez and Proetto performed an analysis
incident on an interface from the higher-band-gap materialyg poe refraction from strained Si,Ge,/Si heterojunctions
The transfer-matrix formalism has also been applied to th%tarting with the 66 Luttinger-Kohn Hamiltoniar? We

problem of hole tunneling through resonant tunnelingperform a similar analysis of AGa_,As/GaAs and
structures™’ These simulations have shown that the |np/inGa,_,As interfaces, which are two of the most
transfer-matrix method is numerically unstable for deviceyjdely used material systems in the investigation of ultrafast
structures larger than a few tens of A. To circumvent thesybmicron devices for millimeter wave applications. Our
difficulties encountered in the transfer-matrix technique, Liu,analysis is more complete than the one reported by Sanchez
Ting, and McGill recently proposed the use of the multibandand Proetto because we compare the results obtained with
quantum transmitting boundary methdQTBM).2 This  the 6x6 and 4x4 Luttinger-Kohn Hamiltonians, illustrating
technique is easy to implement and numerically stable. Sthe dramatic influence of the SO band on the tunneling prop-
far, Liu, Ting, and McGill applied their MQTBM technique erties of holes even for carriers with a low kinetic energy.
only to hole transport through resonant tunneling devices-urthermore, we show that the results obtained with the up-
starting with the 44 Luttinger-Kohn Hamiltonian. A per and lower Hamiltonians obtained after performing a uni-
scattering-matrix to describe hole transport was used recentary transform of the Luttinger-Kohn Hamiltonian are quite
by Sanchez and Proettdo study hole tunneling through different when the heterostructure lacks inversion symmetry.
simple barriers and above quantum wells. Recently, we gen- This paper is organized as follows. In Sec. I, we develop
eralized that approach to study hole tunneling across théhe formalism to calculate the eigenvalues and eigenstates of
emitter-base junction of abrupt and graded heterojunction bithe 6x 6 Luttinger-Kohn Hamiltonian in the axial approxi-
polar transistors starting with the x4 Luttinger-Kohn  mation. In Sec. Ill, we consider the following problent$)
Hamiltonian in which only the mixing between heavy and hole tunneling through & scatterer, and2) hole tunneling
light holes is taken into accouffl. across a potential step. We stress the importance of the spin-

Chao and Chuarffgshowed that the spin-orbit split-off orbit split-off band by performing simultaneously the calcu-
band has a significant effect on the band structure of quariations while neglecting it. Finally, Sec. IV contains our con-
tum wells especially for highly strained quantum wells. clusions.
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Il. APPROACH

Following Chao and Chuarfbwe start with the Luttinger-Kohn Hamiltonian describing the top of the valence band while
including the effects of the spin-orbit split-off band

— P+Q -5 R 0 -Ls wvir ]
V2
-st P-Q 0 R -vig s
R' 0 P-0 S \ist vig
H= 0 RY st pP+Q —viRf —és* (1)
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where where H§X3 is the Hermitian conjugate dfl;.3. The ex-
plicit form of the HamiltonianH 3, 5 is given by
P=T,(K;+kZ+K2), )
H3><3
Q=T (Ki+k2—2k2), (3)
- | -
P+ -R,—iS - —
. ro-r,) ° S VIR LS
R=—v3I'(ky—iky)?+V3 3 (kyt+iky)2 (4
|  -R,*iS, P-Q V2Q+i4/3/28,
and i
“VIR,~ S, V2Q—iV3/2S, P+A
S=2v3I'3(ky—iky)k,, (5) - J
8

where the wave vectde= (k,,ky ,k,) is interpreted as a dif-
ferential operator-iV. In Eq. (1), A is the spin-orbit split- where
off energy. Furthermore, the following notations were used:

T =#r2y,/2m, T,=#2y,/2m, T3=#%ys/2m, and'=(T, R,=—V3T'kZ, 9)
+I'3)/2, wherey; are the Luttinger parameters. Hereafter,

hole energies are measured as positive moving into the vand

lence band and taking the top of the valence band as the zero

of energy. S,=2V3I'3K k. (10)
The Hamiltonian in Eq(1) is a 6X6 matrix in the basis ) ) o
composed of|$, £2)) heavy-hole(|3, =1)) light-hole, and Starting with the upper or lower Hamiltonian, the

(13, =) split-off Bloch wave functions at the center of the €igenenergies and corresponding envelope functions of the
Brillouin zone. In the axial approximation, the matrix ele- valence subbands can be obtained by solving the effective-

mentR in Eq. (1) is approximated by mass equation

~ %i[Hij+Vi(2) 6 1F (kp 1) =E(k,)Fi(ky,r), (1)
R=—V3T'k? exp( —2i ¢) (6)

where (,j)=(1,2,3), and V,(z) is the valence-band
wherek?=kZ+kZ and ¢=atan(,/k,). Hamiltonian(1) can  potential-energy profile. In the axial approximation, the
be block diagonalized using a similarity transformation asenvelope-function components; can be approximated as
described in Refs. 4 and 5. In the new basis’dbe trans-  follows:
formed Hamiltonian can then be written as

Fi(k,,n=Fj(k,,2)e'P, (12
H= Haxs ,? ) wherez is the direction of growth of the heterostructure. In
0 Haxa)’ Eq. (12), k,=kx+kyy and p=xx+yy.
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For a fixed energyE and in-plane wave vectdt,, Eq. Fin
(11 will have three complex wave vector solutioks and . "
associated wave vectoF{k,,z). We seek solutions of Eq. ren(T) =T | Fon | €®oPkz 2
(12) of the form _
I:3H
F(k,,2)=Fe'~ (13 Fi
= | @ik, p—kV2)
Substituting Eq.(13) into Eq. (11), we find that the eigen- +Tn| Fa | eto?
vectorsF, must satisfy the eigenvalue problem Fa
HaxaFi=EFi. (14 Fiso
+T'sg Faso eikyp=k2), (18
where each matrix element in the Hamiltonidg, 3 can be B
written as a second-order polynomial kp: Fss
where Cyy, 'y ,I'so) are the reflection amplitudes for the
H3X3=H(Z)k§+H(l)(kp)kz+H(°)(kp), (15) incident heavy hole to be reflected in the heavy-hole light-

hole and SO bands, respectively. The;(,F,; ,F3) with
") _ (i=HH,LH,SO) are the components of the wave vector so-
where theH' are 3x 3 matrices whose elements are poly- |ytions of Eq.(16) for holes propagating from right to left.

nomial at most quadratic ink(,kgo,kz). The explicit forms In the transmitted region in which the potential energy
of the matricesH®, H®), andH© are given in Appendix profile can be different from the left contact, the transmitted
A. wave function can be written as
To solve the eigenvalue problem associated with Hamil- ;
tonian (15), we first transform it into a standard eigenvalue Fin
problem fork, .*>'*The energy-dispersion relations for holes Gead )= o] Fpt | ek oK)
in the heavy-hole light-hole, and SO bands can then be ob- tran HHf © 2H
tained by solving the eigenvalue problem Fiy
et
0 1 Fi = .
t i .
_(H(Z))_l(Ho(kp)_E) (H(z))_lH(l)(kp) ksz + TLH F2|_ el(kp ptky2)
. =
=k . (16) Mt
Z K,Fy Fiso
+ 70| Faso gl P k), (19

This last equation has six eigenvalues and six corresponding .

eigenvectors. Three solutions correspond to solutions propa- L F3s

gating from left to right. The other three solutions fgrare  where the labet is a reminder that the quantities must be

just the negative of the first three solutions and correspond tgvaluated in the transmitted region. In §49), 7, 714,

hole propagation from right to left. andrgg are the transmission coefficients from the heavy hole

Next, we consider tunneling of a heavy hole between twdnto the heavy-hole, light-hole, and SO bands in the trans-

contacts sandwiching an arbitrary heterostructure. The wavenitted region, respectively.

function for a heavy hol¢HH) incident from the left can be An arbitrary valence-band energy profile can always be

written as approximated as a series of small steps in which the valence-
band edge is assumed to be a constant. At the interface be-
tween any two steps, the envelope-function components

Fin (F41,F5,F3) must be chosen such that
(1) =| Fan [elrprie’D), 17 Fi(2)
Fan Fa(2) (20)
Fs(2)
and the reflected wave can be written as and
|
2(y1-272)k, —2iV3ysK, iV6y3k, Fi(2)
2|\/§’)/3kp 2(’yl+ 2’)/2)kz _4\/2’)/2kz+3|\/§’)/3kp F2(Z) . (21)

_i\/€73kp —4V2y.k,—3iv2y3K, 2y1k, Fa(2)
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are continuous? In Eq. (21), k,= —i(d/dz) andk, is the 0.40

magnitude of the in-plane wave vector. Conditi¢@8) and T M o5 GAour AS
(21) are required for the wave function and the current den- S k1 o)

sity to be continuous across the interface. Expressions for the % Mﬁ m\l\
current density operator components are given in the ) Y mee @ ‘
appendixe§:12 En . Epn By (33 Eq (@@ Eeo

In order to calculate the transmission and reflection coef- **° |
ficients of holes incident from the left contact, the probability
current density must be calculated along the growth direction |
for the incident, reflected, and transmitted waves. The trans-
mission coefficients for a heavy hole incident from the left

(H)
ReK ,  (2x2,3x3)

are then calculated as follows: 0.0 |-
|7'HH|2jtzr,ell-?S |7'LH|2jtzr,£Ii_nS
Thv=—""mmc > LH=™ inc_ s ~0.10 s s
JzH Iz H 0.0 200.0 400.0 600.0
Energy (meV)
|TSO|2j tzrasng FIG. 1. Real i i
Teor= o250 (22) FIG. 1. Rea a_nd imaginary parts of_ the hole wave vectors so-
Izh lutions of the eigenvalue problem in Eq16) for a bulk
) . Ing 54Ga& 47/AS region as a function of energy for a value k
and the reflection coefficients are =0.04 (27/a) (ais 5.83 A, the lattice constant of InPThe zero gf
Ia |2. inc Ia |2. inc energy is the top of the valence band. The real and imaginary parts
Ryy= — HHl ) -z 1 __17LH I-z1L are expressed in units ofrda. For clarity, the imaginary parts
ivh LH ith have been shifted vertically by an amount equal to 0.25/63.
Also shown are the results obtained while neglecting the effects of
ITsd 2j iﬂcz,so spin-orbit coupling(Refs. 2 and 1p(curves labeled with the 22
Rsonw= — e (23)  symbo). The energies &, ,E; ,E;,Eso defined in the text are
zH also shown.

In Egs. (22) and (23), the labels inc and trans mean that

the probability current density must be evaluated in the inCiyyhich there is a sudden break in the energy dependence of
dent and transmitted regions, respectively. Furthermore, th@\e reqal and imaginary parts of the heavy-, light-, and SO-
relationship j, ,=—], . holds between the probability 1je wave vectors. More precisel; is the lowest positive

E:prr()antrge:s;[;ﬁ]s g?;[g:f(f"‘:'fg ot:) Slgﬁ_éﬁr)rei?(iorrzgztr energy at whictk{" is purely real;E; is the lowest positive
Jz2) propagating i : energy at which Ink{) becomes equal to zerd, is the

vation further requires thaTyy+ T n+ Tsont Ruy+R . . .
+Rgo=1, which is helpful tchhet:Hk thgo;ccu?gcy oLthhe energy above whicky is purely real, ansois the energy

numerical simulations. The tunneling problem describecfbove whichk(>) is purely real. Analytical expressions for
above can then be easily repeated for holes incident from th€En »En ,E1) Were derived in Ref. 2 when the SO band is
left contact in the light-hole or SO band. Next, we apply theneglected?®

formalism described above to the analysis of the tunneling of The following features are readily seen in Fig. 1: wikgn
holes through a one-dimensionatscatterer and through is nonzero, the heavy-hole dispersion relation is basically
abrupt heterointerfacedin the AlLGa_,As/GaAs and unchanged with the inclusion of the SO band, but the light-

InP/In,Ga _,As material systems hole dispersion relation is strongly affected. Figure 1 shows
that the energy threshold for purely propagating states for
Il RESULTS light holes occurs at a lower energy compared to the case

when the SO band is neglected. A similar feature has been

E-k relationship First we consider an |)i5a _yAs region  reported by Chao and Chuang in their study of SO interac-
latticed matched to InP. In this case, the indium mole fraction of the valence-band structure of strained semiconductor
tion y is equal 0.53. In Fig. 1 we plot the real (Rg) and  quantum well$. The change in the energy threshold for
imaginary (Imk,) parts of the heavy-hole, light-hole, and SO propagating light holes affects the reflection coefficient for a
bands as a function of the incident energy for a given maglight hole, but also the energy dependence of the amount of
nitude of the transverse wave vector. For comparison, wéeavy- to light-hole conversion, as will be shown below.
also show the real and imaginary parts of the hole bandsurthermore, since the matrix elemeriis3) and (2,3 in
obtained while neglecting the SO band. The latter curvesiamiltonian(8) are nonzero whek,, is nonzero, we expect
were calculated starting with the X4 Luttinger-Kohn  some conversion from a heavy-hdlnd light-hole band to
Hamiltonian. In the axial approximation, this Hamiltonian a SO band past the energy threshold for free propagating
can also be block diagonalized in twox2 Hamiltonians states in the SO band. This will be illustrated in the numeri-
(upper and lower HamiltoniahsIn this casse, the upper cal examples below.
Hamiltonian is formed of the four upper left matrix elements  The energiesK;, ,E; ,E;,Eso) are functions of the mag-
in Hamiltonian(8).2*° nitude of the transverse wave vectoy. These variations

In Fig. 1, the zero of energy is the top of the valence bandwith k, were determined numerically and are plotted in Fig.
The critical energies &, ,E; ,E;,Eso) are the values at 2. In this figure, we also compare the dependence of
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FIG. 2. Dependence on the magnitude of the transverse wave FIG. 3. Transmission coefficients of a heavy hole through a
vector (,) of the energies &, ,Ef{ ,E1,Eso). Also shown as one-dimensionab scatterer of strengti 6(z) with T=—1eV A.
dashed lines are the, dependence off, ,E; ,E;) when the ef-  The in-plane wave vector is set equakip=0.04 (2r/a) (wherea
fects of spin-orbit coupling are neglectédefs. 2 and 10 is 5.83 A, the lattice constant of InPFor clarity, the transmission

coefficientsT, y and Tgoy for the heavy hole to be transmitted in
(Eq ,E,T JE,) with the analytical results obtained while ne- the light-hole and SO bands, respeptively, have been mul_tiplied by
glecting the effects of the SO baRd. a factor 5. Also shown as dashed lines are the transmission ampli-

Example 1: Tunneling through scatterer We consider tudes calculated while neglecting the effects of the SO band.

tunneling of holes through a one-dimensionscatterer.  can pe easily repeated for holes incident either in the light-
This amounts to adding the potential-energy te¥f(z)  nhole or SO band.

=TI"5(2) to the diagonal elements Hamiltoni&8), wherel’ As an example, we consider tunneling througlé scat-

is the strength of the one-dimensiondlscatterer. Ifl" is  tarer with a strength of =—1 eV A in a region of bulk
selected as negative, this potential energy approximatelt,h0 sGay4As. Figure 3 is a plot of the tunneling coefficients
models the potential energy due to a uniform sheet of accepys 3 function of energy for an incident heavy hole with an
tors in a plane perpendicular to the direction of growth of anin-plane wave vector equal tox410™ 2(2/a). Also shown
heterostructure in the assumption of strong screening, i.eas dashed lines are the transmission coefficients calculated
for heavily doped samples. while neglecting the SO band.

Integrating both sides of Eq(14) from z=0_ to z Figure 3 indicates the presence of antiresonance/
=0, we obtain the following set of equations relating the yesonance pairs in the energy dependence of the transmission
components of the envelope wave function on either sides QfpefficientT,,,. The first antiresonance/resonance pair is ob-
the 6 scatterer: served in the energy rang&( ,E,) where only the heavy

, . holes are freely propagating on either side of shecatterer.
(1 =2I)[F1(04)—F1(0-)]=TF1(0,)=0, (249  within this energy range, both the light-hole and SO states
are guasiconfined, as shown in Fig. 1. This phenomenon is

(T'1+2T,)[F5(04)—F4(0.)] usually referred to as a Fano resonance in which a resonance/
, ) antiresonance pair occurs in the transmission through a scat-
—2V2T'[F5(0,)—F5(0-)]-T'F5(0,)=0, tering potential when a discretbound state is coupled to a

(25) continuum?’~® The first antiresonance/resonance pair ap-
pears at a lower energy when the SO band is included in
I'1[F5(04)—F35(0-)] agreement with the shift toward lower energy of the energy
) , threshold for light-hole propagation. A similar antiresonance/
—2v2T'[F5(0,) —F5(0_)]-TI'F5(0,)=0. resonance structure was recently reported in the transmission
(26) coefficientT,, of holes across a finite potential wéll.
A second antiresonance/resonance pair appears just below
Using the scattering states in Eq$7)—(19), the continuity = Egg. In that case Ty does not reach 0 and 1 at the anti-
of the components of the wave function and the three equaesonant and resonant energies, respectively. This is prob-
tions above lead to a matrix equation which must be solved@bly related to the fact that the freely propagating hole is
for the unknown reflectionI{yy,I" 4, I'son) and transmis- coupled to a freely propagating light hole and to an evanes-

sion amplitudes {4, T 1 TsoH) cent SO state just belo®gg. Because of the mismatch be-
tween the wave vectors of the two propagating states, the
M[Tun.Tin T sons Tam T Tsodl '=Vh,  (27)  conditions are probably not quite right to observe a perfect

antiresonance. This point would need to be investigated fur-
where T stands for the transpose operation. The explicitther.

forms of M and V,, are given in Appendix B. The analysis  Another interesting feature in Fig. 3 is the fact tiaf,
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11 ‘ ‘ ' : TABLE I. Luttinger-Kohn parameters and spin-orbit split-off
energy used in the simulations. The corresponding values for
os - I I Al,Ga _,As and InGa,_,As materials are found by linear interpo-
L lation.
07y GaAs AlAs InAs InP
V1 6.85 3.45 20.4 4.95
05 T ]
o Vs 21 0.68 8.3 1.65
73 2.9 1.29 9.1 2.35
03 1 A (eV) 0.34 0.28 0.38 0.1
01 r \\ 1
s Example 2: Tunneling through a potential stéfext, we
01005 512060 s o 506580 0o consider the problem of hole tunneling across a potential
’ ) Energy (meV) ' ’ step. Such a valence-band profile roughly approximates the

valence band across the emitter-base junction Bhp het-
_FIG. 4. Same as Fig. 3 for a light hole incident on a one-grgjynction bipolar transistqiHBT) under high enough for-
?A?;?;nséoa?festztctgfriso'; esttrggggii(i)owo'i“ (1;:/;)1 (‘3\/\[’1 e’z\ré;?: ward bias'® We consider two potential steps corresponding
p="0- to the two lattice-matched interfacesyAGa, ;As/GaAs and

5.83 A, the lattice constant of InPFor clarity, the transmission . .
amplitudesT,, andTgg, for the light hole to be transmitted in the InP/Ing 545G 47AS, which are two of the most widely used

heavy-hole and SO bands, respectively, have been multiplied by Structures for HBT technology. For these mater_ials, the val-
factor 5. Also shown as dashed lines are the transmission amplH€S Of the Luttinger-Kohn parameters and split-off energy
tudes calculated while neglecting the effects of the SO band.  are listed in Table I. The parameters for the ternary com-

_ pound InGa _,As and AlGa ,As are obtained by linear
does not go down to zero &, , the threshold energy for & jnterpolation from the parameters for the binaf&=2

freely propagating heavy hole. Referring to Fig. 1, thisis dué  ap important difference exists between the two hetero-
to the fact that R&!" is nonzero at this energy despite the junctions as shown in Fig. 5. For the AGa, AS/GaAs sys-
fact that Imk{” is exactly zero beyond the point. The trans- tem, the valence-band discontinuity is much smaller than the
mission coefficientT,y only reaches zero &, whenk,  spin-orbit split-off energy. Holes incident from the left need
=0, and there is no more coupling between the different holgy kinetic energy of around 200 meV before being able to
bands. ) ) reach the threshold energy for free propagation in the SO
_ Referring to Fig. 3, the probabilities for heavy-hole-to hang in the transmitted region. On the other hand, tunneling
light-hole-or heavy-h_o_l_e-to SO-band_ conversion are qu_'te[hrough the InP/IgsGay.4As will be very sensitive to pres-
small. These probabilities were multiplied by a factor 5 in ence of the SO band because the spin-orbit split-off energy

Fig. 3 to be easily seen. Figure 3 shows tiigf reaches a . . - .
maximum of 0.1 at the energy of the second antiresonanc'é1 the transmitted region (1452.47As) is smaller than the

just below Eg, despite the fact that the probabilities for

hole conversion are quite small, We stress the fact that cou-
pling between the hole bands is responsible for the observa: 000 ——
tion of the antiresonance/resonance pairs, a feature no

present in the tunneling of electrons through one- 5000 g =
dimensionals scatterers. 101 mev

Figure 4 shows the transmission coefficients for holes in- 4000 ¢ T A ©
cident in the light-hole band. The results are shown for en- = T

ergy above the threshold energy for free propagatiBn ( 3000 | FEmeY

>E,) of light holes. TheT  curve shifts towards lower
energy when the effects of the SO band are included, ass

ergy (meV)

EV
2000 | 386 moV

me' 356 meV
observed in Fig. 3 for heavy holes. In addition, the transmis- - ! o
sion coefficientT,, is lower when the effects of SO band are ~ '**° &
included, wherea¥ , is more or less the same far from the ol . . L]
antiresonance/resonance pairs. This is due to the much stror | Ay Gags A Gans ! InP hogs Gage As
ger coupling between light-hole and SO bands, as illustrated
in Fig. 1. There is only one antiresonance/resonance pair in 00 10

the energy dependence ®f, located slightly belowEso. FIG. 5. lllustration of the valence-band discontinuity across the
This antlresonaqce/resonance pair has sharper featqres th,qr&s(;% As/GaAs and InP/lgsGa, +As interfaces. The horizontal
the second antiresonance/resonance pair for the incideftes labeled “SO” are the locations of the spin-orbit split-off
heavy holes observed in Fig. 3, because the incident lighénergy-band minimum on both sides of the structure. The energy
hole is more strongly coupled to the evanescent SO state jusiresholdE, for free propagation in the SO band coincides with
below Egp. Finally, the transmission coefficient, and  the SO level fork,=0, but shifts upward in energy as the magni-
TsoL are also found to be quite small. tude of the transverse wave vector increases, as shown in Fig. 1.
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FIG. 6. Transmission coefficients of a heavy hole incident from  FIG. 7. Transmission coefficients for a heavy hole incident on
the left side of the AJGa, -As/GaAs potential step shown in Fig. the InP/IsGa 47As interface shown in Fig. 5. Also shown are the
5. The results are shown for the upper and lower®3Hamiltonian.  transmission coefficients calculated while neglecting the effects of
The valence-band discontinuity is set equalif,=141.7 meV. the SO band. The results are shown for the upper Hamiltonians
The in-plane wave vector is set equalip=0.04 (2m/a) (wherea ~ Only. The valence-band discontinuity is set equal AE,
is 5.6566 A, the lattice constant of GaAsAlso shown are the =346 meV. The materials parameters are listed in Table I. The
results obtained with the upper and lower Hamiltonians when thdn-plane wave vector is set equal kg=0.04 (2m/a) (wherea is
effects of the SO band are included. For clarity, the results are nde-83 A, the lattice constant of InP

shown for the lower 2 Hamiltonian. cal in that casé.The lower the kinetic energy of the incident

hole, the more drastic the importance of the valence-band

valence-band discontinuityAE, =386 meV). Furthermore, discontinuity and the larger is the discrepancy in the results
the spin-orbit split-off energy in the left regidinP) is quite  with the upper and lower Hamiltonians. For energy above
small (100 meV} and the dispersion relation for heavy and E;, the results with the upper and lower Hamiltonians are in
light holes in this region will be strongly affected by the SO close agreement.
band even for holes with low incident kinetic energy. Furthermore, Fig. 6 shows that the probability of heavy-

Applying boundary condition&0) and(21) and using the to SO-band Tsoy transition across the interface is fairly
wave functions(17)—(19) on the left and right sides of the small. This feature results from the fact that the threshold
step, respectively, the unknown reflection and transmissioenergy for free propagation in the SO band is quite high. It is
amplitudesT'yy, 'y, T'sos THH, 7TLH, @nd 7go can be  about 500 meV for the incident heavy hole with an in-plane
found as solutions of a matrix equation of the form given inwave vectok ,=4X 10" ?27/a considered here. As a resuilt,
Eq. (27). Since the potential steps in Fig. 5 lacks inversionwe do not expect a large difference between the transmission
symmetry, the transmission coefficients will be differentcoefficients calculated with and without the effects of the SO
when calculated with the upper or lower Hamiltonians. Thisband.
will be illustrated in the numerical examples below. Case 2: ThdnP/Iny s§Ga& 4ASs interface.The situation is

Hereafter, we only consider the transmission coefficientguite different for the second interface shown in Fig. 5. As
of heavy holes incident from left to right on the potential shown in Fig. 7, the energy dependence of the transmission
steps shown in Fig. 5. In a Pnp HBT, heavy holes wouldcoefficients for an incident heavy hole is markedly different
constitute the major component of the injected current acroswhether or not the effects of the SO band are included. The
a forward biased emittgiP-type)/base(n-type) junction. results in Fig. 7 are for the uppé2x2 and 3x3) Hamilto-

Case 1: TheAl :Ga /As/GaAsinterface.Figure 6 shows nians only. Figure 8 shows that for that interface the results
the transmission coefficients as a function of energy for holesbtained with the upper and lower X38) Hamiltonians are
incident from left to right on the structure shown on the left quite different over the full range of incident energy investi-
in Fig. 5. The lines labeledU) and (L) are the results ob- gated here.
tained with the upper and lower<8 Hamiltonians, respec- In Figs. 7 and 8, there are cusps in the transmission coef-
tively. Also shown are the results obtained with the upperficient T, appearing at an incident energy equal to the
Hamiltonian when the SO band is neglected. Figure 6 indithreshold energies for free propagation in the SO bands on
cates that botfT, and T, are not very much affected by either side of the interfacd.5q, is nonzero past the energy
the inclusion of the SO band at energy above the thresholthresholdEg in the InGa _,As region (around 500 meV
energyE, for free propagation in the light-hole band in the according to Fig. 1 However,Tsoy goes back down close
Al,Ga _,As region. BelowE,, there is a substantial differ- to zero above 535 meV because there is a finite probability to
ence between the results fop,y and T, obtained with the  be reflected in the SO band in the InP region beyond that
lower and upper Hamiltonians. This is expected since a poenergy.
tential step lacks inversion symmetry, and results from the Figures 9 and 10 are plots similar to Figs. 7 and 8 for a
upper and lower Hamiltonians are not expected to be identilight hole incident from the InP region. Figure 9 shows that
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FIG. 9. Same as Fig. 6 for a light hole incident on the

the InP/Iny 5:Gay 47AS interface shown in Fig. 5. Comparison of the InP/Iny 54G& 4/AS potential step shown in Fig. 5. All parameters are
transmission coefficients obtained with the upper and loweB3 the same as in the caption of Fig. 6. Also shown are the transmis-
Hamiltonians. All parameters are the same as in the caption ofion and reflection coefficients calculated while neglecting the ef-
Fig. 7. fects of the SO band.

the probability of light- to heavy-hole conversion is much scatterer, we have found the presence of antiresonance/
smaller than the probability of heavy- to light-hole conver-resonance pairé-ano resonancg the energy dependence
sion shown in Fig. 5. This is expected using a simple estiof the heavy- and light-hole transmission coefficients. These
mate based on the well-known result for electron tunnelingantiresonance/resonance pairs occur slightly below the
through a potential step threshold energiesH; and Egg) for heavy holes, and
slightly belowEgg for light holes.

For the case of potential steps, the effects of the SO band
on hole tunneling coefficients were found to be minor in the
case of an AJsGa 7As/GaAs interface but quite drastic in
the case of an InP/jnGa, 4/AS potential step. This is due to
the much lower values of the threshold energy for free propa-
gation in the SO band on either side of the heterointerface in
the InP/Iny sGay 4AS system, as illustrated in Fig. 8. Our
results indicate that the SO band cannot be neglected in the
calculation of the emitter injection efficiency of Pnp HBTs
using InP/Ip s4Ga, 4,7/AS materials for the emitter-base junc-

We have used the %6 Luttinger-Kohn Hamiltonian to tion. In that case, the valence-band energy profile through the
study the effects of the spin-orbit split-off band on the trans-emitter-base junction under large enough emitter-base bias
mission and reflection coefficients of holes through various
heterostructures. The tunneling and reflection coefficients of 11
heavy and light holes were calculated using the upper anc
lower Hamiltonians obtained through a unitary transform of |
the 6X 6 Luttinger-Kohn Hamiltonian.

2k}ran7 k;nc

T} = g e 72
ji [k}ran7k=nc+ 1]2

(28)

whereji =HL or LH for an incident light and heavy hole,
respectively. In Eq(28), the ratio of the of the-component
of the wave vectors is smaller whéj= HL, which explains
why Ty, is smaller thanT .

IV. CONCLUSIONS

T (3x3)

(U)- Upper

{L)- Lower

We have shown that SO interaction has a more profounc \\///
influence on the light-hole energy dispersion relation than on ' | |
the heavy-hole energy dispersion relation. More specifically, e

soL*

the energy thresholdH;) for free propagating light-hole 05t
states was found to occur at a lower energy compared to thi

value obtained when the effects of SO interaction are ne- ;| N

glected. We have studied the tunneling of holes through one Y/

dimensionald scatterers and potential steps. These example: X -
show that the effects of SO interaction can influence the *'| ol

tunneling of heavy-holes even at energies far below the f \ g, (nGass)

. . .. (InP) ) )
threshold energy.for free propagation in the SO band. This is -04 — s e — 5500
due to the lowering of the threshold energy for free propa- Energy (meV)

gation in the light-hole band resulting from a strong coupling

between the light-hole and SO bands for holes incident on a FIG. 10. Same as Fig. 8 for a light hole incident on the

heterointerface with a nonzero in-plane wave vector.

For the case of tunneling through a one-dimensiofial the same as in the caption of Fig. 6.

InP/Iny 54G& 47AS potential step shown in Fig. 5. All parameters are
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approaches the step potential analyzed fi&Because of the  Ohio-Cray supercomputing center for the use of their facili-
probability of hole conversion at the interfadespecially ties.

heavy to lighj the effects of the SO band also affects the

energy distribution of the heavy-holes injected in the base of APPENDIX A: EIGENVALUES AND EIGENVECTORS

the Pnp HBTSs. The latter controls the HBT base transit time OF THE H3yx3 HAMILTONIAN

which is one of the leading compon_eén%ts affecting the high- The 6x6 Luttinger-Kohn Hamiltoniar(1) can be block
frequency performance of these devices. diagonalized using a unitary transformatfion
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|
- | | -
P+Q —Rp—ISp — 2RP+ESP
[
Hawa= -R,+iS P-Q vV2Q+—S5 A2
3X3 P P Q \/3—/2 p ( )
i i
-vV2R,——S, V2Q——S P+A
I P V3 P Q \/52 P ]
This Hamiltonian can be rewritten as
Haxa=H@KZ+HD(k,)k,+HO(k,), (A3)
where
52 (y1—2v2) 0 0
H(z)Z(H) (y1+2v,) 0], (A4)
0 0 0 Y1
) 0 —2iV3y3k, i\6ysk,
H(l)(kp):(_) 2iV3ysk, 0 3iv2ysk, |, (A5)
mg . .
—1 \/g’)’skp _3|\/2’)/3kp 0
and
o [tk VBTG Bk
H<°>(kp>:(2—%) BIC (e VavkE |, (A6)

V67K? V2y,K2 yik3+ A

where = (v,+ y3)/2. The eigenvalue problem associatedsion coefficients as outlined in Sec. Il.
with the HamiltonianH 3,3 is more easily solved when re-
cast in the eigenvalue problem for the wave vedtpras ~ APPENDIX B: TUNNELING THROUGH A & SCATTERER
described in the teXtEq. (16)]. ) _ )

With the decomposition of the Hamiltonian described —Starting with Eqgs.(24—(26) and using Eqgs(17)—(19)
above, the current density operator in #direction can then describing the incident, reflected, and transmitted wave func-

be written as follows tions on either sides of thé scatterer, the application of the
boundary condition$20) and(21) leads to the matrix equa-
1 P tion
_ 2) (1)
J== 2H¢ 5, HH (k,) | (A7)
M[FHHaFLHvFSOvTHHvTLH1TSO]T:th (BY)

J, is equal to Eq(21) in the text multiplied byz2/2m,. This
expression is needed to calculate the reflection and transmighereM is given by
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[ Fin Fu Fiso —Fin —Fy —Fiso i
Fan Fa Faso —Fan —Fy —Faso
Fan Fa Faso —Fan —Fj3 —F3s0
- ik\"TF, ik{)T~F, ikOT Fg, SMWE sMWEy, S 16 -
ik T *FS, ik'T*F,, ikSOTF o, ik +F,, ik'T*F,, kST Foe, |
—2iVal kWS, —2ivalLkFs  —2ivalk(OF 5, —2ival kVFs, —2ivalk'F5  —2ival,kOF 5,
ik Fa, ik!'TF5 ikOT*F g, ik\"TF, ik'T*F5 ik{OT " Faq,
| —2ivalkVFS,  —2ivaT kP, —2iv2T K OF 5, —2iv2Tk(VFy,  —2iv2TkYFy  —2iv2T kS OF 5 |

wherel' " =TI",—2I',, I'* =T, + 2T",, and the following no-
tations were introduced:

SM=ik"T~F,,—T, (B3)
sV =ik T ~F,-T, (B4)
8=k "Fyo-T, (B5)
andV,, is given by
- CFy -
—Fan
—F3p 86
ik(VF (I =21 ,) (B6)
ikWF (I — 2T ) — 2iv2l kM F 4,
[ ik Fan(T1—2T) = 2ivaT ok F o |
[ FIh FII FISO
Fon Fa Fag
M = Fah Fa Fis
Mg Mg Mys
M51 M52 M53
L Me1 Mgz Mg

where

MM:K%TQYQK@FR_ZM%%MF%+JE%KF%;
(C3
M4, andM 43 are obtained by changing the indbxo | and
S0, respectively;
Maa=i(v1— 275K, Fin+ 2395k F o — V675K, Fip
(CH

M 45 and M 46 are obtained by changing the indbxo | and
so, respectively;

The matrixM is unchanged for an incident hole in the light-
hole or SO band, but the vecter must be modified accord-

ingly.

APPENDIX C: TUNNELING THROUGH
A POTENTIAL STEP

Starting with Eqgs.(17)—(19) describing the incident, re-
flected, and transmitted wave functions on either side of a
potential step, the application of the boundary conditions
(20) and (21) leads to the matrix equation

M[FHHirLHrFSOvTHHvTLH1TSO]T:th (CY
whereM is given by
- I:tlh - I:tll - I:tlso
- Ft2h - Ft2| - Ft230
- th - Fgl - Ft350 (C2)
Mgz My My |
Ms;,  Mss Msg
Mgz  Mgs Mes
I
Ms1=2V3y3K,F 1 —i(y1+ 2y,)k"F 3,
+3V2y3K,F3n—2iv2 k" F gy ; (C5)

Mg, and M55 are obtained by changing the indbxo | and
S0, respectively;

M= — 233k, Fin+i(v1+ 295k Fyy

—3V2 Y5k, Fh,— 2iv2 ok Yy ; (C6)

Mss and M sg are obtained by changing the indbxo | and
so, respectively;
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Me1= — VB y3K,F 1, —3v2 ¥k, F M= VB Y5k, Fin+3vZyik,Fhy
+iy kMVF 5 — 2iv2 .k VE S (C?) +iy kMRS, — 2iv2 kMY, (C8)

Mg, and M g3 are obtained by changing the indexo | and  andMgs and Mgg are obtained by changing the indbxo |
so, respectively; and so, respectively. In E4C1), V}, is given by

(71— 270K F 1+ 2V3 3k, F on— VB 3K, Fan : €9
—2V3y3k Fip+i(y + 272)k(zh)|:2h_2iﬁ72k(zh)F3h_3‘/273ka3h
\/673ka1h+3‘/273ka2h_2i‘/?72k(zh)|:2h+i71k<zh)F3h

For holes incident in the light-hole or SO band, only the vestpmust be upgraded while solving E@1) by changing the
indexh to | or so, respectively.
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